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Abstract

The car sequencing problem is a well established problem that models the conflicts arising

from scheduling cars into an assembly line. However, the existing approaches to this problem do

not consider non-regular or out-of-catalog vehicles, which are commonly manufactured in assembly

lines. In this paper, we propose a new problem definition that deals with non-regular vehicles. This

novel model is called robust Car Sequencing Problem. We model this realistic optimization problem

using scenarios defined by different production plans. The problem can be solved by measuring

the impact of the plans’ variability and by observing the violations of the problem constraints

that appear when switching from one plan to another. In addition to our model formulation, we

design and implement a set of constructive metaheuristics to tackle the traditional and the novel

robust car sequencing problem. The selected metaheuristics are based on the greedy randomized

adaptive search procedure, ant colony optimization, and variable neighborhood search. We have

generated compatible instances from the main benchmark in the literature (CSPLib) and we have

applied these metaheuristics for solving the new robust problem extension. We complement the

experimental study by applying a post-hoc statistical analysis for detecting statistically relevant

differences between the metaheuristics performance. Our results show that a memetic ant colony

optimization with local search is the best method since it performs well for every problem instance

regardless of the difficulty of the problem (i.e., constraints and instance size).
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1. Introduction

The Car Sequencing Problem (CSP) was first introduced by Parello et al. [50], arising as a result

of the car industry switching from mass standardization to mass customization. It is a feasibility

problem that considers the issues that appear when sequencing cars with different options in a

single assembly line. The CSP is modeled by transforming time, space or technical requirements

into abstract binary options [39, 57]. Each of the vehicles assembled through the line needs an

arbitrary set of these options. Then, a maximum load ratio is defined from the available options,

representing the possible conflicts that appear in the line if many consecutive vehicles require the

same option [61]. This ratio is represented using the parameters pi/qi, where pi is the number

of vehicles that may contain the option i in a sequence of length qi without causing the line to

stall. In a nutshell, it means that for an option with p = 1 and q = 3, only one vehicle in every

subsequence of length three requires this option. Therefore, pi/qi represents the ratio constraints

of the problem. Thus, the goal of the CSP is to find a full sequence of vehicles that does not

overload any of the options for every subsequence.

However, this traditional approach does not consider non-regular or out-of-catalog vehicles,

which are common in current assembly lines [3]. These special vehicles are distinguished from the

regular or common ones by several features: for example, they are vehicles under demand and they

are not considered by the estimations of the sales forecast department. They are typically oriented

to public service organizations (e.g., ambulances, firefighter or police patrols, among others) and

require uncommon components that imply additional operations and increase the time consumed in

its processing. The components of special vehicles may be uncommon and depend on its type (for

example ambulance, police patrol, or forest guards). Therefore, its inclusion in the daily production

schedule will involve differences in component consumption, workload, or the tools required by the

line. The number of special vehicles scheduled for daily production bounces between 10% and 20%

of the total demand [3]. Moreover, partial production of each type of special vehicle may vary from

one day to another, but the production of common vehicles remains regular and stable.

In this paper we propose a new model, based on the traditional CSP, that deals with non-

regular vehicles and manages its variability. We refer to this novel approach as the robust CSP

(r-CSP), since it is a new model that deals with the uncertainty created by the special vehicles

and reduces its impact in the daily production scheduling by generating robust schedule solutions.
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This is achieved by including different production plans for modeling those special vehicles based

in factory production historical data.

After presenting our working hypothesis and a formal definition of our new model, we study

its resolution similarly to other uncertainty problems in the field of Industrial Engineering. One

example is the time and space assembly line balancing problem [4], where the impact of variability

is measured by observing the conflicts that appear when switching from one production plan

to another [14]. We propose to follow a similar approach for solving the r-CSP. This way, our

strategy starts by solving the traditional feasibility problem using a selected production plan used

as the reference. Then, the robustness of the resulting sequence is calculated by creating random

permutations of the optimized sequence. Each permutation exchanges the special vehicles from

the reference plan by the ones from the selected production plan, keeping the regular vehicles as

they were. We compute the final robustness assessment by computing the additional violations of

ratio constraints caused by the permutations on the sequence.

We solve the novel r-CSP taking as reference the current strategies applied to the CSP. In this

regard, the traditional CSP is a heavily combinatorial problem that was proven to be NP-Complete

[29] and it is frequently solved using metaheuristics. Metaheuristics are a family of approximate

non-linear optimization methods that have proven powerful for solving hard and complex problems

in science and engineering [58]. Different metaheuristics have been successfully applied to the

CSP, including local search [33, 52], greedy randomized adaptive search procedures (GRASP) [6],

genetic algorithms [62], variable neighbour-search (VNS) [53] and ant-colony optimization (ACO)

[33, 34, 45]. From those, we have selected GRASP, VNS, and ACO for solving the r-CSP, since

they all are constructive metaheuristics and usually the most effective for dealing with heavily

constrained problems [13].

Our design includes add-hoc local search operators for dealing with the r-CSP sequences in

combination with a greedy heuristic for guiding the constructive phase of the selected metaheuris-

tics. Additionally, we include a memetic ACO (ACO-LS) that combines the global search strategy

of ACO with local search refinement for the best solution of the cycle and the best solution of the

metaheuristic run. We compare the performance of the selected metaheuristics when solving the

traditional CSP and the novel r-CSP. Our experimentation considers the available instances from

the main benchmark in the literature (CSPLib), which contains instances with different degrees
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of complexity. Using the available instances from CSPLib, we have generated compatible ones for

solving the r-CSP. Finally, we complement our study performing statistical post-hoc procedures

for ensuring the statistical significance of our results.

Next Section 2 discusses existing bibliography regarding the CSP and explores related work

in Industrial Engineering dealing with similar uncertainty issues. Then, the formalization of the

model is presented in Section 3 and Section 4 describes the design of the metaheuristics. In Section

5, we present the setup and results of our experiments for both CSP and r-CSP. Finally, in Section

6, we discuss our conclusions and final remarks.

2. Background

2.1. The car sequencing problem

2.1.1. Traditional approaches

Since the initial definition by Parello et al. [50], several approaches have been proposed for

solving the traditional CSP. These approaches are usually tested using CSPLib [30], the reference

benchmark for the problem. These contributions can be mainly split between those treating it

as a feasibility problem and those treating it as an optimization one [9]. The former group [10,

8, 19], treats the CSP as a constraint-satisfaction problem. We can note that one of the main

drawbacks of these approaches is they are unable to handle infeasible instances, and this is the

case of many instances from CSPLib. On the other hand, those approaches that tackle the CSP

as an optimization problem try to minimize the number of constraint violations within a sequence,

being able obtain a sequence with minimum constraint violation when there is no feasible sequence.

The latter approaches (i.e., those considering the CSP as an optimization problem) employ

different strategies, such as constraint programing [7, 55], integer programing [34], branch & bound

algorithms [24], or beam search [5, 32] to other non-exact methods such as metaheuristics [31, 33,

45, 62, 63]. The available results using CSPLib show both exact methods and metaheuristics

achieve good results, but they also show that metaheuristics exhibit a more robust behavior when

the size of the problem is high [32, 45, 62] (i.e., number of vehicles to be scheduled). Thus, our

proposal is based on the use of metaheuristics, since they can handle infeasible problem instances

having a high number of vehicles. This is an important issue when dealing with the r-CSP because

the uncertainty of the problem can make infeasible the former feasible CSP instances.

From the different contributions that solve the CSP using metaheuristics, we can highlight
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the methods based on local search, ACO and genetic algorithms. With respect to local search

methods, the work of Puchta and Gottlieb [52] is specially relevant, as it introduced new local

search operators that are commonly used in other contributions [6, 33, 45]. One of those new

operators, the inversion operator (referred as Lin2Opt), became specially relevant and is established

as an off-the-shelf operator. Another typical operator is the Swap operator, which also appears in

the literature and sometimes only swapping adjacent vehicles [31]. However, these contributions

focuses on exploring the landscape of the problem using a single local search operator. In contrast,

our proposed local search procedure considers a sequential exploration of the neighbors using a

regular Swap operator followed by an inversion operator. As it is shown in the following sections,

this strategy allow us to achieve competitive results. In addition, local search methods usually

include greedy heuristics for building the initial solutions previous to the local search optimization.

We also found that the heuristic based on the dynamic sum of utilization rate, proposed by Gottlieb

et al. [33], is the most employed heuristic in the literature [20, 45, 56, 62]. Thus, the constructive

metaheuristics proposed for solving the r-CSP include this heuristic as well.

ACO is a metaheuristic commonly used by the CSP community [26, 33, 34, 45, 56, 59, 60].

From the available contributions, we acknowledged as most relevant for our manuscript the ones

addressing the design of the pheromone trail matrix [26, 45]. Although ACO generally obtains good

solutions, the design of the pheromone trail matrix is a critical decision that heavily influences the

algorithm performance. In addition, the proposed ACO implementations can include local search

methods for improving their results. To the best of our knowledge, the best results for the CSP

using ACO are achieved by employing a custom three dimensional pheromone trail and local search

refinement, developed by Morin et al [45]. This pheromone trail is designed for taking advantage of

placing certain classes of vehicles at a specific distance from each other. Therefore, the pheromone

trail considers a matrix of dimension n× n× qmax, where n is the number of regular CSP classes

and qmax is the maximum q defined among the classes options. In this structure, trail value τi,j,d

represents the appropriateness of placing vehicles of classes i and j at distance d. The work of

Morin et al [45] also includes a local search refinement using the inversion operator. This refinement

is applied to the solution found by the best ant of each ACO algorithm’s cycle as well as to the

global best solution.

In comparison with the previous metaheuristics, genetic algorithms are not commonly applied
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to the CSP [31, 62, 63]. This could be related with the problems of traditional genetic operators to

deal with the CSP requirements and the difficulty of defining specific operators for such a heavily

constrained problem [62]. However, there are few exceptions that manage to handle the specific

characteristics of this family of problems and obtain competitive results [63]. For example, Zinflou

et al. [63] introduces a hybridization strategy for enhancing crossover strategies that integrates

integer linear programming during the crossover process.

2.1.2. Extensions to the traditional CSP model

One extension to the CSP that received plenty of attention by the CSP community is the one

proposed by RENAULT for the ROADEF’2005 challenge [57]. This extension includes paint batch-

ing constraints and splits the previous capacity constraints into different categories depending on

its priority. Because these changes on the original model include new requirements instead of mod-

ifying the core of the problem, the contributions solving the ROADEF version of the CSP should

be seriously considered for improving the performance when solving other problem variations.

Several contributions addressing this version of the problem introduced interesting variations to

previous strategies [15, 20, 28, 40, 51, 53, 64], but we highlight the work of Estellon et al. [20] and

Ribeiro et al. [53] as specially relevant to our study. We can note that both of these contributions

are competitive for solving the traditional CSP, as they respectively ranked first and second during

the challenge. The work of Estellon et al. [20] is based on local search methods. It introduced

useful notions for computing fast evaluations in local search operations and we will incorporate

their guidelines in our implementations, as we will show in Section 4. Finally, Ribeiro et al. [53]

proposed a metaheuristic combining VNS with iterated local search. Due to its good performance,

we included some of their designing concepts into our custom VNS design.

Another model derived from the traditional CSP is the extended car sequencing problem [6].

This version extends the traditional requirements to establish a minimum number of operations

into subsequences. This way, instead of focusing in capacity overload, the extended CSP considers

the under assignment of certain options that may “under-load” certain stations in the assembly

line. The authors proposed a GRASP [6, 48] for solving this problem extension and, therefore,

it is a relevant contribution for designing the solving methods of the problem proposed in this

manuscript. In [48], the authors presents how considering a small αgr value improves the results

of GRASP, since it increases the effect of the underlying greedy heuristic.
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2.2. Dealing with uncertainty in similar problems

Being able to handle uncertainty is a usual issue for assembly lines and other industrial prob-

lems, since they are susceptible to different variability sources [38]. Some authors model uncertainty

assuming intervals or distributions for the operations scheduled in the different stations [35, 36, 38].

In contrast, other contributions tackle the inclusion of uncertain demand as a robust optimization

problem [14]. Generic robust optimization addresses the sensitivity of the solutions to certain

perturbations [17]. Thus, one solution is considered as a robust one if it is not sensitive to pertur-

bations of the decision variables of its neighborhood. This approach considers two main robustness

measures [23]: (1) the expectation measure, which replaces the original objective function by an-

other function that combines performance with expectation in the vicinity; and (2) the variance

measure, where an additional criterion is added to the original function for measuring the devia-

tion around the original criteria. In this sense, solving the CSP with uncertain partial demand is a

robust optimization problem, where this problem variability can change the optimal solution [23].

Several contributions use scenarios for representing uncertainty in their demand [2, 14, 49]. Us-

ing this approach, these scenarios can be represented as production plans that model the variation

of demand for the different vehicles. In Chica et al. [11], one production plan is first chosen as the

reference and it is later employed to search for the optimal solution. The robustness of the result-

ing solution when external conditions change is then computed by using the rest of the production

plans defined in the set. Robust solutions are those that include minimum or zero deviation across

the defined production plans [11]. Therefore, the work presented in this manuscript considers a

reference production plan to search for the optimal sequence and a set of alternate production

plans for evaluating its robustness.

3. r-CSP model definition

This section states our proposed model for the r-CSP. First of all, we present the main param-

eters in Section 3.1. Then, the constraints of the model are described in Section 3.2. Section 3.3

explains the sequence construction and Section 3.4 defines the problem’s objective function.

3.1. Main parameters

The main variables and parameters of the problem are described in Tables 1 and 2. These

variables and parameters construct the base of the model and their meaning are described by the

following items:
7



IX Set of classes of regular vehicles, |IX | = n. Index (i = 1, ..., n).

IX′ Set of classes of non-regular vehicles, |IX′ | = n′. Index (i = n+ 1, ..., n+ n′).

I Set of vehicle classes: I = IX ∪ IX′ and IX ∩ IX′ = ∅, |I| = n+ n′.

J Set of options (J : j = 1, ..., |J |).

E Set of scenarios or production plans (E : ε = 1, .., |E|).
~dεD Demand vector for plan ε ∈ E : ~dε = (d1,ε, ..., d|I|,ε) and total vehicle demand for a

working day: D =
∑
∀i di,ε, equal for every plan ε ∈ E.

~λε Mix production vector for plan ε ∈ E : ~λε = (λ1,ε, ..., λ|I|,ε) : ~λε = ~dε/D.

pj/qj Traditional CSP ratios that represents the maximum requirement allowed for the

option j ∈ J by the vehicles contained in any segment of the sequences πε(D)(∀ε ∈ E)

with length qj , that should be less than or equal to the value pj .

cj,t,ε Weight for segment of consecutive cycles [t− qj + 1, t] in sequence πε(D) linked to

plan ε ∈ E, when the requirement of option j ∈ J is greater than pj in that segment.

We assume that all the weights satisfy: cj,t,ε = 1(∀j ∈ J, ∀t ∈ [qj , D], ∀ε ∈ E).

πε(D) Complete sequence of vehicles πε(D) = (π1,ε, ..., πD,ε) from plan ε ∈ E. We denote

partial sequences of πε(D as: πε(t) = (π1,ε, ..., πt,ε) ⊆ πε(D),∀t ∈ [1, D]. We will also

employ symbols πε(t) and πε(D) as parameters.

Xi,t Number of regular vehicles of class i ∈ IX contained in all the partial sequence

πε(t) ⊆ πε(D) of plan ε ∈ E. Its calculation is computed as:

Xi,t =
∑t

τ=1 xi,τ , ∀i ∈ IX , ∀t ∈ [i,D].

X ′i,t,ε Number of special vehicles of type i ∈ IX′ contained in partial sequence πε(t) ⊆ πε(D)

of plan ε ∈ E. It is computed like: X ′i,t,ε =
∑t

τ=1 xi,t,ε, ∀i ∈ IX′ ,∀t ∈ [1, D], ∀ε ∈ E.

Yj,t,ε Number of times that option j ∈ J is required by regular and special vehicles

contained in partial sequence πε(t) ⊆ πε(D) of plan ε ∈ E. It is computed like:

Yj,t,ε =
∑

i∈IX nj,iXi,t +
∑

i∈IX′
nj,iX

′
i,t,ε, j ∈ J, ∀t ∈ [1, D],∀ε ∈ E.

We also convene that: Yj,0,ε = 0,∀j ∈ J, ∀ε ∈ E.

Table 1: Description of the parameters and variables for modeling the r-CSP.
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nj,i =

{
1 if the option j ∈ J appears in the vehicle type i ∈ I,

0 otherwise.

xi,t =


1 if a regular vehicle i ∈ IX is assigned to position t (t = 1, ..., D)

πε(D) of plans ε ∈ E,

0 otherwise.

x′i,t,ε =


1 if a fleet vehicle i ∈ IX′ is assigned to position t (t = 1, ..., D)

of sequence πε(D) of plan ε ∈ E,

0 otherwise.

zj,t,ε =


1 if the requirement of option j is greater than the pj value in the

segment [t− qj + 1, t] of the sequence πε(D),

0 otherwise.

Table 2: Description of the binary parameter nj,i and binary decision variables of the r-CSP model.

1. There are two separate vehicle families: the common or regular ones, represented as the set

of classes IX ; and the special vehicles, represented by IX′ .

2. The total number of regular vehicles, DX , should be accomplished during a working day.

This value is the same for every production plan ε ∈ E.

3. The total number of non-regular vehicles, DX′ , should be accomplished during a working

day. This value is the same for every production plan ε ∈ E.

4. The total number of vehicles, D ≡ DX +DX′ , should be accomplished during a working day.

This value is the same for every production plan ε ∈ E.

5. The demand for a regular vehicle di, ∀i ∈ IX , should be the same for every production plan

ε ∈ E. It means that di,ε = di,∀ε ∈ E.

6. The demand for a non-regular vehicle di′ , where i′ ∈ IX′ , can change between two different

plans {ε, ε′} ⊆ E.

7. Changes in the assembly line (e.g., robots, tools, or working staff) should be as minimum as

possible. Then, production sequences πε(D) and πε′(D) should be as similar as possible for

every two plans {ε, ε′} ⊆ E. This is: πε(D) ≈ πε′(D),∀{ε, ε′} ⊆ E.

8. Every regular vehicle will keep the same position in all the sequences πε(D),∀ε ∈ E.

3.2. Constraints

This section presents the formal definition of the r-CSP using integer linear programing con-

straints. We define a set of constraints that any valid sequence should meet. The restriction shown
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in Constraint 1 imposes that only one vehicle (regular or special) can be placed in the assembly

line for every production cycle t ∈ [1, D] and every production plan ε ∈ E:

∑
i∈IX

xi,t +
∑
i∈IX′

x′i,t,ε = 1,∀t ∈ [1, D], ∀ε ∈ E. (1)

Constraints 2 and 3 force the satisfaction of the demand of regular (IX) and special (IX′)

vehicles for every production plan:

∑
t∈[1,D]

xi,t = di, ∀i ∈ IX . (2)

∑
t∈[1,D]

x′i,t,ε = di,ε,∀i ∈ IX′ , ∀ε ∈ E. (3)

Constraint 4 counts the number of regular vehicles i ∈ IX placed in the assembly line until the

production cycle t ∈ [1, D] in any production plan ε ∈ E:

Xi,t −
∑
τ∈[1,t]

xi,τ = 0, ∀i ∈ IX ,∀t ∈ [1, D]. (4)

Constraint 5 is analogous to constraint (4) but referring to non-regular vehicles IX′ and con-

sidering each production plan ε ∈ E:

X ′i,t,ε −
∑
τ∈[1,t]

x′i,τ,ε = 0,∀i ∈ IX′,∀t ∈ [1, D], ∀ε ∈ E. (5)

Constraint 6 counts the number of times that the option j ∈ J is required by the vehicles

consecutively placed in the line until any production cycle t ∈ [1, D] in any production plan ε ∈ E:

Yj,t,ε −
∑
i∈IX

nj,iXi,t −
∑
i∈IX′

nj,iX
′
i,t,ε = 0, ∀j ∈ J, ∀t ∈ [1, D],∀ε ∈ E. (6)

Constraint 7 checks the requirements of every option j ∈ J for every segment with length

qj(∀j ∈ J) from sequence πε(D)(∀ε ∈ E):
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Yj,t,ε − Yj,t−qj ,ε ≤ pj +D · zj,t,ε,∀j ∈ J, ∀t ∈ [qj , D],∀ε ∈ E. (7)

Constraints 8, 9, and 10 respectively define the binary variables xi,t, x
′
i,t,ε, and zj,t,ε:

xi,t ∈ {0, 1}, ∀i ∈ IX , ∀t ∈ [1, D]. (8)

x′i,t,ε ∈ {0, 1}, ∀i ∈ IX′ ,∀t ∈ [1, D],∀ε ∈ E. (9)

zj,t,ε ∈ {0, 1}, ∀j ∈ J, ∀t ∈ [qj , D],∀ε ∈ E. (10)

Finally, Constraint 11 sets the variable Yj,0,ε(∀j ∈ J, ∀ε ∈ E) to 0 for the not existing production

cycle t = 0:

Yj,0,ε = 0, ∀j ∈ J, ∀ε ∈ E. (11)

3.3. Sequence construction

Using this r-CSP model we can build multi-sequences ~π(E,D) composed by the sequences

πε(D) = (π1,ε, ..., πD,ε) of each production plan ε ∈ E. This construction is shown in Equation

12. The regular vehicles i ∈ I are linked to the elements πt,ε(∀t ∈ [1, D], ∀ε ∈ E) of the multi-

sequence ~π(E,D) by the binary variables xi,t(∀i ∈ IX , ∀t ∈ [1, D]) and x′i,t,ε(∀i ∈ IX′, ∀t ∈

[1, D], ∀ε ∈ E), defined in Equations 13 and 14. We must remark that every regular vehicle

(i ∈ IX) keeps its position in the sequence for every production plan, but all the positions occupied

by special vehicles depend on the production plan ε ∈ E. As a consequence, sequences πε(D) have

a common component (composed by regular vehicles) and an exclusive component (composed by

special vehicles).
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~π(E,D) =



π1(D)

π2(D)

...

πε(D)

...

π|E|(D)


=



(π1,1, ..., πt,1, ..., πD,1)

(π1,2, ..., πt,2, ..., πD,2)

...

(π1,ε, ..., πt,ε, ..., πD,ε)

...

(π1,|E|, ..., πt,|E|, ..., πD,|E|)


(12)

xi,t = 1⇒ πt,ε = i,∀i ∈ IX , ∀t ∈ [1, D], ∀ε ∈ E. (13)

x′i,t,ε = 1⇒ πt,ε = i,∀i ∈ IX′,∀t ∈ [1, D], ∀ε ∈ E. (14)

3.4. Objective function

Using the above formulation, we introduce the objective function for our proposed r-CSP model

which minimizes the number of violations of restrictions defined for options j ∈ J . To do this we

use their maximum number of vehicles requiring the option pj(∀j ∈ J) for each plan ε ∈ E and

for each interval of consecutive production cycles of length qj(∀j ∈ J), represented by the binary

variable zj,t,ε. Equation 15 shows the objective function. This formulation treats the r-CSP as a

maximum satisfiability problem (MAX-SAT), which is connected with the original formulation of

Parello et al. [50].

min Z =
∑
j∈J

∑
t∈[qj ,D]

∑
ε∈E

zj,t,ε ⇔ max Z′ =
∑
j∈J

∑
t∈[qj ,D]

∑
ε∈E

(1− zj,t,ε). (15)

4. Metaheuristics applied to the r-CSP and CSP

As previously introduced, several metaheuristics have been successful when solving the CSP

[33, 45, 51, 52, 53]. Many of the metaheuristics applied to the CSP belong to the family of the

constructive metaheuristics [58], which perform well with heavy constrained problems [1, 13, 12, 37].

Constructive metaheuristics build solutions from scratch, adding elements iteratively until a full

solution is built. Because of its good performance, we chose to solve the r-CSP with constructive

metaheuristics as well. Our design for the selected metaheuristics use a greedy heuristic during its

constructive phase. This heuristic is based on the dynamic sum of utilization rate [33], which was
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used in other approaches to the CSP [20, 45, 56, 62]. Using this heuristic, the available elements

are ordered by favoring the most overloaded elements, so the vehicles requiring more restricted

options would be selected first.

We will describe in Section 4.1 the robustness assessment for the r-CSP sequences and the fitness

function employed by the algorithms. Then, Section 4.2 introduces the local search procedure used

by the metaheuristics. Sections 4.3 and 4.4 present our GRASP and ACO design for the CSP and

the r-CSP. Section 4.5 describes the VNS metaheuristic. Finally, Section 4.6 presents the design

of the memetic algorithm (ACO-LS) used in our experiments.

4.1. Robustness assessment and fitness function

The selected metaheuristics use the same objective function for their fitness computations.

In the case of the traditional CSP, the fitness values represent the number of violations of ratio

constraints found in a sequence. This is a special case for the objective function defined in Equation

15 but only considering the reference production plan (i.e., |E| = 1). We use the latter as the base

function and we name it fb(π0(D)).

Computing the fitness value for |E| > 1 implies to generate and check every combination of

plans and fleet vehicles (∀ε ∈ E), by calculating all the violations of ratio constraints. In order

to check the permuted sequences, we choose an approximate solution instead of generating every

possible sequence and checking its ratio constraints, since it would imply very long execution times.

We simulate this value following an approach similar to the so called simheuristics [41]. This way,

we approximate this value by randomly generating S possible sequences for each production plan

using the original multi-sequence ~π(E,D) and by computing the average of the minimum violations

obtained for each production plan ε ∈ E.

fr(~π(E,D)) =

∑
ε∈Emin

∑
j∈J

∑
t∈[qj ,D] zj,t,ε

|E|
. (16)

Function fr(~π(E,D)), defined by Equation 16, is an approximation for computing the values

of the objective function of the r-CSP (shown in Equation 15 of Section 3). The final fitness

function for solving the r-CSP combines the basic number of violations (using only the reference

production plan) with the robustness metric using a parameter θ ∈ [0, 1]. The θ parameter sets the

importance of the reference plan with respect to the rest of production plans. The final objective

function defined for the r-CSP, f(~π(E,D)), is defined in Equation 17.
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5, 3, 4, 2, 3, 4, 1, 5, 2, 1
Swap

5, 3, 1, 2, 3, 4, 4, 5, 2, 1

5, 3, 4, 2, 3, 4, 1, 5, 2, 1
Insert

5, 3, 4, 2, 4, 1, 5, 2, 3, 1

5, 3, 4, 2, 3, 4, 1, 5, 2, 1
Invert

5, 3, 4, 4, 3, 2, 1, 5, 2, 1

Figure 1: Scheme illustrating the application of the defined operators to a baseline sequence π.

f(~π(E,D)) = θ · fb(π0(D)) + (1− θ) · fr(~π(E,D)). (17)

4.2. Local search

Our metaheuristics design considers a local search procedure, which is used by every meta-

heuristic using the same setup. This procedure is an important component of GRASP and VNS

and was also used in conjunction to the ACO algorithm to create a memetic algorithm for solving

the problem (ACO-LS). Local search procedures [54] iteratively refine the solutions by altering its

values in order to maximize their quality (fitness function). The local search operators modify a

given solution using neighborhood relations defined on the search space. We selected our operators

based on previous work [33, 52] and the results of our experiments. These operators are three:

Swap, Insert, and Invert.

Figure 1 shows how the defined operators modify a baseline sequence π. Swap operator ex-

changes two positions in the sequence that are selected randomly. We can see in Figure 1 how

the Swap operator exchanges positions 3 and 7. Insert operator moves one car from its current

position to another, with both positions selected at random. In Figure 1, the Insert operator moves

the car from position 5 to position 9. Finally, the Invert operator inverts a subsequence between

two positions selected at random. Figure 1 shows how the Invert operator inverts the subsequence

between positions 4 and 6.

Our local search procedure follows a stochastic hill climbing strategy [54]. At each step, a

random neighbor of the current solution is generated and evaluated. The move is accepted if the

new current solution improves the previous solution. Otherwise, the move is reverted. Using the

latter operators, we define a strategy where the local search explores the solution space using the
14



Swap operator until the search stops. After this process finishes, the Invert local search operator is

applied sequentially on the resulting sequence, only in the case a feasible solution was not found in

the first attempt. Finally, the Insert operator is only used by one of the implemented metaheuristics

(VNS, described in Section 4.5).

4.3. GRASP

The greedy randomized adaptive search procedure (GRASP) [21, 22] is a multi-start construc-

tive metaheuristic that finds solutions combining randomness and a greedy heuristic. This process

is carried out through a given number of iterations, defined by the user. Each iteration is developed

in two steps; a semi-greedy constructive phase, followed by an improvement phase based on neigh-

borhood search. This metaheuristic uses heuristic with a diversity mechanism to explore different

solutions. Specifically, the diversity of the algorithm is achieved due to a random component that

intervenes in the constructive phase: new elements are added to the partial solutions by randomly

selecting them from a restricted candidate list. This candidate list is filled and ordered by defining

a parameter α that acts as a regulator of the randomness and a heuristic function.

Our specific design for the CSP and r-CSP considers three steps. First, a car class (i ∈ I) is

included in the list if it satisfies one of the following conditions: its inclusion would not increase the

actual number of violations of the current subsequence or the increment would be the minimum

possible from every available car class. Then, if the candidate list contains more than one element

(typically in the first steps it has multiple elements), those candidates are ordered using a heuristic

value. Finally, the candidate list is truncated to a smaller size depending on the value of the

αgr ∈ (0, 1] parameter, which regulates the size of the candidate list, leaving only the elements

with better heuristic values. For example, αgr = 0.6 will define a list size to 60% of the number

of different filtered elements. After the constructive phase, an improvement phase is applied for

refining the quality of the solution found. This improvement phase makes use of the local search

procedure, detailed in section 4.2.

4.4. ACO

Ant colony optimization (ACO) [18] is a bioinspired metaheuristic developed for solving heavy

constrained combinatorial problems. ACO mimics the behavior of ants, which communicate

through the use of a pheromone trail accessed by every ant in the colony. The ants can use

this trail as a memory device that guides them while building solutions. The trail itself is modified
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depending on the quality of the final solution developed by the ants. At each step in the ant’s path,

the artificial ant chooses the next element to be added to the sequence by compromising between

the memory stored in the pheromones trail and a greedy heuristic. The greedy heuristic is chosen

with probability q0. Otherwise, the information in the pheromones trail is used and the next vehicle

is chosen using the parameters αaco, β, δ, which regulates the weight of the pheromone trail, the

vehicle adding fewer new conflicts, and the heuristic value, respectively. The ACO metaheuristic

runs a given number of ants (i.e., solutions to the problem) for a defined number of cycles. For

each cycle, the best ant of the cycle (the solution with highest quality) modifies the pheromone

trail, influencing the behavior of the following ants.

Our ACO design follows the description of Morin et al. [45], which is the ACO version ob-

taining the best results in the traditional CSP. This ACO approach [26, 45] includes a novel three

dimensional pheromone matrix of size n×n× qmax. This way, τi,j,d represents the appropriateness

of placing vehicles of class i and j separated by d positions. The pheromone trail is initiated to τ0

and the parameters ρl and ρg manage its update process. On the one hand, ρl manages the update

of the pheromone trail after an ant chooses a vehicle, slightly reducing its pheromones trail values

to help the diversification of the algorithm. On the other hand, ρg manages the persistence of the

pheromone trail during the evaporation process and its value is updated taking into account the

best ant of the cycle.

4.5. VNS

The variable neighborhood search (VNS) [44] is a metaheuristic that introduces perturbations

by a systematic change of neighborhood. Perturbations take the current solution and iteratively

apply k neighbor changes. After each perturbation, the search continues using a local search

procedure. This process is repeated through different iterations until k = kmax or until the current

solution meets a given acceptance criteria (in our problem, finding a sequence with better solution

fitness). If the current sequence is accepted by the acceptance criteria the value of k is restarted to

1. The search continues until the algorithm meets a global stopping criteria (i.e., when a feasible

solution is found or when the algorithm reaches the maximum number of evaluations).

The algorithm generates its initial solution using a greedy strategy, which is based on always

making the decision with the best heuristic value at each step of the solution’s construction. Then,

the systematic change of neighborhood is achieved by applying k times the Insert operator. For
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example, when k = 3, three consecutive insertions are applied. We can note that each application

of the Insert operator changes the neighborhood, and thus, changes the landscape [31]. Since the

refining local search procedure is based in Swap and Inversion operators, it would require multiple

applications to return to the previous visited local optima. The latter fact makes the introduction

of additional control mechanisms unnecessary [43]. This operator was depicted in detail in Section

4.2.

4.6. Memetic algorithms

Memetic algorithms [46, 47] complement a global search method by including a local search

procedure that improves the quality of the solutions found during the global search of the algorithm.

Typically, memetic algorithms apply this local search refinement to every solution found during the

algorithm’s run, but this can be time-consuming and it was proven that this design decision does not

always lead to the best performing memetic algorithm [42]. We have included in our experiments

a memetic ACO (ACO-LS) that modifies the basic ACO design and adds a local search refinement

for both the best solution of the cycle and the best solution found. The maximum number of

local search steps devoted to improve the best ant of each cycle is managed by parameter stepsl.

Parameter stepsg manages the maximum number of local search steps for the best solution found.

In contrast with [45], we selected different neighbor operators based on our experimentation (i.e., a

combination of Swap and Invert operators). We present the pseudo-code of the proposed memetic

algorithm in Algorithm 1.

5. Experimentation

5.1. Experimental setup

We have tested the performance of our selected metaheuristics using the instances from CSPLib

[30], since it is a well establish benchmark and it is generally used by the CSP community [33,

45, 62]. This benchmark has instances with different degrees of complexity that can be split in

three categories: the feasible ones, the classic ones, and the advanced ones. The feasible ones (also

referred as SET1 in our experiments) are compounded by 70 instances containing 200 vehicles with

5 options and between 17 and 30 vehicle classes. These instances are the most basic ones because

they are designed to be feasible. Instances belonging to SET1 are divided in subsets of 10 instances

that share the same utilization rate for their vehicle options. Each subset has a different utilization

rate that increases from 60% to 90%. The classic instances are gathered in the SET2 [30]. This set
17



Algorithm 1: Pseudo-code for the proposed memetic algorithm (ACO-LS).

1 begin
2 Set every position of the pheromone trail to τ0;
3 cycle = 0;
4 while cycle < maxcycles and no feasible sequence found do
5 for each ant do
6 Initialize first car at random;
7 for position = 2 to D do
8 if new random value≤ q0 then
9 Add a car from the class with the best heuristic value;

10 else
11 Add a car using the pheromone trail;

12 Update trail with selected class;

13 Apply local search to best solution of the cycle;
14 Update pheromone trail using the best solution of the cycle;
15 Update best solution so far;
16 cycle = cycle + 1;

17 if best solution is not feasible then
18 Apply local search to best solution;

contains 9 instances with 100 vehicles with 5 options and between 18 and 24 classes. SET2 is also

harder than SET1 because only 4 of its instances are feasible. Finally, SET3 contains the advanced

instances. These instances were first proposed in [34] and contains the hardest sequences. These

instances are 30 sequences, split in subsets of 200, 300, and 400 vehicles that have similar options

and classes as the ones presented in the SET2.

To the best of our knowledge, there is not any benchmark for sequencing problems that consider

special vehicles or alternate production plans. Therefore, we propose to generate those instances

starting from the instances in CSPLib. In order to improve the compatibility of the new instances

with the traditional ones, we have added additional information to the original instances as required

by the r-CSP: the number of classes of special vehicles (|IX′ |), the number of alternate production

plans (|E|), and the demand of the new plans (~dεD). This way, for every traditional CSP instance,

20% of its classes are considered as non-regular ones. The original demand of the classes switching

to non-regular is used as the demand of the special vehicles in the reference production plan.

Specifically, the new defined non-regular classes will be the last classes defined in a traditional

CSP instance. For example, if a sequence with 10 classes is translated to consider special vehicles,
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GRASP ACO ACO-LS VNS

Name Value Name Value Name Value Name Value Name Value

iterations 400 ants 15 δ 3 stepsl 2,000 kmax 400
steps 10,000 cycles 266,666 q0 0.9 stepsg 2,000,000 steps 10,000
αgr 0.15 αaco 4 τ0 0.005 cycles 992

β 6 ρl 0.99
ρg 0.99

Table 3: Name and value for every parameter of the selected metaheuristics.

classes from 1 to 8 will remain unaltered and classes 9 and 10 will be considered as special vehicles.

As a consequence, the total amount of vehicles belonging to the special vehicles demand depends

on the original demand of classes 9 and 10. Finally, 10 completely random production plans are

added for those non-regular classes.

The parameter configuration of the metaheuristics is shown in Table 3. The parameters of

GRASP and VNS were selected in a preliminary experimentation. ACO parameters were taken

from the original contribution of [45]. In the case of ACO-LS, only the number of cycles and the

parameters for the local search are specified because ACO-LS shares the rest of parameters with

ACO. However, we reduce the number of cycles for ACO-LS because of the number of evaluations

consumed by the local search procedure. During our experimentation, every metaheuristic runs

until either finding a feasible solution or reaching a maximum number of 4,000,000 evaluations of

full-length sequences. Every metaheuristic is run 30 times using different seeds. Parameters θ and

S for the fitness function are set to θ = 0.6 and S = 30. All the metaheuristics were implemented

in Java, and we used the JAMES framework [16] for implementing the local search procedures and

the VNS metaheuristic. In addition, we have published our source code and the generated r-CSP

benchmark of instances 1.

5.2. Algorithmic comparison for the traditional CSP

In this section we compare the performance of the metaheuristics considered in our study

solving traditional CSP instances from CSPLib. These results are provided as number of violations

of load constraints, which correspond to the fitness values. Table 4 shows the fitness results of the

algorithms when applied to SET1. Because the instances of this set are easy to solve, we show

a summary of the averaged fitness for every algorithm execution and instance. These results

1https://bitbucket.org/imoya/jcsp/
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Instances GRASP ACO ACO-LS VNS

60-* 0 0 0 0

65-* 0 0 0 0

70-* 0 0 0 0

75-* 0.01 0 0 0

80-* 0 0 0 0

85-* 0 0 0 0

90-* 0.87 0 0 0

Table 4: Average fitness values for every metaheuristic solving the traditional CSP using the instances contained in
SET1.

show that the selected algorithms are capable of solving the easy instances in almost every run.

Nevertheless, GRASP reduces its effectiveness when solving harder instances (the ones with a

higher utilization rate).

Table 5 has the results when solving the classic and advances instances, gathered in SET2 and

SET3. These values represent the average fitness and the best solution found among the different

runs of the metaheuristics for the different instances. We include the best solution found in the

literature for each instance in order to compare our results with the state of the art [32, 45]. In

addition, the ranking of the metaheuristics resulting from these values is shown in Table 6. The

ranking of the metaheuristics is computed using the average result of each metaheuristic for each

instance. Then, the mean rank is computed for each set and subset of SET2 and SET3.

The results for SET2 and SET3 suggest that ACO-LS outperforms the other metaheuristics,

since most of the highlighted values of Table 5 belong to ACO-LS. This is corroborated by the

average ranking values shown in Table 6, where ACO-LS achieves values close to 1. ACO is the

second best metaheuristics in these instances, achieving rank values close to 2 and even 1.6 for the

the 400-* subset. VNS shows good performance, achieving the best value for several instances and

ranking close to ACO. However, its performance decreases for the largest instances (subsets 300-*

and 400-*). These results also confirm that GRASP’s performance decreases when increasing the

difficulty of the instances, since it is ranked as the last one in almost every instance.

With respect to the state of the art, ACO-LS has the best result for almost every instance,

with ACO reaching many of them. VNS also reaches some of the best solutions, specially from

SET2 and subset 200-*. The results shown in Table 5 also show an improvement of the best values

known for some instances. Specifically, during our experiments we have found new overall best

solutions for 300 05 and 300 10 instances.
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Instances
Best GRASP ACO ACO-LS VNS
found Best Avg (σ) Best Avg (σ) Best Avg (σ) Best Avg (σ)

S
E

T
2

p10 93 3 9 10.9 (0.8) 4 4.93 (0.64) 3 4.03 (0.72) 4 4.77 (0.73)
p16 81 0 6 6.57 (0.5) 0 0.9 (0.66) 0 0.37 (0.49) 0 1.73 (0.69)
p19 71 2 4 5.37 (0.72) 2 2.27 (0.45) 2 2 (0) 2 2.03 (0.18)
p21 90 2 3 3.87 (0.63) 2 2.27 (0.45) 2 2 (0) 2 2.1 (0.31)
p26 82 0 3 4.13 (0.51) 0 0.03 (0.18) 0 0 (0) 0 0.93 (0.52)
p36 92 2 4 4.7 (0.53) 2 2.2 (0.41) 2 2 (0) 2 2.07 (0.25)
p41 66 0 0 0.7 (0.47) 0 0 (0) 0 0 (0) 0 0.23 (0.43)
p4 72 0 4 5.5 (0.68) 0 0.03 (0.18) 0 0 (0) 0 0.87 (0.57)
p6 76 6 6 6 (0) 6 6 (0) 6 6 (0) 6 6 (0)

S
E

T
3

200 01 0 6 7.9 (0.84) 0 1.5 (0.68) 0 0.87 (0.57) 0 1.6 (1.04)
200 02 2 8 10.27 (0.94) 2 3.2 (0.61) 2 2.77 (0.43) 2 2.53 (0.57)
200 03 3 17 19.37 (1.07) 7 7.4 (0.62) 5 6.87 (0.51) 10 12.63 (1.13)
200 04 7 16 17.67 (0.76) 8 8.1 (0.31) 7 7.27 (0.45) 8 10.23 (0.94)
200 05 6 8 9.07 (0.58) 7 7.47 (0.51) 6 6.53 (0.51) 6 6.5 (0.51)
200 06 6 9 10.4 (0.67) 6 6.07 (0.25) 6 6 (0) 6 6.17 (0.38)
200 07 0 6 8 (1.08) 0 0.17 (0.38) 0 0 (0) 0 0 (0)
200 08 8 10 11.97 (0.61) 8 8 (0) 8 8 (0) 8 8.43 (0.5)
200 09 10 12 14.43 (0.82) 11 11.2 (0.41) 10 10.1 (0.31) 10 10.07 (0.25)
200 10 19 21 22.1 (0.61) 20 20.67 (0.55) 19 19.73 (0.64) 19 20.07 (0.52)
300 01 0 14 17.27 (1.28) 2 3.17 (0.46) 0 2.3 (0.7) 1 3 (1.31)
300 02 12 28 31.67 (1.24) 12 12.87 (0.35) 12 12.13 (0.35) 14 16.8 (1.21)
300 03 13 21 23.77 (1.17) 13 13.63 (0.49) 13 13 (0) 20 21.87 (1.11)
300 04 7 22 24.17 (1.09) 7 8.47 (0.57) 7 7.43 (0.5) 11 13.53 (1.04)
300 05 27 40 44.5 (1.55) 27 29.47 (1.25) 25 27.03 (1.25) 39 42.37 (1.73)
300 06 2 17 19.7 (1.39) 4 4.27 (0.45) 4 4.13 (0.35) 11 15.07 (1.41)
300 07 0 19 22.6 (1.38) 0 0.23 (0.43) 0 0.07 (0.25) 2 6.4 (2.42)
300 08 8 19 22.1 (1.35) 8 8.57 (0.5) 8 8 (0) 8 10.23 (0.97)
300 09 7 21 23.37 (1.35) 7 8.23 (0.5) 7 7.57 (0.5) 13 16.07 (1.48)
300 10 20 29 32.83 (1.23) 19 20.57 (0.68) 16 18.23 (1.17) 24 25.87 (0.97)
400 01 1 14 18.77 (1.59) 1 1.27 (0.45) 1 1.1 (0.31) 5 10.6 (1.67)
400 02 15 38 42.5 (1.7) 16 17.33 (0.88) 15 16.2 (0.66) 31 34.8 (1.73)
400 03 6 24 25.17 (0.87) 6 6 (0) 6 6 (0) 13 15.73 (1.31)
400 04 19 35 37.27 (1.01) 20 20.03 (0.18) 19 19.1 (0.31) 27 29.7 (0.95)
400 05 0 14 17.53 (1.43) 0 0 (0) 0 0 (0) 0 3.47 (1.78)
400 06 0 14 19.2 (1.63) 0 0 (0) 0 0 (0) 0 2.23 (1.25)
400 07 4 23 25.63 (1.27) 4 5.17 (0.53) 4 4.53 (0.57) 12 16.83 (2.36)
400 08 4 20 22.6 (1.43) 4 5.53 (0.57) 4 5.03 (0.61) 14 17.53 (1.93)
400 09 5 35 39.1 (1.52) 11 13.2 (1) 7 9.93 (1.48) 16 22.43 (2.25)
400 10 0 13 16.03 (1.61) 0 0 (0) 0 0 (0) 0 2.03 (1.1)

Table 5: Minimum and average fitness values for every metaheuristic solving the traditional CSP using the instances
contained in SET2 and SET3. The overall best values known for every instance are also included for comparison
purposes.
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GRASP ACO ACO-LS VNS

SET 2 Mean 3.67 2.22 1 2.33

SET 3

Mean 4 2.03 1.1 2.67
200-* 4 2.4 1.3 2.1
300-* 4 2.1 1 2.9
400-* 4 1.6 1 3

Table 6: Mean rank for every metaheuristic solving the traditional CSP using the instances from SET2 and SET3.
In the case of SET3, we also include the mean rank for the different subsets.

5.3. Algorithmic comparison for the r-CSP

This section discusses the performance of the metaheuristics solving the r-CSP. Tables 7 and

8 show the results using the instances contained in SET1. Table 7 shows the subsets from 60-* to

75-* and Table 8 shows subsets from 80-* to 90-*. In addition, Table 9 contains the mean ranking

of the metaheuristics for SET1 and for every subset. The results for these instances show good

performance of both GRASP and ACO-LS, which achieve the best results in most of the instances.

On the one hand, GRASP achieves 60% of minimum values and 70% of the best average values.

On the other hand, ACO-LS achieves 40% of minimum values and 30% of the best average values.

We can see that the good performance of GRASP in this set is related to the low utilization

rate of its instances. This increases the number of feasible sequences for the reference plan and

favors metaheuristics with slightly wider diversity. In this regard, the greedy heuristic included

for the constructive phase could help both the ACO and VNS to reach a local optimum where

the reference plan is feasible. This can also explain why GRASP slowly reduces its performance

in favor of ACO and ACO-LS for the subsets contained in Table 8, where the utilization rate is

higher and it is harder to find a feasible sequence for the reference plan. For the instances shown

in Table 8, ACO-LS achieves 73.33% of minimum values and 66.67% of best average values, while

GRASP only achieves 16.67% and 30% respectively.

The performance drop of GRASP when solving the harder instances of SET1 can also be

observed in the ranking results of Table 9. These values show how GRASP’s rank steadily increases

from subset 75-* (mean ranking 1.4) to subset 90-* (mean ranking 3). In contrast, the mean ranking

of ACO and ACO-LS for these subsets is reduced until reaching 2.1 and 1.1, respectively. The VNS

performance is also reduced for the harder instances, but its ranking position just makes from 3.4

to 3.8.

The results for the instances in SET2 and SET3 are shown in Table 10. These results suggest
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Instances
GRASP ACO ACO-LS VNS

Best Avg (σ) Best Avg (σ) Best Avg (σ) Best Avg (σ)

60-01 3.08 3.63 (0.22) 3.8 5 (0.52) 3.2 3.51 (0.14) 4.64 5.97 (0.52)

60-02 59.48 60.5 (0.4) 59.08 60.8 (0.89) 59.08 60.7 (0.74) 62.92 63.73 (0.47)

60-03 4.32 4.66 (0.17) 6.96 8.3 (0.53) 5.32 5.73 (0.24) 6 6.82 (0.44)

60-04 30.56 31.23 (0.35) 28.68 30.4 (0.87) 28.68 30.35 (0.8) 31.28 32.87 (0.85)

60-05 1.48 2.4 (0.31) 3.16 4.7 (0.94) 2.8 3.68 (0.32) 3.44 4.62 (0.71)

60-06 2.24 3.01 (0.21) 3.56 5.74 (1.32) 3.52 4.69 (0.65) 2.68 3.56 (0.4)

60-07 1.72 2.18 (0.24) 2.88 5.67 (0.7) 0.6 1.14 (0.19) 2.92 3.74 (0.37)

60-08 3.52 4.22 (0.23) 8.56 9.92 (0.58) 5.04 6.13 (0.28) 6.56 7.71 (0.53)

60-09 2.96 3.44 (0.2) 3.04 4.17 (0.56) 2.96 3.61 (0.31) 3.88 5.03 (0.5)

60-10 2.92 3.71 (0.39) 5.84 9 (1.8) 3.16 3.92 (0.32) 9.24 10.81 (0.58)

65-01 6.28 7.04 (0.31) 5.76 7.2 (0.83) 5.72 6.79 (0.51) 7.24 7.82 (0.34)

65-02 59.96 60.72 (0.38) 59.52 61.31 (0.73) 59.52 61.31 (0.73) 62.68 62.68 (0)

65-03 5.6 6.24 (0.25) 8.6 10.86 (1.24) 6.08 6.82 (0.31) 9.68 11.02 (0.5)

65-04 26.6 27.57 (0.44) 24.72 26.5 (0.81) 24.72 26.47 (0.8) 27.32 29.1 (0.75)

65-05 4.96 5.53 (0.28) 7.12 9.93 (1.38) 6.2 6.77 (0.3) 5.52 7.42 (0.76)

65-06 5.2 5.99 (0.24) 6.16 8.85 (1.58) 6.16 8.1 (0.98) 8.76 10.13 (0.6)

65-07 5.08 5.68 (0.3) 6.04 8.53 (1.07) 3.8 4.88 (0.42) 7.6 9.05 (0.52)

65-08 5.24 5.99 (0.24) 9 11.61 (0.87) 7.76 8.45 (0.31) 8.04 9.07 (0.57)

65-09 2.32 2.75 (0.21) 3.68 4.93 (0.84) 2.84 3.36 (0.29) 3.6 4.59 (0.52)

65-10 4 4.99 (0.39) 7.32 9.45 (1.46) 4.72 5.63 (0.35) 7.16 9.43 (1.07)

70-01 7.24 8.56 (0.38) 6.68 8.39 (0.66) 6.68 7.97 (0.48) 11.2 11.91 (0.4)

70-02 58.56 60.03 (0.52) 57.12 58.45 (0.77) 57.12 58.45 (0.77) 61.04 62.07 (0.43)

70-03 10.88 11.53 (0.25) 11.48 15.39 (1.44) 10.4 11.75 (0.38) 12.76 13.6 (0.57)

70-04 10.48 11.33 (0.43) 8.28 9.74 (0.82) 8.28 9.63 (0.79) 11.04 11.94 (0.53)

70-05 12.28 12.81 (0.28) 14.2 17.68 (1.51) 13.36 14.16 (0.4) 14.88 15.96 (0.6)

70-06 3.28 3.94 (0.29) 4.32 6.13 (1.02) 3.72 5.2 (0.7) 6.56 7.38 (0.34)

70-07 8.92 9.86 (0.46) 10.08 12.02 (1.09) 8.16 9.1 (0.45) 12.12 13.88 (0.86)

70-08 8.32 8.99 (0.35) 11.12 14.81 (1.15) 10.48 11.76 (0.46) 9.44 10.46 (0.53)

70-09 6.48 7.52 (0.4) 7.24 10.52 (1.63) 7.68 9.11 (0.55) 7.36 10.01 (1.3)

70-10 7.84 8.82 (0.47) 10.6 13.38 (1.26) 8.6 9.25 (0.34) 11.16 13.88 (1.25)

75-01 10.8 11.28 (0.22) 8.4 10.04 (0.69) 8.4 9.87 (0.71) 11.84 13.22 (0.44)

75-02 106.32 108.29 (0.81) 107.48 109.85 (1.34) 107.48 109.79 (1.2) 109.92 113.16 (1.35)

75-03 15.88 16.42 (0.24) 17.64 19.61 (1.21) 17.2 18.02 (0.38) 17.4 18.74 (0.69)

75-04 17.64 19.02 (0.49) 13.88 15.53 (0.9) 13.88 15.3 (0.72) 18.6 20.34 (0.98)

75-05 8.92 9.83 (0.29) 9.52 13.93 (1.47) 9.52 12.48 (0.87) 10.8 11.92 (0.59)

75-06 9.52 10.08 (0.34) 10.36 13.61 (1.67) 10.36 13.15 (1.28) 12.4 13.84 (0.77)

75-07 14.04 14.86 (0.38) 15.16 17.31 (0.92) 14.32 15.87 (0.69) 14.96 16.77 (0.9)

75-08 17.96 19.12 (0.37) 25.12 27.81 (0.98) 23.04 24.53 (0.51) 20.52 21.65 (0.8)

75-09 6.64 7.95 (0.45) 7.44 10.44 (1.72) 5.28 9.56 (1.53) 9.12 10.52 (0.73)

75-10 11.72 12.97 (0.46) 11.08 16.37 (2.1) 11.48 14.22 (1.09) 16.52 18.39 (0.78)

Table 7: Minimum and average fitness values for every metaheuristic solving the r-CSP using the instances from
SET1 (subsets from 60-* to 75-*).
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Instances
GRASP ACO ACO-LS VNS

Best Avg (σ) Best Avg (σ) Best Avg (σ) Best Avg (σ)

80-01 6.4 7.11 (0.31) 3.92 6.39 (0.77) 4.92 6.18 (0.57) 7.8 8.41 (0.29)

80-02 110.92 112.89 (0.89) 112.56 115.11 (1.61) 112.56 114.95 (1.39) 113.12 115.61 (1.31)

80-03 13.24 13.82 (0.22) 11.68 12.62 (0.61) 11.68 12.58 (0.63) 15.64 16.67 (0.45)

80-04 34.72 35.68 (0.49) 32.2 33.77 (0.77) 32.36 33.71 (0.74) 34.88 36.65 (0.69)

80-05 19.16 20.09 (0.46) 19.04 21.03 (1.12) 19.04 20.86 (0.97) 23.28 24.79 (0.75)

80-06 9.44 10.4 (0.34) 12.8 15.5 (1.2) 12.64 15.14 (1.35) 12.76 14.29 (0.71)

80-07 15.4 16.36 (0.34) 14.96 17.02 (1.12) 13.76 16.96 (1.22) 19.2 20.86 (0.66)

80-08 13.6 14.68 (0.38) 17.2 19.71 (1.2) 17.36 19.55 (1.15) 14.48 15.82 (0.8)

80-09 86.4 87.62 (0.65) 82.56 86.45 (1.65) 80.04 86.23 (1.96) 89.4 92.24 (1.03)

80-10 12.28 13.79 (0.4) 13.56 14.75 (0.61) 12.28 14.39 (0.87) 15.64 16.53 (0.55)

85-01 6.2 7.02 (0.35) 5 6.35 (0.75) 5.04 6.06 (0.49) 7.76 8.63 (0.38)

85-02 29.76 30.53 (0.38) 29.4 32.6 (1.21) 29 30.56 (0.95) 32.56 34.16 (0.89)

85-03 36.76 37.64 (0.46) 41.2 43.05 (1.08) 36.2 37.01 (0.51) 38.4 41.2 (1.18)

85-04 23.48 24.02 (0.36) 22.8 24.77 (1.12) 21.12 24.29 (1.47) 26.12 27.24 (0.85)

85-05 50.2 51.2 (0.57) 50.92 52.11 (0.73) 50.92 52.06 (0.72) 52.08 53.26 (0.7)

85-06 61.84 62.65 (0.4) 61.64 63.66 (1.18) 60.96 62.62 (1.05) 61.16 62.94 (0.93)

85-07 11.6 12.15 (0.25) 9 10.86 (0.9) 9 10.74 (0.83) 13.8 14.51 (0.42)

85-08 19.72 20.56 (0.41) 17.08 19.19 (1.12) 16.36 18.88 (1.29) 21 22 (0.52)

85-09 55.04 56.34 (0.56) 53.36 56.08 (1.34) 52.88 55.68 (1.22) 55 56.93 (0.97)

85-10 22.2 23.73 (0.58) 16.6 19.12 (1.66) 16.6 19.04 (1.57) 25.72 27.85 (1.14)

90-01 12.76 14.27 (0.53) 11.2 12.66 (0.87) 10.24 12.26 (0.86) 13.6 14.35 (0.54)

90-02 26.28 27.37 (0.59) 23.64 27.37 (2.13) 23.32 27.33 (2.11) 26.44 30.13 (1.45)

90-03 18.52 21.91 (0.92) 17.24 21.46 (2.46) 15.16 21.63 (2.77) 21.36 23.05 (1.51)

90-04 13.4 14.35 (0.35) 10.2 11.16 (0.54) 9.92 10.57 (0.35) 14.28 15.35 (0.54)

90-05 42.4 44.85 (0.84) 37.76 40.61 (1.17) 37.88 40.22 (1.32) 40.52 42.15 (0.83)

90-06 61.8 63.43 (0.62) 63.08 65.32 (1.2) 61.24 63.38 (1.01) 66.56 69.52 (1.63)

90-07 26.48 28.57 (0.61) 24.6 26.15 (1.11) 24.16 26.05 (0.96) 25.92 27.22 (0.6)

90-08 65.6 67.01 (0.63) 66.28 67.6 (0.68) 63.6 64.63 (0.37) 67.2 68.8 (0.84)

90-09 44.2 45.46 (0.44) 42.28 43.74 (0.7) 41.44 42.13 (0.48) 45.48 46.8 (0.69)

90-10 38.04 38.97 (0.49) 34.84 36.5 (0.87) 34.84 36.48 (0.85) 39.08 40.22 (0.73)

Table 8: Minimum and average fitness values for every metaheuristic solving the r-CSP using the instances from
SET1 (subsets from 80-* to 90-*).
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GRASP ACO ACO-LS VNS

S
E

T
1

Mean 1.84 2.91 1.63 3.59
60-* 1.4 3.4 1.8 3.4
65-* 1.4 3.2 1.7 3.6
70-* 1.7 3 1.7 3.5
75-* 1.4 3.2 2 3.4
80-* 1.8 2.8 1.8 3.6
85-* 2.2 2.7 1.3 3.8
90-* 3 2.1 1.1 3.8

Table 9: Mean rank for every metaheuristic solving the r-CSP using the instances of SET1. The mean rank for the
different subsets is also included.

that ACO-LS outperforms the other metaheuristics, specially in the subsets 300-* and 400-*,

achieving most of the best values for the hardest instances. These results highlight the relevance of

finding a feasible solution for the reference plan, since most of those instances are either not feasible

or their feasibility is unknown. This also explains why VNS and ACO increase their performance

when solving the instances of SET2 and SET3 with respect to solving instances of SET1. It also

explains the performance drop of GRASP. Table 11 shows the mean rank of the metaheuristics

solving the instances of SET2 and SET3. These values support our previous analysis and suggest

that ACO-LS outperforms the other algorithms. The only exception would be the subset 200-*,

where VNS achieves a lower value. However, the performance of VNS decreases for the hardest

instances of subsets 300-* and 400-*, where its mean ranking falls to 2.9 and 3, respectively.

In addition to our previous analysis, we have applied different post-hoc procedures for ensuring

the statistical significance of the mean rank values for SET1, SET2, and SET3. Specifically,

we have considered Friedman’s nonparametric test [25] and Wilcoxon ranksum test [27]2 (null

hypothesis Ri = Rj , alternate hypothesis Ri < Rj , where Ri and Rj represent the average ranking

of two different algorithms). We first test the null hypothesis using Friedman’s non parametric test

(which claims that there is no significant difference between the performance of the algorithms).

The resulting p−values, shown in Table 12, are lower than the level of significance (α = 0.05) for

every set and the null hypothesis is therefore, rejected. Additionally to the p−values, Friedman’s

test results in χ2
F = 106.52 for SET1, χ2

F = 22.6 for SET2, and χ2
F = 62.76 for SET3.

We continue the analysis by using the Wilcoxon’s ranksum test to every pair of metaheuristics by

2We ran these procedures using R. Friedman’s test is computed using friedman.test from the standard package
PMCMR. Wilcoxon’s test is performed by wilcox.test, which is an R built-in function.
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Instances
GRASP ACO ACO-LS VNS

Best Avg (σ) Best Avg (σ) Best Avg (σ) Best Avg (σ)

S
E

T
2

p10 93 15.88 17.53 (0.56) 10.6 11.77 (0.64) 9.92 11.02 (0.58) 10.72 11.87 (0.66)
p16 81 10.28 11.07 (0.47) 5.24 5.89 (0.46) 4.8 5.54 (0.35) 5.52 6.65 (0.56)
p19 71 9.52 10.94 (0.59) 7.36 7.98 (0.47) 7 7.4 (0.27) 7.08 7.59 (0.32)
p21 90 4.28 5.75 (0.64) 3.44 4.07 (0.52) 3.36 3.91 (0.31) 3.2 3.88 (0.35)
p26 82 12.8 13.53 (0.34) 9.12 10.33 (0.49) 9.08 10.19 (0.47) 10.16 10.98 (0.53)
p36 92 12.68 13.36 (0.38) 10.68 11.17 (0.3) 9.8 10.71 (0.27) 10.32 10.93 (0.38)
p41 66 6.4 7.29 (0.41) 5.64 7.18 (0.72) 5.84 6.98 (0.75) 6.08 7.03 (0.6)
p4 72 10.08 11.17 (0.56) 6.2 6.82 (0.37) 5.96 6.58 (0.37) 6.2 7.35 (0.53)
p6 76 7.28 7.83 (0.3) 6.84 7.31 (0.23) 6.8 7.3 (0.24) 7.16 7.58 (0.24)

S
E

T
3

200 01 53.4 54.83 (0.75) 48.04 49.46 (0.58) 48.28 49.09 (0.45) 46.76 48.84 (0.95)
200 02 20.68 22.87 (0.83) 16.44 17.32 (0.57) 15.56 16.85 (0.55) 14.68 15.73 (0.6)
200 03 43.32 46.02 (0.99) 35.2 36.28 (0.66) 34.76 35.79 (0.53) 38.4 39.86 (0.83)
200 04 25.64 27.65 (0.92) 19.32 19.83 (0.31) 18.32 19.1 (0.4) 19.72 21.25 (0.75)
200 05 23.44 24.75 (0.62) 23.36 24.26 (0.47) 22.28 23.55 (0.59) 20.92 22.07 (0.52)
200 06 24.52 25.7 (0.53) 22.24 23.23 (0.45) 20.52 22.53 (0.61) 20.96 22.09 (0.54)
200 07 13.76 15.57 (0.92) 8.2 8.69 (0.27) 8.04 8.41 (0.22) 7.84 8.23 (0.21)
200 08 30.28 32.29 (0.69) 26.2 26.86 (0.41) 25.64 26.61 (0.38) 27.24 29.33 (0.71)
200 09 20.44 22.35 (0.77) 20.44 21.01 (0.39) 19.32 19.84 (0.32) 17.72 18.32 (0.29)
200 10 34.76 37.17 (0.78) 36.24 37.91 (0.85) 35.08 36.81 (0.9) 34.32 35.44 (0.52)
300 01 71.36 73.56 (1.22) 60.4 62.45 (0.78) 60.28 61.83 (0.76) 57.88 60.97 (1.4)
300 02 44.16 47.69 (1.31) 28.8 29.71 (0.37) 28.64 29.15 (0.28) 30 32.87 (1.19)
300 03 49.76 52.42 (1.09) 43.16 44.96 (0.7) 41.96 44.28 (0.84) 52.76 54.17 (0.82)
300 04 55.08 57.41 (1.25) 41.84 43.42 (0.61) 41.56 42.73 (0.56) 44.52 47.26 (1.15)
300 05 71.52 74.93 (1.43) 60.24 63.12 (1.33) 59.44 62.01 (1.18) 70.4 74.24 (1.84)
300 06 44.16 47.46 (1.21) 33.8 34.98 (0.63) 33.92 35.17 (0.7) 41.12 44.09 (1.21)
300 07 62 64.68 (1.03) 45.4 46.62 (0.7) 44.84 46.35 (0.78) 45.52 51.22 (2.47)
300 08 38.4 41.16 (1.24) 26.72 27.43 (0.37) 26.04 26.88 (0.42) 27.28 29.87 (0.97)
300 09 46.56 48.17 (0.95) 35.44 37.22 (0.68) 35.12 36.53 (0.68) 41.6 43.82 (1.2)
300 10 113.16 116.2 (1.5) 104.64 107.21 (1.4) 104.12 105.88 (0.92) 106.48 110.25 (1.29)
400 01 84.84 89.38 (1.5) 69.12 70.09 (0.5) 68.96 70.05 (0.46) 79.12 82.13 (1.36)
400 02 70.64 74.18 (1.64) 50.84 52.43 (0.74) 50.2 51.78 (0.67) 65.2 67.85 (1.5)
400 03 56.12 57.66 (0.81) 39.52 40.4 (0.26) 39.4 40.19 (0.36) 47.12 49.85 (1.34)
400 04 106.04 108.47 (1.26) 86.16 91.23 (1.64) 83.16 89.67 (2.04) 95.44 97.38 (0.85)
400 05 61.36 65.55 (1.74) 46.44 49.02 (1.2) 46.52 48.83 (1) 47.76 52.32 (1.75)
400 06 87.16 89.49 (1.07) 66.84 70.04 (1.72) 67.88 70.1 (1.35) 72.32 75.24 (1.71)
400 07 83.72 88.4 (1.43) 65.72 67.44 (0.78) 65 66.76 (0.77) 73.84 78.2 (2.23)
400 08 45.8 48.24 (1.09) 31.04 32.29 (0.52) 31.4 32.04 (0.36) 40.6 43.71 (1.63)
400 09 145.52 150.82 (1.66) 130.72 132.44 (0.84) 129.56 131.64 (0.89) 131.64 137.13 (2.08)
400 10 126.72 132.31 (2.19) 118.88 121.46 (1.75) 116.2 120.12 (1.67) 120.28 124.2 (1.63)

Table 10: Minimum and average fitness values for every metaheuristic solving the r-CSP using the instances of SET2
and SET3.
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GRASP ACO ACO-LS VNS

SET 2 Mean 4 2.44 1.11 2.44

SET 3

Mean 3.93 2.23 1.33 2.5
200-* 3.9 2.8 1.7 1.6
300-* 3.9 2 1.2 2.9
400-* 4 1.9 1.1 3

Table 11: Mean rank for every metaheuristic solving the r-CSP using the instances from SET2 and SET3. In the
case of SET3, we also include the mean rank for the different subsets.

SET1 SET2 SET3

Friedman test 2.2 · 10−16 4.893 · 10−5 1.511 · 10−13

W
il

co
x
on

ra
n

k
su

m
te

st

GRASP vs. ACO / 1.184 · 10−9 / 1 / 1 /

ACO vs. GRASP 1 6.103 · 10−5 3.643 · 10−12

GRASP vs. ACO-LS / 0.7723 / 1 / 1 /

ACO-LS vs. GRASP 0.2291 3.516 · 10−5 3.509 · 10−13

GRASP vs. VNS / 2.2 · 10−16 / 1 / 1 /

VNS vs. GRASP 1 6.461 · 10−5 1.045 · 10−11

ACO vs. ACO-LS / 1 / 0.9999 / 1 /

ACO-LS vs. ACO 4.799 · 10−15 1.879 · 10−4 2.33 · 10−7

ACO vs. VNS / 10−6 / 0.4407 / 0.0252 /

VNS vs. ACO 1 0.5981 0.9757

ACO-LS vs. VNS / 2.2 · 10−16 / 6.463 · 10−4 / 1.747 · 10−6 /

VNS vs. ACO-LS 1 0.9995 1

Table 12: Resulting p−values of Friedman’s test and Wilcoxon ranksum test for every pair of metaheuristics for
SET1, SET2, and SET3.

considering a level of significance α = 0.05. The resulting p−values confirm our previous analysis.

In the case of SET1, GRASP and ACO-LS perform statistically better than ACO and VNS but

the comparison between them is inconclusive. In the case of SET2, where GRASP drastically

reduces its performance, ACO-LS is the only metaheuristic performing significantly better than

the rest of the algorithms. ACO and VNS increase their performance and outrank GRASP but the

comparison between them is non significant. Finally, in the case of SET3, both ACO and ACO-LS

outrank the other metaheuristics and ACO-LS stands out as the statistically best method.

6. Concluding remarks

In this paper we have introduced a new model, r-CSP, that extends the traditional CSP when

considering non-regular vehicles. This new model considers the concept of uncertain partial de-
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mand for special vehicles, which is modeled based on different scenarios that are built using the

defined production plans. We have presented both a formal definition of the problem and the

objective function for solving the r-CSP. In addition, we have implemented a set of constructive

metaheuristics for solving the problem: GRASP, VNS, ACO, and a memetic ACO (ACO-LS).

Regarding the resolution of the problem, we have generated compatible instances using the

existing ones from the well known benchmark CSPLib. Using these generated instances, we applied

the implemented metaheuristics to both the traditional CSP and the r-CSP. The results proved

that our selected methods behave successfully compared to the current state of the art and they

even improved the best known solution for two instances. Using the newly generated instances, we

applied and compared the constructive metaheuristics for solving the r-CSP. After analyzing the

results on these instances and applying Friedman’s test and Wilcoxon ranksum test, we concluded

that the memetic metaheuristic ACO-LS is the best solving method for every instance set regardless

of the difficulty or the size of its instances. In contrast, GRASP obtained good results with the

instances considering a low utilization rate, but its performance decayed for the harder instances.

VNS and ACO obtained similar results solving instances with 200 or lower vehicles, but ACO

outperformed VNS for the bigger instances.

Future work will be focused on defining additional robustness metrics and methods that al-

low the assessment of the quality of the found solutions beyond the basic constraint satisfiability

approach. Additionally, we aim to propose and study multiobjective extensions for the CSP and

r-CSP.
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[11] Chica, M., Bautista, J., Cordón, Ó., Damas, S., 2016. A multiobjective model and evolutionary algorithms for
robust time and space assembly line balancing under uncertain demand. Omega 58, 55–68.

[12] Chica, M., Cordón, O., Damas, S., 2011. An advanced multi-objective genetic algorithm design for the time
and space assembly line balancing problem. Computers & Industrial Engineering 61, 103–117.

[13] Chica, M., Cordón, O., Damas, S., Bautista, J., 2010. Multiobjective, constructive heuristics for the 1/3 variant
of the time and space assembly line balancing problem: ACO and random greedy search. Information Sciences
180, 3465–3487.
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