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Solving a Continuous Periodic Review Inventory-Location Allocation Problem 

in Vendor-Buyer Supply Chain under Uncertainty  

 

 

Abstract 

In this work, a mixed-integer binary non-linear two-echelon inventory problem is formulated for a 

vendor-buyer supply chain network in which lead times are constant and the demands of buyers 

follow a normal distribution. In this formulation, the problem is a combination of an (r, Q) and 

periodic review policies based on which an order of size Q is placed by a buyer in each fixed period 

once his/her on hand inventory reaches the reorder point r in that period. The constraints are the 

vendors’ warehouse spaces, production restrictions, and total budget. The aim is to find the optimal 

order quantities of the buyers placed for each vendor in each period alongside the optimal 

placement of the vendors among the buyers such that the total supply chain cost is minimized. Due 

to the complexity of the problem, a Modified Genetic Algorithm (MGA) and a Particle Swarm 

Optimization (PSO) are used to find optimal and near-optimum solutions. In order to assess the 

quality of the solutions obtained by the algorithms, a mixed integer nonlinear program (MINLP) of 

the problem is coded in GAMS. A design of experiment approach named Taguchi is utilized to 

adjust the parameters of the algorithms. Finally, a wide range of numerical illustrations is generated 

and solved to evaluate the performances of the algorithms. The results show that the MGA 

outperforms the PSO in terms of the fitness function in most of the problems and also is faster than 

the PSO in terms of CPU time in all the numerical examples. 

Keywords: Inventory-location allocation problem; Mixed-integer binary non-linear programming; 

Two-echelon supply chain; Stochastic demands; Genetic Algorithm 

 

1. Introduction 

In today’s competitive markets companies have to update their logistic systems regularly to 

capture bigger market share by solving the existing difficulties involved in producing the items, the 

uncertainties in predicting the demands, the constraints in supplying the items and loading a wide 

range of items with varying volumes. To reach this aim, the companies need to use preferably the 

best strategy to integrate their logistic networks as well as their inventory systems, transportation, 
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warehouses and vendors to minimize the total cost of operations. This research studies a real-world 

situation of a two-echelon inventory-supply chain problem in which some current limitations in the 

industry are considered.  

Multi-products inventory control problems in finite time-periods have been addressed well 

by many researchers in recent years. Yang et al. (2017) proposed a mixed-integer linear program 

for a multi-item inventory problem in finite horizon under non-stationary demand, arbitrary review 

period, and restricted available inventory budget. Alikar et al. (2017a) modeled a multiple items 

multiple period inventory control problem for a series-parallel redundancy allocation problem 

(RAP) in which the total inventory cost was calculated with respect to the time value of money and 

inflation rates. The total budget for buying the items, the total storage spaces and the truck capacity 

for transferring the items were limited. Their research was conducted in a deterministic 

environment with a fixed demand where the lead times were not considered. Alikar et al. (2017b) 

developed a mixed-integer binary nonlinear model for a multi-product inventory control problem 

with a finite time-period in a series-parallel RAP problem, in which the products were bought 

under an all unit discount strategy. In their model, the storage space, the total available budget, the 

capacities of the vehicles and the system’s total weight were constrained. The lead time was 

assumed to be negligible in their work and also the demands were deterministic. Shankar et al. 

(2018) presented a mixed-integer nonlinear model for a multiple-product multi-echelon finite 

horizon inventory-supply chain problem in which some vital factors of the automobile supply chain 

strategy were integrated. They assumed that no lead times were required. Considering time and cost 

restrictions, a multi-item multiple periods inventory control problem was improved for a routing 

model by Peres et al. (2017) where transhipment movements were handled by identical trucks with 

a unique capacity. They used an exact method and a meta-heuristic algorithm to solve the problem 

on a case study from a company in the Brazilian retail industry where the demand was assumed 

fixed and there was no lead time. Liao et al. (2017) proposed a multi-item inventory model in a 

finite horizon and fuzzy environment with the aim of maximizing the total profits of the retailers. In 

their work, the lead times were assumed negligible. Mousavi et al. (2013) used a genetic algorithm 

to optimize an inventory control problem with multiple products in finite time-period where the 

costs were computed with respect to the time value of money and inflation rates. In their work, 

discount policies, i.e., an all-unit discount and an incremental quantity discount were applied. The 

constraints of the problem were the limitation in storage space, supplying order quantity and the 

total budget at hand. They did not investigate the supply chain members in their work where the 

demands were deterministic and the lead time was assumed zero. A mixed-integer linear model was 

developed by Correia & Melo (2017) for a multi-period inventory location-allocation problem, in 
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which customer segments had different sensitivity to delivery lead times. They used a general-

purpose solver to optimize the formulated mixed-integer linear program. The demands in their 

work were considered deterministic. 

In this study, an inventory control problem is formulated for a buyer-vendor supply chain 

where vendors store their produced items in their own warehouses in order to meet the demands. 

Supply chain inventory control problem with multiple products and multiple time periods is a 

popular topic studied by many scholars in different industries. Cárdenas-Barrón et al. (2015) 

presented a multiple items multi-period inventory lot-sizing problem for a supply chain, in which 

the best suppliers were to be chosen. To find a near-optimal solution, they solved their problem 

using an approximation method. No lead times were considered and the demands were 

deterministic. Sepehri (2011) studied a multiple products multiple time periods inventory model for 

a supply chain problem where a simulation approach was utilized to solve the problem. The 

retailers’ demands were assumed fixed and there were no lead times for delivery of the products. 

An inventory control problem with a wide range of items and periods was proposed by Mirzapour 

Al-e-hashem & Rekik (2014) for a routing problem where items were delivered by capacitated 

trucks from the suppliers to a plant. Since the model was a mixed-integer linear programming, a 

standard solver (IBM ILOG CPLEX) was used to find the optimal solution of the problem. They 

modeled the problem with deterministic demands, which can be far from the real world 

applications. Mousavi et al. (2015) dealt with a multiple products finite horizon inventory-location 

allocation problem for a retailer-distributer supply chain problem where the distance between 

retailers and distributors were assumed to be Euclidean and Square Euclidean functions. Two 

discount strategies as well as all-unit discount and incremental quantity discount were considered 

and the orders were received in special packets. In their work, a fruit fly optimization algorithm 

was improved to optimize the proposed problem. Lead times were not considered in their work and 

the demands were supposed to be deterministic. Moreover, the quality of the solutions found by 

their applied algorithm was not justified with the one obtained by an exact solution method. A 

multi-product seasonal (multiple periods) inventory location-allocation problem was formulated by 

Mousavi et al. (2017b) in a two-echelon buyer-vendor supply chain in which the shortages were not 

allowed and all-unit discount policy was used to purchase the items. A modified particle-swarm 

optimization (PSO) algorithm along with a genetic algorithm was utilized to solve the problem. 

They While the lead times were assumed negligible in their work, they did not assess the 

performance of their solution algorithms with the one of an exact method. Paksoy & Chang (2010) 

considered a multi-stage inventory model in a finite horizon for a supply chain problem with 

multiple popup warehouses and developed a mixed-integer binary linear program. Three multiple 
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goals were investigated where the revised multi-choice goal programming approach was utilized to 

solve the problem at hand on a real industrial case study. The customer demands were fixed and no 

lead times were considered in their research. Jonrinaldi & Zhang (2013) formulated an integrated 

production multi-item multi-period inventory control problem for a supply chain where several 

decision making processes and solving methods were used in the proposed mixed integer nonlinear 

model. Their model assumed constant demand rates and zero lead times. 

This article considers an inventory-supply chain problem under uncertainty while the 

demands of the buyers and the purchasing items from the vendors are stochastic. Rafie-Majd et al. 

(2018) formulated a three-echelon multi-item multi-period inventory-location problem for a routing 

supply chain problem where the demands of the customers were considered stochastic. Their 

approach takes into account the vehicle timetables, fuel consumption, product wastage, and setup 

cost. Qiu et al. (2017) developed a model for a multi-period inventory control problem structured in 

a dynamic program with demand uncertainty where a robust optimization method was used to solve 

the problem. No lead times were investigated in their work. Mousavi et al. (2014) studied an 

inventory control problem with multiple products in a finite time-period where the total available 

budget was limited and shortage costs were allowed for all products in combination with 

backorders and lost sales. They formulated the problem in a fuzzy environment in which the 

discount rates and the storage space for storing the items were considered as fuzzy numbers. The 

supply chain members were not brought to the model and the lead times were assumed negligible. 

Janakiraman et al. (2013) analyzed an inventory control problem in multiple periods for a 

newsvendor in which the lead times were stochastic and a dilation ordering of lead times implied 

an ordering of optimal costs. De & Sana (2014) considered a multi-period production-inventory 

problem with multiple producers in a plant with a multiple shop/delivery system and different 

machines where the cost function was considered to be fuzzy numbers. Aharon et al. (2009) 

modeled a multi-period multiple echelons supply chain problem with stochastic uncertainty where 

a robust optimization method called Affinely Adjustable Robust Counterpart was used to solve the 

problem. Nasiri et al. (2014) formulated a hierarchical model for designing a production-

distribution inventory in a location-allocation problem with multiple-level capacitated warehouses. 

In order to obtain near-optimal solutions, both Lagrangian relaxation and a genetic algorithm were 

applied. In order to find better solutions in a shorter time, they employed the Taguchi approach to 

tune the parameters of their proposed algorithms. In this approach, the number of experiments 

needed to find the best values of the algorithms’ parameters is reduced considerably. There are a 

number of works published recently in the literature that used the Taguchi approach for tuning the 
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parameters in inventory and supply chain fields. Interested readers are referred to Mousavi et al. 

(2015), Mousavi et al. (2017b), Mousavi et al. (2013), and Mousavi et al. (2014) for more details. 

The novelties involved in this paper are as follows. First, this work formulates a novel 

multi-item multi-period inventory-location allocation problem for a two-echelon buyer-vendor 

supply chain problem. The second novelty is that the problem is formulated under uncertainty 

while the demands of the buyers are considered stochastic. Moreover, the lead times are assumed 

constant while it was considered negligible in the related previous works. Furthermore, a modified 

version of the genetic algorithm, named MGA, and a PSO are applied to obtain near-optimal 

quantities of the items ordered by the buyers from the vendors in addition to finding near-optimal 

locations of each vendor placed among the buyers. 

The rest of the paper is organized as follows. In the next section, the problem description is 

given. Indices, notations, and assumptions of the proposed problem come in Section 3. The 

problem formulations, including the objective function and also the constraints of the model, are 

presented in Section 4. In Section 5, a modified version of genetic algorithms (MGA) is developed 

to solve the problem. Section 6 describes the parameter calibration approach and Section 6 shows 

computational results to evaluate the MGA, in which 20 different numerical examples with 

different sizes are first generated, and then the Taguchi approach is utilized to tune the algorithm 

parameters on the generated examples. Finally, the conclusion of the work is described in Section 

8. 

 

2. Problem description 

In this work, a two-echelon multi-item multi-period inventory control problem is 

formulated in a buyer-vendor supply chain network, in which the vendors manufacture different 

products and then store them in their own warehouses to meet the future demands of the buyers. 

Moreover, the vendors sell their products under an all-unit discount policy, where each vendor can 

propose different policy with different price break-points. In fact, when a buyer orders a particular 

item from a vendor, the vendor will charge the buyer based on the quantity of the item requested 

for which the price break-point provided by the vendor applies. The warehouse spaces, the total 

budget of the buyers and the total production capacity of the vendors are limited. Furthermore, the 

vendors deliver their products in special boxes each with a pre-determined number of products. In 

the model, the demands of the buyers are assumed to be stochastic and all follow a normal 

distribution where shortages are not allowed. Moreover, lead times of the products are assumed to 

be constant and there is a limitation on the service levels of the products in each period. The aim is 

to find out the reorder point in addition to the order quantity of each item so that the total supply 
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chain cost is minimized. The proposed inventory-supply chain model is shown to be a mixed-

integer binary non-linear programming type where two meta-heuristic algorithms, i.e., MGA and 

PSO, are used to solve the problem. In order to find suitable parameters of the algorithm, a design 

of experiment approach, i.e. the Taguchi method is used to adjust the MGA and PSO parameters.  

Figure 1 shows the supply chain system under investigation. In the next section, the indices, 

notations, and assumptions of the problem will be presented.  

Insert Figure 1 here 

 

3. Indices, notations, and assumptions of the problem 

All the notations and indices applied in this work are listed as follows. 

 

3.1. Indices and notations 

i = 1, 2,..., I is the index of the buyers 

j = 1, 2,..., J is the index of the products 

k = 1, 2,..., K is the index of the vendors 

t = 0, 1,..., N is the index of the time periods 

ijktD : Expected demand quantity of buyer i  for product j  produced by vendor k in period t   

 Dijkt ijktf : Probability density functions of ijktD  (a normal distribution with mean 
ijktD and 

standard deviation 
ijktD ) 

ijktT : The time at which the 
thj product ordered by buyer i from vendor k is received 

kF : The production capacity of vendor k  

ijkth : Inventory holding cost per unit of 
thj product in the warehouse owned by vendor k  sold to 

buyer i  in period t  

ijktA : Ordering cost (transportation cost) per unit of 
thj product from vendor k  to buyer i  in 

period t  

ijktpc : Purchasing cost per unit of 
thj product paid by buyer i to vendor k at thp price break point in 

period t  

ijkts : The required warehouse space for vendor k  to store a unit of 
thj product sold to buyer i  in 

period t  

iS : The available capacity of 
thi buyer’s warehouse 
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TB : The total available budget  

ijktw : A binary variable that is set to 1 if buyer i  orders product j  from vendor k  in period t , and 

set to 0 otherwise 

ijktQ : Ordering quantity of 
thj product purchased by buyer i  from vendor k in period t  (decision 

variable)  

ijktV : The number of special boxes of 
thj product proposed by vendor k  to buyer i  in period t  

(decision variable) 

jn : The number of 
thj product contained in each box 

ijktX : The initial (remained) positive inventory of 
thj product purchased by buyer i  from vendor k

in period t  (decision variable) 

ijktI : Inventory position 
thj product for buyer i  purchased from vendor k  in period t  

ijktSS : Safety stock of 
thj product for buyer i  purchased from vendor k  in period t   

ijktr : Reorder point of 
thj product for buyer i  purchased from vendor k in period t   

ijktL : Lead time of 
thj product for buyer i  purchased from vendor k in period t   

ijktpu : thp price break-point proposed by vendor k  to buyer i  for purchasing 
thj product in period t   

ijktp : A binary variable that is set to 1 if buyer i  purchases product j from vendor k  at price 

break point p  in period t , and set to 0 otherwise 

1 2i i ia ( a ,a ) : The coordinates of the location of buyer i 

1 2k k ky ( y , y ) : The potential region of vendor k (decision variable) 

M : Maximum inventory level
 

hTC :  Expected total holding cost 

PTC : Expected total purchasing cost 

OTC : Expected total ordering (transportation) cost 

TC :  Expected total supply chain cost 

 

3.2. Assumptions 

 The buyers’ demand rates of all products are stochastic and follow a normal distribution. 
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 The initial positive inventory level of the items sold out by each vendor to each buyer is zero (i.e.,

1 0ijkX  ) 

 All orders are placed on a given finite horizon that includes N fixed time periods of equal length. 

 The orders must be received at the beginning of the next period; thus two scenarios may happen 

within a period, either the lead time is positive or zero. In other words, if the inventory level 

reaches below the reorder point, an order is placed and will be received at the beginning of the 

next period. Even if the inventory level does not reach the reorder point during a period, the order 

will be received immediately at the beginning of the next period. 

 The total storage space, the total production capacity to produce items by each vendor and the 

total available budget to buy the items are restricted. 

  No order is made in the last period. 

 The orders arrive in special boxes of a pre-specified number of products. 

 The orders should be received at time T, so the lead time would be between the time an order is 

placed and T. 

  

4. The problem formulation 

In this section, we propose a mixed-integer binary non-linear model for the inventory 

supply chain problem at hand. Figure 2 shows some scenarios of the inventory model.  

 

Insert Figure 2 here 

 

The objective function and the constraints of the model are formulated as follows. 

 

4.1. The objective function 

First, let us consider a problem in which shortages are not allowed and the stochastic 

demands follow a normal distribution. In this problem, the total cost of the proposed supply chain 

is calculated as: 

O h PTC TC TC TC   .          (1) 

For 1 2 1{ , ,..., };  (  1,..., )ijk ijk ijkN ijkt ijktT T T T T for t N    the total ordering (transportation) cost, the 

holding cost, and purchasing cost will be obtained as follows. 

The total transportation cost is given by Eq. (2). 
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1 1 1 1

( ( , ))
I J K N

O ijkt ijkt k i

i j k t

TC Q A d y a
   

 ,        (2) 

where ( , )k id y a  is the distance function between the location of vendor k and buyer i, considering 

to be the Euclidean function defined as follows: 

2 2

1 1 2 2( , ) ( ) ( )k i k i k id y a y a y a     

From Fig 2, the total holding cost will be given by: 

1

1 1 1 1

ijkt

ijkt

I J K N T

h ijkt ijkt
T

i j k t

TC h I dt


   


        

 (3) 

The demands of the buyers should be covered by the positive level of inventory during lead 

time 
ijktL with a given probability 1   called the inventory service level specified by the decision 

makers (DMs) where this service level can be formulated as 

1ijkt ijktPr( D r ) -             (4) 

and we have: 

ijkt ijkt ijktr D SS             (5) 

According to (Miranda & Garrido, 2004), the following formula is the result: 

2 2

1( ). ( ) .( ( ( )) ( ) )
ijkt ijktijkt ijkt ijkt ijkt L ijkt Dr E D E L Z E D E L           (6) 

Equation (6) is simplified as the following formula when the
ijktL is supposed to be a constant: 

1. .
ijktijkt ijkt ijkt D ijktr D L Z L            (7) 

In Eq. (7), 1Z   is the upper  1  percentile point of the standard normal distribution 

Figure 2 shows the reorder point situations in the proposed model. Using the Weber problem 

(Drezner & Hamacher, 2001), the average holding cost rate in the interval period 1[ , ]ijkt ijktT T   based 

on the equation above is computed as: 

1

1

1 1 1 1

. .
2 ijkt

I J K N
ijkt ijkt

h ijkt ijkt ijkt D

i j k t

Q X
TC h h Z L 





   

  
   

  
       (8) 

Eq. (8) includes the average cost borne due to storing the order quantity 
( )ijkt ijktQ X

 as the first 

part which is the inventory level of item j applied to cover the buyer demand received during two 

successive orders. The safety stock is the second average cost included in (8) which is stored in the 

storage owned by each vendor. 
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In this work, the vendors sell their products under some discount policies, i.e., all-unit 

discount and incremental quantity discount. The following equation is the price-break points 

proposed by the vendors for an all-unit discount policy:
 

1 1 2

2 2 3

              

ijkt ijkt ijkt ijkt

ijkt ijkt ijkt ijkt

ijktP ijktP ijkt

c u Q u

c u Q u

c u Q

 


 


                                                                                  

Then, the total cost for purchasing the items from the vendor under all-unit discount strategy is 

calculated as:

 1

1 1 1 1 1

I J K N P

p ijkt ijktp ijktp

i j k t p

TC Q c 


    


         

(9) 

 

4.2. The constraints 

The initial positive inventory of each buyer in each period remained from the previous 

period is formulated as follows: 

1 1Q D ( )ijkt ijkt ijkt ijkt ijkt ijktX X T T             (10) 

Each vendor’s warehouse has a limited capacity that is shown by the following equation: 

1 1

( )
J N

ijkt ijkt ijkt i

j k

Q x s S
 

 
         

 (11) 

The products are provided by each vendor in special boxes ijktV with the number of item jn  

where its relevant constraint comes as follows: 

ijkt j ijktQ n V             (12) 

When the production capacity of each plant owned by each vendor is restricted, the related 

constraint would be formulated as follows: 

1 1 1

I J N

ijkt k

i j t

Q F
  

             (13) 

The total available budget to buy the products from the vendors is limited which is given by 

the following formula: 

1

1 1 1 1 1

I J K N P

ijkt ijktp ijktp

i j k t p

Q c TB


    

          (14) 



  

12 
 

While the order quantity ijktQ plus the remaining inventory cannot exceed the maximum 

inventory M, the relevant constraint is shown as: 

ijkt ijktQ X M 
          

 (15) 

Finally, the following constraint describes that a product can be only bought by each buyer 

at a price break point in each time. 

1

1  Q 0

0

P
ijkt

ijktp

p

if

otherwise





 


            (16) 

Therefore, the supply chain model for the first model is obtained as follows: 

1

1

1 1 1 1 1 1 1 1

1

1 1 1 1 1

( ( , )) { .( ) . . }
2 ijkt

I J K N I J K N
ijkt ijkt

ijkt ijkt k i ijkt ijkt ijkt D

i j k t i j k t

I J K N P

ijkt ijktp ijktp

i j k t p

Q X
MinTC Q A d y a h h Z L

Q c

 







       



    


    


 

Subject to: 

1 1Q D ( )ijkt ijkt ijkt ijkt ijkt ijktX X T T      

1 1

( )
J K
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otherwise
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

           (17) 

, 0; , {0,1};  (  1,2,..., ;  1,2,..., ;  1,2,..., ;  1,2,..., ) ijkt ijkt ijkt ijktpQ Z x y for i I j J k K t N      
 

 

5. Solving methodologies 

The modified GA and PSO are the solution algorithms used in this paper to solve the 

problem modeled in (17).  
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5.1. The MGA 

In this research, due to the complexity of the problem a modified version of the genetic 

algorithm called MGA is used to find out near-optimal order quantities of the products bought from 

each vendor by each buyer. The MGA steps are described as follows: 

- Initialization of the parameters and representation of the solutions: The parameters of the 

MGA are the number of chromosomes (solutions) in the population (Pop), the probability 

of crossover (Pc), the probability of mutation (Pm), and the number of generation (Gen). The 

decision variables proposed in this study are Q and y, where the rest of the decision 

variables will be obtained, automatically after having Q and y. 

- Evaluation of the solutions: In this stage, all the chromosomes of the population are 

evaluated by the objective function TC proposed in Eq. (17). Figure 3 depicts the population 

of the generated chromosomes evaluated by the TC function. 

 

Insert Figure 3 here 

 

- Selection operator: After testing several approaches on the problem, a two-chromosome 

tournament approach is chosen to select two different chromosomes each time randomly 

and compare them in terms of TC after sorting TC of all population solutions in ascending 

order. The chromosome with the minimum TC will be selected to enter the reproduction 

pool. 

- Crossover operator: In order to generate new solutions, a crossover operator is performed. 

First, a number between 0 and 1 is generated randomly for each solution of the population. 

Then, if the value is less than Pc, the related solution will be chosen for crossover operation. 

For two different chosen chromosomes 1R and 2R , the crossover operator is performed 

using the following formulae: 

 
*

1 1 2. (1 )R R R     

*

2 1 2.(1 )R R R     ,        (18) 

where  is a random number generated between 0 and 1 and *

1R and *

2R  are the offspring. 

Note the value R and 
*R include Q and y, where Q is an integer number and y is a number 

greater than or equal to zero. 

- Mutation operator: In this paper, a one-point mutation operator is found to be the best 

approach to generate new solutions for the next generation. First, a random number is 
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generated between 0 and 1 for each chromosome. If that number is less than Pm, the related 

chromosome is chosen for the mutation operator. In the chosen chromosome, one gene of Q 

and two genes of y related to a location are selected randomly and then are changed in the 

range randomly.  

- Termination criteria: The algorithm is ended up while the number of generation reaches a 

pre-specific value (Gen). 

 

5.2. The PSO 

    In order to validate the results obtained by the proposed MGA, a PSO algorithm is also 

used to solve the problem. The steps involved in PSO are summarized as follows (Mousavi, et al., 

2017a): 

- Initializing the parameters and representing the particles the same as shown in Figure 3. 

- Initializing the position and velocity of each particle the same as the method performed in 

(Mousavi et al., 2017a). 

- Selecting the process of particles using Pbest and Gbest of each generation. 

- Generating new solutions for each particle by updating the positions and velocities. 

- Reaching the maximum number of generation as a termination criterion. 

 

6. Experimental design 

Tuning parameters in an appropriate way can usually have an impressive effect on the 

performance of a meta-heuristic algorithm. Since the quality of the solution obtained by any meta-

heuristic algorithm such as PSO and GA depends on the values of their chosen parameters, in this 

section, the Taguchi method is used to tune the parameters. In the work proposed by Eiben & Smit 

(2011) a conceptual framework for parameter setting in evolutionary algorithms is presented 

emphasising on two approaches to choose a parameter value: (1) parameter tuning approach, in 

which the parameter values are set during running the algorithm and (2) the parameter control 

approach, where the parameter values are changing while running the algorithm. In this work, the 

first approach is employed. 

In a meta-heuristic algorithm, the parameters are controllable factors, the problem being 

solved is the process input, and the fitness function is the process output. Hence, the best way 

would be to tune the algorithm’s parameters using the experimental design methods as explained as 

follows instead of applying the values set by other researchers or using a trial and error procedure. 

In the Taguchi method (Roy, 1990), the factors (here the parameters) which effect on the efficiency 

(response) of a process are classified into two types: noise factors N which are uncontrollable, and 
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those factors S such as the parameters of a meta-heuristic algorithm that are controllable. The 

Taguchi employs the orthogonal arrays to design the experiments, and then uses an approach to 

control N in order to decrease the variation or scatter around the target; in other words, the design 

that is impressed less by N is a robust design (Sadeghi et al., 2013). In order to analyze the values 

obtained by the Taguchi, the standard approach and the signal to noise ratio (S/N) approach are 

utilized. In the standard approach, an analysis of variance is used for experiments with only one 

iteration whereas the second approach is employed for experiments with more than one iteration. In 

the meta-heuristic algorithms proposed in this work, more than one replication is needed and thus 

the second approach has to be applied.  

According to S/N analysis, a good condition is observed if the signal is more than the noise 

(i.e. S > N). In this paper, the aim is to reach a condition that optimizes S/N. Three categories of 

characters exist in the Taguchi method, “smaller is better” for which the objective function is of a 

minimization type, “nominal is the best” for which the objective function has modest variance 

around its target and “bigger is better”, where the objective function is of a maximization type. The 

S/N analysis of these three categories is formulated respectively by (Roy, 1990): 

                
 

 
   

  

   
         (19) 

                
 

 
        

 

   
        (20) 

                
 

 
 

 

  
 

 

   
  ,        (21) 

where n is the number of iteration, am is the response in m
th

 iteration, and a is the average response.  

Using the design of experiment method, i.e. the Taguchi provides the following advantages: (i) 

reducing the number of iterations, (ii) finding the optimal values of the algorithm parameters and, 

(iii) reducing the runtime taken by the algorithms to find the best solutions. The implementation of 

the Taguchi method is explained in the numerical examples in the next section. 

 

7. Computational results and discussions 

 Some numerical examples are solved in this section in order to demonstrate the application 

of the proposed methodology as well as to assess the performances of the solution algorithms. 

 

7.1. Numerical examples 

As a new type of problem has been addressed in this work, there is no benchmark available 

in the literature. As such, in this section, 40 numerical examples classified in 20 small-size and 20 

large-size problems are generated and solved in order to evaluate the performance of the proposed 
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solution methods. Then, the Taguchi method is used to obtain the near-optimal values of the MGA 

parameters on the 40 numerical examples, for which the L9 array is used. Table 1 shows the input 

data used to generate the 40 numerical examples with different sizes where the demands of the 

buyers follow a normal distribution with mean 20 and standard deviation 10 and the other 

parameters follow a uniform distribution. From Table 1, the coordinates of both the buyers and the 

vendors are chosen randomly in a region [0, 100]. Tables 2 and 3 depict the 20 small-size 

numerical examples and their parameter values along with the best and worst results in terms of 

their fitness values and their required CPU times obtained by the MGA and PSO, respectively. In 

small-size numerical examples shown in Tables 2 and 3, the number of buyers is between 2 to 15 

while this value is between 1 to 10 for the vendors, for the items, and for the time periods while 

these numbers in large-size numerical examples are 10 to 25 for the buyers, 10 to 20 for the items, 

10 to 20 for the vendors and 2 to 3 for the time periods which are shown in Tables 5 and 6. The 

sixth to ninth columns of Tables 2, 3, 5 and 6 show the optimal levels of the MGA and PSO 

parameters tuned by the Taguchi method for each numerical problem, respectively. Since the 

problem is considered as mixed-integer binary nonlinear programming in order to evaluate the 

quality of the solutions obtained by the MGA and PSO, the problem is coded in GAMS version 

24.1.2 using MINLP function. The fitness values and CPU time of small-size numerical examples 

obtained by GAMS for all 20 small-size numerical examples are shown in Table 4.  

In order to clarify how the Taguchi’s method works, Problem number 6 (Prob. No. 6) of 

small-size numerical examples is described for the MGA parameters in detail as an example. Table 

7 displays the parameters (factors) of the MGA and PSO and their levels which have been found 

the best values for the generated problems after running the problems many times with different 

values of the parameters. The Taguchi approach with an L9 array of the MGA designed for Prob. 

No. 6 of small-size numerical examples is shown in Table 8 where the TC value of each 

combination is brought in the last column. Figure 4 depicts the mean S/N ratio plot for different 

levels of the parameters for Prob. No. 6 of small-size numerical examples for the MGA. According 

to Fig. 4, the best levels of the MGA parameters are 200Pop  , 0.6CP  , 0.2mP  and 1000Gen 

. In order to show the difference between the best results obtained by the MGA, PSO, and GAMS 

on small-size numerical examples problem, the pictorial representation of the results for TC and 

CPU time (hours) is demonstrated in Figs 5 and 6, respectively. The convergence path of the best 

results obtained by the MGA for Prob. No. 6 of small-size numerical examples is shown in Fig 7. 

Moreover, the obtained optimal orders of the items made by the buyers from the vendors and the 

optimal locations of the vendors among the buyers resulted by the MGA and GAMS for Prob. No. 
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6 of small-size numerical examples are displayed in Tables 9 and 10, respectively.  Figure 8 shows 

the graphical representation of the optimal locations of the vendors among the buyers for Prob. No. 

6 of small-size numerical examples. In addition, Tables 11 and 12 depict the one-way ANOVA to 

compare the MGA and PSO for both small-size and large-size numerical examples in terms of the 

best fitness values and CPU time respectively. 

 

Insert Figures 4 to 8 here 

Insert Tables 1 to 12 here 

 

7.2. Discussions 

In this section, the results obtained by the proposed methods are analyzed. Since there is no 

benchmark fit to the model in the literature, 40 different problems are randomly generated and 

classified into two categories, small-size and large-size, each with 20 numerical examples. This 

classification is based on the results achieved by the GAMS version 24.1.2 software and is based on 

whether the best fitness value can be reached or not running the problem in 6 days continuously.  

From Tables 2, 3, and 4, the fitness values obtained by the three solution methods are the same for 

Prob. No. 1. However, while the optimal solution is found by all algorithms, the MGA reaches this 

value faster than the other methods in terms of CPU time (sec). In addition, the fitness value 

obtained by the PSO for Prob. No. 2 is optimal and is equal to the one achieved by the GAMS. 

Nonetheless, while the solution found by the MGA is not optimal, this algorithm performs better 

than PSO and GAMS in terms of the CPU time. Meanwhile, in Prob. Nos. 4 and 6, the MGA 

reaches the optimal solution in comparison with GAMS while it is still the fastest solution method 

with the lowest CPU time. Moreover, the results in Table 4 show that GAMS is not able to solve 

Prob. Nos. 14-15 and 17-20 and thus their optimal fitness values are left unknown. In other words, 

GAMS cannot solve the numerical examples of the problems with the number of buyers more than 

8, the number of items more than 5, and the number of vendors more than 4 regardless of running 

the algorithm problem in 6 days conterminously. In fact, the CPU time taken by GAMS to solve the 

numerical examples increases exponentially with the size of the problems which states that the 

exact methods such as GAMS are not suitable for solving the numerical examples of the problem 

when the dimension of the problem increases.  

Comparing MGA with PSO, the results in Tables 2 and 3 are in favor of MGA in terms of the 

fitness value, except in Prob. No. 2 where the PSO found a better fitness value. In addition, both 

algorithms found identical fitness values for Prob. Nos. 1 and 7. Furthermore, MGA is the faster 

algorithm in all the numerical examples solved. 
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From Tables 5 and 6, the PSO outperforms the MGA in Prob. Nos. 5, 10, 15, 17 and 19 in 

terms of fitness value while both algorithms have the same performance to solve Prob. Nos. 2, 4, 7, 

13 and 18. Of course, the results of fitness values for the rest of the numerical examples are in favor 

of MGA. The MGA is still faster than PSO in all 20 numerical examples. 

To compare the results obtained by both algorithms statistically, the analysis of variance (a one-

way ANOVA) is used. Tables 6 and 7 show the one-way ANOVA derived to compare the MGA 

and the PSO in terms of the fitness value and CPU time for both small-size and large-size 

numerical examples. According to the p-values shown in these tables, there is no significant 

difference between the two algorithms in terms of the fitness value and CPU time.  

 

8. Conclusion 

In this work, a novel multi-item multi-period inventory-location allocation problem was 

formulated for a two-echelon buyer-vendor supply chain problem in which the demands of the 

buyers were considered to be stochastic following a normal distribution. The distance among the 

buyers and the vendors were assumed to be Euclidean while the available budget, the production 

capacity, and the storage space to store the items were limited. The objective was to find out the 

optimal order quantity demanded by the buyers from the vendors and the optimal locations of the 

vendors among the buyers so that total supply chain cost was as small as possible. While the model 

was shown to be a mixed-integer binary nonlinear program, the MGA and PSO were used to solve 

the proposed problem and to find a near-optimum solution. In order to evaluate the quality of the 

solutions obtained by the algorithms, some small-size numerical examples of the proposed problem 

were coded and solved by the GAMS software. The results showed that with increasing the 

dimension of the problem, the CPU time taken to solve the problem rose exponentially. The 

Taguchi’s method was also applied to obtain the best parameters value of the algorithms on 40 

generated problems of different sizes. The computational results of running both algorithms 

indicated that the MGA was the better algorithm in most of the numerical examples in terms of the 

minimum cost and the faster algorithm to solve all problems. 

As for recommendations for future, the model can be extended for a routing problem. In 

addition, the model can be formulated under shortage, inflation and time value of money. 

Furthermore, some other meta-heuristic algorithms can be used to solve the problem. 
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The Tables 

 

Table 1. The input data for generating the numerical problems 

Parameters Distribution function  

D (20,10)N  

F (50000,1000000)U  

h (3,20)U  

A (5,20)U  

c (10,20)U  

s (1,10)U  

S (1000000,5000000)U  

TB (1000000,10000000)U  

n (2,6)U  

u (0,50)U  

a (0,100)U  

y (0,100)U  

M (0,150)U  

µ (20,50)U  

  (10,15)U  
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Table 2. The general data for different small-size numerical examples along with the fitness function and CPU time of the MGA 

Prob. 
No. 

Number 
of Buyers 

Number 
of Items 

Number of 
Vendors 

Number of 
Time periods 

MGA 

Pop Pc Pm Gen 
Fitness 

 
CPU time (Sec) 

Best Worst 
 

Best Worst 

1 2 2 1 2 50 0.6 0.2 500 1.919e
4 2.102e4 

 
2.75 2.95 

2 2 2 2 2 50 0.6 0.2 500 2.212e4 2.745e4 

 
1.58 1.83 

3 3 2 2 2 50 0.7 0.1 500 3.129e4 3.986e4 

 
1.13 1.45 

4 4 3 2 2 50 0.6 0.2 500 2.090e
5 2.432e5 

 
7.21 10.49 

5 4 4 2 2 100 0.6 0.2 500 3.033e5 3.477e5 

 
17.61 21.21 

6 5 2 2 2 200 0.6 0.2 1000 8.793e
4 1.139e5 

 
12.74 13.18 

7 5 4 3 3 100 0.6 0.2 500 6.724e5 7.771e5 

 
22.31 23.11 

8 5 5 3 3 200 0.6 0.2 500 9.146e5 1.222e6 

 
28.56 29.42 

9 5 5 4 5 200 0.6 0.2 500 3.608e6 3.714e6 

 
52.99 55.77 

10 8 2 2 2 100 0.6 0.2 500 2.618e5 3.110e6 

 
23.12 24.905 

11 8 3 3 3 100 0.6 0.2 500 3.393e6 2.441e6 

 
26.39 28.58 

12 8 4 4 4 100 0.6 0.2 500 6.080e6 6.218e6 

 
36.42 38.41 

13 8 5 4 4 200 0.6 0.2 500 7.379e6 7.650e6 

 
83.25 86.42 

14 8 5 5 5 200 0.6 0.2 1000 8.690e6 8.803e6 

 
240.76 248.60 

15 8 6 6 6 200 0.6 0.2 1000 2.397e7 2.409e7 

 
303.81 310.02 

16 10 2 2 2 200 0.6 0.2 500 3.778e5 4.175e5 

 
54.54 56.71 

17 10 4 4 4 200 0.6 0.2 500 7.074e6 7.275e6 

 
69.08 72.14 

18 10 8 5 5 200 0.7 0.2 1000 1.814e7 1.826e7 

 
459.48 464.53 

19 10 8 8 8 200 0.7 0.2 1000 7.856e7 7.901e7 

 
992.94 998.23 

20 15 10 10 10 200 0.8 0.1 1000 2.162e8 2.315e8 
 

1085.16 1098.75 
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Table 3. The general data for different small-size numerical examples along with the fitness function and CPU time of the PSO 

Prob. 

No. 

Number 

of Buyers 

Number 

of Items 

Number of 

Vendors 

Number of 

Time periods 

PSO 

C1 C2 Pop Gen 
Fitness 

 
CPU time (Sec) 

Best Worst 
 

Best Worst 

1 2 2 1 2 1.5 2 70 700 1.919e
4 2.131e4 

 
2.83 3.19 

2 2 2 2 2 2 1.5 100 700 2.205e
4 2.890e4 

 
1.63 1.89 

3 3 2 2 2 1.5 2.5 100 700 3.163e4 4.222e4 

 
1.32 1.46 

4 4 3 2 2 2 1.5 200 1000 2.136e5 2.583e5 

 
7.51 11.60 

5 4 4 2 2 2 1.5 200 1000 3.209e5 3.524e5 

 
18.08 22.43 

6 5 2 2 2 2 2.5 200 1200 8.901e4 1.540e5 

 
12.95 13.88 

7 5 4 3 3 2 1.5 100 700 6.724e5 7.997e5 

 
24.78 25.91 

8 5 5 3 3 2.5 1.5 200 1000 9.381e5 1.420e6 

 
30.24 32.62 

9 5 5 4 5 2 1.5 200 700 3.611e6 3.783e6 

 
55.47 57.32 

10 8 2 2 2 2 2.5 100 700 2.685e5 3.222e6 

 
23.45 27.20 

11 8 3 3 3 2 1.5 200 1000 3.396e6 2.521e6 

 
27.74 31.43 

12 8 4 4 4 1.5 1.5 100 1200 6.200e6 6.821e6 

 
37.66 42.23 

13 8 5 4 4 2 2 100 700 7.411e6 8.005e6 

 
86.98 91.32 

14 8 5 5 5 2 1.5 200 1000 8.719e6 8.851e6 

 
248.28 256.72 

15 8 6 6 6 1.5 1.5 200 1200 2.405e7 2.430e7 

 
311.46 319.56 

16 10 2 2 2 2 2.5 200 700 3.796e5 4.272e5 

 
57.33 59.21 

17 10 4 4 4 2 2 200 1000 7.144e6 7.327e6 

 
72.31 76.84 

18 10 8 5 5 2.5 2 100 1200 1.823e7 1.872e7 

 
468.92 476.21 

19 10 8 8 8 2 1.5 200 1200 7.898e7 8.051e7 

 
1005.38 1034.28 

20 15 10 10 10 2 2.5 200 1000 2.173e8 2.386e8 
 

1104.20 1118.39 
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Table 4. The general data for different small-size numerical examples and the fitness function and CPU time obtained by GAMS 

Prob. 
No. 

Number 
of Buyers 

Number 
of Items 

Number of 
Vendors 

Number of 
Time periods 

GAMS 

Fitness  CPU time 

(Sec) 
 

1 2 2 1 2 1.919e
4
 26.31 

2 2 2 2 2 2.205e
4
 43.72 

3 3 2 2 2 3.125e4 59.26 

4 4 3 2 2 2.090e
5
 213.45 

5 4 4 2 2 3.029e5 418.75 

6 5 2 2 2 8.793e
4
 421.96 

7 5 4 3 3 6.716e5 1022.75 

8 5 5 3 3 9.138e5 7653.44 

9 5 5 4 5 3.590e6 24536.52 

10 8 2 2 2 2.604e5 18782.35 

11 8 3 3 3 3.382e6 108369.39 

12 8 4 4 4 6.066e6 232136.31 

13 8 5 4 4 7.359e6 475183.49 

14 8 5 5 5 - - 

15 8 6 6 6 - - 

16 10 2 2 2 3.758e5 432540.23 

17 10 4 4 4 - - 

18 10 8 5 5 - - 

19 10 8 8 8 - - 

20 15 10 10 10 - - 
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Table 5. The general data for different large-size numerical examples along with the fitness function and CPU time of the MGA 

Prob. 
No. 

Number 
of Buyers 

Number 
of Items 

Number of 
Vendors 

Number of 
Time periods 

MGA 

Pop Pc Pm Gen 
Fitness 

 
CPU time (Sec) 

Best Worst 
 

Best Worst 

1 10 10 10 2 100 0.7 0.2 500 3.723e6 4.130e6 

 
292.11 354.30 

2 10 15 10 2 100 0.7 0.1 500 4.826e6 5.103e6 

 
558.97 631.21 

3 10 15 13 2 100 0.6 0.2 1000 5.165e6 5.596e6 

 
610.20 676.22 

4 10 10 15 2 100 0.7 0.1 500 5.004e6 5.496e6 

 
588.53 690.13 

5 15 10 10 2 100 0.7 0.1 500 6.171e6 6.587e6 

 
692.98 741.27 

6 15 15 10 2 100 0.6 0.2 1200 7.381e6 7.823e6 

 
802.03 859.08 

7 15 10 15 3 200 0.6 0.2 1000 7.237e6 7.892e6 

 
851.26 932.38 

8 15 15 12 3 100 0.7 0.2 1200 8.401e6 8.923e6 

 
1000.39 1201.36 

9 15 15 14 3 200 0.7 0.1 1000 8.900e6 9.310e6 

 
1031.93 1201.58 

10 15 15 15 2 100 0.7 0.1 1000 9.803e6 1.060e7 

 
1307.38 1443.61 

11 10 15 15 3 100 0.7 0.2 1200 9.119e6 9.831e6 

 
1281.32 1399.02 

12 17 15 10 3 100 0.7 0.2 1200 1.989e7 2.197e7 

 
1532.24 1675.28 

13 20 10 10 3 200 0.6 0.2 1000 1.123e7 1.238e7 

 
1885.25 2100.63 

14 20 10 15 2 200 0.6 0.2 1000 3.230e7 3.402e7 

 
2799.00 3320.45 

15 20 15 10 2 100 0.7 0.1 1200 5.128e7 5.652e7 

 
2895.32 3579.65 

16 20 15 15 2 200 0.7 0.2 1200 8.220e7 8.959e7 

 
4010.25 4950.38 

17 20 20 10 2 200 0.7 0.2 1200 7.456e7 7.838e7 

 
4302.46 5181.33 

18 20 20 15 2 200 0.8 0.1 1200 8.233e7 8.881e7 

 
4831.92 5920.64 

19 20 20 20 2 200 0.8 0.2 1200 9.010e7 9.263e7 

 
5098.52 6672.20 

20 25 20 15 2 200 0.7 0.2 1200 2.230e8 2.432e8 
 

7002.28 9543.37 
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Table 6. The general data for different large-size numerical examples along with the fitness function and CPU time of the PSO 

Prob. 
No. 

Number 
of Buyers 

Number 
of Items 

Number of 
Vendors 

Number of 
Time periods 

PSO 

C1 C2 Pop Gen 
Fitness 

 
CPU time (Sec) 

Best Worst 
 

Best Worst 

1 10 10 10 2 2 2 100 1000 3.811e6 4.231e6 

 
312.23 398.23 

2 10 15 10 2 1.5 2 70 1200 4.826e6 5.132e6 

 
591.21 603.28 

3 10 15 13 2 1.5 1.5 100 1000 5.273e6 5.641e6 

 
645.32 691.65 

4 10 10 15 2 2 2 100 1000 5.004e6 5.412e6 

 
627.50 711.35 

5 15 10 10 2 2.5 1.5 100 1000 6.160e6 6.616e6 

 
718.22 769.18 

6 15 15 10 2 1.5 2 200 1000 7.409e6 7.900e6 

 
822.33 871.53 

7 15 10 15 3 2 2 100 1200 7.237e6 7.856e6 

 
903.12 1012.01 

8 15 15 12 3 1.5 1.5 200 1000 8.383e6 8.955e6 

 
1032.22 1152.86 

9 15 15 14 3 1.5 1.5 200 1000 8.919e6 9.341e6 

 
1142.40 1225.15 

10 15 15 15 2 2 1.5 200 700 9.720e6 1.022e7 

 
1343.21 1401.21 

11 10 15 15 3 2 1.5 100 1200 9.122e6 9.815e6 

 
1327.11 1410.22 

12 17 15 10 3 2 2 100 1000 2.021e7 2.371e7 

 
1622.24 1731.06 

13 20 10 10 3 1.5 1.5 200 1200 1.123e7 1.220e7 

 
1956.20 2190.30 

14 20 10 15 2 2 2 200 1000 3.235e7 3.418e7 

 
2986.18 3572.71 

15 20 15 10 2 1.5 2 100 1200 5.125e7 5.654e7 

 
3012.51 3809.60 

16 20 15 15 2 1.5 1.5 200 1000 8.238e7 8.962e7 

 
4200.20 4969.33 

17 20 20 10 2 2 2 200 1000 7.453e7 7.831e7 

 
4272.22 5109.33 

18 20 20 15 2 1.5 2.5 200 1200 8.233e7 8.870e7 

 
4901.90 5996.38 

19 20 20 20 2 2 2 200 1200 9.003e7 9.251e7 

 
5325.02 7030.29 

20 25 20 15 2 1.5 2.5 200 1200 2.235e8 2.400e8 
 

7112.20 9918.37 
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Table 7. The parameters levels of the algorithms 

Algorithm Parameter Low (1) Medium (2) High (3) 

MGA 

Pop 50 100 200 

Pc 0.5 0.6 0.7 

Pm 0.1 0.15 0.2 

Gen 200 500 1000 

PSO 

C1 1.5 2 2.5 

C2 1.5 2 2.5 

Pop 70 100 200 

Gen 700 1000 1200 

 

Table 8. The Taguchi array of the MGA for Prob. No. 6 of small-size numerical examples 

Array Pop Pc Pm Gen TC 

1 1 1 1 1 883241 

2 1 2 2 2 881250 

3 1 3 3 3 880568 

4 2 1 2 3 879985 

5 2 2 3 1 881456 

6 2 3 1 2 881425 

7 3 1 3 2 879985 

8 3 2 1 3 880365 

9 3 3 2 1 881135 

 

Table 9. The optimal orders made by the buyers from the vendors obtained by the MGA and 

GAMS for Prob. No. 6 of small-size numerical examples 

  

Two types of item produced 
by Vendor 1 in the first 

period    

Two types of item produced 
by Vendor 2 in the first 

period 

Buyer  1 2   1 2 

1 100 29 

 

102 93 

2 34 74 
 

86 75 

3 30 54 

 

100 76 

4 65 130 
 

29 94 

5 55 25   89 105 

 

Table 10. The optimal location of the vendors among the buyers obtained by the MGA and GAMS 

for Prob. No. 6 of small-size numerical examples 

Optimal location 

of Vendor 1 

 

Optimal location 

of Vendor 2 

y11 y12  
y21 y22 

8 12 

 

13 26 
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Table 11. The one-way ANOVA to compare MGA and PSO for small-size numerical examples in 

terms of the best fitness values and CPU time 
 Source DF Adj SS Adj MS F-Value P-Value 

 Factor 1 1.00255E+11 1.00255E+11 0.00 0.995 

Fitness value  Error 38 9.44628E+16 2.48586E+15 

   Total 39 9.44629E+16 

    Factor 1 147 147 0.00 0.970 

CPU time Error 38 3911720 102940 
   Total 39 3911867       

 

Table 12. The one-way ANOVA to compare MGA and PSO for large-size numerical examples in 

terms of the best fitness values and CPU time 
 Source DF Adj SS Adj MS F-Value P-Value 

 Factor 1 27772900000 27772900000 0.00 0.998 

Fitness value  Error 38 1.08420E+17 2.85316E+15 
   Total 39 1.08420E+17 

    Factor 1 54701 54701 0.01 0.904 
CPU time Error 38 141322528 3719014 

   Total 39 141377228       
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The Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1. The supply chain system 
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Fig 2. Two different scenarios of net stock vs. time for the inventory model 
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Q111 Q1112 … Q111N Q1121 … QIJKN y11 y12 … yK1 yK2 

 

Q111 Q1112 … Q111N Q1121 … QIJKN y11 y12 … yK1 yK2 

 

Q111 Q1112 … Q111N Q1121 … QIJKN y11 y12 … yK1 yK2 
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Fig 3. The representation of a chromosome 

 

 

 

 

Fig 4. The mean S/N ratio plot for different levels of the parameters for Prob. No. 6 of small-size 

numerical examples for the MGA 
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Fig 5. The gap between the best and the worst results of TC obtained by the MGA, PSO and 

GAMS for small-size numerical examples 

 

 

Fig 6. The gap between the best and the worst results of CPU time (hours) obtained by the MGA, 

PSO, and GAMS for small-size numerical examples 
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Fig 7. The convergence path of the best results obtained by the MGA for Prob. No. 6 of small-size 

data 

 

Fig 8. The optimal location of the vendors (blue points) among the buyers (orange circles) obtained 

by the MGA and GAMS for Prob. No. 6 of small-size data 
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Highlights 

1. A mixed-integer binary non-linear two-echelon stochastic inventory problem is formulated 

where the demands of buyers are stochastic. 

2. The problem is formulated to be a combination of an (r,Q) and periodic review policies 

3. The aim is to find the optimal order quantities and the optimal placement of the vendors such 

that the costs are minimized. 

4. A Genetic Algorithm and Particle Swarm Optimization are used. 

5. A design of experiment approach is utilized to adjust the parameters of the algorithms. 

 

 

 

 


