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Abstract 
The truck scheduling problem is one of the most challenging and important types of scheduling with a large 

number of real-world applications in the area of logistics and cross-docking systems. This problem is 

formulated to find an optimal condition for both receiving and shipping trucks sequences. Due to the 

difficulty of the practicality of the truck scheduling problem for large-scale cases, the literature has shown 

that there is a chance, even with low possibility, for a new optimizer to outperform existing algorithms for 

this optimization problem. The paper introduces modified versions of the Social Engineering Optimizer 

(SEO), an algorithm inspired by social engineering phenomena to solve the truck scheduling problem. To 

validate these optimizers, they are evaluated by solving a set of standard benchmark functions. All the 

algorithms have been calibrated by the Taguchi experimental design approach to further enhance their 

optimization performance. In addition to some truck scheduling benchmarks , a real case study is addressed 

to show the high-efficiency of the developed optimizers in a real situation. The results indicate that the 

proposed modifications of SEO considerably outperform the state of the art algorithms for the truck 

scheduling problem.  

Keywords: truck scheduling problem, cross-docking system, Social Engineering Optimizer (SEO), 

benchmark functions. 
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Notations and nomenclature:  

Indices 

i,j  Index of trucks  

k Index of products  

Parameters 

D The truck changeover time 

rik 
The number of units of product type k that was initially loaded in receiving truck 

i 

sjk 
The number of units of product type k that was initially needed for shipping truck 

j 

V The moving time of products from the receiving dock to the shipping dock 

M The big number 

R  The number of the receiving trucks 

S The number of the shipping trucks 

N The number of product types 

Variables 

T Makespan 

dj Time at which shipping truck j enters the shipping dock 

Lj Time at which shipping truck j leaves the shipping dock 

ci Time at which receiving truck i enters the receiving dock 

Fi Time at which receiving truck i leaves the receiving dock 

Xijk The number of units of product type k that is transferred from receiving truck i to 

shipping truck j 
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Abbreviations 

SA Simulated Annealing  

GA Genetic Algorithm  

KA Keshtel Algorithm  

RDA Red Deer Algorithm  

SEO Social Engineering Optimizer  

SFS Stochastic Fractal Search  

WWO Water Wave Optimization  

VCS Virus Colony Search  

PSO Particle Swarm Optimization 

NFL No Free Lunch  

GWO Grey Wolf Optimizer 

ABC Artificial Bee Colony 

ICA Imperialist Competitive Algorithm 

FA Firefly Algorithm 

L-SHADE Linear-Success-History based on Adaptive of Differential Evolution 
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1-Introduction and literature review 

Nowadays, quick changes in today’s competitive markets highlight that the satisfaction of 

customers has become crucially important for companies in logistics and cross-docking systems 

(Mohtashami et al., 2015). The significance of being responsive has led many companies to modify 

their logistics and cross-docking systems by taking logistics principles into application (Zuluaga 

et al., 2017). To improve the accessibility of logistics facilities, truck scheduling plays a key role 

to preserve the supply chain objectives aiming at making a better trade-off between the total cost 

and customers’ expectations (Golshahi-Roudbaneh et al., 2017). Therefore, to address this 

challenging and important type of scheduling problem, new optimizers need to be developed 

(Golshahi-Roudbaneh et al., 2017). This motivates our attempt to introduce a set of novel 

modifications for a recently-developed optimizer to better solve the truck scheduling problem for 

a cross-docking system.  

Generally, cross-docking aims to manage the flow of products so that no storage of inventory 

occurs for more than twenty-four hours (Madani-Isfahani et al., 2014; Fathollahi Fard and 

Hajiaghaei-Keshteli, 2018). The goods are directly transferred to the outbound dock in order to be 

loaded into shipping trucks. In such systems, long-term storage is not allowed. Hence, the cross-

docking system is beneficial to improve the physical flow of products through the supply chain in 

an efficient way (Hajiaghaei-Keshteli and Fathollahi-Fard, 2018). More recent reviews and 

advances about the supply chain systems can be referred to Sayyadi and Awasthi (2018a) and 

(2018b); Giri and Bardhan (2014); Giri and Masanta (2018); Sarkar and Giri (2018); Hao et al., 

(2018); Rabbani et al., (2018) and (2019); Gharaei et al., (2019), (2019a), (2019b), (2019c); 

Awasthi and Omrani (2019); Tsao, (2015); Hoseini-Shekarabi et al., (2019); Dubey et al., (2015); 

Duan et al., (2018); Kazemi et al., (2018); Yin et al., (2016); Shah et al., (2018).  

The literature of the cross-docking can be divided into several scopes such as location of 

cross-docks, layout design, vehicle routing, truck scheduling, dock door assignment and supply 

chain networks among others (Hajiaghaei-Keshteli and Fathollahi-Fard, 2018; Samadi et al., 2018; 

Zuluaga et al., 2017). A survey done by Ladier and Alpan (2016)  reviewed cross-docking 

operations and categorized them into five groups including truck to door sequencing, truck to door 

assignment, truck to door scheduling and truck sequencing and scheduling. The authors also 

indicated that most of studies mainly focus on minimization of the makespan (total operation time) 
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and traveled distance. Subsequently, they suggested that developing more heuristics and 

metaheuristics are still needed to be explored due to the complexity of the mathematical models 

and the need for adopting quick decisions by managers. 

The literature of truck scheduling is very rich from both aspects of modeling and solution 

methodologies. From the modeling perspective, one of the seminal research works was conducted 

by Yu (2002) who studied the truck scheduling problem with the aim of determining the selected 

sequence for both shipping and receiving trucks and optimizing the makespan. From the solution 

methodology standpoint, Yu and Egbelu (2008) presented a mathematical model for a truck 

scheduling problem in which they consider a receiving door, a shipping door and a temporary 

storage in front of the shipping door. They suggested nine heuristic methods to solve their proposed 

model, then compared them with the exact results obtained from the complete enumeration 

method. Chen and Lee (2009) modeled the truck scheduling problem as a flow-shop machine 

scheduling problem. They solved the problem using the branch-and-bound algorithm. According 

to the authors, this algorithm can find the optimal solution of the problems up to 60 jobs in a 

reasonable amount of time. Boysen (2010) studied a cross dock scheduling problem in a storage 

ban mode. The objectives of the model were to minimize the processing time, the flow time and 

the tardiness of outbound trucks. He used dynamic programming and Simulated Annealing (SA) 

to solve the proposed mathematical model. 

In particular, there is an increased interest in truck scheduling problem in cross-docking 

systems. The focus is to develop  new solution approaches to find an efficient result by using 

heuristics and metaheuristics. Konur et al., (2013) considered the cross docking scheduling 

problem as a two-phase parallel machine problem with earliness and tardiness. In their research, a 

new metaheuristic based on Genetic Algorithm (GA) was utilized. Subsequently, Amini et al. 

(2014) developed a mathematical model for truck scheduling problem considering arrival times 

for inbound trucks and adding the learning effect for unloading and loading process for the first 

time. Due to the complexity of the model in large-scale instances, a Particle Swarm Optimization 

(PSO) was applied to solve their problem. Amini and Tavakkoli-Moghaddam (2016) formulated a 

problem in which truck availability faces reductions during the times of services. They also 

considered a due date for each shipping truck and used three multi-objective meta-heuristic 

algorithms to solve the problem. Golshahi-Roudbaneh et al. (2017) proposed efficient heuristics 

and metaheuristics to reach the optimal value for both receiving and shipping trucks sequences, 



6 

based on Yu (2002). They applied Stochastic Fractal Search (SFS) and Keshtel Algorithm (KA). 

Mohammadzadeh et al., (2018) proposed three novel metaheuristics including Red Deer Algorithm 

(RDA), Water Wave Optimization (WWO) and Virus Colony Search (VCS) to solve the truck 

scheduling problem based on Golshahi-Roudbaneh et al. (2017). Ye et al. (2018) proposed an 

improved PSO to solve a truck scheduling problem considering the products loading and unloading 

constraints. They showed the efficiency of the proposed metaheuristic against Genetic Algorithm 

(GA), Particle Swarm Optimisation (PSO) and another variation of PSO.  

Peng and Zhou (2019) proposed a hybrid Grey Wolf Optimizer (GWO) to address a bi-

objective truck scheduling problem in automotive industry environment. Tadumadze et al., (2019) 

developed an integrated truck and workforce scheduling problem for unloading trucks and 

proposed a set of heuristics to solve it. Yi et al., (2019) proposed a scheduling appointment system 

for container truck arrivals considering their effects on congestion and solved this complex 

problem by  PSO.  

The exist many formulations for the scheduling problem with different assumptions and 

scopes depending on the application under investigation. Due to the intricate nature of these 

problems, most of the relevant studies applied different optimizers including heuristics and 

metaheuristics to find robust solutions (Hlal et al., 2019; Pourdaryaei et al., 2019; Abbasi et al., 

2019). This fact is based on the No Free Lunch (NFL) theory which states that there is no optimizer 

to solve all optimization problems (Wolpert and Macready, 1997). According to the literature, for 

a modified optimizer there will always be a chance, even with low probability, that it can 

outperform existing algorithms for a particular problem at hand (Kaboli et al., 2016, 2016a, 2017a; 

Kaboli and Alqallaf, 2019). To the best of our knowledge, the SEO proposed by Fathollahi-Fard 

et al., (2018) has not been employed in the field of truck scheduling problems. Although the 

authors of this research have previously worked on developing different novel hybridizations and 

modifications of other recently-developed algorithms e.g., WWO (Fathollahi Fard and Hajiaghaei-

Keshteli, 2018), RDA (Samadi et al., 2018; Fathollahi-Fard et al., 2018a), KA (Hajiaghaei-

Keshteli and Fathollahi-Fard, 2018; Fathollahi-Fard et al., 2018a and 2018c), VCS (Fathollahi-

Fard and Hajiaghaei-Keshteli, 2018), Salp Swarm Algorithm (Fathollahi-Fard et al., 2018b), SFS 

(Fathollahi-Fard et al., 2018c) etc., this is the first attempt to offer novel versions of SEO in 

comparison with the previous works. In this study, the proposed modifications are compared with 
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the original version of SEO and to existing efficient algorithms in the literature. Overall, the core 

innovations of this paper are as follows: 

• This is the first attempt to apply SEO to solve the truck scheduling problem; 

• Some novel modifications of SEO are proposed;  

• A set of standard benchmark functions for the assessment of novel optimizers are employed 

for the evaluations of SEO;  

• The modified algorithms are evaluated using the benchmark problems for the truck 

scheduling problem; 

• A real case study to approve the proposed truck scheduling problem is conducted and the 

results confirm the effectiveness and efficiency of the proposed modifications. 

The rest of this paper is organized as follows. Section 2 explains the problem description and 

its mathematical formulation for the truck scheduling problem. In Section 3, the proposed solution 

approach is explained in detail. An extensive comparison and evaluation of the proposed 

modifications are provided in Section 4. Finally, in the last section, the results are discussed and 

suggestions along with future directions for further research are elaborated. 

2-Problem description and mathematical formulation  
The section describes a formulation for the truck scheduling problem in a cross-docking 

system. To define the general idea of problem in the real domain, consider a cross dock with I-

shaped structure as represented in Figure 1. All activities through this system is automated. As a 

one-touch cross-docking system, temporary storage is not allowed. The inbound trucks sent from 

suppliers are unloaded and the outbound trucks are loaded to submit the products based on their 

orders. The products can be directly transferred from strip doors to stack ones. Therefore, the doors 

of the considered cross-dock are assumed to be in an exclusive mode, meaning that they are not 

considered as decision variables. Another main characteristic of this system is that the interruption 

for unloading and loading of trucks is not allowed. The arrival pattern of trucks is concentrated so 

that all trucks are available at time zero. Consequently, the departure pattern of the trucks is 

planned with no restriction and no penalty for the postponement of trucks. The cross-dock can be 

classified as a pre-distribution center. Accordingly, the interchangeability of products is not 

allowed. The proposed truck scheduling problem aims to determine the optimal sequence of 

receiving and shipping trucks with minimizing the makespan.  
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Figure 1. Graphical illustration of proposed cross-dock Yu and Egbelu (2008) 

 

A mathematical model is formulated based on the previous studies e.g., Yu (2002), Yu and 

Egbelu (2008), Golshahi-Roudbaneh et al., (2017) and Mohammadzadeh et al., (2018). The major 

model assumptions of the problem under study are listed as follows: 

• The time for loading and unloading of products for all trucks is the same. 

• This time is the same for one unit of time for each product.   

• At time zero, all shipping and receiving trucks are available. 

• For all trucks, the changeover time is the same. 

• The location of temporary storage is in front of the shipping dock and its capacity is infinite. 

The mathematical model investigated in this study is based on the following notations: 

Indices 

i,j  Index of trucks  

k Index of products  

Parameters 
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D The truck changeover time 

rik 
The number of units of product type k that was initially loaded in receiving truck 

i 

sjk 
The number of units of product type k that was initially needed for shipping truck 

j 

V The moving time of products from the receiving dock to the shipping dock 

M The big number 

R  The number of the receiving trucks 

S The number of the shipping trucks 

N The number of product types 

Variables 

T Makespan 

dj Time at which shipping truck j enters the shipping dock 

Lj Time at which shipping truck j leaves the shipping dock 

ci Time at which receiving truck i enters the receiving dock 

Fi Time at which receiving truck i leaves the receiving dock 

Xijk The number of units of product type k that is transferred from receiving truck i to 

shipping truck j 
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                                                                                                                Otherwise.,0
sequence; truck shipping in the j truck shipping preceeds i truck shipping If,1

                                                                                                         Otherwise;,0
sequence; truck receiving  in the j truck receiving preceeds i truck receving If,1

                                                                                           Otherwise;,0
j; truck shipping  toi truck receiving from transfer productsany  If,1
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The applied mathematical formulation for the truck scheduling problem in a cross-docking system 

is based on the following model: 
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The objective function (T) aims to minimize the total operational time (makespan) of the cross-

docking process. Eq. (1) ensures that the departure time of shipping trucks is lower than the total 

operational time. The latter equals to the departure time of the last shipping truck. Similarly, Eq. 

(2) guarantees that initially, the total number of products arriving by each receiving truck is equal 
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to the total number of products loaded. Eq. (3) ensures that the total number of products loaded by 

each shipping truck is equal to its demand rate. Eq. (4) confirms that the xijk variables and the vij 

variables have the correct relationship. Eq. (5) reveals that the arrival and departure times of 

receiving truck i have a relationship as shown in the equation. Similarly, Eqs. (6) and (7) confirm 

that the arrival and departure times of the receiving trucks are similar to each other. Eq. (8) 

specifies that there is no received truck which may not be in sequence by preceding itself. The 

indications behind Eq. (9) to (12) are the same as to Eq. (5) to (8) explained earlier. The main 

difference of these constraints is their relation to the sequence of shipping trucks. As such, Eq. 

(13) illustrates that the departure time of a shipping truck and the arrival time of a receiving truck 

have a specific relationship with each other. Finally, all variables are guaranteed to be bounded as 

shown in Eq. (14).  

3-Solution approach 

The main innovation of this study is to develop three new versions of SEO to solve the truck 

scheduling problem. Based on our experiments, the authors found that these versions are the best 

improvements of the original of SEO. We have combined these ideas to generate the best improved 

versions of SEO. These improvements can help us to achieve better results to get the global 

optimum instead of local ones in comparison with other well-known and successful algorithms. In 

this section, first an appropriate solution representation is designed considering the continuous 

search space of SEO. Then, SEO is illustrated in details. Subsequently, different variations of SEO 

are designed to improve its original version performance and reduce the computational runtime by 

adding a set of adaptive procedures to the proposed modified SEOs.  

3-1-Solution representation  

The first step for solving a mathematical model by using an optimizer such as SEO is 

designing an appropriate solution representation to show that how the constraints of the model 

would be handled by metaheuristics (Fathollahi-Fard et al., 2018a; 2018b; 2018c). As shown by 

Golshahi-Roudbaneh et al., (2017), Fig. 2 depicts the encoding scheme of the problem. For 

clarification purposes, the figure shows four trucks. The size of this matrix is equal to the 

summation of the number of both shipping and receiving trucks. Referring to the figure, Part I 
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shows a specific sequence regarding the receiving trucks and Part II represents the sequence for 

the shipping trucks.  

receiving trucks sequence shipping trucks sequence 
 

4 3 1 2 1 4 3 2 
 

 
Part I Part II 

Fig. 2.  An example of encoding plan (Golshahi-Roudbaneh et al., 
2017) 

Since the search space of SEO is continuous, a procedure is needed to perform the proposed 

encoding scheme of the problem (Fathollahi-Fard et al., 2018). For this purpose, a two-stage 

random technique named Random-Key (RK) is utilized (Sebtahmadi et al., 2017; Abdi et al., 2019; 

Fathollahi-Fard and Hajiaghaei-Keshteli, 2018). Although there are different techniques to encode 

the metaheuristics over the last decades, many papers confirm that the RK is the best feasible 

alternative to run the algorithms and saving the run time (Fathollahi-Fard et al., 2018a; 2018b). 

The main advantage of this technique is that there is no repair step. This technique has only two 

simple steps: In the first step, random numbers between zero and one are drawn by the proposed 

algorithm from a uniform distribution, shown as (0,1)U . In the second step, this solution is 

converted to a feasible representation solution as shown in Fig. 2. This modification procedure is 

performed by sorting the vector of this array to consider the sequence of allocation. Fig. 3 shows 

an example of the proposed representation method by the RK technique. The first row is generated 

by metaheuristics and the numbers in the second row are determined by the RK procedure.  

0.82 0.73 0.24 0.64 0.45 0.91 0.89 0.51 

4 3 1 2 1 4 3 2 
 

Fig. 3.  An example of the proposed representation method by the RK 

technique 

3-2-Social Engineering Optimizer (SEO) 

The promising performance of recent metaheuristics to solve complex problems has 

motivated several researchers to apply them in real-world and well-known engineering issues 

(Shakeri et al., 2012; Modiri-Delshad et al., 2016; Schwerdfeger et al., 2018; Abdi et al., 2019). 

For instance, Golshahi-Roudbaneh et al., (2017), as a novel research work, employed KA to tackle 
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their truck scheduling problem. Similarly, in the area of supply chain network design, Samadi et 

al., (2018) for the first time introduced RDA to solve their proposed mathematical model. This 

study is the first attempt to apply SEO, developed by Fathollahi-Fard et al., (2018), to solve a truck 

scheduling problem. The advent of SEO has been inspired by social engineering theory. One 

attribute of social engineering systems can be the act of some indirect attacks by specific 

techniques to employ individuals who are willing to disclose their important data and information. 

To better understand the concept, assume there are a defender and attacker in the following 

explanations. The first step refers to the attacker aiming to the training and retraining activities 

from a defender registered in an online system. The attacker targets to gather a set of valuable 

information from the defender. This data may cover different topics and issues. For instance, by 

logging into the website of an attacker, a number of questions about famous special video clips, 

sports, public events and music, which may happen in the community or other dimensions of 

special family systems, can be requested. The next step illustrates how the attacker spots a social 

engineering attack. Clearly, to increase the robustness of an attack, one position, which has a higher 

probability of success should be identified. Generally, the attacker controls the defender in a 

position which is desirable for the attacker. The underlying assumption of this game is that the 

defender can think and understand like the attacker. Regarding the memory of learning, the attacker 

can choose different types of social engineering attacks including pretext placement, obtaining, 

diversion theft and phishing, which may be dependent on each other. This assumption increases 

the probability of success for the attacker. In each technique, there are a set of merits and demerits 

for each position with different profits and variables. How to respond to a social engineering attack 

is one of the main steps in a social engineering cycle. In this step, addressing the questions of how 

much information the striker wishes to gather as well as the reactions of the defender are very 

important and challenging tasks. Finally, the attacker seeks to steal data which might be useful to 

eliminate the defender and tries to conduct such attacks in another way or person. Based on the 

close analogy between the social engineering phenomena and metaheuristic optimization 

processes, an efficient optimizer called SEO is employed to solve the truck scheduling problem. 

The SEO starts with two solutions, an attacker as the best solution and a defender. Regarding 

the training and retraining phase, a set of random tests for determining the defender’s traits are 

considered. Subsequently, the attacker aims to assess the defender by a set of traits. The 

corresponding item of this action in the search space is to copy a trait from the attacker to the same 
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trait to the defender and to calculate the rate of retraining for the attacker from the defender, 

accordingly. The next step is how to spot an attack of the attacker on the defender. The 

corresponding element of this action is changing the position of the defender by an approach in 

the feasible search space. In the following equations, 𝑑𝑑𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜 and 𝑎𝑎𝑎𝑎𝑎𝑎 are the current positions of 

the defender and the attacker, respectively. Furthermore, 𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛𝑛𝑛𝑛𝑛 reveals the defender’s new 

position. The algorithm uses four different techniques as follows:  

• Obtaining (technique 1): 

𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜 × (1 − sin𝛽𝛽 × 𝑈𝑈(0, 1)) +
(𝑑𝑑𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜 +  𝑎𝑎𝑎𝑎𝑎𝑎)

2
× sin𝛽𝛽 × 𝑈𝑈(0, 1) 

(15) 

• Phishing (technique 2):  

𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛𝑛𝑛𝑛𝑛1 = 𝑎𝑎𝑎𝑎𝑎𝑎 × (1 − sin𝛽𝛽 × 𝑈𝑈(0, 1)) +
(𝑑𝑑𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜 +  𝑎𝑎𝑎𝑎𝑎𝑎)

2
× sin𝛽𝛽 × 𝑈𝑈(0, 1) 

(16) 

𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛𝑛𝑛𝑛𝑛2 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜 × (1 − sin �
𝜋𝜋
2
− 𝛽𝛽� × 𝑈𝑈(0, 1)) +

(𝑑𝑑𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜 +  𝑎𝑎𝑎𝑎𝑎𝑎)
2

× sin(
𝜋𝜋
2
− 𝛽𝛽)

× 𝑈𝑈(0, 1) 

(17) 

• Diversion theft (technique 3): 

𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜 × (1 − sin𝛽𝛽 × 𝑈𝑈(0, 1))

+
(𝑑𝑑𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜 +  𝑎𝑎𝑎𝑎𝑎𝑎 × 𝑈𝑈(0, 1) × sin(𝜋𝜋2 − 𝛽𝛽))

2
× sin𝛽𝛽 × 𝑈𝑈(0, 1) 

(18) 

• Pretext (technique 4): 

𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛𝑛𝑛𝑛𝑛 = (𝑑𝑑𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜 × 𝑈𝑈 �0, 1) × sin �
𝜋𝜋
2
− 𝛽𝛽�� × (1 − sin𝛽𝛽 × 𝑈𝑈(0, 1))

+
((𝑑𝑑𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜 × 𝑈𝑈 �0, 1) × sin �𝜋𝜋2 − 𝛽𝛽�� +  𝑎𝑎𝑎𝑎𝑎𝑎)

2
× sin𝛽𝛽 × 𝑈𝑈(0, 1) 

(19) 

For more information, the details of above techniques can be found in Fathollahi-Fard et al., (2018) 

and interested readers are referred to this paper. Regarding the response to the attack, the new 

position of the defender is computed again and the defender’s old and current positions are 

compared with each other. Then, the best position is chosen to improve the solution of the 

algorithm. If the cost of the defender is better than the attacker, their positions are exchanged. 

Finally, the defender is eliminated and a new random solution in the search space is generated to 

form the new defender. To better understand the main steps of SEO, it can be shown in a graphical 

view. Fig. 4 shows the flowchart of the applied SEO and the pseudo-code of this optimizer is 

provided in Fig. 5.  



15 

 

Fig. 4. The flowchart of the proposed SEO (Fathollahi-Fard et al., 2018) 

 

Initialize an attacker and defender 
It=0; 
while It < Maxit 

Do training and retraining; 
Num_attack=0; 
while Num_attack < Max_attack 

Spot an attack; 
Check the boundary; 
Respond to attack; 
if the Objective Function (OF) of defender is lower 
than attacker 

Start 

Initialize the attacker and the defender 

Train and retrain 

Spot an attack 

Respond to attack 

Is the number 
of attacks 

ended? 

Select a new person as defender 

Stopping 
condition 

End 
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Exchange the defender and attacker position; 
endif 
Num_attack= Num_attack+1; 

endwhile 
Create a new solution as a defender; 
It=It+1; 

endwhile 
Return the attacker 

 

Fig. 5. The pseudo-code of the applied SEO (Fathollahi-Fard et al., 2018) 

3-3-Proposed modifications of SEO 

This study is the first attempt to further develop the SEO performance by proposing three 

new modifications. Each modified version of SEO is built by putting different weights on the SEO 

features by creating different search strategies for striking a balance between exploration and 

intensification. To the best of our knowledge, these proposed variants of SEO have not yet been 

introduced. In the following sections, the details of each optimizer are provided in greater details. 

3-3-1-MSEO_1 

The training and retraining phase of SEO is one of the main steps for this algorithm. This 

step helps the algorithm to improve the exploitation properties. In the original version of SEO, the 

attacker aims to assess the traits of defender randomly to select an efficient one. Accordingly, α 

percent of traits are arbitrarily chosen. Then, the trait of the attacker will be copied to the trait of 

the defender. Here, an improved version of the training and retraining phase is presented. To 

further mimic the behaviors existing in real-world social engineering phenomena, an adoptive 

memory for the attacker has been added into the general training and retraining phase of SEO. 

Over the course of different iterations as algorithm runs, if a trait shows a successful effect on the 

fitness of the defender, it has more chance to be selected again in the next iteration of the algorithm. 

A roulette wheel strategy, a well-known evolutionary mechanism (Fu et al., 2019; Safaeian et al., 

2019), is considered to select an appropriate trait from the defender. In this case, there are some 

other feasible alternatives such as the tournament selection. From our treatments to design this 

procedure, it is revealed that the roulette wheel strategy shows better impacts on the performance 

of the algorithm. For further clarification of an adopted roulette wheel, let us assume that there are 

four traits and the rate of α equals to 0.25. Therefore, one trait should be selected from the trait of 

attacker and be copied to the same trait of defender. Assume that the algorithm is running and it is 

in on its 10th iteration and the rates of the success for these traits are {5, 1, 3, 1}, respectively. 
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Accordingly, the selection probabilities of these traits are {0.5, 0.1, 0.3, 0.1}, respectively. 

Apparently, the chance of the first trait is more than other traits. Based on this idea, the first 

modification of SEO called as MSEO_1 is proposed. In this modification, the other parts of the 

algorithm are similar to the original version of SEO as explained earlier.  

3-3-2-MSEO_2 

Another modification of SEO focuses on proposing a new spot for the defender inspired by 

a recent real technique called reverse social engineering (Krombholz et al., 2015). Due to the 

novelty of social engineering, the recent years have seen a great deal of interest in adopting 

different techniques to reveal the information of people by attackers. Reverse social engineering 

is a recent trend and more interesting for attackers in comparison with other feasible alternatives. 

This motivates our attempt to formulate this technique within the SEO. In this technique, instead 

of directly contacting the defender, the attacker tries to make the defender believe that they are a 

trustworthy individual. The goal of this technique is to make a potential victim if the defender asks 

for help. Generally, the attacker generates a problem for the defender. After that, the defender 

requests help. Finally, the attacker fixes the problem to get their desirable goals. To formulate this 

technique, two steps have been considered. The first step is the movement of the defender to a 

random position. The second step is the movement of this new defender in the neighborhood of 

the attacker. If the new solution of the defender has a better fit as compared to the one obtained 

prior to adopting the two-stage attack, this new solution will be replaced. Otherwise, the current 

defender will be used for the next attack.  

𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛𝑛𝑛𝑛𝑛1 =
(𝑑𝑑𝑒𝑒𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑑𝑑𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜 × (1 − sin �𝜋𝜋2 − 𝛽𝛽�× 𝑈𝑈(0, 1)))

2
× sin𝛽𝛽 × 𝑈𝑈(0, 1) 

(20) 

𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛𝑛𝑛𝑛𝑛2 =
(𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛𝑛𝑛𝑛𝑛1 +  𝑎𝑎𝑎𝑎𝑎𝑎)

2
× sin(

𝜋𝜋
2
− 𝛽𝛽) × 𝑈𝑈(0, 1) 

(21) 

The notations used above are adopted from the general version of SEO as illustrated earlier. 

This new technique with two separate steps is clearly different from the four techniques in the 

original version of SEO. The other features of this modification is similar to the general version of 

SEO.  
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3-3-3-MSEO_3 

The main innovation of the third modification of SEO called as MSEO_3 is to introduce a 

dynamic parameter for the number of attacks. In this version, the number of attacks is not fixed 

for all iterations. It will be updated in each iteration based on the number of successful attacks and 

the number of iterations. Here, a successful attack means an attack in which the defender has been 

improved based on its fit during the attack. From Eq. (22), the initial number of attacks is shown 

as Natt0 while the number of successful attacks is shown as Acattit and all attacks are shown as 

Nattit. As can be seen, it parameter shows the current iteration and Maxit is the maximum number 

of iteration. The number of attacks in the next iteration (i.e. 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖+1) will be updated using the 

formula 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖+1 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁0 × (1 −
𝑖𝑖𝑖𝑖

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
× �1 −

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖

�) (22) 

This feature helps the algorithm to appropriately improve its both intensification and 

diversification properties. Similar to the modifications explained earlier, the rest of the MSEO_3 

features are similar to the original version of SEO.  

4-Experimental results 

To evaluate the performance of the different algorithms, a set of comprehensive experiments 

is conducted to solve the truck scheduling problem. Since each modification has a particular 

contribution as a variant of SEO, all these three modifications can be merged together to generate 

several new approaches. Among possible combinations, we selected the hybrid of MSEO_1 and 

MSEO_3 called as MSEO_13, the hybrid of MSEO_1 and MSEO_2 named as MSEO_12 and the 

hybrid of all three suggested modifications called as MSEO_123. There are several other feasible 

alternatives for combinations however, in this study, the best modifications among all possible 

ones are chosen based on the results obtained during the computer experiments. Based on those 

experiments, these selected combinations are the most successful ones in comparison with other 

possible cases.  

4-1-Data generation 

To generate different truck scheduling problems, 20 small instances introduced by Yu (2002) along 

with 15 large instances applied by Golshahi-Roudbaneh et al. (2017) are solved and the results are 
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compared with the relevant results in the literature (Yu, 2002; Yu and Egbelu, 2008; 

Mohammadzadeh et al., 2018). The main reason for adopting these benchmarks is that these papers 

treat problems similar to the proposed truck scheduling model in this study. All these instances are 

available in the appendix as Supplementary Materials F1.  

Regarding the standard benchmark functions, this paper utilizes a set of standard functions 

to evaluate the proposed novel optimizers. The literature reports that there are more than 50 

assessment functions (Ghorbani and Babaei, 2014; Fard and Hajiaghaei-Keshteli, 2016; Kaboli et 

al., 2017; Mortazavi et al., 2018; Schwarzrock et al., 2018; Etminaniesfahani et al., 2018; 

Fathollahi-Fard et al., 2019). In this work, 12 standard functions among all feasible alternatives 

were adopted from (Ghorbani and Babaei, 2014) provided originally from  (Fard and Hajiaghaei-

Keshteli, 2016) and Fathollahi-Fard et al., (2018). The main reason to choose these standard 

functions is that each of them has a particular feature to better evaluate the proposed algorithms. 

It means that the other test problems cannot make a difference and affect a significant result on the 

performance of algorithms. Therefore, we have selected these standard functions and numbered as 

P1 to P12. It should be noted that the original idea of SEO is also compared with these tests. All 

of them are minimization problems and their global optimum value is zero. The details of these 

functions are provided in the appendix as Supplementary Materials F2. 

4-2- Tuning of optimizers 

Since the presented optimizers have some controlling parameters, it is necessary to 

appropriately calibrate them to improve their performance (Bartz-Beielstein et al., 2010). If these 

metaheuristics are not tuned very well, their functions would be inefficient (Safaeian et al., 2019; 

Abdi et al., 2019). There are many elaborated methods for calibration such as response surface 

nested designs, F-Race methods and Taguchi experimental design method and so on. Among these 

feasible alternatives, this study applies Taguchi method to set the algorithms’ parameters (Taguchi, 

1986). There are several similar research studies that employed this methodology to fine-tune their 

optimizers (Fathollahi-Fard et al., 2018b and 2018c; Fu et al., 2019). The main advantage of this 

method is to reduce the tuning time for optimizers by decreasing the number of experiments. Their 

results also declared that the Taguchi can be more suitable for the tuning of optimizers in the case 

of a combinatorial optimization problem such as the proposed truck scheduling problem. To apply 

this, Taguchi method utilizes two well-known performance metrics called Signal-to-Noise (S/N) 
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and Relative Percentage Deviation (RPD) to select the best parameters among all the candidate 

parameters (Fathollahi-Fard et al., 2019a). To the best of our knowledge, all the papers using 

Taguchi method have employed these two important metrics for calibration and there is no other 

feasible alternatives. For a minimization optimization model, the higher the value of S/N is, the 

better the quality of the algorithm. In contrast, the lower the value of RPD is, the better the 

capability of the optimizer. In this regard, the following two equations are presented to formulate 

the S/N and RPD metrics, respectively.  

( )2
10/ 10 logS ZN = −   (23) 

sol sol

sol

Alg MinRPD
Min
−

=  
(24) 

From Eq. (23), Z brings the value of the objective function whereas in Eq. (24), 𝑀𝑀𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠 is the best 

solution among all solutions during all runs and 𝐴𝐴𝐴𝐴𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠 is the output of the algorithm. Basically, 

due to the stochastic nature of optimizers, such algorithms are run for 30 times and their results 

are utilized to calculate these two metrics in the Taguchi methodology. Accordingly, each 

parameter of the optimizers is a considered as a factor with a certain level, meaning each particular 

parameter has a different value. Table 1 shows the candidate values for each level as well as each 

parameter. The employed optimizers have the same factors. Four levels are considered for each 

factor.  

Table 1. The list of factors and their levels of optimizers 

Algorithms 
Factors Levels 

Notation Description 1 2 3 4 

SEO_2, 
MSEO_13, 
MSEO_12 

and 
MSEO_123 

Maxit The maximum 
number of iteration 1000 1500 2000 3000 

α The rate of training  0.1 0.2 0.3 0.4 

β The rate of spotting 
an attack 0.05 0.1 0.15 0.25 

Natt The number of 
attacks  30 50 70 100 

Since each optimizer has four factors with four levels (44), the total number of required 

experiments is 256 ×30 = 7680. It means that for each case of experiment, the optimizer needs to 

be run 30 times. Accordingly, by using an orthogonal array Taguchi reduces the total number of 

cases. According to the Table 1, Taguchi offers L16 to do the experiments. This orthogonal array 

means that the total number of testes equals to 16×30. By calculating the S/N and RPD, the best 
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level for each factor is found. Regarding the truck scheduling problem and the standard benchmark 

functions, each optimizer is separately tuned. Due to page limitation, the results of S/N and RPD 

showing the rational on the choice of parameters are reported in the appendix as Supplementary 

Materials F3. Having fine-tuned all the algorithms, the best parameter value of the optimizers are 

presented in Table 2.   

Table 2. The tuned values of algorithms 

Algorithms Tuned values of truck scheduling problem 
Tuned values of standard benchmarked 

functions 

SEO_2 Maxit=2000; α=0.2; β=0.05; Natt=70; Maxit=3000; α=0.1; β=0.05; Natt=70; 

MSEO_13 Maxit=2000; α=0.2; β=0.15; Natt=100; Maxit=3000; α=0.3; β=0.25; Natt=100; 

MSEO_12 Maxit=3000; α=0.3; β=0.25; Natt=70; Maxit=3000; α=0.3; β=0.15; Natt=70; 

MSEO_123 Maxit=3000; α=0.1; β=0.05; Natt=70; Maxit=3000; α=0.3; β=0.15; Natt=100; 

 

4-3-Comparison of the effectiveness and efficiency of the developed algorithms 

In this section, a comparative work related to the truck scheduling problem is presented in 

which the developed algorithm is compared to the state of art methods in the literature (Yu, 2002; 

Yu and Egbelu, 2008; Mohammadzadeh et al., 2018). Firstly, the performance of the proposed 

optimizers is not only compared to each other but also benchmarked against the best solution found 

in the relevant literature (Yu and Egbelu, 2008). The results are shown in Table 3 in which the 

average outputs of optimizers along with their computational runtime for 30 times are calculated 

and provided. The best optimal value from the literature is also provided. It is observed that all the 

optimizers reached the best optimal solution found in the literature for the 30 times. Accordingly, 

the deviation of the algorithms, that is the average of solutions from the best solution, called the 

gap of the optimizers, is computed. The behavior of the algorithms’ gap is presented in Fig. 6 by 

using an interval plot. In addition, the performance of the algorithms in term of computational time 

is given in Fig. 7.  

From a general point of view, the results of optimizers shown in Table 3 demonstrate 

competitive outputs. The average results of developed optimizers such as MSEO_13, MSEO_12 

and MSEO_123 are clearly better than the results obtained from the best original version of SEO 

and the average results of algorithms are close to the best optimal values found in the literature 
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(Yu and Egbelu, 2008; Golshahi-Roudbaneh et al., 2017). Regarding the metric of the gap of 

optimizers, the developed optimizers show better results. On the other hand, the averages of the 

gaps for MSEO_13 and MSEO_12 are close to each other. Overall, MSEO_123 with an average 

value of 0.03846 is the best algorithm in the table.  

Fig. 6 shows the interval plot of the behavior of the gaps with a 95% confidence interval. It 

can be inferred from this figure is that the proposed MSEO_123 shows a robust behavior in 

comparison with other methods. Conversely, SEO_2 underperforms compared to the other 

methods.  

Fig. 7 shows the computational time of optimizers and their comparisons. It is observed that 

the behaviors of SEO_2 and MSEO_13 share a set of similarities. Both of them show the best 

performance in this regard. Conversely, MSEO_12 shows the weakest performance compared to 

the majority of the instances.  

Overall, MSEO_123 is the best existing optimizer in the category of small instances. 

However, it needs more time in comparison with the original SEO.  

Table 3. The results of all the metaheuristics in small sizes (CP=computational time (second), M=the average of solutions, 
Gap=(ZAlg-Zbest)/Zbest). 

Instanc
es 

The 
optimal 
value 
found 
by (Yu 

and 
Egbelu, 
2008) 

The 
optimal 
value 

found by 
(Golshahi-
Roudbaneh 
et al., 2017) 

SEO_2 MSEO_13 MSEO_12 MSEO_123 

M CP Gap M CP Gap M CP Gap M CP Gap 

1 1557 1562 
1670.9

94 

14.83

819 

0.0732

14 

1693.2

59 

14.39

06 

0.087

514 

1616.6

92 

16.98

439 

0.038

338 

1643

.082 

17.22

743 
0.055287 

2 1577 1577 
1726.5

83 

13.81

573 

0.0948

53 

1620.3

06 

14.63

593 

0.027

461 

1689.3

42 

16.01

982 

0.071

238 

1657

.795 

17.96

764 
0.051233 

3 1372 1372 
1403.6

06 

12.03

937 

0.0230

36 

1459.9

9 

12.47

931 

0.064

133 

1423.1

53 

15.59

835 

0.037

284 

1444

.479 

15.50

999 
0.052827 

4 1749 1789 
1909.0

74 

18.15

976 

0.0915

23 

1795.2

7 

17.82

431 

0.026

455 

1795.0

16 

21.37

343 

0.026

31 

1789

.538 

22.09

042 
0.023178 

5 1579 1579 
1678.3

71 

14.70

704 

0.0629

33 

1623.1

31 

14.72

914 

0.027

949 

1640.0

32 

18.38

499 

0.038

652 

1618

.305 

18.38

87 
0.024892 

6 1546 1546 
1597.7

67 

15.36

48 

0.0334

84 

1595.4

62 

15.89

054 

0.031

994 

1594.5

35 

19.82

24 

0.031

394 

1594

.292 

19.45

305 
0.031237 

7 1535 1535 
1630.2

68 

14.80

739 

0.0620

64 

1621.9

16 

13.84

49 

0.056

623 

1613.1

81 

17.60

528 

0.050

932 

1614

.064 

18.65

532 
0.051507 
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8 1525 1525 
1679.1

63 

15.07

109 

0.1010

9 

1610.7

51 

15.49

956 

0.056

23 

1602.2

53 

19.69

359 

0.050

658 

1561

.836 

17.79

577 
0.024155 

9 1473 1473 
1623.1

03 

14.16

271 

0.1019

03 

1602.0

1 

13.58

545 

0.087

583 

1590.3

18 

16.87

86 

0.079

646 

1507

.187 

18.24

444 
0.023209 

10 1452 1452 
1599.3

08 

15.05

054 

0.1014

52 

1607.5

04 

15.45

916 

0.107

096 

1623.5

43 

17.64

709 

0.118

143 

1499

.53 

17.54

227 
0.032734 

11 2232 2232 
2422.5

62 

17.32

537 

0.0853

77 

2314.4

77 

17.85

32 

0.036

952 

2316.7

58 

19.11

17 

0.037

974 

2293

.387 

20.06

849 
0.027503 

12 2833 2833 
3108.6

29 

19.04

86 

0.0972

92 

3098.4

68 

18.76

164 

0.093

706 

3090.7

69 

19.97

785 

0.090

988 

3088

.331 

22.23

03 
0.090127 

13 2386 2403 
2489.7

49 

17.94

62 

0.0434

82 

2492.2

13 

17.79

881 

0.044

515 

2482.5

27 

20.79

313 

0.040

456 

2482

.158 

21.42

129 
0.040301 

14 2385 2413 
2542.1

29 

18.48

669 

0.0658

82 

2538.3

19 

18.73

348 

0.064

285 

2532.3

7 

21.79

393 

0.061

79 

2531

.243 

22.28

858 
0.061318 

15 2745 2762 
2944.8

22 

18.61

363 

0.0727

95 

2946.3

75 

19.02

17 

0.073

361 

2939.4

37 

21.84

36 

0.070

833 

2940

.773 

20.77

299 
0.07132 

16 2407 2407 
2583.6

4 

17.38

32 

0.0733

86 

2525.8

36 

17.53

476 

0.049

371 

2530.9

71 

19.25

178 

0.051

504 

2427

.977 

20.45

83 
0.008715 

17 1867 1885 
2054.5

22 

16.39

642 

0.1004

4 

2042.5

78 

16.69

978 

0.094

043 

2038.9

08 

18.90

215 

0.092

077 

1936

.516 

20.16

693 
0.037234 

18 2502 2642 
2685.8

5 

19.48

674 

0.0734

81 

2583.3

08 

19.48

544 

0.032

497 

2578.6

52 

21.89

823 

0.030

636 

2579

.823 

22.17

041 
0.031104 

19 2553 2553 
2788.0

7 

20.71

672 

0.0920

76 

2683.4

42 

21.26

279 

0.051

094 

2660.7

08 

23.70

438 

0.042

189 

2606

.449 

22.65

798 
0.020936 

20 2732 2926 
2873.4

71 

18.27

144 

0.0517

83 

2776.3

99 

18.73

73 

0.016

251 

2771.8

67 

23.05

516 

0.014

593 

2760

.806 

21.23

761 
0.010544 

Average   
0.0750

77 
 

0.056

456 
 

0.053

782 
 0.03846 
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Fig. 6. Interval plot for Gap behavior of algorithms for small size instances 

 

 

Fig. 7. Behavior of the optimizers in terms of computational time for small size instances  

Table 4 shows the evaluations of the developed optimizers based on the best, the average, 

the worst, the standard deviation, computational time and the hitting time of the optimizers. The 

behavior of the optimizers in terms of computational time is illustrated in Fig. 8. Similarly, the 

behavior of the employed metaheuristics in terms of hitting time to determine and to compare the 
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convergence rate of the optimizers is illustrated in Fig. 9. To evaluate the robustness of the 

optimizers, the interval plot is provided in Fig. 10 showing the RPD for the standard deviation of 

the algorithms during 30 run times. The best solutions of the truck scheduling problem coming 

from this study and the related works are given in Table 5 demonstrating the contribution of this 

research work and its results to the state of art in this field of research.  

According to Table 4, the developed optimizers MSEO_13, MSEO_12 and MSEO_123 are 

clearly better than SEO_2 which is derived from the original version of SEO. The results confirm 

that there is no optimizer that shows the best performance in all case studies. Overall, MSEO_123 

shows the best outputs in the majority of the instances. Further analyses are performed as shown 

in the following figures. As can be seen in Fig. 8, there is a set of similarities in terms of 

computational time of the algorithms. The results guarantee that by increasing the size of the 

problem, different performance of the optimizers dealing with different problem sizes can be easily 

observed. The results indicate that MSEO_123 needs more time in the majority of cases. 

Conversely, MSEO_13 is the best optimizer subject to the computational time. 

As mentioned earlier, the better the hitting time is, the better the convergence rate therefore 

a lower value is preferable. Fig. 9 shows that based on the hitting time, MSEO_123 is the worst 

optimizer in the majority of case studies except for some large instances. The performance of 

MSEO_12 is also weak. Conversely, MSEO_13 shows better rates of hitting time in most of the 

instances. In conclusion, comparisons of the results show that the proposed MSEO_13 not only 

requires less computational time but also offers better capability in terms of hitting time.  

Since the optimization mechanism of the proposed optimizers is stochastic in nature, a set of 

statistical analyses is needed to identify the best optimizers. Fig. 10 indicates that there is a clear 

difference between the effectiveness and the efficiency of the proposed optimizers. It is shown that 

the robustness of SEO_2 and MSEO_13 are similar to each other. In the same way, the 

performance of MSEO_12 and MSEO_123 are rather the same. Generally, based on RPD for the 

standard deviation of algorithms during 30 run times, all the developed optimizers perform better 

than their original versions. The proposed MSEO_123 is the best optimizer subject to these criteria 

and hence its results are more reliable.  

Finally, the results of the developed metaheuristics are compared with the related works in 

the literature. The results of the proposed optimizers are compared with SA, PSO, the hybrid of 

PSO and SA (PSO-SA), KA and SFS adopted from Golshahi-Roudbaneh et al., (2017) as well as 
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VCS, RDA and WWO adopted from Mohammadzadeh et al., (2018). The proposed optimizers can 

improve the best state of the art results in six out of fifteen studies. Among the best results, 

MSEO_123 shows the best performance for 7 instances. Moreover, the proposed MSEO_13 and 

MSEO_12 are better than others only in 4 instances. In conclusion, the proposed MSEO_123 

shows the best performance in which its results are more reliable than the others. However, it needs 

more computational and hitting times than the rest of the reported algorithms.  

 
Table 4. Comparison of the metaheuristics with different criteria for large instances (B=the best solution, W=the worst solution, 

SD=standard deviation, HT=hitting time (second)) 

Set 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 

SEO_

2 

B 3034 3511 5036 3945 5089 7764 7041 7259 6141 5539 8212 7967 9170 10665 9522 

M 3241.5 3758 5381.6 4214.6 5307 8353.9 7410.5 7593.6 6604.82 5956.159 8763.857 8266.27 9771.617 11182.68 9925.317 

W 3511 4113 5877 4613 5627 9168 7970 8104 7274 6559 9514 8744 10549 11850 10480 

SD 188.97 200.6 290.84 214.12 174.4 583.46 300.15 262.01 379.71 376.902 479.98 229.04 463.34 439.4 354.7109 

CP 16.375 19.20 31.409 65.778 67.81 64.821 95.073 123.74 116.953 124.2591 166.1481 152.777 198.4523 286.6644 341.4428 

HT 5.0834 17.32 22.727 35.404 41.56 55.333 54.428 82.803 76.9093 104.1165 65.96373 135.254 174.1591 164.5124 325.3163 

MSE

O_13 

B 3023 3488 5036 3934 5069 7751 7043 7255 6128 5529 8187 7950 9155 10663 9507 

M 3258.1 3780 5429.5 4251.2 5328 8428.3 7474.8 7653.8 6667.27 6012.72 8820.619 8315.42 9825.206 11229.56 9971.439 

W 3510 4096 5871 4605 5608 9180 7971 8113 7269 6553 9511 8730 10549 11843 10482 

SD 191.97 197.6 290.84 216.12 170.4 582.46 299.15 257.01 375.71 372.902 478.98 231.04 459.34 437.4 351.7109 

CP 16.406 19.56 29.385 63.860 66.33 69.075 90.687 116.61 125.791 117.93 166.50 148.537 181.188 272.401 354.383 

HT 10.75 12.64 14.28 39.61 42.86 47.51 63.12 79.32 87.23 99.52 126.77 109.42 178.32 206.85 275.134 

MSE

O_12 

B 3027.8 3512 5020.5 3945.0 5061 7763 7022 7238.9 6125.92 5537.75 8189 7945.67 9150.11 10661.02 9511 

M 3348.9 3931 5607.1 4407.5 5448 8733.1 7674.7 7829.3 6914.36 6245.425 9106.15 8499.42 10120.03 11479.13 10172.66 

W 3486.5 4110 5858.6 4605.7 5614 9148.8 7954.4 8082.3 7252.26 6548.715 9499.122 8736.73 10535.7 11829.74 10455.96 

SD 191.75 175.4 266.67 208.48 158.3 563.94 286.13 246.08 352.008 374.3145 476.1126 207.373 450.1578 415.3733 350.4821 

CP 19.22 23.45 34.158 87.249 74.60 88.559 110.43 166.77 170.947 139.6532 174.1296 211.606 216.2008 319.7597 417.6699 

HT 15.67 16.31 19.84 48.15 56.33 49.24 66.73 108.26 96.35 109.33 145.32 186.72 169.32 221.64 208.13 

MSE

O_12

3 

B 3036 3507 4996 3908.4 5070 7742 7035 7255.5 6110 5507 8206 7966.53 9140 10653 9511 

M 3352.4 3924 5608.8 4399.2 5462 8743.5 7689.4 7837.2 6927.89 6229.162 9110.806 8501.98 10118.18 11488.44 10179.95 

W 3488.1 4103 5871.1 4609.5 5629. 9172.7 7969.8 8086.5 7278.23 6538.288 9498.38 8731.46 10537.19 11846.29 10466.49 

SD 189.05 184.4 274.36 210.25 162.7 575.07 270.13 258.37 350.884 361.5926 455.1681 211.827 428.2455 428.4061 347.4784 

CP 22.346 22.38 47.396 95.905 102.6 88.687 96.045 127.80 142.176 132.3567 246.6578 241.295 188.9462 332.2008 383.073 
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HT 12.63 18.62 28.61 69.22 75.89 74.28 81.55 109.37 119.8 89.73 189.75 199.46 158.32 246.87 266.89 

 

 

Fig. 8. Behavior of optimizers in term of computational time in large size instances 

 

 

Fig. 9. Behavior of optimizers in term of hitting time in large size instances 
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Fig. 10. Interval plot of standard deviation of optimizers in term of RPD in large size instances 
 

Table 5     

Proposed optimizers compared with related works (the minimum output found by algorithms) 

Set  Golshahi-Roudbaneh et al., 
(2017)  Mohammadzadeh et al., (2018)  This work 

21  3046 Found by SA-PSO  3012 Found by RDA & WWO  3023 Found by MSEO_13 

22  3505 Found by SA & SFS  3466 Found by WWO  3488 Found by MSEO_13 

23  5026 Found by SFS  5026 Found by RDA  4996 Found by MSEO_123 

24  3826 Found by SFS  3922 Found by RDA  3908 Found by MSEO_123 

25  5161 Found by SA-PSO  5076 Found by RDA & WWO  5061 Found by MSEO_12 

26  7799 Found by KA  7688 Found by VCS  7742 Found by MSEO_123 

27  6950 Found by KA  6950 Found by WWO  7022 Found by MSEO_12 

28  7484 Found by SFS  7246 Found by RDA  7238 Found by MSEO_12 

29  6131 Found by SFS  6131 Found by RDA  6110 Found by MSEO_123 

30  5472 Found by SA-PSO  5508 Found by VCS  5507 Found by MSEO_123 

31  8327 Found by SA  8182 Found by RDA  8187 Found by MSEO_13 

32  8166 Found by SA-PSO  7952 Found by RDA  7945 Found by MSEO_12 

33  9300 Found by SA  9146 Found by RDA   9140 Found by MSEO_123 

34  10758 Found by SFS  10467 Found by VCS  10653 Found by MSEO_123 

35  9338 Found by SA & SA-PSO  9429 Found by VCS & WWO  9507 Found by MSEO_13 
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*The best values are shown in bold.  

4-4-Evaluation of developed optimizers based on benchmark functions   

To evaluate the performance of developed optimizers, a set of benchmark functions in the literature 

was employed. The details and formulations of these functions have been reported in the appendix 

as Supplementary Materials F2. To analyze the behavior of the developed optimizers MSEO_13, 

MSEO_12 and MSEO_123, the low (i.e. 30 variables) and high (i.e. 100 variables) dimensional 

of these functions were considered. Accordingly, these algorithms were not only compared with 

each other but also with the best results obtained from the original versions of SEO as well as a 

number of recent and optimizers from the state of art including Artificial Bee Colony (ABC), 

Imperialist Competitive Algorithm (ICA), Firefly Algorithm (FA), RDA and Linear-Success-

History based on Adaptive of Differential Evolution (L-SHADE) (Fathollahi-Fard et al., 2018). 

We have selected these algorithms based on the original idea of SEO compared with them. The 

final results were given in Table 6. During 30 run times, the best, the worst, the medium and the 

standard deviation of algorithms have been provided. The rank of the algorithms in each standard 

function and dimension has been determined. Finally, a set of statistical analyses were performed 

to reveal the performance of the developed optimizers. Least Significant Differences (LSD) by 

using an interval plot for the applied optimizers in both low and high dimensional functions was 

conducted. Accordingly, the range of standard deviation based on Relative Deviation Index (RDI) 

was also computed. Since most of related papers (Ghorbani and Babaei, 2014; Fard and 

Hajiaghaei-Keshteli, 2016; Mortazavi et al., 2018) have utilized this metric to do the statistical 

analyses, this paper is also considered this metric to evaluate the range of standard deviation as 

can be seen in Fig. 11. The other feasible alternative is RPD which was utilized for calibration. As 

far as we know, there is no limit for the upper bound of RPD during the analyses. However, the 

outputs’ ranges in RDI are between zero and one. This advantage motivates us to use this metric 

which can help to better do the comparison among algorithms.  

Regarding Table 6, it can be observed that the developed optimizers in this study outperform 

the existing algorithms in the literature. The results confirm that the proposed optimizers have 

considerably contributed to the state of art of outputs for other applied algorithms. The results 

show that the average rank of these optimizers is better than other algorithms particularly for 

MSEO_123 with a rank of 1.675. Overall, the developed optimizers outperform the other existing 

algorithms in the majority of the case functions.  
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From Fig. 11, it is clear that there is a little difference between the performances of the 

algorithms subject to the dimension of the functions. In the low dimensional functions, the 

proposed optimizers are clearly better than other existing algorithms. It can also be observed that 

MSEO_123 depicts the best performance. However, the results show that the differences between 

the performances of the optimizers have been reduced in high dimensional functions. Therefore, 

the proposed optimizers are generally efficient in high dimensional assessment. As can be 

observed, the general versions of SEO are still better than other algorithms. These results confirm 

that it is possible for other new optimizers to outperform the proposed algorithms. As resulted 

from the experiments, the developed MSEO_123 performs better than the other proposed 

algorithms to solve the standard benchmark functions.  
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Table 6 
The final outputs of algorithms in benchmark functions during thirty run times (B=best, W=worst, M=mean, SD=standard deviation, D=dimension, 
R=rank). 

Function D Fathollahi-Fard et al., (2018)  This work  
ABC ICA FA RDA L-SHADE SEO_1 SEO_2 SEO_3 SEO_4  MSEO_13 MSEO_12 MSEO_123 

P1 

30 

W 8.37E-01 1.37E-02 4.93E-04 3.52E-04 1.92E-02 4.18E-07 6.48E-09 3.51E-8 1.58E-09  8.16E-09 6.43E-09 4.19E-10 
M 2.51E-02 5.36E-03 6.91E-05 1.73E-06 1.17E-07 2.59E-08 2.18E-13 4.26E-11 5.37E-15  2.86E-14 3.85E-13 2.74E-15 
B 3.16E-04 2.51E-04 3.78E-08 2.86E-11 5.48E-09 1.23E-12 0 7.15E-16 0  0 0 0 

SD 0.46176 0.393635 0.000534 0.000136 1.20E-03 0.000047 0.000002 0.000007 0.000001  4.87E-06 8.41E-06 2.15E-07 
R 11 12 10 8 9 7 4 6 5  3 2 1 

100 

W 2.42 5.84 2.76E-01 4.28E-03 2.39E+00 6.81E-06 8.54E-07 2.76E-05 5.38E-04  6.85E-08 2.58E-09 5.81E-09 
M 0.7534 4.32 5.47E-04 5.95E-04 1.22E-01 4.26E-07 2.16E-09 1.85E-06 1.85E-06  5.82E-10 3.19E-11 2.85E-10 
B 0.4627 2.17 2.81E-05 1.53E-05 8.37E-03 5.87E-09 5.27E-10 2.51E-07 7.29E-07  3.29E-12 0 6.82E-11 

SD 1.0325 3.2817 0.05894 0.07634 2.18E-01 0.000007 0.000005 0.000056 0.000084  5.38E-04 8.25E-05 6.39E-05 
R 11 12 8 9 10 5 4 7 6  2 1 3 

P2 

30 

W 1.25E-04 1.87E-04 2.35E-04 2.64E-04 6.45E-04 3.19E-05 2.63E-06 3.12E-04 5.84E-05  5.91E-06 3.82E-07 2.81E-06 
M 2.68E-05 2.17E-06 3.18E-07 3.85E-08 8.87E-06 2.87E-09 3.27E-10 6.27E-09 1.58E-10  2.84E-10 6.18E-11 2.57E-11 
B 3.19E-06 3.12E-07 2.57E-08 1.25E-11 4.44E-07 1.25E-11 2.75E-14 2.86E-12 1.07E-12  6.82E-13 8.64E-15 1.34E-15 

SD 2.64E-03 8.53E-03 4.81E-03 5.73E-04 1.43E-02 3.17E-04 5.28E-05 2.18E-05 3.84E-05  4.81E-05 3.18E-06 1.66E-06 
R 12 11 9 7 10 8 3 5 6  4 1 2 

100 

W 3.18E-02 5.15E-02 1.75E-02 3.27E-01 1.73E-02 2.55E-02 3.18E-02 1.56E-03 2.55E-03  2.58E-04 5.18E-05 7.28E-04 
M 7.29E-03 3.59E-04 3.21E-04 4.38E-06 2.49E-03 5.48E-05 2.15E-06 3.28E-06 7.13E-05  4.82E-07 6.21E-07 6.83E-08 
B 5.42E-05 2.88E-05 2.72E-06 5.74E-08 2.77E-05 5.17E-07 2.19E-08 3.65E-07 8.12E-07  5.82E-09 1.74E-08 5.29E-11 

SD 4.18E-01 3.15E-02 3.22E-03 3.16E-03 1.31E-01 8.41E-03 1.52E-03 2.59E-04 2.64E-03  5.12E-05 7.42E-04 6.83E-05 
R 10 11 9 3 12 7 5 8 6  2 4 1 

P3 

30 

W 3.17E-04 2.16E-03 3.15E-02 5.93E-03 7.93E-05 2.61E-05 1.48E-07 2.74E-05 2.18E-05  6.27E-07 1.92E-05 1.85E-08 
M 2.62E-05 3.71E-06 4.71E-06 8.15E-07 4.37E-06 4.61E-10 2.12E-14 3.65E-12 6.72E-12  7.28E-15 6.31E-14 7.41E-16 
B 4.83E-08 4.85E-08 1.85E-09 3.15E-12 9.66E-09 2.54E-25 0 1.93E-22 1.82E-21  0 0 0 

SD 5.77E-03 3.15E-03 2.71E-02 8.52E-03 1.44E-03 4.27E-04 6.81E-06 1.77E-05 8.52E-04  2.81E-08 5.24E-07 8.13E-09 
R 12 11 10 8 9 5 4 6 7  2 3 1 

100 

W 6.43E-02 4.36E-02 2.58E-01 4.26E-02 9.19E-03 4.63E-03 2.18E-05 2.67E-03 1.65E-04  2.51E-05 1.77E-04 6.31E-05 
M 3.17E-04 1.27E-04 2.83E-05 4.27E-06 1.06E-04 8.53E-08 3.19E-09 2.17E-9 5.14E-09  5.82E-10 4.78E-10 4.72E-12 
B 1.68E-06 3.19E-06 7.12E-07 1.29E-09 2.40E-07 7.28E-14 2.17E-15 2.65E-12 5.86E-13  7.82E-16 7.55E-18 6.81E-20 

SD 1.25E-01 1.78E-01 2.16E-01 2.81E-02 1.56E-02 2.18E-03 1.28E-04 3.81E-02 5.87E-03  3.82E-05 7.32E-05 7.41E-06 
R 12 11 9 8 10 5 4 7 6  3 2 1 
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P4 

30 

W 9.54 6.19 7.52 5.01 1.19 3.28 2.81 5.92 1.42  1.085 1.37 0.94 
M 0.8659 0.8134 0.5894 4.82E-04 1.08E-01 3.91E-03 5.71E-03 5.18E-05 2.75E-06  6.82E-07 2.81E-06 5.16E-09 
B 1.29E-02 5.28E-03 2.71E-05 2.77E-06 3.23E-03 5.18E-08 2.18E-04 3.84E-09 1.25E-08  7.93E-09 6.82E-10 0 

SD 4.28 3.994 2.71E-00 3.82E-01 1.43E+00 0.7843 0.8754 0.2785 0.5645  4.82E-01 1.74E-01 2.81E-02 
R 12 10 8 7 11 5 9 4 6  3 2 1 

100 

W 15.85 12.95 11.37 7.83 3.19E+01 6.83 8.93 5.81 4.97  2.75 4.91 1.58 
M 3.1854 5.8728 0.8623 3.61E-02 5.92 3.81E-02 5.12E-01 4.73E-02 1.86E-04  5.28E-04 3.68E-04 7.83E-06 
B 1.6809 0.7854 3.72E-03 5.87E-05 1.14 1.25E-06 2.61E-03 3.46E-03 8.25E-07  8.37E-06 1.68E-06 1.48E-08 

SD 1.7905 2.6847 3.78 1.9923 8.27 0.8645 0.9387 0.3623 0.3783  1.86E-02 6.27E-01 3.92E-03 
R 12 10 7 6 11 5 9 8 2  3 4 1 

P5 

30 

W 114.46 119.76 102.54 87.54 39.9 75.18 68.52 82.17 84.94  49.82 50.21 40.12 
M 98.72 91.45 82.18 29.58 45.7 17.9328 16.475 19.58 18.6271  18.58 19.38 16.27 
B 30.99 31.58 30.85 24.61 15.8 15.29 14.28 15.4763 15.4763  7.41 14.81 9.84 

SD 1845.62 6254.91 1392.57 196.74 2.08E+03 28.97 48.73 38.761 40.632  29.86 52.8 27.13 
R 11 12 10 9 8 7 3 5 6  1 4 2 

100 

W 156.75 142.68 116.75 95.47 57.5 89.25 91.27 88.43 91.27  78.9 81.3 64.7 
M 115.63 99.74 86.53 31.47 17.6 29.88 28.65 32.47 30.27  26.9 32.8 24.87 
B 32.16 34.82 33.81 26.91 15.1 24.86 25.651 27.91 25.48  18.68 20.5 18.93 

SD 1974.25 754.38 1473.89 215.48 215.3 30.81 58.93 39.78 41.58  54.8 91.6 56.3 
R 10 12 11 8 1 5 7 9 6  2 4 3 

P6 

30 

W 3 7 0 0 0 0 0 0 0  0 0 0 
M 2.35E-09 2.57E-01 0 0 0 0 0 0 0  0 0 0 
B 0 0 0 0 0 0 0 0 0  0 0 0 

SD 2.7283 1.54724 0.95219 0.06066 0 0 0.353553 0.353553 0  0 0 0 
R 12 11 10 9 1 1 7 7 1  1 1 1 

100 

W 87 23 13 21 1.90E+01 9 13 11 9  7 7 3 
M 2.19E-05 2.16E-00 1.75E-15 3.72E-10 8.80E-05 2.85E-16 3.72E-19 5.13E-20 5.82E-19  2.85E-21 6.82E-20 7.31E-24 
B 1 3 0 1 0 0 0 0 0  0 0 0 

SD 3.28E-02 1.57E-01 3.82E-02 3.16E-02 6.23E-02 5.28E-04 3.19E-04 5.14E-03 5.19E-04  6.83E-08 5.81E-07 6.71E-09 
R 11 12 8 9 10 7 6 4 5  2 3 1 

P7 30 

W 13.69 12.54 9.76 9.81 11.75 8.76 9.15 9.25 9.54  9.85 10.54 9.23 
M 10.86 10.25 8.46 8.26 9.86 7.56 7.15 6.82 6.91  6.97 8.14 6.25 
B 6.47 8.92 7.15 6.38 7.65 6.84 5.16 4.92 5.84  5.01 5.81 4.82 

SD 1.5843 1.3672 1.91 2.685 1.36 0.98 0.47 0.86 0.75  0.61 0.74 0.58 
R 8 12 10 7 11 9 6 2 5  3 4 1 
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100 

W 15.86 14.74 12.85 10.86 12.85 11.54 10.32 10.58 10.39  11.36 12.64 10.85 
M 11.63 10.54 9.86 9.24 11.76 9.54 8.99 8.59 9.64  8.52 9.57 7.85 
B 8.25 8.18 8.82 8.10 10.22 7.86 7.36 7.12 7.84  6.74 7.02 6.81 

SD 1.79 1.64 2.56 2.89 3.11 1.067 0.58 0.88 0.89  1.023 0.96 0.89 
R 10 9 11 8 12 7 5 4 6  1 3 2 

P8 

30 

W 5.42E-02 1.67E-02 2.72E-04 3.81E-03 4.90E-03 2.84E-05 3.71E-06 4.16E-05 2.85E-05  4.82E-06 5.86E-07 1.86E-06 
M 1.48E-04 5.78E-04 6.24E-07 5.87E-05 7.30E-05 2.67E-09 1.36E-13 1.72E-12 2.84E-11  5.86E-13 6.97E-12 8.26E-12 
B 3.27E-09 3.11E-08 6.82E-11 5.46E-09 2.91E-06 2.81E-16 0 3.82E-14 2.85E-12  0 0 0 

SD 2.64E-02 4.18E-02 1.82E-03 7.53E-04 4.13E-02 5.86E-04 7.86E-05 2.45E-04 2.88E-04  5.92E-05 7.94E-05 6.15E-05 
R 9 11 8 10 12 5 2 6 7  1 4 3 

100 

W 4.17E-01 5.83E-01 8.42E-03 5.17E-02 2.92E-01 3.76E-03 5.66E-04 2.94E-04 3.18E-04  5.93E-04 6.81E-05 3.81E-05 
M 1.54E-02 4.83E-02 1.28E-04 4.37E-07 2.42E-02 1.84E-07 1.28E-10 4.64E-08 3.95E-08  6.81E-09 3.17E-09 5.81E-10 
B 5.38E-05 5.92E-04 6.19E-05 8.29E-08 2.96E-04 8.29E-9 8.29E-14 8.29E-11 8.29E-10  4.18E-13 6.18E-12 6.83E-14 

SD 0.284115 0.088928 0.036815 0.000181 2.96E-02 8.7E-05 4.32E-06 3.04E-05 0.000129  7.82E-03 3.86E-02 2.85E-03 
R 10 11 9 8 12 7 1 5 6  3 4 2 

P9 

30 

W 38.29 43.81 35.92 32.18 19.1 24.81 22.67 25.74 24.81  18.45 24.71 18.92 
M 28.11 17.85 29.32 16.931 14.1 10.44 3.96 6.29 7.59  2.61 2.85 1.587 
B 22.5918 16.3917 16.3917 8.5474 7.51 4.47 1.53 2.933 2.5933  1.86 1.51 0 

SD 10.67775 0.182485 25.73 20.563 3.56 4.55 1.55 5.022 7.978  0.98 1.05 0.99 
R 12 10 11 9 8 7 3 6 5  4 2 1 

100 

W 51.23 52.19 43.64 42.58 29.6 31.86 32.86 33.81 32.54  28.71 34.51 29.18 
M 30.82 24.71 32.81 19.76 17.4 18.65 9.86 14.56 12.84  7.25 8.91 7.98 
B 18.16 12.76 14.83 11.56 10.4 10.52 9.23 8.97 8.75  6.18 6.72 5.62 

SD 6.32 8.182 7.93 6.15 3.05 5.47 5.82 4.03 5.83  4.96 5.13 4.61 
R 12 10 11 9 7 8 6 5 4  2 3 1 

P10 

30 

W 2.71 1.28 3.88E-03 8.53E-04 9.03E-01 3.71E-02 6.22E-02 8.16E-02 4.72E-02  5.81E-04 5.13E-05 2.64E-06 
M 7.81E-02 4.82E-02 5.82E-05 6.26E-07 3.91E-02 8.52E-04 8.22E-02 1.73E-02 4.21E-02  5.76E-06 6.73E-07 4.62E-08 
B 2.97E-02 8.31E-02 5.88E-08 1.43E-09 9.90E-03 2.75E-06 1.86E-06 2.32E-06 5.96E-06  5.88E-09 3.82E-08 5.73E-12 

SD 4.37E-01 2.36E-01 6.82E-02 3.82E-03 1.46E-01 2.81E-03 1.84E-03 4.72E-03 8.21E-03  9.51E-04 2.74E-06 6.27E-04 
R 12 11 4 3 10 7 9 8 6  2 5 1 

100 

W 6.34 3.91 0.684 0.523 2.61E+00 0.9634 0.8734 0.2716 0.7532  5.83E-02 4.81E-02 7.25E-03 
M 4.71E-02 5.81E-02 1.57E-04 5.81E-06 1.91E-01 3.16-02 4.92E-03 1.58E-02 1.57E-03  5.27E-03 5.38E-04 6.28E-04 
B 3.66E-04 2.55E-05 9.51E-06 8.94E-07 9.70E-03 3.82E-04 1.65E-05 4.61E-04 3.92E-05  2.48E-05 6.28E-05 1.75E-06 

SD 3.81E-01 2.48E-02 1.753-03 2.51E-04 2.07E-01 3.81E-03 1.94E-03 3.72E-03 2.85E-03  2.18E-03 6.27E-03 8.29E-03 
R 10 7 2 1 12 11 8 9 5  6 4 3 
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P11 

30 

W 0.43 0.875 0.36 0.89 4.05E-01 0.52 0.26 0.75 0.87  3.92E-02 6.81E-02 1.85E-02 
M 6.81E-03 1.92E-04 6.42E-04 8.92E-03 2.86E-03 1.93E-05 5.92E-05 1.84E-04 8.52E-04  5.73E-05 4.22E-06 4.81E-06 
B 7.22E-05 7.61E-06 4.91E-06 7.61E-06 1.94E-04 6.58E-07 5.81E-08 8.94E-07 3.41E-06  6.14E-07 3.29E-08 6.84E-08 

SD 0.0619 0.08662 0.071474 0.027377 7.06E-04 0.00969 0.00405 0.009652 0.002751  2.88E-03 5.27E-03 4.86E-04 
R 11 8 9 7 12 5 2 4 10  6 3 1 

100 

W 4.92 5.37 2.81 3.97 2.69 2.55 1.64 2.17 1.98  0.98 1.25 1.08 
M 5.76E-01 6.89E-01 4.76E-02 1.85E-02 3.45E-01 5.47E-04 6.13E-02 6.84E-03 5.94E-03  4.81E-03 6.28E-04 1.85E-04 
B 5.92E-03 3.88E-04 5.82E-04 6.11E-04 1.29E-04 5.92E-05 3.11E-05 6.73E-04 5.93E-05  4.81E-05 6.73E-06 8.28E-06 

SD 0.2119 0.366 0.274 0.377 1.83E-01 0.0969 0.0805 0.0092 0.20751  1.07 0.86 0.976 
R 12 10 9 8 11 4 6 7 3  5 2 1 

P12 

30 

W 1.25 1.45 1.25 5.82E-02 7.25E-01 5.28E-02 6.31E-02 8.11E-02 2.93E-02  7.83E-03 2.58E-03 1.85E-04 
M 3.82E-03 7.82E-05 5.83E-02 6.84E-09 3.91E-05 3.92E-05 8.15E-06 8.16E-07 8.10E-03  4.86E-05 2.77E-06 5.71E-06 
B 5.18E-04 4.29E-04 6.23E-04 2.84E-11 2.15E-04 7.83E-07 2.33E-08 8.42E-10 2.85E-07  8.15E-08 5.14E-08 6.84E-09 

SD 52.6121 21.88676 26.9302 0.899861 7.30E+00 0.390465 15.82594 0.147952 2.50135  5.83E-02 6.71E-03 7.15E-02 
R 10 11 9 1 12 7 6 2 8  4 5 3 

100 

W 9.12 10.96 2.85 0.9372 2.98E+00 1.672 0.38 0.987 0.854  5.83E-02 5.71E-02 8.93E-02 
M 1.54E-02 5.66E-01 9.79E-01 1.26E-07 1.72E-01 1.45E-03 1.71E-04 9.01E-04 8.10E-03  5.28E-04 8.15E-04 5.27E-05 
B 6.38E-04 4.29E-04 6.19E-03 6.39E-08 2.77E-03 5.38E-04 6.31E-06 1.47E-07 2.85E-07  3.81E-06 6.14E-06 6.84E-07 

SD 59.21 45.86 34.02 0.9861 6.15E+00 0.0465 5.4 2.72 4.59  2.2 1.46 0.95 
R 9 10 11 1 12 8 5 4 3  7 6 2 

Average of Rank 10.875 10.625 8.875 6.7916 9.7083 6.3333 5.1666 5.75 5.4166  3 3.1666 1.625 
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(a) (b) 

Fig. 11. The LSD intervals of the optimizers for low (a) and high (b) dimensional comparison 
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4-5-A real case study  

This section presents a real case study to assess the performance of the developed algorithms 

in a real application. The aforementioned experiments confirm that the proposed novel approaches 

can better solve a set of benchmarks compared to other recent and state of art optimizers. In this 

regard, the proposed combinations are utilized to solve a real case study in Shahid Rejaee port as 

one of the biggest international cross-docking system in Iran1. The Shahid Rajaee Port plays a very 

important and vital role in Iran's economy and trade as the biggest container port of Iran that is in 

charge of handling the highest volume of container operations. Therefore, efficient optimizers that 

achieve robust answers are highly important for daily decisions of this cross-docking system.   
The Shahid Rajaee port, as one of the main parts of cross-docking system in the field of 

import and export of cargoes in or out of the country, committed to support new investments 

through establishing logistics and distribution centers and providing value added services centers. 

It is estimated that over 1000 tons of products have been loaded and unloaded from trucks every 

day. About twenty types of products have been considered in this study. When importing, the 

products are loaded into trucks after the unloading from vessels. When exporting, the products are 

loaded into trucks after transferring the products from vessels. It is assumed that over 100 trucks 

are daily utilized in this cross-docking system. Less than 30 trucks are receiving the products and 

more than 60 trucks are shipping the products to wholesalers and or the retailers. Some details 

about this case study are available online in Supplementary Materials F4.  

The proposed truck scheduling problem given in Section 2 is considered for this case study. 

All characteristics of the problem have been covered by the proposed cross-dock. Note that from 

the utilized benchmarks given in instance 35, the maximum number of trucks and products are 20 

and 12, respectively. Therefore, due to the large size of presented case study is not able to be solved 

using exact methods. In this case, the performance of developed combinations are compared to the 

best algorithms from previous analyses. The RDA, SFS, SA-PSO and SEO_2 are selected for the 

comparison. The algorithms are run 30 times. The best, the worst, the average, the computational 

time and the standard deviation though the run times are reported. All results based on these criteria 

are given in Table 7 and the best value for each criterion is highlighted. It is shown that the 

developed MSEO_123 is the best algorithm in the majority of metrics considered for the 

assessment of the quality of the algorithms. Besides the computational time and the worst solution, 

the MSEO_123 shows a robust performance in this comparison.  
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Table 7. Results of case study (W=worst, M=average, B=best, SD=standard deviation, CPU=computational time 
in seconds).  

Criteria RDA SFS SA-PSO SEO_2 MSEO_13 MSEO_12 MSEO_123 
W 60771 61148 61032 60598 60853 60546 60751 
M 60644.5 60984 60870.5 60420 60359 60365 60258.5 
B 60265 60492 60386 60292 60265 60184 60166 

SD 2106.646 2731.146 2689.512 1229.435 2211.04 2267 1886.803 
CPU 2819.52 2694.26 2738.52 2455.91 2468.16 2602.57 2688.54 

5-Conclusion and future works  

The truck scheduling decision-making seeks to optimize both receiving and shipping trucks 

sequences and the allocation of them using a simplified objective function to formulate the cross-

docking system. In many contexts however, and perhaps most especially in developing countries 

such as Iran where the management of cross-docking system is of particular concern, such a 

simplified approach to truck scheduling is failing to deliver satisfactory all outcomes under the 

recent advances of the supply chain and logistics management.  To this end, a practical truck 

scheduling from the literature based on a real case study in Iran was introduced by this study. More 

practicality and efficiency need capable algorithms for this complicated optimization problem, 

which are robust and computationally manageable. Hence, some novel modifications of SEO as a 

successful recently-developed algorithm are proposed to identify the most efficient one.    

In this paper, three novel strategies regarding the three steps of SEO are developed. 

Benefiting from each modification, three hybrid versions of SEO are also proposed among all 

possible combinations: MSEO_13, MSEO_12 and MSEO_123, and applied to solve a truck 

scheduling problem based on a set of standard benchmark functions as well as a real case study. 

Through an extensive comparison, the proposed optimizers provide competitive results compared 

to the existing metaheuristics in the literature.  

A mathematical model formulating the proposed truck scheduling problem in a cross-

docking center is explained followed by an encoding scheme demonstrating how to handle the 

constraint of the proposed model and the developed solution approaches. The proposed optimizers 

were tuned by the Taguchi experimental design methodology. According to a comparative study 

using benchmarked problems and a real case study, the proposed combinations better solve the 

                                                 
1 https://shahidrajaeeport.pmo.ir/  

https://shahidrajaeeport.pmo.ir/
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problem, specifically the proposed MSEO_123 which has become a scientific contribution to this 

field of study.  

Additionally, a set of benchmark functions is applied to show the high-efficiency of the 

proposed optimizers compared to other recent and state of the art algorithms. It can be observed 

that the proposed optimizers reveal the best performance especially in low dimensional evaluations 

based on a comprehensive analysis on both low and high dimensional evaluations. Although the 

comparison for high dimensional evaluation shows that there is a little difference between the 

performances of the algorithms, the proposed MSEO_123 is far better than the other compared 

methods. Finally, a real case study in Shahid Rajaei port as an international cross-docking system 

in Iran is considered to evaluate the algorithms in a real-world application. Similar to other 

analyses, the high-efficiency of developed MSEO_123 is confirmed by this case study.  

There still are some limitations to this research, which open several new avenues for future 

works. Analyses such as convergence analysis on the proposed optimizers and the sensitivity 

analyses for the key parameters of the proposed algorithms may still need to be explored. The main 

future recommendations for this study are to develop more adaptive strategies to improve the 

proposed SEO. Accordingly, employing some other evolutionary mechanisms such as levy flight, 

crossover and mutation operators for the SEO would be an interesting extension of the current 

work. 

 

Appendix A. Supplementary data 

Supplementary material related to this article can be found, in the online version.  
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