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Abstract 

 
The carpooling problem consists in matching a set of riders’ requests with a set of drivers’ offers by synchro-

nizing their origins, destinations and time windows. The paper presents the so-called Dynamic Carpooling 

Optimization System (DyCOS), a system which supports the automatic and optimal ridematching process be-

tween users on very short notice or even en-route. Nowadays, there are numerous research contributions that 

revolve around the carpooling problem, notably in the dynamic context. However, the problem’s high 

complex-ity and the real time aspect are still challenges to overcome when addressing dynamic carpooling. 

To counter these issues, DyCOS takes decisions using a novel Tabu Search based metaheuristic. The proposed 

algorithm employs an explicit memory system and several original searching strategies developed to make 

optimal deci-sions automatically. To increase users’ satisfaction, the proposed metaheuristic approach 

manages the transfer process and includes the possibility to drop off the passenger at a given walking distance 

from his destination or at a transfer node. In addition, the detour concept is used as an original aspiration 

process, to avoid the entrapment by local solutions and improve the generated solution. For a rigorous 

assessment of generated so-lutions, while considering the importance and interaction among the optimization 

criteria, the algorithm adopts the Choquet integral operator as an aggregation approach. To measure the 

effectiveness of the proposed method, we develop a simulation environment based on actual carpooling 

demand data from the metropolitan area of Lille in the north of France. 
 

Keywords: Dynamic Ridesharing, Multi-criterion Optimization, Tabu Search, Choquet Integral, Automatic 

ridematching. 
 

 
1. Introduction 

 
The average car occupancy decreased from 1.63 in 2000 to 1.57 in 2010, according to a study conducted 

by The Scottish Household Survey (3). In more recent years, USA have no better occupancy rates according 

to the latest National Household Travel Survey (2) and this has led to an increase in traffic congestion. Based 

on a study powered by INRIX Traffic Data, in 2011, congestion increased the urban travel time by over 5.5 

billion hours, implying the consumption of an extra 2.9 billion gallons (59). To avoid the harmful impact of 

private cars and thus correct the negative environmental image associated with the private vehicle, carpooling 

(also called ridesharing) systems were born. The carpooling transportation system is based on a shared use of 

personal cars by a driver and one or more passengers, which can be casual or organized through a service (19) 

(47) (49). By making the private car a common mode of transport, carpooling plays a role in reducing the 

number of cars on the road and subsequently in limiting the greenhouse gas emissions. According to a recent 

study released in Tehran by (68), when all travellers choose carpooling, vehicle trips per day are reduced by 

 



780000 units and average annual fuel consumption is reduced by 336.53 million liters. Moreover, the concept 

of carpooling provides many advantages both at an individual and collective level (e.g. alleviating the 

household budget allocated to transportation, lightening road traffic, create social and cultural bonds, etc.). 

This paper addresses the emerging need of automatic dynamic ridematching algorithms for smart mobility 

in metropolitan areas. Unlike traditional ridesharing, our Dynamic Carpooling Optimization System (DyCOS) 

proposes real time ridematching solutions and it does not require a long-term commitment between the 

rideshare partners. In other words, the routes’ plan is drawn up dynamically and users accept to take part of a 

ridematching solution generated by the system. 

The approach is based on a Tabu Search based metaheuristic and allows riders and drivers to make coordi-

nated decisions taking into account five criteria related to time, economical and environmental aspects, while 

allowing transfers and detours. By using algorithms with a polynomial complexity, our resolution approach is 

implementable on different engineering software environment and is able to generate feasible solutions with 

an ICT tool for the smart mobility governance of a metropolitan area (23) (24) (12). 

The literature review yields several research references aimed at providing efficient and optimized 

rideshar-ing services. Indeed, the design and development of advanced algorithms for associating optimally 

vehi-cle/passenger in real-time has received strong attention from the transportation community. However, to 

the best of our knowledge, no contribution exists in the related literature that integrates the multi-hop 

ridesharing with the detour and transfer concepts, including the possibility to drop the passenger off at a given 

walking dis-tance from his destination or a transfer node. To fill this gap, in this work we present the DyCOS 

approach and report some computer simulations based on actual travel demand data from the multimodal 

transport network of the Lille metropolitan region (north of France) to test the performance of the proposed 

dynamic carpooling system. The main contributions of this study can be summarized as follows: 

 

o We develop a Multi-Criterion Metaheuristic Approach (MCMA) specifically adapted to the dynamic di-

mensioning of a system where new passengers and vehicles continuously enter and leave; 

o Thanks to the MCMA approach, we characterize the dynamic ridesharing by the detour and transfer 

concepts providing high quality solutions to practical DyCOS instances; 

o In addition to allowing travel costs savings and CO2 emission limitation, our dynamic carpooling system 

allows limiting the traffic congestion and thus decreasing system-wide travel times. 

o We adopt a realistic simulation scenario based on actual demand travel data from the Lille regional 

trans-port network and operate it to assess the performance of DyCOS. The simulation results 

measure the benefits of our advanced algorithms to satisfy as many users’ requests as possible, while 

using the mini-mum number of resources (vehicles). 

 

A detailed positioning of the paper with respect to the related literature while highlighting the novelty and 

merits of our approach is reported in the subsequent Section 2.3 We also note that this paper is an extended 

version of our previous papers that appeared as (15) and (13). Even if, in the work (13), we adopt the tabu 

search approach to solve the ridematching problem, it differs from this paper in several aspects. Indeed, in 
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(13), we focus on the alliance between optimization and multi-agent system and we present a distributed 

multi-agent architecture where highly communicating entities evolve. Then, the optimization approach in (13) 

is only briefly introduced and not formalized, which is here fully accomplished. As regards the paper (15), in 

the present manuscript, we extend our previous work by: (A) performing an in-depth survey of existing 

carpooling systems, (B) studying the complexity of the dynamic carpooling problem, (C) illustrating in more 

depth the different steps of our optimization approach, (D) developing the theoretical aspects of our 

evaluation process where we apply a fuzzification method to normalize the values of the criteria and we adopt 

the Choquet Integral to take in consideration the interactions among them, (E) presenting new experimental 

results and highlighting the contribution of the Choquet Integral to ensure a rigorous evaluation of the 

generated solutions. 

Moreover, in our previous related papers (17) and (16), we have proposed an evolutionary approach to 

man-age the real time multi-hop ridematching issue, where assignments are handled by an independent 

mechanism. By contrast, in the present Tabu Search based Methaheuristc, the assignments’ process is a part 

of the global optimization algorithm and passengers are assigned on an as-needed. 

The remainder of the paper is structured as follows: Section 2 presents briefly the state-of-the-art of the 

carpooling problem and positions our paper in this respect. In order to describe the framework of DyCOS, 

Section 3 outlines the complexity and the mathematical formulation of decision variables. Section 4 presents 

the MCMA approach developed to solve the ridematching problem. Section 5 shows some numerical results. 

Finally, Section 6 concludes the paper. 

 

2. State-of-the-art 

 

Over the past few years, we have witnessed the emergence of the ridesharing concept, thanks to its 

economi-cal and environmental benefits. This phenomenon is currently being reinforced by the multiplication 

of attempts to improve its services, leading the shared vehicle concept to exist in about 1000 cities around the 

world already (1). The effectiveness of the existing carpooling systems, however, is limited due to the lack of 

optimization and automation (60) (71). 

According to Furuhata et al., design of attractive mechanisms, appropriate ride arrangement, and trust 

build-ing up among unknown travelers represent the major challenges to overcome to ensure service quality 

and cost control (26). Depending on the reservation management criteria adopted within the system, we 

distinguish be-tween two types of carpooling. The first one is planned in advance using a preliminary 

reservation, while the second one operates within a dynamic context. In the following, we present an 

overview of various carpooling attempts, while differentiating between: 1) the operational carpooling system, 

remaining typically open and non-optimized systems; 2) the academic studies implemented for designing and 

optimization of such systems. 

We then discuss the use of metaheuristic and most notably of Tabu Search in the optimal transportation 

context. Finally, we position our paper with respect to the recalled literature, discussing its advantages and 

peculiarities.



 
2.1. Related works on ridesharing 

 
Also known as liftsharing, carpooling is released typically as online sites allowing users to consult and 

publish offers. Among the most popular platforms, we can mention Blablacar.fr in Europe (France, Italy, 

UK). However, this kind of platforms does not propose an automatic ridematching solution. The rider has to 

find his rideshare partners by checking the compatibility between the requests path and the proposed route, in 

order to be able to use a High Occupancy Vehicle (HOV) lane or to share the trip cost (11). However, due to 

their static reasoning, these systems demand advance booking independently of the uncertainties of road. To 

overcome this limitation, dynamic ridesharing systems provide an instantaneous localization and an accurate 

communication between users and the platform (eg. greenmonkeys.com, covivo.fr). This kind of carpooling is 

in the midst of a full expansion since it offers more flexibility than static approaches. The real challenges of 

these systems are: real time travel optimization and the guarantee of a reliable service (15). 

From an academic standpoint, carpooling has entered the field of research and numerous approaches have 

emerged in the context of optimal ridesharing. The main objective of optimal ridesharing is to maximize the 

amount of matching between drivers and passengers or riders while optimizing several criteria such as travel 

time, cost, etc. From a modeling point of view, several optimal carpooling studies are applicable to the profes-

sional carpooling that ensures commuting from home to work. As an example, we might mention the tailored 

matching algorithm proposed by (51). Based on the Monte Carlo method, the algorithm manages the 

carpooling requests of a particular class of users (students, universities’ employees, etc.). In their study, Calvo 

et al. present a carpooling platform dedicated to the employees of a company that using several instant data 

and communi-cation models for solving the Daily Carpooling Problem (58). Several suitable models are 

designed to address the many-to-many carpooling problems (from different origins to different destinations). 

According to Agatz et al., ”these works mainly focus on matching between: (i) a single driver and multiple 

riders, (ii) multiple drivers and a single rider, (iii) multiple drivers and multiple riders” (6). 

Otherwise, Son et al., claim that ridematching optimization is ensured by solving two NP-complete prob-

lems: managing the assignments passengers/vehicles and generating the shortest path for the drivers in order 

to reduce the trips cost. On the basis of this finding, the ridematching problem may be considered a multi-

objective optimization problem with high complexity. Therefore, to solve these models, various heuristic or 

agent-based simulation methods have been developed. In their study, Shete et al. propose a metaheuristic 

called genetic-based carpool route and matching algorithm to solve the multi-objective carpool service 

problem (62). Son et al. also consider a multi-objective dynamic carpooling problem that minimizes the trips 

cost and optimizes the routes time. The authors adopt labeling algorithms to solve the multi-objective shortest 

path problem (67). To tackle the problem complexity, Manel et al. propose in their research a subdivision 

principle to decompose the carpooling network and consider a distributed dynamic graph (60). Then, authors 

adopt the multi-agent concept to establish a distributed parallel process (61). While the emphasis lies in 

finding the best matching between riders’ requests and drivers’ offers, Czioska et al., focused on the 

assessment scheme for meeting point locations(21). In fact, according to the authors: ”the usage of meeting 

points can be beneficial since the drivers do not have to pick up the passengers at the doorstep and drive 

unnecessary detours”. 
 

Integrating new technologies such as GPS-enabled mobile devices and the ubiquitous wireless networks, 

 



Chung-Min et al. develop a smart ride-share system with a scheduling algorithm that combines a greedy 

method and the bi-partite matching algorithm to solve ridematching problem (18). Through the new com-

munication technologies, several recent studies attempt to match drivers and riders in a very dynamic context. 

In this sence, Lalos et al. develop a framework using positioning systems to support a dynamic network of car 

and taxi pool services (44). The adaptation of algorithms from a static context to a dynamic context has often 

been adopted, but most studies ignore the need for optimizing the users’ collaboration through a 

communication architecture (see, e.g., (34) and (45)). In fact, an efficient communication between users is 

crucial for setting up a proficient dynamic carpooling system. It is in this sense that Nagare et al. use the 

Android platform to develop the so-called Enable Dynamic Carpooling application which implements an 

efficient communication between car owner and ride seeker (54). Trying to take advantages of the 

Information and Communication Tech-nologies (ICT s) in developing intelligent transportation systems, 

Dimitrakopoulos et al. also propose a novel management functionality for dynamic carpooling called i CAP. 

The system aims at exploiting knowledge and experience from past interactions, in proposing reliable matches 

between drivers and riders (passengers) (22). 

By authorizing the transfer, a rider can be transported by more than one vehicle to reach his final 

destination. This kind of ridesharing is called Multi-hop Ridesharing (M HR) and it is obviously more flexible 

than other forms of carpooling and offers more options for users. In his research, Gruebele (57) argues that a 

driver and a passenger should not be matched only if they share the same or similar destination because 

perfect matching would claim high waiting times. Therefore, the author proposes a dynamic multi-hop 

ridesharing system, by dividing a passenger route into smaller segments as parts of other trips. According to 

Herbawi et al., in a 

M HR problem, the set of drivers’ offers that constitute a rider’s trips are called the route plan, which is 

subject to multi-objective optimization such as the minimization of time and cost (70). To solve this problem, 

authors model the route planning in the dynamic M HR as the shortest multi-objective path problem on a 

time-expanded graph representing the drivers’ offers. Then, they propose an evolutionary solution approach, 

which is able to provide a good quality set of route plans and outperforms the generalized label correcting 

algorithm 

 

in terms of computing time. However, in their version of the M HR problem, drivers do not deviate from their 

routes and time schedules, which may reduce flexibility in generating solutions. The routing of drivers is 

considered as an interesting area of research related to multi-hop passenger transportation systems. Instead of 

focusing only on efficiently routing passengers based on a given network with transfer nodes, Agatz et al. 

emphasize that where to locate the pick-up or transfer locations could be an interesting issue (6). In this 

context, some studies introduce the detour concept, where a driver agrees to change his itinerary to pick-up a 

passenger from his origin or even agree to a transfer point that does not belong to his route. Geisberger et al. 

(27) develop an algorithmic solution to efficiently compute detours to match ridesharing offers and requests. 

On condition that the length of the resultant route does not exceed a predefined threshold, the authors propose 

to allow the driver to slightly modify his itinerary to serve more riders. 

 



Regarding pricing, the literature on ridesharing considers different travel costs that are roughly 

proportional to vehicle-miles (5). Other ways to divide the trip costs between the ridesharing partners are 

suggested. An auction-based mechanism to calculate the drivers’ reimbursement is presented by Kleiner et al. 

(42). Indeed, each passenger has to pay the difference between the cost of driving alone in a private car and 

the cost of taking a taxi. In their study, Ferreira et al. propose an architecture for a collaborative carpooling 

system based on a credits mechanism to encourage the cooperation among riders and drivers (36). Then, the 

accumulated credits can be converted into parking facilities. 

Summing up, while there are some attempts to provide dynamic carpooling service, only few have met the 

expected success, mainly because of the lack of flexibility and incentives (26). Graziotin et al. show how 

dynamic carpooling systems still have numerous important open issues to be addressed and solved, such as 

reaching the critical mass, which necessarily refers to issues as incentives, safety and trustiness (29). That 

explains the current absence of any dynamic carpooling system deployed and used for real life (29). 

In order to overcome some limitations of the discussed existing services, such as optimization and 

dynamic aspects, in this paper we present a Dynamic Carpooling Optimization System (DyCOS) which 

manages in real time a set of offers and requests and proposes optimized ridematching according to a set of 

criteria and within certain constraints. The key contribution of this work is to satisfy the maximum number of 

requests using a minimum number of carpooling vehicles thanks to the authorization of the transfer process. 

As regards the optimization approach, we develop a multi-criterion Tabu Search technique that minimizes 

users’ waiting time, delay and trip’s cost, and maximizes the gain in terms of CO2. In addition, the integration 

of the detour concept as an aspiration criterion for the tabu approach allows to increase the number of served 

requests, while using the same resources (vehicles). 

 

2.2. Metaheuristic and Tabu Search for optimal transportation problems 
 

Blum et al. state that approximate methods do not seek to find optimal solutions, but rather good solutions 

within a reduced calculation time (10). By exploring and exploiting the search space, metaheuristic are able to 

find efficiently near-optimal solutions (56) (40)(37). In the literature, several metaheuristic are distinguished, 

such as Ant Colony Optimization, Evolutionary Computation including Genetic Algorithms, and Tabu Search 

(39). 

In computer science, metaheuristic such as evolutionary algorithms and Tabu Search are regarded as ”any-

time algorithms” that can generate a feasible solution at any time. In other words, such an algorithm is 

designed to optimize the generated solutions as work has progressed (38)(41). Operating in a dynamic 

context, the dy-namic carpooling system has to deal with several instantaneous events and make quick 

decisions (46). Starting from this observation, metaheuristic based on anytime algorithms are particularly well 

suited to solve these kinds of issues. For this reason, Tabu Search can be seen as a valid optimization method 

to solve optimal ridesharing problems in a dynamic setting. The main principle of such a method consists in 

examining successive neighbors of a solution, and the objective is allowed to deteriorate in order to avoid 

local minima (48). 

In the area of transportation research, Tabu Search is widely used for solving routing problems (35). 

Nanry et al. develop a reactive tabu search approach to solve the pickup and delivery problem with time 

windows using different move neighborhoods (55). Cordeau et al. describe a tabu search heuristic to solve the 



dial-a-ride problem with multiple vehicles. The proposed approach is characterized by a procedure for 

neighbourhood evaluation that adjusts the visit time of the vertices on the routes so as to minimize route 

duration and ride times (20). 

 
In the carpooling domain, very few studies adopt the Tabu Search approach to solve the ridematching 

prob-lem. In their research, Wang et al. propose an insertion heuristics to construct the initial routes based on 

random assignments. Then, they use a Tabu Search algorithm to improve the generated solution (69). In the 

dynamic context, Berbeglia et al. develop a hybrid algorithm that combines an exact constraint programming 

algorithm and a tabu search heuristic (9). Generally, the computational results of these approaches 

demonstrate the efficiency, effectiveness, and scalability of the Tabu Search algorithm. 
 

In the same context, we can mention the Tabu search algorithm with four neighborhood structures 

proposed by Can et al., (33) to solve a variant of the carpooling problem. Based on a two-stage integer 

programing, the TS algorithm transforms the neighborhood structure suitable for vehicle routing problem 

VRP into four types of neighborhood. Although initial computational results are encouraging, the proposed 

approach cannot manage time window constraints, indicating a notable gap. 

 
2.3. Positioning of our work 

 
To summarize, the originality of our approach lies in the fact that: 

 

1. The proposed DyCOS manages the many-to-many ridematching problem, contrary to carpooling 

systems developed by Bruglieri et al. in (9) or set up by Son et al. in (67) which manage only the home-

work trips. Moreover, our approach generates ridesharing solutions based on the similarities between 

the routes proposed by drivers and the trips requested by riders. This differs from taxis-based systems 

where the drivers do not impose travel restrictions (72) (7). 
 

2. The proposed system integrates the multi-hop ridesharing with detour and transfer concepts. This is 

deemed to be the main distinction between our paper and the previously recalled literature, particularly 

(44) and (67), where each request is served by a single vehicle and routes’ deviation is not tolerated. 

We remark that, even if the detour concept is considered in some studies (e.g. (27) and (69)), they 

ignore the transfer process for reasons of simplification. For greater comfort, our system seeks initially 

to propose ridesharing solutions without transfer. 
 

3. Although Tabu Search has been adopted in (33) to solve the ridesharing problem, the proposed 

algorithm addresses the variant model of the long-term carpooling problem which involves multiple 

origins and one destination. By contrast, our DyCOS proposes carpooling solutions from multiple 

origins to multiple destinations. 
 

4. Unlike classical approaches, where a request is served only if it reaches its final destination (60), our 

system includes the possibility of dropping off the passenger at a maximum walking distance from his 

final destination or transfer node. This increases flexibility and enhances the service quality. 
 

5. In contrast to the classic Tabu Search algorithms developed in (71), our optimization algorithm 

(MCMA) adopts the detour concept as an original aspiration criterion. 
 



6. To avoid degradation of the generated solutions, aspiration is authorized only if the detour is less than a 

Tolerated Detour Distance (T DD) specified by the system. 

7. We consider a multi-criterion dynamic carpooling problem, where the travel time, the cost and the CO2 
 

emission are to be minimized. To the best of our knowledge, there exists no previous study that 

considers the environmental gain in term of CO2 of the carpooling practice. In the majority of cases, 

researchers seek to minimize travel time and trips cost while maximizing the number of served requests 

(e.g. as in (70), (69), (5) and (67)). 
 

8. The idea of using the Choquet integral as an aggregate approach promotes a compensation aspect 

between criteria accelerating the convergence of the proposed MCMA. 
 

9. MCMA is able to effectively manage the detour and transfer concepts, allowing us to find good 

solutions using a minimum number of vehicles to serve a maximum number of riders. 

 

3. The optimal dynamic carpooling problem statement 

 

3.1. System description 
 

The deployment of a carpooling service should be supported by multiple features. In view of the 

complexity of the operations, the idea of the subdivision of the system into sub-models has emerged. Each 

sub-model is dedicated to a specific macro-function. In this context, our system consists of several 

fonctionalities principally concerned with the request acquisition, the assignment process, and the evaluation 

process. 

In order to measure the ridematching problem’s complexity and deal with such difficulties, we carry out a 

comparative study between the carpooling problem and other optimization problems known for their 

complex-ities. 

The Traveling Salesman Problem (TSP) is a well-recognised problem known by its exponential 

complexity (52). Given a list of cities and their pairwise distances, the problem is to find the shortest path for 

the sales-man while visiting each city, only once. Instead, the Dynamic Carpooling Problem (DCP) consists 

in bringing together people with similar itineraries and time schedules to share rides on short-notice. Then, 

slightly modi-fied, the T SP appears as a sub-problem in the DCP. Indeed, in a simple instance of the DCP, 

where one vehicle respecting the T SP constraints carpools several passengers (riders), the concept of 

salesman represents the vehi-cle, the concept of city represents origins and destinations of passengers, and the 

concept of distance represents traveling times or cost (Figure 1). This paper treats the DCP of matching 

drivers (more than one vehicle) and passengers in this dynamic setting. Therefore, we can consider our 

dynamic carpooling optimization problem as a Multi-TSP (Figure 2). 

We finally remark that, in the DyCOS application, additional constraints such as limited resources 

(vehicles’ capacity) or time windows can further accentuate the complexity of the problem. 

 
3.2. Mathematical formulation 

 
Some explanations about the used parameters and variables are listed in Table 1 and their specific 

meaning will also be discussed in the text. 



Table 1: Commonly used variables and explanations   

 P
l
 : the passenger l V 

k
: the vehicle k 

Rp(t) : the set of nd instantaneous requests OV (t): the set of m vehicles offers 

P
l 

: origin of passenger P
l 

P
l+

 : destination f passenger P
l 

V 
k 

: origin of vehicle V 
k 

V 
k+

 : destination of vehicle V 
k 

Q
l
    1 : number of places requested L

k
 : V 

k
’s capacity 

d
l
 : the earliest departure time of passenger P

l 
a

l
 : the latest arrival time of passenger P

l 

Di
k
: the estimated departure time of vehicle V 

k
 from point i Ai

k
: the estimated arrival time of vehicle V 

k
 to point i 

 
 

3.2.1. Decision variables and parameters 
 

We denote  pR (t) = { 2, ,... ,...,
rl l nR R R R } the set of n instantaneous demands received during a short 

interval of time ∆t for P=  
1

n
l

l

P


U  which is the set of n passengers with ( rn  ≤ n). Equation (1) shows passenger 

P
l
 request’s formulation:  

 ( ) , , , ,l l l l l

lR t P P d a Q   
(1) 

 
Where moving preferences are specified: 

 

o P
l
, Pl

+
 are respectively the current position (the origin) and the destination node asked by the 

passenger P
l
, 

o d
l
, a

l
 indicate the earliest departure time and the latest arrival time preferred by P

l
 , 

 

o Q
l
 1 is the number of passengers including P

l
 who wish to travel together. In other words, if a 

group of people (friends, employees..) have the same origin and destination and they want to 

travel in the same time windows, they will send one request where they specify the number of 

passengers Q
l
. 

 

Similarly, we denote by  1 2( ) , ,..., ,...,k mV V V V V
O t O O O O the set of m vehicles offers received at time t, where 

V=  
1

m
k

k

V


U  is the set of m vehicles expressing travel deals. Equation (2) shows the formulation of vehicle  
kV  ‘s 

offer:  

                                                            ( ) ( , , , , , , )k

k k k k k k k

V
O t V V MD MA L C h      (2) 

                                        
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Analogy between the dynamic carpooling problem and the travelling salesman problem. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Analogy between the dynamic carpooling problem and the multi-travelling salesman problem. 

 

Where V 
k
 , V 

k+
 refer respectively to the origin and the destination of the vehicle V 

k
 with a capacity L

k
. 

MD
k
, MA

k
 indicate respectively the vector of the estimated departure time denoted 

k

iD , and the vector of the 

estimated arrival time denoted 
k

iA  of the vehicle V 
k
 on all nodes i between V 

k
 and V 

k+
. According to the 

traffic condition, these nodes correspond to the intermediate destinations specified by the driver in real-time. 

Moreover, each vehicle V 
k
 is characterized by a kilometric cost criterion that we denote C

k
 and a criterion of 

emission rate of CO2 per kilometer denoted h
k
. 

 

3.2.2. Criteria 

 

3.2.2.1. The total waiting time  

 

This criterion aims to minimize the customers’ waiting time in the departure point and in the transfer 

node. Therefore, for each passenger 
lP assigned first to

kV  then to 
'kV , the waiting time in origin (i=

lP 
) is 

the difference between the departure time desired by 
lP  and the departure time of 

kV  Then, the waiting time 

in the transfer node corresponds to the difference between the departure time of  
'kV and the arriv (1)al time 

of 
kV  in the transfer node j. Subsequently, the 

lP waiting time is formulated as: 

 

'

' '(0,( )* ( )* )k l k k

lkk i lk j j lkWT Max D d X D A X   
      (3) 

 

Where lkX  is a decision variable which is equal to 1 if 
lP is affected to

kV , 0 otherwise.  

Then, The total passengers waiting time at the different nodes is equal to:       

'

1 ' 1 1
'

m m n

lkk

k k l
k k

TWT WT
  




           (4) 

3.2.2.2. The total delay time  



This criterion seeks to minimize the delay time which corresponds to the difference between the desired 

arrival time specified by the passenger and the actual arrival time to its final destination (i=
lP 

). It can be 

defined as follows: 

' (0, ( ))k l

lkk iWT Max A a 
            (5) 

Consequently, the total delay time is calculated as:  

 

1 1

*
m n

lk lk

k l

TDT DT X
 


     (6) 

3.2.2.3. The total route time  

The route time criterion consists of minimizing the total journey times aboard the various vehicles. For 

each passenger 
lP  assigned to 

kV  from i to j, the route time is stated as follows:  

( )*k k

lk j i lkRT A D X 
 (7) 

We suppose that 
lP  was assigned to 

kV  at the departure point and to 
'kV  at the transit point. Then the 

global route time is formulated as: 

' 'lkk lk lkRT RT RT 
     (8) 

 

Subsequently, to evaluate the solution, we need the total route time of all passengers which is determined 

as: 

'

1 ' 1 1
'

m m n

lkk

k k l
k k

TRT RT
  




 (9) 

3.2.2.4. Environmental criterion 

This criterion determines the improvement in terms of 2CO  established in both of the following cases: 

 -Passenger uses his own vehicle, 

 -Passenger chooses to carpool. 

3.2.2.4.1. 2CO emission quota without carpooling: 

* ( , )l

l

k l l

lkIC h distnace P P 
  (10) 

Where 
llkIC is the emission quota of 2CO  if the passenger 

l
P uses his own vehicle denoted 

lk
V which is 

characterized by lk
h  , its emission rate of 2CO per kilometer. 

3.2.2.4.2.  2CO  emission quota with carpooling: 

   

* *

_ _ s_i _

k

lk
lk k

h RT AverageSpeed
SC

number of passenger n V


      (11) 

Where lkSC is the emission quota of 2CO for each passenger sharing the same vehicle 
kV which is 

characterized by 
kh . Hence, the gain of 2CO  per passenger is calculated as follows: 

 Without transfer: 

( * )
llk lk lk lkGain IC SC X 

   (12) 

 With transfer:  



' ' '* *lkk lk lk lk lkSC SC X SC X 
      (13) 

So,  

' 'llkk lk lkkGain IC SC 
       (14) 

 

In that case, the total environmental gain realized by all passengers is determined by: 

'

1 ' 1 1
'

m m n

lkk

k k l
k k

TEG Gain
  




       (15) 

 

3.2.2.5. The trip cost 

According to the cost per kilometer 
kC of each vehicle

kV , this criterion seeks to minimize the trip cost 

which is formulated as follows: 

 Without transfer: 

* *k

lk lkCK C RT AverageSpeed
   (16) 

 With transfer: 

' ' '* *lkk lk lk lk lkCK CK X CK X 
  (17) 

 

Then, the total cost for all passengers is calculated by: 

'

1 ' 1 1
'

m m n

lkk

k k l
k k

TC CK
  




(18) 

    

Thereafter, the aggregation criteria process is determined by applying the Choquet Integral taking into 

account the weighting, the interaction and the compensation between different criteria 
 
 

3.2.3. Constraints 
 

Several constraints have to be considered during the real time assignment of passenger P
l
 to vehicle V 

k
. 

We take into account the following capacity constraints: 

 

1≤ Q
l
 ≤  Li

k
 ≤ L

k 
(19) 

 

Where Li
k
 is the residual capacity of V 

k
 on node i. V 

k
 must have enough available seats in node i according 

to the number of seats asked by the passenger P
l
. We also consider the following time constraint: 

 

d
l 

≤  Di
k
=Pl (20) 

 
In other words, P

l 
can be assigned toV

k 
only if his departure time at the earliest d

l
 from his origin P

l−
 is earlier 

than or equal to the departure time specified by the driver.  

 

Finally, another time constraint is: 

 

                                                                     Ai
k
   ≤  Di

k′                                                                                        
(21) 

In fact, in the case of  a transfer, V 
k
 must  reach  the transfer  node i at  the  latest  before  the  departure  time  of V 

k′
 . 

 
 



We conclude this section with a remark on the DCP computational complexity. In the theory of computa-

tional complexity, the described problem is considered as NP-complete problem, implying that the computa-

tional time increases exponentially with the number of riders to serve and the fleet of vehicles to manage. As 

a result, solving the DCP is typically highly challenging for systematic optimization methods, notably exact 

ridematching approaches that integrate the process of the transfer and detour. Therefore, this problem is more 

efficiently solved using heuristic methods or variants of local search approaches(6). To this aim, we propose a 

metaheuristic approach based on Tabu Search. It is a popular method, which its performance is proven by its 

many applications to effectively solve combinatorial optimization problems such as job-shop scheduling in 

(63), facility layout problems relating to the manufacturing in (73), traveling salesman problems in (25), and 

vehicle routing problem and its variants in (8) and (43). 

 

4. The proposed Tabu Search based metaheuristic 

 

As previously discussed, the dynamic carpooling problem including detour and transfer is an NP-hard prob-lem 

and the application of approximate methods to solve it has attracted an increased attention. Motivated by the 

success of the Tabu Search approach to solve the ridematching problem, we describe here a new Tabu Search 

procedure for the multi-criterion dynamic carpooling. It differs from the approaches presented in Section 2 in 

several aspects. In fact, unlike other applications, our Tabu algorithm starts by building a feasible initial solution 

that takes into account the similarity between users’ routes and does not violate the capacity constraint. This allows 

improving the performance of the Tabu method and accelerating the convergence of our algorithm with respect to 

those proposed in (69) and (9). Moreover, in order to improve the solutions’ quality, our Tabu Search algorithm is 

characterized by an original aspiration criterion. This latter allows ’excellent’ Tabu Moves to be selected if the 

aspiration level is attained, which avoids the entrapment by local solutions. To carry out a rigor-ous assessment of 

the obtained solutions, our Tabu Search algorithm includes the Choquet Integral operator that takes into 

consideration the interactions among criteria. Finally, in order to deal with the high complexity of our problem, we 

decompose our global tabu search algorithm into several sub-algorithms that run sequentially. 

We have already briefly introduced the idea underlying this method in (15). In this paper, we formalize 

and detail the different aspects of our metaheuristic and illustrate the different steps to solve the dynamic 

carpooling problem. 
 
 

4.1. Solution generation: Assignment Process 
 

In this study, we propose a Multi-criterion Tabu Search Algorithm (MTSA) for the DyCOS. The starting 

point is an initial solution s0, usually randomly generated. Then, the algorithm explores the neighborhood to 

find a better solution, denoted st . To avoid cycling, the algorithm considers the recently visited solutions as 

tabus. 

 

4.1.1. Data modeling 
 

This process involves establishing the matrix of possible assignments Vehicle / Passenger in origins and in 

transfer nodes, with the aim of ensuring users comfort. In other words, the assignment is establish only if the 



distance between the rider’s origin P
l
 and the current position of the vehicle V 

k
 does not exceed the radius R. 

The latter is a parameter to define by the passenger and it presents the maximum tolerated walking distance. 

Similarly, in a transfer case, the rider P
l
 is assigned to the vehicle V 

k′
 only if the distance between the deposit 

node and the final destination P
l+

 is less thane R (Figure 3). Within this framework, our system generates a 

matrix DVM (Departure Vehicle Matrix) that represents all possible assignments Vehicle/Passenger in the 

origin nodes of passengers. The assignment of the generic element of DVM is as follows. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3: The possible assignment of passenger P
l
 to vehicle V 

k
 and V 

k′ 

 

 
 

Table 2: Matrix DV M of possible assignments vehicle / passenger in departure nodes  

P
l
 /V 

k 
V 

1 
V 

2 
 V 

k 
 V m  1 V 

m 

P
1 

* X  X  * * 

P
2 

X *  *  X * 
. . .  .  . . 
. . . 

 

. 

 

. . 

. . . . . . 

P
l 

* X  X  * X 
. . .  .  . . 
. . . 

 

. 

 

. . 

. . . . . . 

Pn  1 X *  X  * X 

P
n 

* X  *  X X 

 

Table 3: Matrix TV M of possible assignments vehicle / passenger in transfer nodes  

P
l
 /V 

k 
V 

1 
V 

2 
 V 

k 
 V m  1 V 

m 

P1 X *  X  * * 

P
2 

* X  X  X * 
. . .  .  . . 
. . . 

 

. 

 

. . 

. . . . . . 

l 
    .   

X *  X 
. 

* X P . 

. . .  . . . . 
. . . 

 

. . . . 

. . . . . . . 

Pn  1 * *  X  * X 

P
n 

X X  *  * X 

 



If (distance (P
l
 ; V 

k
) ≤ R) and (respecting the capacity constraint (19)) Then DVM [P

l
 ;V 

k
] = * . Else 

 DVM [P
l
 ; V 

k
] = X (see the example in Table 2). 

 

 

Likewise, a matrix TVM (Transit Vehicle Matrix) is generated representing all possible assignments 

Vehi-cle/Passenger in the destination nodes of passengers: If distance(P
l+

;V 
k
) ≤ R) Then TVM[P

l
 ;V 

k
] = * . 

Else, TVM [P
l
 ; V 

k
] = X (see the example in Table 3). 

 

We also define the matrix INV (Interconnected Nodes between Vehicles) which presents all intermediate 

destinations of vehicles. We note N=  
1

nd i

i

N



U the set of nodes belonging to the carpooling network which has 

at most Nn nodes. If N
i
 belongs to the V 

k
 itinerary Then INV [N

i
;V 

k
] = 1 Else INV [N

i
;V 

k
] = X (see the 

example in Table 4). 
 

Thanks to the INV matrix, we can identify all the transit nodes between vehicles. For example: If ((INV [N
i
;V 

k
] = 1) and (INV [N

i
;V 

k′
 ] = 1)) Then N

i
 can be a transit node between V 

k
 and V 

k′
 . 

 

In the following, we define some algorithms used by the MTSA that employ the data modeling matrices 

of possible assignments vehicle/passenger (DVM and TVM) and the matrix of interconnected nodes between 

vehicles (INV). 

 

Table 4: Matrix INV of Interconnected Nodes between Vehicles 

N
i
/V 

k 
V 

1 
V 

2 
 V 

k 
 V m  1 V 

m 

N
1 

1 1  X  X 1 

N
2 

X 1  1  X X 
. . .  . . . . 
. . . 

 

. . . . 

. . . . . . . 

N
l 

X X  1  1 1 
. . . . .  . . 
. . . . . 

 

. . 

. . . . . . . 

NNn  1 1 X  X  1 X 

NNn X X  1  1 X 

 
 

4.1.2. RAVPA: Random Assignment Vehicle/Passenger Algorithm 
 

At each iteration of the Random Assignment Vehicle/Passenger Algorithm (RAVPA), each passenger P
l
 is 

randomly assigned to one vehicle from origin node and to one vehicle to reach his final destination node taking into 

account the vehicle capacity constraint and the data contained in the matrix DVM and the matrix TVM. 

 

4.1.3. SCAlgo: Solution Construction Algorithm 
 

Based on the information provided by the matrices of possible assignments and the vehicles’ capacities, a 

possible solution is generated by a random assignment between raiders and vehicles. The algorithm starts by 

calling RAVPA to assign each passenger P
l
 to a vehicle V 

k
 that will take him from its origin and to a vehicle 

V 
k′

 that will transport him from a potential transfer node, while respecting the vehicle capacity constraint. In 

the case where the passenger is assigned to two different vehicles, SCAlgo verifies in INV if the two vehicles 



have a common intermediate destination to ensure the transfer of the passenger and checks if the time 

synchronization (constraint (21)) is satisfied. If this is not the case, the triplet fP
l
 ;V 

k
;V 

k′
 g will be considered 

as tabu and SCAlgo saves it in the Tabu List. 
 

As shown, the Solution Construction Algorithm (SCAlgo) consists in browsing several matrices, while 

ver-ifying certain conditions. According to (4) and the references cited therein, we can consider our SCAlgo 

as a polynomial algorithm whose complexity is equal to O(n
3
). 

 
4.1.4. Tabu List 

 
The Tabu List is the feature characterizing the classical T SA. It records the Moves encountered in the past 

to prevent cycling searches and entrapment in local optima. In our particular case and in order to avoid 

returning to the local optimum already visited, the Tabu Move is defined as the prohibited transfer between 

vehicles V 
k
 and V 

k′
 for the passenger P

l
. Then, the triplet {P

l
 ; V 

k
;V 

k′
} is considered as forbidden and it is 

saved in the Tabu List. 

 
4.1.5. Neighborhood construction 

 
Starting from a current solution, the T SA explores its neighborhood to reach a better solution. To achieve 

this goal, the algorithm operates with a ’Move’ mechanism, allowing movement from a current solution 

towards another one. In our purposes, we develop a neighborhood construction algorithm that considers the 

elements of the Tabu List {P
l
 ; V 

k
;V 

k′
} and reassigns the unallocated riders to other vehicles. In the case 

where the Tabu List is empty, an element is randomly chosen and a new reallocation is proposed, to avoid 

trapping by a local optimum. Concerning the complexity, the neighborhood construction algorithm has to 

browse a list. Then, for each element (unallocated passenger), it cheeks the DVM and TVM to find new 

assignment. Based on (4), we consider the neighborhood construction algorithm as a polynomial algorithm 

with a complexity O(n). 



 
Algorithm 1 : SCAlgo: Solution Construction Algorithm (INV, DVM, TVM, CT, MCS, Tabu List)   

Require: INV, DV M; TV M;CT : Capacity Table, MD: Matrix in which each element D
k
i is the departure 

time of V 
k
 on N

i
, MA: Matrix in which each element A

k
i is the arrival time of V 

k
 on N

i
, Tabu List: The 

set of triplet of (P
l
 ; V 

x
;V 

y
)// Forbidden Transfer 

  
Ensure: T DA: Table of Departure Assignment, T TA: Table of Transit Assignment, CT, MCS: Matrix of 

Current Solution, Tabu List 
 

Treatment 
 

1: RAVPA (DVM, TDA, CT) 
 

2: RAVPA (TV M, TTA, CT) 
 

3: for all passengers P
l
  do  

4: V 
x 
←TDA [P

l
]  

 5: V 
y 
←TTA [P

l
] 

 

6: if (V 
x
 =  0) and (V 

y
 =  0) then 

 

7: if (V 
x
=V 

y
) then 

 

8: MCS [P
l
 ; V 

x
]=1 

 

9: P
l
 .T N=0 // T N: Transit Node 

10: Pl .V departure = Pl .V transit = V x 
 

11: else 
 

12: for all node N
i
 belongs to the Carpooling Network do 

 

13: if (INV [N
i
;V 

x
] = INV [N

i
;V 

y
]=1) and (A

x
i    D

y
i then 

 

14: if Time Synchronization is satisfied between V 
x
 and V 

y
 then 

 

15: if (CT [x] ≻ 0) and (CT [y] ≺ L
y
) then 

 

16: MCS [P
l
 ; V 

x
]=1 

17: MCS [P
l
 ; V 

y
]=2 

18: CT [x]  ← CT [x]-1 

19: CT [y]   ←CT[y]+1 

20 : P
l
 .T N=N

i 

21 : Pl .V departure=V x 

22 : Pl : V transit = V y 

23 : Break 

24 : end if 
  

25: end if 
 

26: end if 
 

27: end for 
 

28: if (N
i
 = N

nd
) and (INV [N

i
;V 

x
] = INV [N

i
;V 

y
]) then 

 

29: MCS [P
l
 ; V 

x
]=MCS [P

l
 ; V 

y
]=-1 

 

30: Tabu List←Tabu List+ {(Pl, Vx, Vy)}  
31: end if 

32: end if 

33: end if 
 

34: end for  



 

4.1.6. Aspiration Criterion 
 

Even if there is no risk of cycling, tabus may cause a slowdown or even a stagnation of the search process. 

To deal with this issue, a so-called aspiration criterion is used to revoke Tabus (48). According to Gendreau et 

al., in classic Tabu Search implementations, the aspiration criterion allows a tabu Move to be feasible if it 

permit to achieve a non-visited solution with a better performance score than that of the best solution so far 

known (48). In our case, we risk that the Tabu List forbid some worthy or interesting matching 

(vehicle/passenger) which can lead to a better solution than the current one. Our original aspiration criterion 

consists of authorizing forbidden assignments if they are judged interesting. In other words, the aspiration 

criterion is establish by realizing a detour to serve the riders (Figure 4). This increases the flexibility of the 

system and improves users satisfaction. The Aspiration Algorithm starts by choosing randomly a triplet {P
l
 ; 

V 
k
;V 

k′
} from the Tabu List. By randomly choosing between tow options, algorithm proposes to V 

k
 or V 

k′
 to 

make a detour, provided that the detour distance does not exceed the Tolerated Detour Distance T DD. 

 
4.1.7. MCMA global algorithm  

 
The MCMA global algorithm begins by calling the SCAlgo to generating initial assignments. Once the 

initial solution is constructed, MCMA evaluates it using the Choquet Integral approach, which is detailed in 

the subsequent subsection. Then, MCMA calls the neighborhood search algorithm to iteratively move from 

one potential solution to an improved solution. If the current solution has a better score, compared to the 

previous one, it will be temporarily considered as the best solution and MCMA will explore its neighborhood, 

and so on until a stopping criterion is met. 
 

Concerning the terminating conditions: we define two stopped conditions, the first one concerns the the 

achievement of the maximum number of iterations, while the second condition concerns the quality of the current 

solution. In other words, if the current best solution is not improving over time, the algorithm is stopped. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4: Example of detour: vehicle V 
k′

 makes a detour to pick up passenger P
l 
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Algorithm 2 : Aspiration Algorithm (MCS, TDD, CT, Tabu List)  

Require: MCS, CT, Tabu List, T DD: Tolerated Detour Distance 
  

Ensure: MCS, CT, Tabu List   
Treatement 

 
1: if Tabu List =   ϕ then 

 

2: for all Triplet {P
l
 ; V 

k
;V 

k′
}  Tabu List do  

3: Choice = random(2) 
 

4: if Choice = 1 then 
 

5: if TDD is satisfied between P
l
 and V 

x
 then 

 

6: detour (P
l
, V 

x
, T DD, MCS, CT) 

 

7: Update Tabu List 
 

8: end if 
 

9: else 
 

10: if Choice = 2 then 
 

11: if T DD is satisfied between P
l
 and V 

y
 then 

 

12: detour (P
l
, V 

y
, T DD, MCS, CT) 

 

13: Update Tabu List 
 

14: end if 
 

15: end if 
 

16: end if 
 

17: end for 
 

18: end if  
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Figure 5 illustrates the flowchart of our global Tabu Search Algorithm, in which we have included the 

solution construction algorithm, neighborhood algorithm and the aspiration method. We denote MCS the 

Matrix of the Current Solution and MBS the Matrix of Best Solution. 
 

As consisting of different sub-algorithms with a polynomial complexity and that run sequentially, our 

multi-criterion metaheuristic algorithm is a polynomial algorithm. 
 

To summarize, our Tabu Search based metaheuristic differs from the classical T SA techniques since it is 

characterized by: 

 
 Dynamic dimensioning where new passengers and vehicles continuously enter and leave the 

system. Then, the size of data to be processed remains reasonable, 

 
 Global algorithm with a polynomial complexity, 

 

 Aspiration criterion that enables the research process to move from a local optimum and to improve 

subsequently the generated assignments, 

 
 Defined stopping criterion. 

 

Thanks to these peculiarities, our Tabu search Algorithm converges towards a valid and good 

ridematching solution within a reasonable time. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5: The multi-criterion metaheuristic algorithm 
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4.1.8. Perturbations and their impact on solutions feasibility 
 

The consideration of disturbances impacting the feasibility of the proposed solutions becomes necessary 

in a dynamic transport system. In our case, we define three classes of disturbances: 

 
1. Unexpected detour due the the traffic overcrowd problems or the inaccessibility of a section or road. 

 
2. A scheduled transfer that did not take place. 

 
3. A Car breakdown causing the drop off of the passengers. 

 

Thanks to the robustness of our algorithm, the latter modifies the solution to make it feasible while respecting 

the problem’s constraints. However, the handling of this procedure can degrade certain criteria and 

subsequently influence the service’s quality. For example, in the first class of perturbations, making an 

additional detour can considerably increase the total route time criteria of the concerned passengers in order to 

achieve the final destination. Regarding the other two classes of disturbances, passengers must get off cars. 

Thanks to dynamic traceability, our system will be notified of the current position of these passengers and 

updates their requests with their new position. Thus, the algorithm proposes new feasible solution for these 

passengers to arrive at their final destination. 

 

4.2. Solution evaluation process: Aggregation approach based on the Choquet Integral 
 

In this sub-section we detail the multi-criterion optimization problem and consider the search space explo-

ration to find the best feasible solutions for the proposed DyCOS. The question which arises at this stage of 

our work is the following: how to get a thorough evaluation of our solution? 
 

As already indicated, the evaluation process follows a multi-criterion approach that focus on optimizing 

the waiting time, the route time and the accumulated delay on arriving at the final destination. Moreover, our 

approach takes into consideration the economic criterion by minimizing travel costs and the environmental 

aspect by optimizing the gain in terms of CO2 realized thanks to carpooling. 
 

One of the popular aggregation methods is the classical weighted arithmetic method. A limitation of this 

approach, however, is that it does not reflect the interactions among criteria (50). To overcome this drawback, 

an extended version of the weighted arithmetic operator called the discr ete Choquet integral is developed by 

(53). In addition to the weighting, the Choquet integral operator takes into consideration the interaction and 

the compensation between different criteria. 
 

In fact, we notice that our criteria do not have the same importance for users. For example, it is widely 

acknowledged that for a passenger reaching his final destination without delay is more important than having 

a good gain of CO2. In addition, according to our mathematical formulation, minimizing travel time (T RT ) 

in-volves minimizing the distance traveled which therefore has an effect on the amount of CO2 emitted. 

Therefore, we find that both criteria (T RT and T EG) are not fully independent and they interact among them. 

Psychologi-cally speaking , for a passenger, he prefers to reduce the waiting time (TW T ↘ ), especially when 

the weather conditions are not favorable, and possibly increase the travel time (T RT ↗) instead of the 

opposite. Using the Choquet Integral operator, this psychological aspect is taken into account by the 

compensation effect. In this case, the Choquet Integral evaluation can provide a good score. 
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To calculate the Choquet score, we have to determine partial scores of criteria. To this aim, we apply the 

fuzzification method proposed in (66) and in (14) within the framework of disrupted urban transport 

regulation, to make criteria homogeneous and assessed on the same scale. The proposed fuzzy multi-criterion 

evaluation procedure follows the steps described above: 

 

 1
st

 step: Lower-bound determination 

 
To reduce the search space and to characterize the feasible solution limits, we determine a lower-bound for 

each criterion. In our situation, the lower-bound values represent the five optimization criteria considering the 

normal traffic conditions. 

 

 2
nd

 step: Fuzzification 

 
In order to erase the influence of the difference between the units of different criteria, a fuzzy logic application is 

adopted (30) (50). Then, the quality of each solution is measured by the combination of the different scores of 

criteria. These scores are homogeneous and without dimension, and their values lie between 0 and 1. 

 

 3
rd

 step: Fuzzy evaluation 

 
It is widely acknowledged that the classical operators, such as the Ordered Weighted Averaging Operators 

(OWA), used to aggregate criteria suffer from some drawbacks. Although these operators are simple to inter-

pret, they are not able to consider the interaction between criteria in an understandable manner. The fuzzy 

integrals in general and particularly that of Choquet allow overcoming this disadvantage and representing this 

kind of behavior perfectly (28). As we can not detail all the theoretical aspects of the Choquet Integral, we 

present, in the following, the main concepts used for our evaluation process. However, it is possible to consult 

(28) for more theoretical aspects. 

 

Definition 1: A fuzzy measure m on N (the set of criteria) is a function m : P(N) ! [0; 1], satisfying the two 
 

following conditions:  

µ (ϕ) = 0 (22) 

A  Ϲ B  Ϲ N ⇒ µ(A) ≤ µ (B) (23) 
 

Depending on the aggregation issue, m(A) is defined as the importance or power of the coalition A, where 
 

A presents the group of criteria.  
Definition 2:Let µ be a fuzzy measure on N and a = (a1; ; anc ) be the vector of criteria. The Choquet integral  
Cµ  with respect to µ is determined by: 

 
  

C µ (a1..; anc) = ∑ (ai−ai−1) µ (i,.. nc) (24) 
 

Where a0 = 1 and a1≤…≤ anc. 
 

Grabisch et al. states that ”A difficulty which has slowed down the application of fuzzy measures is its 

exponential complexity, since one has to define a real number for each subset of the set of criteria, and also 
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to find a mean of evaluating these numbers, either by expert elicitation or by optimization” (28). On this basis, 

the case of a 2-additive fuzzy measure is notably interesting. In fact, it is more appropriate to model the 

preference and the interaction between two criteria than between three or more (28). Then, in case of 2-

additive measurements, the Choquet integral formulation, using interaction index for a = (a1; ; anc ), is 

determined as follows: 

0 0 1

1
( ) ( ) ( ) ( )

2
ij ij

n

i j ij i j ij i i ij

I I i j i

C a a a I a a I a I I
 

        
f p

   

                                                                                                                                                         (25)  

Where ai ∈ [0; 1] is the numerical score of criterion i, L and n denote min and max, respectively. 
 

It is clear that the Choquet integral for 2-additive measurements is a combination of a conjunctive, a dis-

junctive and an additive part, indicating respectively the positive interaction indices, negative interaction and 

the Shapley value. This indicates clearly the meaning of Ii j in the framework of the Choquet integral. 

According to Ould Sidi et al. in (64): 
 

1. ”A positive Ii j 

satisfaction of 

has no effect. 

 
indicates a conjunctive behaviour between i and j. This indicates that the simultaneous 

criteria i and j has a significant effect on the overall score, but a unilateral satisfaction 



 

2. A negative Ii j means a disjunctive behaviour, which implies that the satisfaction of either i or j is 

adequate to have a significant effect on the overall score. 
 

3. The Shapley value Ii acts as a weight vector in a weighted arithmetic mean, where ∑Ii = 1. This 

corresponds to the linear part of Choquet integral.” 

 

 4th step: interaction index and Shapley values determination 

 

This step involves calculating the Shapley values and measure the interaction index between criteria 

(coefficients of Choquet integral) necessary to determine the global score of each generated solution. Several 

methods were developed for the determination of these parameters (see (28)). However, in the usual case, the 

decision-maker is supposed to be capable of giving interaction between only two criteria and determining the 

Shapley values by ordering criteria. For the sake of simplicity, we assume that we are in such a case and 

suppose that the system manager can express, quantitatively or qualitatively, his preferences and he can 

determine the interactions index for instance as follows: 
 

 
 TWT TDT TRT TEG TC  

 TWT 0.3 0.15 -0.2 0 0  

 

TDT 0.15 0.3 0.2 0 0 

 

  
  

IIJ=       
(26) 

TRT -0.2 0.2 0.1 -0.1 0.1   
  
 

TEG 0 0 -0.1 0.1 0.05 

 

  

  
 TC 0 0 0.1 0.05 0.2  

 
 
 
 

It is interesting to note that the diagonal values indicate the importance of each criterion where (Iii = Ii), 

while the rest presents the interaction index (Ii j). 

 

 

Thanks to the use of the Choquet integral evaluating method, we can both explore the convex hull and the 

concave hull of the solutions space. In fact, the Choquet Integral integrates the the weighted arithmetic 

method (Ii acts as a weight vector in a weighted arithmetic mean, where ∑Ii = 1) generating solutions that are 

located in the convex hull of the solutions space. In addition, taking into account the conjunctive and the 

disjunctive behaviors between the optimization criteria promotes complementarity between these criteria and 

avoid redundancy. Moreover, the integration of these interactions allows us to explore Pareto solutions that 

located in the concave hull of the solutions space. 

 

5. Simulation results 

 

5.1. The simulation environment 
 



To highlight the merits of optimization for ridesharing management and assess the feasibility of dynamic 

carpooling with detour and transfer concepts, we define a simulation environment that considers a dynamic 

carpooling service in a limited geographic area of the Lille metropolitan region in France, known by its road 

congestion. 
 

The flexibility of the carpooling service is shown in this simulation environment by ensuring the 

transporta-tion of passengers during a disruption of the urban transport network. Indeed, thanks to this 

benchmark dynamic ridesharing can be shown to be an emerging mode of transport complementary to the 

existing multi-modal trans-port network. The goal of our simulation case is to answer the following two 

questions: 

 
 How many rideshare vehicles are needed to absorb disruption? 

 

 Thanks to the carpooling system, how many riders reach their destinations ? 

 

We consider a disturbance, caused by a technical problem, affecting the Metro Line 1 and the bus line 44 

between 7 a.m. and 10 a.m. (Figure 6). The aim is to propose a carpooling service allowing the transport of 

passengers between the different stations affected by the disturbance. 
 

We present here a realistic scenario composed of 20 requests corresponding to 36 passengers with 

different origins and destinations, that present the network stations. Each rider has to express his preferred 

departure and arrival times and the number of passengers who will travel with him. The earliest departure 

among the 20 requests is 6:55 a.m. and the latest arrival time is 9:45 a.m. Table 5 details the requests data for 

the emitted requests. In order to limit the disruption’s evolution, it is indispensable to determine the space-

time horizon of the disruption by identifying the set of stations and vehicles concerned by the detected 

disruption (65). In our case, we have to identify the set of carpooling vehicles operating in the surrounding of 

the yellow line and the green line. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6: Lille’s transportation network 



 
 

Table 5: Requests data  

R
l 

R
l 

R
l 

d
l 

a
l 

Q
l 

R
1 

4 Cantons Republique 06:55 07:15 1 

R2 4 Cantons Marbrerie 08:10 08:25 2 

R
3 

Marbrerie Republique 08:20 08:30 2 

R
4 

HDV Lezennes 08:40 08:50 1 

R
5 

Gambetta Pont de Bois 07:30 08:00 1 

R
6 

Gambetta Pont de Bois 07:25 07:55 2 

R
7 

Gambetta 4 Cantons 07:30 07:55 2 

R
8 

Pont de Bois 4 Cantons 07:40 08:00 1 

R
9 

Wazemmes HDV 08:00 08:20 3 

R10 Moulin d’ASCQ Poste d’Anaappes 07:35 08:00 4 

R11 Pont de Bois Florence 08:00 08:15 2 

R12 Poste d’Anaappes Lardiere 07:15 07:30 2 

R13 Poste d’Anaappes Lille Flandres 07:15 08:00 2 

R14 Baratte 4 Cantons 08:00 09:00 2 

R15 Baratte Lezennes 08:10 08:45 2 

R16 Cite Scientifique Residence 09:05 09:30 2 

R17 Triolo Badouin IX 09:10 09:40 2 

R18 Ascq Village 4 Cantons 08:50 09:35 1 

R19 Badouin IX Cite Scientifique 09:40 09:45 2 

R20 Lardiere Porte des postes 09:25 09:45 2 

 
 
 

5.2. Numerical results and discussion 
 

To illustrate the effectiveness and performance of our system, we present four instances according to the 

number of vehicles in the carpooling network: 5, 10, 15 and 20 vehicles. Given that the carpooling network is 

limited and time windows are close, drivers can cooperate together to serve the maximum of passengers’ 

request. 
 

We note that DyCOS is developed with the JAVA language as a connecting module to a geo-localization 

plat-form called Cartocom (Car). This platform permit to locate drivers and riders in real-time and to 

communicate with them by using their mobile phones. In our case, Cartocom is used to visualize the 

vehicules’ itineraries generated by our DyCOS (Figure 7). 
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Table 6: Test scenarios 

Instances Instance1 : 5vehicles Instance2 : 10vehicles 
       

Scenarios Scenario 1 Scenario 2 Scenario 3 Scenario 1 Scenario 2 Scenario 3 
       

TWT 0,51 0,43 0,63 0,57 0,53 0,52 

TRT 0,48 0,78 0,91 0,89 0,48 0,81 

TDT 0,66 0,56 0,72 0,56 0,44 0,62 

TEG 0,77 0,67 0,53 0,47 0,76 0,43 

TC 0,45 0,71 0,69 0,78 0,46 0,69 

Overall Score 0,921 0,89 0,968 0,62 0,77 0,82 

% Served requests 24% 28% 22% 72% 59% 61% 

% Transfer rate 8,11% 13,10% 11,81% 34,12% 24,3% 19,8 % 

% Detour rate 12,71% 19,12% 13,31% 45,44% 24,56% 36,45% 

Computing Time (s) 8,33 11,22 10,54 17,34 16,32 16,20 
       

Instances Instance3 : 15vehicles Instance4 : 20vehicles 
       

Scenarios Scenario 1 Scenario 2 Scenario 3 Scenario 1 Scenario 2 Scenario 3 
       

TWT 0,80 0,57 0, 52 0,48 0,64 0, 58 

TRT 0,76 0,78 0,81 0,49 0,58 0,75 

TDT 0,45 0,54 0,62 0,45 0,54 0,62 

TEG 0,57 0,77 0,43 0,67 0,77 0,44 

TC 0,73 0,56 0,79 0,73 0,46 0,78 

Overall Score 0,75 0,69 0,72 0,63 0,68 0,66 

% served requests 68% 69% 71% 78 % 91 % 85% 

% Transfer rate 18,65% 19,22% 18,44% 15,33% 21,23% 18,22% 

% Detour rate 23,34% 25,45% 28,33% 14,23% 13,43% 13,55% 

Computing Time (s) 20,31 23,12 21,56 30,14 32,54 31,10 
       

 
 
 

The performance results of our approach are presented in Table 6. The table presents three scenarios for 

each instance: rows 1 to 6 indicate partial score values for different criteria and the overall Choquet score for 

the best carpooling solution generated by the MCMA for each scenario. We note that the best solution for each 

instance corresponds to the solution having the lowest overall Choquet score. Row 7 indicates the percentage 

of served riders’ requests. Among the served requests, row 8 and 9 show respectively the percentage of 

requests which need transfer and detour to reach their final destination. By comparing the different instances, 

the authorization of detour and transfer processes can improve the values of overall Choquet scores and the 

number of served requests over the increase in the number of carpooling vehicles. This means that our 

algorithms is able to make good decisions that are crucial for managing the carpooling matching using a 

minimum of resources (vehicles). 
 

The main goal of our approach is to increase the number of served riders’ requests with a minimum 

number of carpooling vehicles thanks to the best management of detour and transfer options. However, the 



use of transfer and detour processes may increase the waiting time for carpooling users. Ideally, in the transfer 

case, the second vehicle arrives at the transfer node exactly when the first vehicle drops off the rider. 

Unfortunately, our MCMA is an NP-Hard problem, hence, the optimal scenario is difficult to obtain. 

Therefore, we try to generate a good solution in which, the first one to arrive has to wait for the arrival of the 

second one. In the literature, it is remarked that ”if a vehicle (driver) is waiting for some rider at some 

transfer point, then the waiting time will be multiplied by the number of the riders already in the vehicle” 

(31). However, in our approach, in this case, the multiplication of the waiting time by the riders already in the 

vehicle will be added to their route time T RT . This finding is reflected in the compensation between the two 

criteria TW T and T RT promoting the psychological criterion as already mentioned in the 4.2 section. 
 

Table 6 shows the scores of criteria and the rate of served riders’ requests under different numbers of car-

pooling vehicles. Under the best solution generated by the Scenario 1 for 10 vehicles, we notice that the idea 

of the authorization of detour and transfer processes add significant improvement. However, the increase in 

the number of vehicles in circulation on the carpooling network does not necessarily imply a rise in the rate of 

the served requests. This observation has been reported in Table 6, for example, by comparing the percentage 

of served requests in (Instance 2, Scenario 1: 72% ) and in (Instance 3, Scenario 1: 68%). 
 

In addition, by analyzing the results in Table IV, we note that in solution 1 (Instance 2, Scenario 1), the 

effect of compensation between the two criteria TWT (0.57) and TRT (0.89) has not degraded the overall 

score (0.62) compared to solution 2 (Instance 4, Scenario 1) in which we found almost the same overall score 

(0.63) but with different scores of TWT (0.48) and TRT (0.49 ). This result means that the participants show 

more tolerance with respect to the travel time criterion and this enables the use of Choquet Integral 

evaluation. 
 

Moreover, in solution 1, the transfer rate (34,12%)and detour rate (45,44%) are more important than the 

transfer rate (15,33%)and detour rate (14,23%) in solution 2 with almost the same quality of the overall 

Choquet scores and for almost the same number of served riders’ requests. This gives evidence that the idea 

of authorizing detour and transfer processes could be helpful to decrease the number of involved carpooling 

vehicles without effect on the overall score. 
 

Table 6 also indicates the computing time of MCMA for the different simulation instants. It is obvious that 

the growth size of search space increases the temporal complexity. 

 

Figure 7 shows an example of carpooling network which belongs to the disturbance zone of the multi-

modal transport network and presents results of some drivers’ trips considering our best solution generated by 

the MCMA. In this example, we consider two vehicles V 
1
 and V 

2
 and six riders, four of them are located by 

the Cartocom platform at the circle C1 and two of them are located at the circle C3. According to the ride 

matching generated by our MCMA, the vehicle V 
1
 arrives at the circle C1 to pick up the four riders. Then, 

drivers meet at the transfer point (C2) to exchange riders. In this point, V 
1
 will drop off tow riders who will 

be picked up by the vehicle V 
2
 thanks to the transfer process. After that, the vehicle V 

2
 continues its itinerary 

and makes a detour at the C3 circle to pick up the two other passengers, triggering off the aspiration concept 

of our Tabu algorithm. 



 
In order to evaluate the performance of our approach, especially compared to other ridematching methods, 

we draw comparisons between our MCMA and a well knowen algorithm named FCGA (32) in regard to the 

number of served riders and vehicles involved in the carpooling service. The objective is to demonstrate thec 

benefit of the transfer process in terms of flexibility and satisfaction client. We denote that FCGA is the ab-

breviation of Fuzzy Controlled Genetic-based Carpool Problem proposed by Huang et al., in (32). Unlike our 

MCMA, transfer isn’t tolerated in FCGA. Although they operate in different simulation environments, MCMA 

and FCGA have been tested in real-life case studies that consider limited geographical zones. 
 

As shown in Figure 8, thanks to the authorization of transfers and the dynamic establishment of drivers’ 

itineraries, MCMA is able to satisfy a maximum of carpool requests, while involving the minimum of 

resources (vehicles). 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7: Visualization of the vehicles’ itineraries  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 8: A comparative study between MCMA and FCGA 

 



 

6. Conclusion 

 

A dynamic carpooling system has to respond readily to unforeseen events and effectively manage users 

requests, in order to allow its seamless integration with other transport modes and to encourage people to use 

carpooling. In this study of dynamic ridesharing, we have shown that the use of advanced optimization 

methods supported by adequate simulation scenarios leads to the definition of a so-called Dynamic 

Carpooling Optimization System (DyCOS) that has a potential for application in metropolitan areas. Besides 

allowing travel costs savings and CO2 emission limitation, our dynamic carpooling system helps reducing the 

traffic congestion and thereby decreasing system-wide travel times. To achieve these objectives, we propose 

the application of an original Tabu Search optimization method. The developed algorithm generates dynamic 

and optimal assignments vehicle/passenger. Simulation results on real data from the Lille metropolitan area in 

northern France show that the idea of the authorization of detour and transfer processes add significant 

improvement. 

However, given the complexity of the dynamic ridematching problem with detour and transfer, the goal is 

in the first place to verify the feasibility of our resolution approach. In a future step, we plan to implement 

other methodologies of the literature such as MOPSO, NSGA III, MOGW O, MOWCA, and MOSFS 

(commonly used algorithms for multi-objective optimization), using our mathematical model and make other 

comparisons. 

In addition, the DyCOS complexity constitutes a handicap for performing an efficient process. 

Subsequently, this problem can be subdivided into diverse less complex sub-problems. Therefore, in future 

studies, we intend to investigate the network’s subdivision in coordination with a Multi-Agent approach to 

emphasize the decen-tralized parallel process and to give substance to the distributed aspect of the problem. 

Finally, we believe that developing a successful information system in relation to situational factors which 

affect the relationship between users, such as e.g. attaching attributes to riders and drivers, provides a valuable 

area of future research. 
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