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A B S T R A C T  

Energy efficiency is still a hot topic today. Coming roughly the 25% of the energy consumption in EU from the residential sector, very few cheap and simple tools 
to promote energy efficiency in home users have been de- veloped. The purpose of this paper is to present Bernard, a concept proof designed for filling this gap. This 
aims that householders become aware of their energy habits and have useful information that help them to redirect their consumption pattern. To achieve these 
goals, Bernard offers, through a mobile application, the home energy consumption monitoring in real time, the energy price forecast for the next hour and the 
appliances which are switched on, among others. Furthermore, it is important to highlight that the system has been de- signed with the premises of being cheap, 
non-intrusive, reliable and easily scalable, in order that utilities can gradually deploy and provide it to their customers, gaining at the same time valuable 
information for decision making and improving its corporate social image. Therefore, the adopted solution is based on a real time streaming data architecture 
suitable for handling huge volumes of data and applying predictive techniques on a cloud-computing environment. The paper provides a detailed description of the 
system and experimental results evaluating the performance of the predictive modules built. As case study, REFIT and REDD datasets were used. 
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1. Introduction 

Environmentally responsible energy use is still a world challenge
today. The effect of the growth of population in developing countries, 
the increase in the demand for energy, the depletion of fossil energy 
sources and the still reduced use of renewable energies, as claimed 
Ugursal (Ugursal, 2014), will likely have a profound impact on the 
socio-economic development of the world in the coming decades. 
Therefore, it is highly recommended that governments and, in parti- 
cular, the energy sector establish policies aimed at changing con- 
sumption habits, in addition to promoting awareness campaigns ad- 
dressed to involve everyone from producer to final consumer. This 
paper presents Bernard, a cheap, non-intrusive and easily scalable 
system addressed to the last element of the chain, the residential sector 
since this sector represented 25.4% of final energy consumption in EU 
in 2016 (Eurostat, 2018) and, to the best of our knowledge, there is a 
shortage of systems for this purpose. 

In the last years, some investments focused partially on empowering 
residential consumers to manage their energy usage more actively and 
efficiently have been developed, but, in general, the home users are the 
ones who have to buy the devices and the expected savings are achieved 
in the very long term. Furthermore, as Bhati, Hansen, and Chan (2017) 
pointed out, the average consumer is not worried about his energy 

efficiency, he is not interested in improving it if that does not lead to get 
a reward (Bhati et al., 2017). Even more, though they are strongly 
motivated, they refuse to use energy monitors and smart plugs, due to 
the complexity of installing and understanding their output (Piccolo   et 
al., 2016). 

Therefore, our proposal is based on the premise that the final pro- 
duct must be inexpensive, non-intrusive, easy-to-install and under- 
standable, pursuing in this way that users adopt the system, become 
aware and act accordingly. 

Bernard, thus, was conceived as a smart system designed for utilities 
to develop and offer their residential customers a product that guides 
them to consume energy more efficiently. This system, from the elec- 
trical power readings supplied by a single sensor as suggested in 1992 
by Hart (1992), provides the users with information about their current 
and historical consumption in real time, and offers recommendations 
about when it is most beneficial for them to consume, impacting as little 
as possible on their habits. 

The huge volume of data that must be managed (reading of thou- 
sands of power curves from clients) and the rate of speed at which data 
should be processed so that the recommendations sent to users are ef- 
fective (received at quasi-real time), led to adopt a big data solution. 
Furthermore, a big data architecture meets also the requirements of 
being easily deployed, upgraded and scalable (O’Donovan, Leahy, 

E-mail addresses: Marta.zorrilla@unican.es (M. Zorrilla), alvaro.ibrain@alumnos.unican.es (Á. Ibrain).

© <2019>. This manuscript version is made available under the CC-BY-NC-ND 4.0 
license http://creativecommons.org/licenses/by-nc-nd/4.0/

mailto:Marta.zorrilla@unican.es
mailto:alvaro.ibrain@alumnos.unican.es


 M. Zorrilla and Á. Ibrain 

 

 

Bruton, & O’Sullivan, 2015), necessary condition so that utilities can 
gradually provide this service. Moreover, these can take advantage of 
ingested data, which suitably processed and analysed, allow them to 
make better decisions. 

In short, the goal of this paper is to describe Bernard, a smart system 
addressed to both, residential users to become aware of their con- 
sumption pattern and utilities to gain valuable information about their 
clients’ consumption patterns and use them to decision making as well 
as to increase their corporate social responsibility. The design decisions 
adopted for the construction of each module as well as the cutting-edge 
technologies used for its implementation are also valuable contribu- 
tions for its application in other industrial scenarios (towards Industry 
4.0 (Scoop, 2016)). 

This paper is organized as follows. Section 2 relates scientific works 
that address aims, technologies and approaches similar to our proposal. 
Section 3 describes the system requirements and architecture and de- 
tails the main tasks entrusted to each module. Section 4 details the 
design and operating mode of each component of the system, evalu- 
ating its viability and performance. Section 5 discusses the results 
achieved and compares these with others found in the literature. Sec- 
tion 6 states the findings and managerial insights. Finally, Section 7 
summarizes the main contributions of this work and comments the lines 
of future research. 

2. Related work 

This section is organised in two folds: a first subsection where some 
works in the field of home energy saving systems are referenced and a 
second subsection that relates big data technologies for the building of 
real time applications today. 

2.1. Home energy management systems 

Many home energy management systems (HEMSs) have been pro- 
posed and developed over time with the aim of improving the energy 
consumption efficiency of residential users. HEMSs address optimal 
consumption and production schedules by considering multiple objec- 
tives such as energy costs, environmental concerns, load profiles, and 
consumer comfort (Beaudin & Zareipour, 2015). 

To name a few systems with a similar goal as Bernard, but with a 
different approach in relation to their development and deployment are 
listed in what follows: Ltd. (2018c) is an energy monitoring system 
which alerts the householders about exclusively solar generation and 
consumption; Ltd. (2018a) enables the user to monitor, program and 
control an ecosystem of devices and appliances in the home, but this 
requires the installation of sensors and their corresponding setting up; 
Plogg Network Controller (Ltd., 2018b) is a commercial smart meter 
and plug providing real-time and accurate energy reading but this 
cannot scale or be extended with another functionality since it only uses 
a sensor to measure power in the home power loop; the same happens 
with (Buono, 2015); finally, Sense (Sense, 2018) is a product that tells 
the user the appliances which are turned on but, as AlertMe, can be only 
utilised by domotic homes. 

Other initiatives for raising people awareness in energy saving not 
related with smart meters have been proposed. This is the case of 
EnergyUse (Piccolo et al., 2016) an online social and collaborative 
platform to discover, share, and discuss tips for conserving energy, or 
the in-progress European project, eTEACHER (de Estudios de Materiales 
y Control de Obra et al., 2017), which aims at developing a set of tools 
for encouraging and enabling a behavior change of building users in 
order to save energy and optimise indoor environment quality. 

To the best of our knowledge, a system as Bernard has never been 
proposed because, until relatively recently, there was neither tech- 
nology nor infrastructure that could process, transform, analyse and 
store huge quantities of data coming from different sources, applying 
parallel processing and real-time analytics. 

2.2. Big data technologies for building real time applications 

Real time analytics is the discipline that analyse data as soon as it 
becomes available in the system. It aims at providing insights for 
making better decisions quickly. This is today an imperative activity for 
organizations and companies that want to advance towards digital 
transformation, as it is the case of the industrial sector. 

Technologies of this arena are focused on high availability, perfor- 
mance and scalability, i.e., they are designed to cope with and perform 
well under an increased or expanding workload. In general, this kind of 
applications are built following a kappa architecture (Wingerath, 
Gessert, & Friedrich, 2016), which comprises three essential modules: a 
streaming data pipeline, a stream processor that reads data from the 
pipeline and performs a certain task and whose result is forwarded to a 
serving layer which might be an analytics web GUI or a database where 
a materialised view is maintained. 

Tools such as Cosmos, Kafka or EventHub can be used as event log- 
ging system (pipeline), whereas Spark, Storm, Flink or Azure Stream 
analytics fall in the category of stream processors. As data-stores, any 
data management system which supports high query performance can 
be considered. Some examples are Cassandra, HBASE or MemSQL. 

Generally, a streaming ecosystem also includes mining modules 
addressed to characterise big data sets, recommend or predict values or 
facts. For instance, Luo et al. (2017) recommend energy saving appli- 
ances to users based on the analysis of their energy consumption pat- 
terns and Li, Ding, Zhao, Yi, and Zhang (2017) performed a study with 
the aim of utilizing one popular deep learning approach, the SAE 
method, to improve the predicted results of building energy consump- 
tions. Tools such as Spark MLlib, Google’s Tensorflow, Theano, PyTorch 
or Keras are frequently used in this field. 

3. System requirements and architecture 

The main goal of this home smart system is to offer householders 
valuable information that allows them to know their energy con- 
sumption patterns as well as strategies and suggestions that help them 
to redirect these patterns towards a more efficient and sustainable 
consumption. In particular, the functional requirements to be satisfied 
were: 

Identify home consumption patterns and, based on these, predict the 
household energy consumption for a given day. 
Predict the KWh price with, at least, one hour in advance to inform 
householders about when it is cheaper to switch devices on. 
Detect and recognize the equipment that are on in the house in real- 
time. 
Offer an easy-to-use graphic interface that displays consumption 
data in real-time, the energy price forecast for the next hour, the 
electronic devices turned on, the outdoors temperature and tips to 
increase efficiency. 

With the aim of facilitating the development, deployment and future 
upgrades, Bernard was conceived under a modular architecture. This 
follows the paradigm of the third generation platforms proposed by the 
Industrial Internet Consortium (IIRA, 2017) for the building of appli- 
cations for the Industry 4.0 (Scoop, 2016), which rely on an data-or- 
iented architecture (Data-as-a-Service) deployed in cloud environments 
(Kleppmann, 2017). This paradigm leads to select and utilize software 
that can be deployed in a distributed environment, scalable and suitable 
for real time data processing (see Section 2.2). 

In particular, the technologies chosen for Bernard implementation 
were Apache Kafka, as logging system and Apache Spark, as stream 
processor mainly because they are open source projects, their perfor- 
mance is very high (Chintapalli, Sanket, & Derek Dagit, 2001) and have 
a large and active community of developers and supporters. Regarding 
data-stores, MemSQL, although it is not free, is a high-performance, in- 
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Fig. 1. Bernard architecture. 

 
memory database that combines the horizontal scalability of distributed 
systems with the familiarity of SQL language. Regarding the machine 
learning components, Tensorflow (with Keras) was chosen due to its 
great user community and the support that it receives from Google, an 
enterprise which has been pushing forward the state of the art in this 
area in the last decade. 

Fig. 1 depicts the six modules that comprise Bernand: 

Data pipeline module: This module is composed of a low energy 
computer (sensor) that monitors the house electric load and sends 
the readings to a low latency and high availability Kafka cluster to 
be processed by a Spark job. This is also responsible for sending 
messages that notify the switching on and off of appliances in the 
house and the request of identification of a new device plugged-in 
(see Section 4.4). 
Processing module: This module runs on top of a Spark cluster and 
is responsible for the execution of the following jobs: 
1. Storage of readings: a Spark job reads real-time data coming 

from Kafka cluster and saves it into a high performance database 
(MemSQL). 

2. Data Aggregation: Hourly, a Spark job cleans and aggregates the 
received data and, next stores processed data in MemSQL to be 
later used by the predictive module. 

3. Data Backup: A daily process stores the household consumption 
in a secondary database (MariaDB) with the aim of serving as 
backup and answering non-real-time user queries. 

4. Prediction of home consumption: a Spark job that estimates 

the queries which require very low latency. MariaDB is an open 
source relational engine that answers the least frequent and lowest 
cost queries requested by the user. It also works as a secondary data 
storage. 
REST service: This module is responsible for serving the informa- 
tion gathered and processed by the whole system to the user mobile 
application. 
Smartphone: Mobile application which offers the functionalities for 
the householder. 

The details of the design and implementation of each module are 
described in the next section. 

 
4. Modules’s description 

This section describes the criteria of design and schemes of im- 
plementation followed in the building of the main components of the 
system. 

During the development phase, two publicly available datasets were 
used. The first one, REFIT, contains low frequency-sampled aggregated 
power readings of 21 UK houses along a year. The second one, REDD, 
contains  one-second-sampled  power  readings  of  6  houses  during  
6 months. REDD is though for appliance disaggregation tasks whereas 
REFIT is more general-purpose. 

 
4.1. Home consumption forecast 

This component aims at predicting the consumption curve of the 
current day. As it is well-known, the home consumption pattern is af- 
fected by several factors such as the number of occupants, ages, gender, 
home construction year, the day of the year, the weather, and so on. A 
house thus does not have an only consumption pattern during all the 
year (Jenkins, Patidar, & Simpson, 2014), but its consumption varies 
according to features like the occupants’ routines or bank holidays, as 
can be observed in Fig. 2 which displays four consumption profiles for 
the same home on days selected randomly. 

The predictive component was built from REFIT data set because 
this has data sampled each 8 s and a higher number of houses to be 
characterised. First, a Spark program was written to preprocess data, 
eliminate missing data and outliers and calculate the average con- 
sumption per hour. Next, a feature vector was defined. This included 
the following home metadata: the building year, the number of male 
and female occupants, the mean age of occupants and the average 
consumption per each hour of the day (see Eq. (1)). Then, a new dataset 
with this information was created in order to develop this component. 

the home consumption for each hour of the current day and 
stores the forecast into MemSQL to be shown to user if requested. 

5. Identification of appliance on: this task is performed by a 
phyton programme that reads the power signal received and 
passes it through appliance disaggregation neural networks to 
extract and store the signature of each device turned-on in that 
home. 

Machine learning module: This includes two artificial neural 
networks built with Keras over Tensorflow for: 
1. Electricity price prediction: This component regularly gets data 

from the Spanish Electrical Grid, processes it, makes a prediction 
the KWh price and stores it in MemSQL, so that this can be later 
shown to the users. 

2. Appliance disaggregation: This artifact analyses the home 
power load readings, extracts the activations of the appliances 
and stores the isolated signal into MemSQL. This allows users to 
know the appliances that are switched on in real time. 

Cd (build_year, mean_age, num_male, num_female, p0 ,   , p23 ) (1) 

Storage module: This hosts two database management systems: 
MemSQL and MariaDB. The first one is a high performance in- 
memory based database focused on real-time analysis. It supports 

Fig. 2. Example of four consumption profiles for the same house on days se- 
lected randomly. 
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• 
• Total energy: Total energy in the grid. 

components. 

• : Calibrator. Must be .    

• LSTM layer (128 units) 

• LSTM layer (128 units, dropout = 0.2) 

Two strategies were studied. The first one followed a clustering- 
based approach. In particular, a model was built by applying a kmeans 
algorithm with optimum k centroids = 30 on the previous dataset, 
where the value of k was established by applying the elbow method 
(Tibshirani, 2001). In this approach, the centroid of the nearest cluster 
is selected as the most probable consumption pattern. 

In order to compute the distance between real vector and centroids, 
an estimation of the components of the real vector corresponding to the 
next hours had to be carried out. To solve this issue, the formula in Eq. 
(2) was utilised. This gives a probability to a vector Cd (partially 
complete) of belonging to a cluster (Ci) given the day of the week d. 

 
P 

 
where: 

Ci d, H =  
(2) 

 
 

  

• : Euclidean distance between Cd and Ci, but only with known 

H: Historical data with information about which cluster was as- 
signed to what house each day. 
µ (d, H): Function which returns the number of times that a house 
was assigned to a cluster when the weekday and its historic are 
provided. 
: Certainty degree of the calculation. It’s equal to Cd . The more 

components are known, the higher probability is reacChi ed. 

To validate the accuracy of the forecast, we calculated the differ- 
ence in hours between the predicted maximum consumption and the 
real one. This approximation performed well in most of the cases. 
However, on days in which the house presented a radically different 
consumption pattern, the difference was not acceptable (about 7 h). 

Therefore, another alternative was searched. This was based on 
discretizing the power vector values by assigning each one to a label of 
the following ones: Low, Medium-Low, Medium, Medium-High or High 
and performing the comparison of the partial known vector with the 
load patterns of the house corresponding to the two previous weeks 
instead of using the clusters. The evaluation method used in this case 
was changed. We only considered that the prediction was right if the 
predicted maximum consumption was the same as the real one for that 
day. This approximation had a very low error rate, only , and thus the 
method was considered satisfactory. Nevertheless, we do not discard 
that the first method outperforms in a real environment in which a 
higher number of consumption profiles and metadata will be available. 

 
4.2. Price prediction forecast 

This job is responsible for predicting the price of the kWh for the 
next hour in the power pool. To this end, the whole set of several 
electric market indicators from ESIOS (Spanish electrical grid API) was 
downloaded. After studying the indicators that this includes (using 
correlation techniques among others), the following ones were selected 
for training the neural network. 

PVPC: Price of the energy for users who have less than 10 kW 
contracted power. 
SPOT market price: Price of kWh in a market called SPOT. In this 
market, utilities trade with their surpluses of energy. 

Actual demand, sum of generation: Total energy destined to 
supply the demand of a certain moment. 
Actual demand: Energy demanded to the grid in a certain moment. 

Several  neural  networks  were  designed  and  trained  with  Keras 

 
Fig.  3.  Training set loss. 

 
library over Tensorflow framework. The best results were achieved with 
a LSTM model (Long short-term memory) with 3 hidden layers of 128 
neurons, using Adam algorithm as optimizer and Mean Average Error as 
cost function. We chose LSTM units due to their “longer-term memory” 
feature that is very suitable for dealing with time-series data. 

Next, the network architecture is shown. 

• Input layer (4 units) 

• LSTM layer (128 units, dropout = 0.2) 

• Output layer (1 unit,activation = selu) 

As can be observed, a dropout of 0.2 was set for the regularization 
across two layers. The training of the network was performed with the 
80% of dataset, leaving a 20% for validation. The training error was very 
low as is shown in Figs. 3 and 4. 

An example of a prediction out of the training/validation set is 
shown in the Fig. 5 where prediction is depicted in orange colour and 
the current price is displayed in blue colour. As it can be observed, the 
mean  average error  is  really low,     3 €/MWh (note that   the  consump- 
tion scale is kWh, *10 3). 

 
 
 

Fig.  4.  Validation set loss. 

+ coth(µ (d, H ) + ) 
1 Cd 
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dropout probability). 

• Fully connected layer with 256 units and ReLU activation. 

• Fully connected layer with 128 units and Linear activation. 

• Fully connected layer with 256 units and Linear activation. 

 

 
 
 
 
 

Fig. 5. Result of prediction with real data. 

 
4.3. Appliance disaggregation 

This task aims at the disaggregation of each home appliance as a 
consequence of the fact that Bernard receives only the global power 
consumed in the house (design requirement in order to be a cheap and 
non-intrusive system (see Section 4.4)). The resulting models are used 
to show homeowners the appliances switched on. 

This deep learning module was built with REDD dataset which 
contains power measures of the appliances of 6 houses, along with the 
total power readings sampled each 3 s. The approximation followed to 
achieve a successful isolation of an appliance from the aggregated 
power signal was the use of Denoise Autoencoders neural networks 
since they act as a filter. These are updated in the backpropagation 
phase in such a way that, in each epoch, their ability to extract the 
features improves. 

In this prototype, the goal is focused on extracting the signal of a 
fridge. Several configurations were tested based on (Kelly & 
Knottenbelt, 2015). Finally, the architecture of the neural network that 
achieved the best accuracy is the following: 

1-Dim. Convolutional layer with 8 filters of 4x1 kernels, same 
padding and linear activation (0.2 dropout probability). 
Fully connected layer with 256 units and Linear activation. 

• Fully connected layer with 256 units and Linear activation. 

• Fully connected layer with 120 units and Linear activation (0.2 

1-Dim. Convolutional layer with 1 filter with 4x1 size, same padding 
and linear activation. 
Output layer (120 units). 

The network was trained with the Adam optimizer and the Mean 
Average Error was selected as loss function. The aggregated power signal 
of the two first houses of the data set was used as training set and the 
third house was utilised as validation set. The signal was divided into 
vectors of 120 components (input layer). This number was chosen be- 
cause of the sampling rate of the readings in the dataset is every 3 s and 
the need of establishing a period of time, in this case 6 min, that 
guarantees that the appliance was fully activated completely (e.g. the 
washing-machine, the vitroceramic cooker or the fridge). 

The results of this training can be observed in Figs. 6 and 7. 
After this training process the mean average error in the validation 

set was 35 W. The results achieved are depicted in Fig. 8 (Left). As can 
be observed, the extraction tends to add noise on the “active” part of the 
signal. This was fixed by programming a function to soften this effect. 
The final result can be seen in Fig. 8 (Right) where the orange signal is 
the one extracted and softened and the blue is the disaggregated one. 

Fig. 6. (Left) Training set loss on house 1; (Right) Validation set loss on house  
1. 

 

Fig. 7. (Left) Training set loss on house 2; (Right) Validation set loss on house  
2. 

 

Fig. 8. (Left) Random interval of house 3 disaggregated; (Right) Softened dis- 
aggregated vector. 

 
Following this approach, a neural network per appliance type (i.e. 

fridges, televisions, computers, microwaves, etc.) should be built. 
Although this seems naive, this provides a decoupling between the 
system and the evolution of electrical appliances over time and facil- 
itates the upgrade of each appliance detector as more consumption 
curves become available. 

4.4. Sensor logic 

One of the goals of Bernard is that this was the least intrusive as 
possible, that means, avoiding the installation of any extra circuit in the 
home electric distribution system. That is the reason why we proposed 
the use of current clamps as shown in Fig. 9. These are connected to a 
low energy computer such as a RaspberryPi which is the responsible for 

 

Fig. 9. Current clamps in the main distribution panel. 
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Fig. 10. Activity diagram of the sensor. 

 
reading the consumed power. 

The sensor logic carries out three tasks: 

1. Sending power value: Every 3 s, the sensor sends a message to a 
Kafka topic with the value of the power in the house. 

2. Sending the state changes of appliances: Every change detected 
in an appliance is notified to Bernard through a Kafka topic. 

3. Sending disaggregation requests: If a change occurs and it does 
not correspond to a known appliance, the sensor records the ag- 
gregated power and sends the signal to a Kafka topic. 

It is important to highlight that this minicomputer stores the sig- 
nature of each appliance which has been previously identified in the 
house by means of the already explained deep learning module and 
stored in the MemSQL database, in such way that every time a sudden 
shift in the aggregated power signal occurs, the program compares the 
jump in the power signal with all the stored signatures. If one matches, 
the appliance has been recognized, if not, a request of disaggregation is 
sent. 

The activity diagram of the sensor logic is displayed in Fig. 10. 

4.5. Android mobile application 

With the aim of raising the users’ awareness in the responsible and 
efficient use of energy, an Android app using our REST service was 
developed. This app shows the householders all the information avail- 
able in the system in order that they can analyse it, reflect and change 
their consumption mode towards a more sustainable one. In short, they 
can observe data about their daily and historical energy consumption, 
the temperature forecast (read from OpenWeather API), their historical 
and forecasted electricity price for each day, their real-time power 
consumption, the active appliances and some tips for improving energy 
efficiency. 

The app design is very simple, self-contained and easy-to-use for 
everyone. Fig. 11 shows some screenshots of the APP. 

5. Discussion 

Bernard is a proof of concept built from public datasets, therefore 
the results achieved by our predictive modules will be discussed in 
comparison with the ones published in other research works that used 
the same or other datasets with similar features and goals. 

We have developed three smart components in this work: the first 
one aimed at predicting the home power consumption per hour of the 

Fig. 11. APP screenshots. 

 
current day; the second one addressed to forecast the price of kWh for 
the next hour in the power pool; and, finally, a third component for 
identifying each appliance switched-on from the analysis of the home 
consumed power signal. 

Regarding the prediction of residential electricity consumption, we 
must first point out that this is a difficult problem to solve using modern 
deep learning techniques because these require a large amount of data 
to train the models to guarantee that their answer is general enough to 
new and unknown instances (He & Chai, 2016). Due to the absence of 
large datasets, techniques such as “Moving average” (Veit, Goebel, 
Tidke, Doblander, & Jacobsen, 2014) have been proposed to estimate 
the home power consumption with results of up to 146% deviation for 
the consumption prediction within a 24 h horizon. In order to reduce 
this error margin, we decided to simplify this task, predicting only the 
maximum daily consumption in a house one day in advance. Bernard is 
capable of predicting the electrical power demand of the user for each 
hour of the current day with an accuracy of 99.66%. This provides a 
competitive advantage to the utilities, since they can determine the 
purchase of energy that it requires in quasi-real-time. Nevertheless, 
with larger data sets, it would be interesting to try approaches based on 
neural networks as proposed by Shabani and Zavalani (2017) in order 
to know, not only when a house will consume more, but also how much 
energy it will require in a whole day. 

Concerning the electricity price forecasting module built  in  this  
work, we can say that this is highly competitive, since  the  validation 
error achieved is very low (0.003 €/kWh), almost negligible in terms of 
household consumption. This result is noticeably better than the ones 
obtained with classic statistical methods (see Li, Lawarree, & Liu, 2010) 
whose RMSE are higher than 0.005/kWh or those achieved with more 
traditional machine learning approaches (Gianfreda, Ravazzolo, & 
Rossini, 2018), such as RF or SVR, whose RMSE ranges between 
0.006/kWh and 0.008/hWh. However, deep learning strategies such as 
the presented here or described in Zhu, Lu, Dai, Liu, and Wang (2018) 
clearly outperform the other approaches with RMSE near 0.004/kWh or 
lower. 

Finally, the module responsible for extracting the electrical signal of 
a fridge from the global consumption reading obtained a mean error of 
35 W, which is relatively low taking into account that the consumption 
of this appliance is much greater (about 300 W). In literature, we found 
two papers (Kelly & Knottenbelt, 2015; He & Chai, 2016), that both use 
a LSTM Based Deep Learning Model (auto-encoders) as we do with 
results slightly better. In Kelly and Knottenbelt (2015), the network 
architecture is pretty similar to ours but it uses a fewer number of 
connected layers achieving a MAE of 26 W. On the other hand, the 
network proposed by He and Chai (2016) presents several more com- 
plex network configurations. These connect several branches of neurons 
with two dense layers obtaining a MAE of 3.46 W. Strictly speaking, our 
proposal is less competitive but it is simpler, which means less training 
time and lower computational cost. 

 
6. Findings and managerial insights 

Raising awareness among residential users about the responsible use 
of energy and motivating changes in their behaviour and habits 
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concerning this regard is the main Bernard’s goal. This is based on the 
visualization of useful information such as the power consumption data 
in real time, the forecasted cost of the KW/h in the next hour and the 
identification of appliances that are switched on. The developed solu- 
tion, designed for being deployed by electric utilities, allows us to state 
that: 

Machine learning techniques offer a good performance for the re- 
solution of complex prediction problems in the energy arena 
(Mosavi et al., April 2019). 
The kappa architecture provides the needed scalability to gradually 
deploy the system according to resources available and the existing 
demand (householders interested in this service); furthermore, this 
makes the upgrade and improvement of the deployed components as 
well as the adding of new services easier thanks to their uncoupled 
nature. 
It is feasible to deploy a low-cost and non-intrusive solution that 
allows the digitization of the value chain for electric companies. 

On the other hand, the experience gained during this development 
allows us to state that big data technology is very recent and there is 
still a lack of methodologies, open data and standards that guide and 
help companies to develop these solutions and to build proofs of con- 
cept that demonstrate their viability. Furthermore, there is a large 
number of development tools available and these are in constant 
growth and change which makes the choice of the most appropriate 
tool for each purpose difficult. Another challenge comes from the 
management and processing of huge quantities of data that require the 
hiring of resources on the cloud, that, despite being inexpensive, 
companies cannot have the same computational power in the devel- 
opment environment as in the production one, which makes testing and 
deployment phases more complex. Finally, regarding the building of 
predictive modules, we find that there is a shortage of home con- 
sumption public datasets which limits the developing of solutions as 
well as the need of advance in the research of algorithms addressed to 
build models that learn and can adapt themselves while reading data 
streams (still under research Shabani & Zavalani, 2017). 

Big data solutions are complex and there is no enough experience or 
workforce for their development and deployment (Jabbour, de Sousa 
Jabbour, Sarkis, & Filho, 2019). Bernard is a prototype that fills this gap 
and demonstrates that a smart and scalable system can be built with 
reasonable guarantees of success. The industry must move towards the 
digitalization of the entire value chain so that our contribution can help 
to orientate companies in this challenge. 

7. Conclusions 

To achieve the desired environmental sustainability, governments 
and industry must promote and develop training activities, resources 

and tools that boost environmental awareness. One of the areas where 
there is still work to be done is in the field of home energy efficiency. 
This paper describes Bernard, a proof of concept of a smart real-time 
system focused on the household energy efficiency improvement. Its 

main objective is to make residents aware of their consumption patterns 
by offering them information that allows them to make a more re- 

sponsible use of energy. The system meets the requirements of being 
cheap and non-intrusive for residential users and presents advantages 

for both end users and distribution companies. The former can observe 
their consumption patterns in real time, know the hours in which the 

energy is cheaper or what appliances are switched on and so, try to 
change their routines in order to reduce their bill; the latter can gain 

valuable information about consumers’ behaviour and use it to bid in 
the electric pool and adjust their purchase to demand, to offer their 

clients new personalized services or products (e.g. for customer fideli- 
zation) and to send pieces of advice to them, improving their brand 

image. 

Bernard, in order to deal with the large volume of data while 
achieving a scalable solution, has been implemented using cutting-edge 
technologies under a kappa architecture. It must be kept in mind that 
the system presented here is still in a very early stage and must be 
deployed in houses and further developed using real world data. 

The future steps will be directed to recognize more appliance types 
and build more accurate and varied consumption patterns as well as to 
train and test deep learning modules to improve the accuracy of pre- 
dictive modules. It is also among our objectives to apply these tech- 
nologies to the industrial sector where their potential benefits would be 
broader. 
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