
Kinodynamic Planning for an Energy-Efficient Autonomous

Ornithopter
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Abstract

This paper presents a novel algorithm to plan energy-efficient trajectories for autonomous ornithopters.
In general, trajectory optimization is quite a relevant problem for practical applications with Unmanned
Aerial Vehicles (UAVs). Even though the problem has been well studied for fixed and rotatory-wing
vehicles, there are far fewer works exploring it for flapping-wing UAVs like ornithopters. These are of
interest for many applications where long flight endurance, but also hovering capabilities are required.
We propose an efficient approach to plan ornithopter trajectories that minimize energy consumption by
combining gliding and flapping maneuvers. Our algorithm builds a tree of dynamically feasible trajecto-
ries and applies heuristic search for efficient online planning, using reference curves to guide the search
and prune states. We present computational experiments to analyze and tune key parameters, as well
as a comparison against a recent alternative probabilistic planning, showing best performance. Finally,
we demonstrate how our algorithm can be used for planning perching maneuvers online.

Keywords: Trajectory optimization, ornithopter, heuristics, nonlinear dynamics.

1 Introduction

Unmanned Aerial Vehicles (UAVs) are spreading quite fast for many applications due to their versatility
and autonomy. However, they present two main barriers to reach a wider range of applications: (i) flight
endurance; and (ii) safety during interactions with people and objects in the environment. For instance,
flight endurance is essential in applications like long-range inspection of infrastructures (e.g., power lines).
Conventional multi-rotor UAVs do not achieve competitive flight times for those scenarios; and the use of
fixed-wing UAVs does not solve the problem completely either, as capabilities for Vertical Take-Off and
Landing (VTOL) and hovering in-place are required for accurate inspections.

Additionally, most of the aforementioned platforms are not safe enough to interact with people, due to
their powerful rotor systems, their blades and the hard materials of their airframes. In order to cope with
both issues, endurance and safety, bio-inspired UAVs like flapping-wing vehicles or ornithopters [14, 25, 9, 2]
are of interest. These try to imitate birds flying, as birds can travel long distances efficiently. Thus, the
main objective of GRIFFIN project 1, which is the one inspiring this work, is the design of bio-inspired
flapping-wing UAVs that are able not only to fly but also to perch in order to interact with the environment
through manipulation.

A key aspect for the development of these ornithopters is to make them able to combine efficiently gliding
and flapping phases, as birds do. Gliding allows the UAV to save energy and extend its flight endurance,
but flapping is still necessary to increase altitude and to perform perching operations. Therefore, during the
trajectory planning process, ornithopters should consider when to transition optimally between flapping and
gliding, in order to save as much energy as possible.
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Figure 1: View of our ornithopter prototype.

In general, planning optimal trajectories for autonomous ornithopters is a complicated problem. First,
these types of vehicles present nonlinear and complex dynamics that need to be taken into account when
computing feasible trajectories. Second, the state space should include vehicle’s position, velocities and at-
titude, which are relevant for gliding and perching operations. Due to these complexities, there is a need for
model-based but efficient methods that allow us to compute optimal trajectories with real-time performance.
Some works use numerical methods for model-based trajectory planning [30, 16]. For instance, numerical
solutions of the Navier-Stokes equations have been used [28], but they are too expensive computationally for
real-time implementation. Other approaches use probabilistic motion planners [35, 17] integrating kinody-
namic constraints or evolutionary algorithms [23], but again, tractable models are necessary not to exceed
computational requirements.

Contrary to other related work, in this paper, we propose a novel optimization algorithm for energy-
efficient trajectory planning with an autonomous ornithopter. We envision the use of flapping-wing UAVs
for tasks like surveillance or inspection due to their ability to perform long-endurance flights. Therefore, our
main objective is to compute online trajectories that minimize the energy consumption of the ornithopter.
Those trajectories have to comply with the ornithopter dynamics, being thus flyable. Then, we assume the
existence of lower-level algorithms to control the ornithopter tracking the computed trajectory. For example,
control laws for stable longitudinal and lateral flight with actual flapping-wing UAVs in perching operations
have been proposed [27].

We compute a tree of dynamically feasible trajectories by using a nonlinear model for the ornithopter
motion and applying segmented tail angles and flapping frequencies. The two flight modes of the ornithopter,
i.e., flapping and gliding, are modeled with different aerodynamic coefficients, which implies a more complex
nonlinear model that depends on the flight mode. Then, we run heuristic tree search pursuing optimal
solutions. In order to achieve online planning, computational complexity is alleviated twofold: (i) we propose
an ornithopter model with simplified dynamics, to make it computationally tractable; and (ii) some pruning
operations to reduce the tree search space and keep it bounded. Even though we use in this paper a 2D
model that constraints the ornithopter movement to a longitudinal plane, our algorithm is general and could
be applied to 3D trajectory planning given a proper ornithopter model. Moreover, our heuristic solver finds
approximate solutions with minimal energy consumption, but we also demonstrate the efficacy of those
trajectories regarding final target state achievement.

In summary, our main contributions are the following:

• We propose a dynamic model for the 2D motion of our prototype ornithopter (see Figure 1). The model
is nonlinear and complex, combining the aerodynamic behavior from both gliding and flapping phases.
Nonetheless, we show how the model is computationally tractable for online trajectory planning.

• We contribute with a new tree-based algorithm for the computation of trajectories that minimize
energy consumption and comply with dynamics for the ornithopter. Gliding and flapping operations
are integrated for efficient trajectory planning.
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• Our algorithm can compute online approximated solutions by means of heuristic operations that prune
the tree. We design energy-efficient curves for the ornithopter that guide the tree growth and keep the
number of tree nodes bounded.

• We run extensive computational experiments to analyze our algorithm and tune its key parameters.
Moreover, we demonstrate its performance in comparison with another relevant approach from the
literature and show a special case study for planning perching maneuvers.

The remainder of the paper is organized as follows: Section 2 surveys related work; Section 3 introduces
our trajectory planning problem; Section 4 describes the dynamic model for our ornithopter; Section 5 details
our algorithm for trajectory planning; Section 6 presents computational experiments to select parameters;
Section 7 shows experimental results to better assess the performance of our algorithm; and Section 8
discusses our results and explores future work.

2 Related Work

Generally speaking, motion planning for UAVs is a different problem to ours but somehow related. In the
literature, the terms motion planning and path planning are usually employed indistinctly to refer to the
same problem: given a robot in a workspace with obstacles, find a collision-free path from an initial to a
goal configuration.

Many methods for motion planning make use of the differential flatness of multicopter systems to gen-
erate optimal, continuous-time trajectories represented as polynomials [22, 24, 26]. It can be assured that
those trajectories are dynamically feasible given simplified multicopter dynamics. Others [5, 29] use motion
primitives to discretize the UAV state space into a connected graph. Then, standard graph search algo-
rithms like A* can be used to find efficient solutions through the graph. However, the common assumptions
made by the previous works do not hold for flapping-wing UAVs, where nonlinear, complex dynamics are of
utter importance when planning trajectories. Therefore, instead of exploring motion planning approaches
more tailored to collision avoidance, we focus on trajectory optimization methods able to take into account
nonlinear dynamics in a computationally tractable manner.

In general, the trajectory optimization problem for UAVs consists of finding the sequence of control
inputs that minimizes a certain cost index, such as energy consumption or flight time; but fulfilling at the
same time constraints on the vehicle dynamics. Thus, trajectory planners use the UAV motion equations
(typically differential equations) to provide as output time-indexed variables such as positions, velocities and
accelerations. A survey on trajectory optimization for UAVs can be found in [7].

A common approach for UAV trajectory planning are numerical methods. In particular, these methods
can be classified into direct and indirect methods. Direct methods rely on discretizing an infinite-dimensional
optimization problem into a finite-dimensional problem, to apply then nonlinear programming solvers [30].
Indirect methods do the opposite, they first determine optimal control necessary conditions for the problem,
and then use a discretization method to solve resulting equations [4]. For instance, [10] propose a discrete-
time optimization method (with fixed time-step) for ornithopter trajectory optimization, where the objective
is minimizing travelled distance. Another discrete numerical framework for solving constrained optimization
problems using gradient-based methods is presented in [34]. The technique is applied to energetically optimal
flapping using frequency and pitching/heaving trajectories as optimization parameters. A longitudinal model
for the dynamics of a bat-like prototype has also been proposed recently [16]. The authors use that model
with direct collocation to plan dynamically feasible trajectories in simulation and track them with their
actual prototype. The objective is reducing control efforts by minimizing accelerations. The main concern
with these numerical methods is that they can face computational and convergence issues for highly nonlinear
problems, as the one addressed in this paper. This makes them less suitable for online trajectory planning.

An alternative approach to numerical methods are probabilistic planners like Probabilistic Road-Maps
(PRM) or Rapidly-exploring Random Trees (RRT). These algorithms are able to tackle high-dimensional
planning problems in reasonable computation time by increasingly sampling the state space. Besides, they
are probabilistically complete, i.e., they converge to a solution (if it exist) with probability approaching 1.
There are also versions like RRT* [18] that achieve optimal solutions in the same asymptotically manner.
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Algorithms based on RRT* build a tree by connecting the samples from the state space through optimal
trajectories (i.e., solving the two-point boundary value problem). However, computing feasible trajectories
for kinodynamic systems is an issue. Some works have extended RRT* focusing on simple specific instances
of kinodynamic systems [17]. In [35], for example, they propose a kinodynamic RRT* that can cope with any
system with controllable linear dynamics. They even apply the algorithm to nonlinear dynamics through
linearization, but without convergence guarantees.

Other probabilistic methods deal with nonlinear systems more specifically. For instance, connecting tree
nodes using trajectories based on splines that are optimized via a nonlinear program solver [31]. Conversely,
there exists the alternative of using exclusively control sampling to handle dynamic constraints, rather than
resorting to a numerical two-point boundary value problem solver. This approach is followed by the variants
Stable-Sparse RRT* [19] and AO-RRT [15]. Convergence is not proven for any of these RRT* modifications.
Moreover, the aforementioned probabilistic planners try to be generic solvers. Contrary to that, we propose
problem-specific heuristics that allow us to guide more quickly the search of energy-efficient trajectories for
an ornithopter.

3 Problem Description

In this section, we introduce the optimization problem to solve in order to plan trajectories with an au-
tonomous ornithopter, as well as the main assumptions we made.

We assume that we have an autonomous ornithopter with a known model of its dynamics. Then, we are
interested in planning optimal trajectories to navigate the ornithopter from an initial to a target state. This
means to compute the sequence of control actions that produces a trajectory connecting the two given states
that: (i) is dynamically feasible; and (ii) minimizes the total energy consumed by the ornithopter. This can
be done by combining flapping and gliding maneuvers. Moreover, we assume that the UAV is flying in an
open space and, hence, we do not consider collisions with obstacles.

More specifically, let us define the states and control maneuvers for our problem:

Definition 3.1. (Flight state) A flight state s = (x, z, u, w, θ, q) describes an ornithopter configuration in a
given instant of time, where x and z are the positional values in the plane XZ of the Earth reference frame,
u and w are velocity components in the body reference frame, θ is the pitch angle and q is the pitch angular
velocity.

Definition 3.2. (Flight maneuver) A flight maneuver is a control action performed by the ornithopter during
its flight at a given flight state. We consider two degrees of freedom to define flight maneuvers: tail deflection,
determined by the deflection angle δ (up and down); and wing flapping, determined by the flapping frequency
f (including zero value for gliding).

According to the previous definitions, a trajectory consists of a sequence of interleaved flight states and
flight maneuvers. Our trajectory planning problem is constrained to a 2D movement (XZ plane), as we use
a longitudinal motion model for the ornithopter 2. In particular, we define the Earth reference frame as a
global frame with the Z axis (pointing downwards) representing the ornithopter altitude and the X axis its
longitudinal motion. We also define a body reference frame attached to the ornithopter with Xb pointing
forward and Zb downwards. Both reference frames, together with the state and control variables are depicted
in Figure 2. Finally, we made some additional assumptions to simplify the ornithopter dynamics and derive
its model: (i) we use the hypothesis of punctual mass; (ii) we assume small flapping amplitudes and thin
airfoils to model aerodynamics; and (iii) we consider the aerodynamics centers to be in a fixed position, as
movements are of small amplitude.

4 Ornithopter Dynamic Model

We describe in this section a motion model based on the one defined in [21], and specifically developed for
bio-inspired, flapping-wing UAVs. The model is used to describe longitudinal motion of our ornithopter
prototype.

2Note that our trajectory planning method could be applied to 3D as long as there were a complete 3D motion model for
the ornithopter.
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Figure 2: Schematics of the ornithopter with the forces acting on it. Axis XZ represents the Earth frame;
axis X ′Z ′ a translation of the Earth frame; and axis XbZb the body frame.

4.1 Non-dimensional Newton-Euler equations

The Newton–Euler equations describe the combined translation and rotational dynamics of a rigid body,
considering all existing forces. For a flapping-wing UAV as the one in Figure 2, the equations can be
described as follows:

2Mdu

dt
= U2

b [(CL + ΛCLt) sinα

+ (CT − CD − Li− ΛCDt) cosα]

− sin θ − 2Mqw (1)

2Mdw

dt
= U2

b [−(CL + ΛCLt) cosα

+ (CT − CD − Li− ΛCDt) sinα]

+ cos θ + 2Mqu (2)

1

χU2
b

dq

dt
= CL cos(α)− (CT − CD) sin(α)

+ LΛ[CLt cos(α) + CDt sin(α)]

−RHL[CL sin(α) + (CT − CD) cos(α)] (3)

dθ

dt
= q, (4)

where α is the angle of attack, defined as α = arctan(w/u), and Ub =
√
u2 + w2 the velocity module. M, χ,

Λ, L and RHL are characteristic non-dimensional parameters of the UAV. These parameters are obtained
by scaling the variables with the characteristic speed, length and time:

Uc =

√
2mg

ρS
, Lc =

c

2
, tc =

√
ρSc2

8mg
, (5)

where m is the mass of the UAV, ρ the air density, S the wing surface, c the mean aerodynamic chord and
g the gravity acceleration.

Figure 2 shows the forces acting on the vehicle, as well as the representative variables and reference
frames used. In particular, L, T and D represent the lift, thrust and drag forces due to the wings; Lt and
Dt the lift and drag from the tail; and Db the drag due to body friction. All these forces are considered in
Equations (1)-(4) by means of the non-dimensional aerodynamic coefficients: CL, CT and CD for the wing;
CLt and CDt for the tail; and Li for the body. Li = Sb

S CDb is the Lighthill’s number, with Sb the body
surface and CDb its friction drag coefficient. Section 4.2 explains how to compute the rest of coefficients for
the aerodynamic forces of the wing and the tail.
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4.2 Aerodynamic models

First, let us concentrate on the computation of the lift and thrust forces from the wings. Our model considers
two modes of flight for the ornithopter: flapping and gliding; and the computation of the aerodynamic
coefficients differs from one to another. In both cases, we make approximations assuming very thin airfoils.
For gliding, the Prandtl’s lifting line theory, combined with unsteady aerodynamic terms is used. For flapping,
the Theodorsen solution [32] defines the lift provided a wing movement with the form h(t) = h0 cos (2πft)/2,
being h the vertical position of the reference wing chord during the flapping movement and h0 the movement
amplitude. In order to model the existing thrust (only existing in flapping mode), we use the Garrick
coefficient [13] corrected by [11, 12]. Moreover, we consider finite wing effects by making aspect ratio
corrections based on [3], which leads to:

CLglide
= 2π

[
α+

(
1.5α̇− 2lw

c q

Ub

)]
A

A+ 2
(6)

CLflap
= 2π{(kh0) [G(k) cos 2πft

+ F (k) sin (2πft)] + α} A
A+ 2

+ πk2h0 cos (2πft)
A

A+ 1
(7)

CTflap
= 4 (kh0)

2
sin (2πft)[F1(k) cos (2πft)

−G1(k) sin (2πft)]
A

A+ 2
− αCLflap

, (8)

whereA is the aspect ratio of the wing, given byA = b2/S, being b the wingspan and S the surface. lw is
the distance between the center of gravity and the aerodynamic center of the wing, being positive when the
center of gravity is behind the wing. k = 2πf/Ub is the reduced frequency; F (k) and G(k) are the real and
imaginary parts of the Theodorsen’s function C(k); and F1(k) and G1(k) are the real and imaginary parts
of the function C1(k) defined in [11].

Regarding the lift force generated by the tail, as our bio-inspired design leads to triangular surfaces [33],
we use an approximation for delta wings:

CLt
=
πAt

2

[
(1−εα)α+δ+

(
1.5α̇− 2lt

c q

Ub

)]
, (9)

where δ is the deflection angle of the tail; εα models the interference caused by the wing; andAt and lt are,
respectively, the aspect ratio of the tail and the distance between the center of gravity and the aerodynamic
center of the wing, being defined in the same manner as it was for the wing. In order to consider near stall
effects, we saturate all lift coefficients (CL and CLt

) for angles greater than 10o for the wing and 25o for the
tail.

Finally, we model the drags from wings and tail, CD and CDt, as the addition of constant friction drags,
CD0 and CD0t, and induced drags, provided by:

CDi =
C2
L

πA
, CDit

=
C2
Lt

πAt
. (10)

5 Ornithopter Segmentation-based Planning Approach

In this section, we present our method to solve the problem stated in Section 3, i.e., to plan optimal
trajectories for an ornithopter that are both dynamically feasible and energy-efficient. As discussed in
Section 2, there exist in the literature numerical optimization solvers that can deal with nonlinear systems.
They obtain dynamically feasible trajectories by discretizing and integrating the model dynamics, but can
suffer from computational complexity and convergence issues for highly nonlinear models. Graph-based
approaches are an alternative, where a graph with discrete, connected states is built in order to search for
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Figure 3: Segmentation of the ornithopter motion for a landing trajectory. Top view, sequence of flight states
followed by a real bird. Bottom view, trajectory computed by our method, with three consecutive maneuvers
for 250 meters before landing. The trajectory connects the flight states by integrating the dynamic model.

optimal trajectories. In particular, probabilistic planners [18] sample the state space increasingly to build
these graphs. If the objective is to generate trajectories that are dynamically feasible, the method must
ensure that the sampled states are reachable, which can be complex for nonlinear systems.

In this paper, we propose a novel graph-based approach that builds a tree to search for energy-efficient
trajectories. Instead of taking random samples from the state space, we segment the ornithopter’s actions
and integrate its dynamics to generate and connect feasible states, which can later become nodes of the tree.
We named our algorithm OSPA, which stands for Ornithopter Segmentation-based Planning Approach.

The general idea is as follows. In our approach, we consider a discrete set M with the possible flight
maneuvers for the ornithopter. Then, given a fixed time step ts and an initial state, we generate a discrete
set of reachable flight states by integrating the ornithopter dynamics for time ts and for each maneuver
in M . Doing that iteratively, we build a tree T whose vertices or nodes are flight states and each edge
has associated the corresponding maneuver to navigate from one state (node) to the next one. Moreover,
each edge has also associated the energy consumed by the corresponding maneuver to transition between its
vertices. We store at each vertex state the energy consumption to reach it from the initial state. The final
goal is to find a path τ through the tree T that connects the initial and target states and minimizes the total
energy required by the ornithopter. Figure 3 illustrates an example on how to segment the trajectory of
an ornithopter and the resulting flight states. A landing operation is achieved by a maneuver with flapping
involved, followed by two different maneuvers where the ornithopter is only gliding.

Algorithm 1 provides an overview of the procedure followed by OSPA. The algorithm receives as input:

• the initial and final states s0 and sf , respectively;

• the discrete set of maneuvers M ;

• the time step ts;

• pruning parameters kd and kw.

The set M is generated by combining a discrete set of flapping frequencies with a discrete set of tail angles,
i.e., M = D × F = {(δ, f) | δ ∈ D ∧ f ∈ F}. The initial state is inserted as the tree’s root. Then, at each
iteration, all leaf states are expanded with all possible maneuvers. Given a state si, a flight maneuver defined
by tail angle δ and frequency f , and a time step ts, the function ODE(si, δ, f, ts) integrates the equations
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in Section 4 for time ts to produce a flight state that becomes a new node of the tree. The states that are
eventually inserted into the tree are decided according to two pruning procedures that will be detailed in
Section 5.1.

Algorithm 1: OSPA

Input : (s0, sf ,M, ts, kd, kw)
Output: τ∗

1 tree← Tree()

2 tree.root← s0
3 leaves← GetLeaves(tree)
4 corridor ← GetCorridor(s0,sf)
5 while leaves.length > 0 do
6 states← List()

7 for si in leaves do
8 for (δ, f) in M do
9 s′ ← ODE(si, δ, f, ts)

10 if GetDist(corridor, s′) ≤ kd and s′.x ≤ sf .x then
11 s′.parent← si
12 states.Add(s′)

13 end

14 end
15 partitions← GetPartitions(states,kw)
16 for c in partitions do
17 s∗ ← GetOptimalState(c)
18 si ← s∗.parent
19 si.AddChild(s∗)

20 end
21 leaves← GetLeaves(tree)

22 end
23 τ∗ ← SearchOptimalPath(tree, sf)
24 return τ∗

We assume that the ornithopter has forward motion in the XZ plane, so the method generates states
with increasing X-axis values between time steps. The tree computation ends when all reached states have
greater X-axis value than the final state sf . In that case, the best sequence of maneuvers is returned and
the algorithm terminates. This is done by the function SearchOptimalPath(), that computes the tree path
τ∗ with minimum energy consumption. The last node of the solution τ∗ is chosen as the one with lowest
energy consumption among those within a tolerance distance to sf that is set by the user.

OSPA searches for optimal trajectories in terms of energy, and hence, whenever a new node is added, the
algorithm computes and stores the accumulated energy at that node. In order to model the energy consumed
by the ornithopter performing a certain maneuver for a time step ts, we use the following formula:

E = ts(Kaerof
3 + cr). (11)

The first term represents the dominant energy consumption, which is due to flapping wings. Using
equations in Section 4 with some simplifications 3, it can be proven that this consumption is proportional
to the cube of the flapping frequency, with a constant coefficient Kaero that depends on several physical
characteristics of the ornithopter, such as the wings’ profile, their inertia and their movement amplitude.
However, as modelling all those effects precisely is complicated, we opted for estimating the value of Kaero

empirically 4. The second term models the residual energy consumption cr when the ornithopter is not
flapping, mainly due to the onboard electronics. During gliding, we measured empirically for our ornithopter

3Due to space limitations, we do not reproduce here the tedious proof.
4All the experiments in this paper used a value Kaero = 2.5W/Hz3, obtained empirically for our ornithopter prototype.
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that the cost of moving the tail was negligible compared to the average electronics consumption. Therefore,
we consider the cost cr constant 5. As expected, it is important to note that Equation 11 indicates that the
main energy consumption is produced by flapping maneuvers. For gliding, the energy efficiency is related
with the temporal length of the maneuver.

Let us now analyze the size of the tree T generated by our method. If we have |M | = |D| × |F | = m
different maneuvers that can be selected at each iteration, the whole tree construction without pruning
operations takes O(hrm) time, where h is the tree height 6 and r is the average time needed by the integrator
ODE(). Note that the height h depends on the time step ts; the smaller ts, the larger the tree will be to reach
the final state. Our OSPA algorithm can achieve energy-efficient trajectories if we take values of the time
step short enough and use enough number of maneuvers. However, the computational complexity increases
exponentially with the number of maneuvers, and a more reduced set of states may be enough to achieve
competitive approximate solutions to the final state. Therefore, in the next section we propose two pruning
procedures which alleviate the computational cost of the algorithm and yield an efficient planner for short
and medium distance flights.

5.1 Tree reduction

OSPA includes two specific procedures to reduce the tree size and speed up the algorithm. First, we reduce
the original tree T to a pruned tree T ′ that only keeps nodes whose position is close to a hypothetical
optimal trajectory P∗. This pruning operation relies on the idea that the tree T ′ will produce optimal
solutions similar to those in T , as long as the pruned nodes are not in the vicinity of P∗. In principle, this
optimal trajectory is unknown, but we propose a parametric curve to estimate P∗ that acts as guide in
the tree pruning. Second, considering many states that are very close in the tree may lead to redundant
calculation of similar trajectories. This fact motivates our second procedure to reduce further the tree size,
where we obtain a new tree T ′′ by creating partitions with the nodes in T ′ and keeping only a witness node
for each partition. Note that our pruning procedures assume that there is an optimal trajectory P∗ which
has robust clearance, that is, the nodes in T ′′ are enough to compute a near optimal trajectory. We support
this assumption experimentally in Section 6.

Figure 4 shows an example of an original tree T and the effect of applying our pruning operations to
obtain the trees T ′ and T ′′. Note that, some of the leaves in T ′′ are still irrelevant flight states for a suitable
solution since they are far away from the final state. This is why OSPA only considers for last state selection
those within a desired tolerance distance to the target. In the following, we elaborate on our two pruning
operations to perform the incremental construction of T ′′.

5.1.1 First pruning operation: the corridor

The first procedure to prune the tree consists of imposing physical constraints on the admissible trajectories.
Thus, we speed up operations in OSPA but also avoid pathological states that would be unlikely. More
precisely, we define a corridor region C connecting the initial and final states and only consider tree nodes
within that corridor, discarding those out of the corridor. The key idea is building C in such a manner that
the (unknown) optimal trajectory P∗ is likely to lie within that corridor.

We generate the corridor C as follows. First, we take a parametric curve on the XZ plane that connects
the initial and final states, and adjust its parameters so that the curve is likely to resemble the optimal
trajectory P∗. Let this reference curve be denoted as P̂∗, then C is defined as the region of points in the XZ
plane whose minimum Euclidean distance to P̂∗ is not greater than kd. Thus, the tree T ′ results from pruning
all nodes in the original T that are out of C. Figure 4b illustrates an example for a line segment P̂∗ connecting
the initial and final states. Moreover, the functions GetCorridor() and GetDist() in Algorithm 1 compute
the corridor C and the minimum Euclidean distance of a flight state to P̂∗, respectively.

Recall that the actual optimal P∗ is unknown, but we need a fairly reasonable estimation P̂∗ so that
OSPA finds solutions that are close to the optimum. An option to learn those curves would be a totally
bio-inspired approach, i.e., observing bird flights in order to copy the type of curves they follow; as they are
assumed to be energy-efficient. This would require gathering large datasets which are not easy to obtain

5We estimated empirically an upper bound of cr = 5W .
6The height of T is the maximum distance (number of edges) from the root to any node in T .
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s0 sf

(a) Example of an exhaustive tree T considering 4 ma-
neuvers. Nodes are represented as positional values in
the XZ plane.

s0 sf

kd

(b) Tree T ′ after applying to T the pruning operation
based on corridor. kd is the width or clearance of the
corridor.

s0 sf

(c) Tree T ′′ after applying to T ′ the pruning operation
based on witnesses. kw = 5 is the upper bound on the
number of considered partitions at each step (the last
layer of leaves is not pruned).

Figure 4: Overview of the pruning operations in our OSPA algorithm.

in general, so we followed a different empirical strategy to design our reference curves. Particularly, we ran
extensive computational experiments in different situations, using our algorithm OSPA without pruning to
compute the trajectories with lowest energy consumption. Then, we observed that trigonometric curves
were well suited to these optimal trajectories. Therefore, we build our reference curve P̂∗ as a special
type of trigonometric curve that connects the initial and final states, and assume that it is a fairly good
approximation of the actual optimal trajectory. The procedure to compute and adjust these reference curves
is further detailed in Section 6.2.

5.1.2 Second pruning operation: witness states

Our second procedure to prune the tree focuses on preventing redundancy in order to improve further the
time complexity, but without degrading significantly the solution quality. The idea is the following. Note
that at each tree expansion step, neighboring nodes generate M new flight states each, and some of them
may be similar. Indeed, the density of close states will grow as the tree height increases (see example in
Figure 4a). Therefore, we implement a simple partitioning technique to group close nodes and select only the
best ones. At each iteration of the tree building process, we take all new leaf nodes generated and partition
them into kw disjoint subsets. Since nodes at the same tree level present more significant differences in the
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Parameter Interval

δ [−6, 0]◦

f [0, 6] Hz
ts [8, 20] s
kd [10, 25] m
kw [10, 40]

Table 1: Intervals used for the parameter values in the tuning experiments.

vertical coordinate than in the horizontal one, the z coordinate is used to order leaves and split them into
kw equally separated sets. This is done by function GetPartitions() in Algorithm 1. As all nodes in each
partition will represent close flight states, we keep alive only a witness node for each partition, throwing
away the rest. Since we search for energy efficiency, the selected witness nodes are those with minimum
accumulated energy (function GetOptimalState() in Algorithm 1). Figure 4c illustrates an example of this
pruning operation.

Finally, note that this witness pruning operation alleviates considerably the computational complexity of
OSPA, as the number of leaf nodes inserted at each iteration of Algorithm 1 is bounded. More specifically,
the original computation time to build the tree O(hrm) is reduced to O(hkwm(r + log (kwm)), which is
almost linear in the number of maneuvers. The second term in the time complexity is due to the leaves
ordering in z performed by GetPartitions().

6 Selection of Parameters

In this section, we describe a series of computational experiments to analyze the effects of the key parameters
in OSPA. We aim to obtain the most appropriate values for: the time step ts, the reference curve P̂∗, the set
of maneuvers M , the threshold kd to compute the corridor C and the parameter kw to create partitions. All
experiments were run with a version of OSPA coded in Python 3.7 7, on a CPU with a 1.60 GHz processor
and 8 GB RAM. We used the odeint module from the SciPy library for numerical integration.

Table 1 shows the parameter intervals used for all experiments. We consider a discrete set M of maneuvers
that results from the combination of 7 tail angles uniformly selected between the bounds in Table 1 and the
frequency values {0, 4, 5, 6} Hz, hence |M | = 28. These frequency values were selected to provide positive
net thrust and consider the mechanical engine limitations of our ornithopter prototype. The interval for tail
deflections was selected to ensure that the ornithopter flies without reaching aerodynamic stall, which would
not be interesting in general flight conditions.

M Λ L RHL χ
6.85 0.278 −15.5 1.92 0.0132

CD0 CD0t A At Li
0.018 0.021 4.44 2.35 0.0051

Table 2: Values for the dimensionless characteristic parameters of the ornithopter.

Uc Lc tc
4.26 m/s 0.135 m 0.0317 s

Table 3: Values for the characteristic dimensions.

In all experiments, we used the physical properties of our actual prototype in Figure 1 to determine
the parameters of the dynamic model from Section 4. Table 2 depicts the characteristic dimensionless

7The code is available at https://github.com/fragnarxx/kinodynamic-planning.
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Figure 5: Performance results varying the time step ts. Average values over 80 experiments are shown for
the computation time, the accuracy w.r.t. the target state (∆) and the solution energy (E). Values are
scaled to the [0, 1] interval.

parameters, while Table 3 depicts the characteristic dimensions of the problem. Finally, we built the same
set of 80 scenarios for all experiments, with the ornithopter starting at (0, 0) position in the XZ plane, and
0◦ for the initial and final pitch angles. The final state positions are taken from a uniform grid within the
rectangle R = {(x, z) : 200 ≤ x ≤ 250,−20 ≤ z ≤ 100}. Recall that positive and negative values for z mean
descending and ascending, respectively.

6.1 Time step

The first critical parameter in OSPA is the time step ts, as it affects the computation time, as well as the
quality of the solution. In order to select an adequate value for the parameter, we ran OSPA at the 80
experimental instances using the set of maneuvers M and varying the value of ts. Figure 5 shows average
results as ts increases. In particular, we consider three metrics: the computation time to plan a trajectory, the
total energy E consumed throughout the trajectory and the accuracy ∆, defined as the Euclidean distance
between the last node of the trajectory and the target (recall that the nodes are vectors including positions,
angles and velocities). As expected, smaller values of ts yield a larger computation time, but a higher
accuracy, decreasing the error w.r.t. the target. According to this trend, we selected a value of ts = 12 s as
a trade-off solution, since it favors energy consumption but at the same time produces acceptable accuracy
values.

6.2 Reference curve

In this section we describe the empirical process to design the reference curve P̂∗ in OSPA. Recall that this
curve is used to define a corridor C that guides the tree search. As we prune all states with distance greater
than kd from the reference curve, we should select a curve that is as close as possible to the typical waypoints
in optimal trajectories. For that, we ran the 80 experiments obtaining optimal trajectories using OSPA with
ts = 12 s and the set of maneuvers M , without pruning operations.

As a first option, we attempted a simple straight line connecting the origin and the target point. Then,
we measured the Maximum Error (ME) and the Root Squared Mean Error (RSME) between the waypoints
obtained in the trajectories computed by OSPA and the straight line, obtaining the average values 15.40 m
and 9.24 m, respectively. However, we observed from our results that trigonometric curves were well suited
to the trajectories generated in the experiments. Therefore, we built our reference curve P̂∗ as a scaled
cosine connecting the initial and final states. The formula for this curve depends on the distance between
the initial (x0, z0) and final (xf , zf ) positions. Provided that xd = xf − x0 and zd = zf − z0, the formula for
the proposed reference curve is:
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(bottom). The corresponding corridor C is also shown for kd = 12.
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Figure 6 depicts examples of this reference curve and the corridors, resembling typical optimal trajectories
obtained with our ornithopter model. Moreover, we computed the ME and RMSE metrics for our 80
experiments, obtaining the average values 15.30 m and 8.92 m, respectively. As expected, we determine that
our trigonometric choice of reference curve is also closer to optimal trajectories than straight lines, and we
use it in the remaining experiments.

6.3 Study of maneuvers

We defined already a set of maneuvers (|M | = 28) that make sense from the physical point of view of our
ornithopter to plan trajectories. However, as it was explained in Section 5, the number of maneuvers affects
highly the computation time of OSPA. Therefore, we perform in this section a statistical analysis to find
out which maneuvers are really more useful, with the purpose of further reducing the final set. For this
study, according to our previous time step analysis, we fixed ts = 12 s. Then, we ran OSPA (without
pruning operations) at the 80 scenarios to find optimal trajectories. We can compute the occurrence rate of
a maneuver as follows:

ξ(mi) = ni/|n∗|, (13)

where ni is the number of times that maneuver mi was selected in any of the optimal solutions and n∗

is the total count of maneuvers in all optimal solutions. Larger values of ξ indicate that the maneuver is
commonly used, while lower values correspond to rarely used maneuvers. Therefore, we select our reduced
set of maneuvers Mr by defining a threshold value ξ∗ and removing maneuvers with lower occurrence rate,
i.e., Mr = {mi : mi ∈M, ξ(mi) ≥ ξ∗}.

We tested different values of ξ∗ to create the subset Mr, and solved again the 80 scenarios with each
Mr. Table 4 depicts average results for the accuracy and energy as ξ∗ increases. The computation time is
not included because it is not representative (the experiment uses the whole set of maneuvers M without
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ξ∗ |Mr| ∆ E (W )

0 28 = |M | 0.49± 0.06 3979± 343
0.01 23 0.51± 0.07 3693± 298
0.02 17 0.53± 0.07 3393± 317
0.03 10 1.31± 0.08 2268± 254

Table 4: Results with different sets of maneuvers. Average values and deviations over 80 simulations are
shown for the accuracy (∆) and the energy (E).

ξ δ (◦) f (Hz)

0.111 −2 0
0.109 0 4
0.077 0 5
0.076 −3 0
0.074 −6 0
0.072 −5 0
0.057 −4 0
0.053 −1 0
0.053 0 6
0.045 −2 6
0.026 −3 5
0.026 0 0
0.025 −4 4
0.023 −5 4
0.022 −3 4
0.021 −6 4
0.021 −4 5

Table 5: Occurrence rate for all maneuvers included in the selected subset Mr, obtained with threshold
ξ∗ = 0.02.

pruning operations, and hence, it is not efficient). According to the results, we took ξ∗ = 0.02, as it offers
a fairly good trade-off, reducing considerably the set of maneuvers without a great degradation in terms of
energy and accuracy. Table 5 shows the final subset Mr of maneuvers, obtained with the selected threshold
ξ∗ = 0.02. From now on, we will consider this set Mr of maneuvers in all experiments.

6.4 Parameters kd and kw

After having adjusted the time step and the reference curve for OSPA, we tune parameters kd and kw for
the pruning operations. We studied the performance of the algorithm varying the values of these two key
parameters. For that, we ran OSPA in the 80 scenarios, using the maneuvers in set Mr, the reference curve
in Equation 12 and a time step ts = 12 s. We analyzed the average values for accuracy ∆, the energy
consumption and the computation time.

Table 6 depicts the average results of our experiment for some representative values of the parameters.
We tested more values within the intervals in Table 1 but having the same trend, so they are not included for
the sake of brevity. As expected, the larger the values of kd and kw, the more node states are explored, and
the better the quality of the solutions is, both in terms of energy and accuracy. The computation time also
increases though. Depending on the acceptable level of accuracy and the available time budget for OSPA in
a given application, different values of kd and kw could be selected.
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kd, kw ∆ E (W ) Time (s)

10, 15 0.95± 0.06 4400± 495 137± 8
15, 25 1.53± 0.07 4092± 424 239± 14
20, 20 0.56± 0.08 4270± 436 295± 18
25, 35 0.52± 0.08 4590± 447 443± 16

Table 6: Average results and deviations for some representative values of kd (in meters) and kw. Accuracy,
energy and computation time are included.

Steps ∆ E (W ) Time (s)

T1 1.53± 0.07 4092± 424 239± 14
T2 2.01± 0.15 3962± 439 3150± 86
T3 2.22± 0.16 3927± 434 7427± 243

Table 7: Average results and deviations over 80 simulations for the multi-resolution approach with different
sets of time steps.

6.5 Multi-resolution approach

Finally, we performed another computational experiment of interest to test a multi-resolution approach.
OSPA builds a tree generating new states by integrating the system with different maneuvers during a fixed
time step ts. However, as we already discussed, that parameter can be key in different aspects. Thus, we
also attempted a multi-resolution approach, consisting of having a set with several possible values of the
time step instead of a fixed one, i.e., ts ∈ T = {t1, . . . , tn}. At each leaf node, new nodes are generated for
each maneuver using all time steps in T , hence increasing the branching factor and computation time, but
also searching space granularity.

We ran an experiment with the 80 scenarios, using our reference curve in Equation 12 and the reduced
set of maneuvers Mr. We set pruning parameters as kd = 15 m, kw = 25, since they offer a good trade-off
in terms of solution quality and computation time according to Table 6. The multi-resolution approach was
tested with three sets of time step values: T1 = {12 s}, T2 = {11 s, 13 s}, and T3 = {10 s, 12 s, 14 s}. Table 7
shows the average results for the accuracy, the energy consumed and the computation time. Based on the
results, we conclude that multiple time step values can improve the energy value with a slight degradation
in the accuracy ∆. However, the improvement in solution quality is not that significant in comparison with
the outstanding increase in computation time, which made us discard this multi-resolution approach.

7 Experimental Evaluation

This section shows some experimental results to assess the performance of OSPA. First, we compare OSPA
with a probabilistic planner from the literature in order to demonstrate our competitiveness. Then, we
depict results of a special case study to illustrate how OSPA can be applied to plan in real time ornithopter
trajectories for perching.

7.1 Comparison with a sampling approach

We compared the performance of our heuristic-based approach with probabilistic planning approaches, as we
believe that these are the most suitable alternatives in the state of the art to tackle online trajectory planning
for ornithopters. In particular, we selected the recently published method AO-RRT [15], which is, to the best
of our knowledge, one of the most competitive in the literature. Note that we did not compare it with the
purely numerical methods (direct and indirect) for trajectory optimization mentioned in Section 2 because
their computation times were prohibitive due to the highly nonlinear dynamic model of our ornithopter.

AO-RRT is an approach to adapt the RRT* probabilistic planner [20] to cope with nonlinear dynamics
constraints. As the classical RRT*, AO-RRT receives as input an initial state and samples the state space
randomly, in order to generate a tree dynamically feasible that eventually will reach the vicinity of the target
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Figure 7: Sampled waypoints in the tree (grey) and solution (blue) for an example experiment. The square
denotes the tolerance region around the target state.

states. The strategy consists of generating states by integrating numerically the nonlinear system dynamics
using control inputs randomly selected. The algorithm stops when a computation time limit is reached and
takes as solution a path toward the target state that minimizes a given objective function. In particular, we
adapted the original AO-RRT 8 to use our ornithopter model and the energy consumption as cost function.
Moreover, we included a modification to sample control inputs from a discrete set. Otherwise, if we let the
algorithm selects frequency values uniformly within the interval [0, 6] Hz, the theoretical probability to pick
f = 0 is zero; which would preclude us from performing gliding maneuvers, increasing significantly energy
consumption. Therefore, we made the algorithm select control frequencies and tail angles randomly from
the discrete set M .

We created a set of 114 simulated scenarios to compare the two approaches. For each simulation, we took
(x0, z0) = (0, 0) as the position of the initial state and selected a target state uniformly within the intervals
x ∈ [200, 250] m and z ∈ [−90, 20] m. Regarding target tolerance, we defined a square of 6-meter side
centered in the chosen target point as the region to consider the goal as reached. The parameters selected
for OSPA were ts = 12 s, kd = 10 m, kw = 15 (to achieve computation times below 200 s) and Mr as the set
of maneuvers. For AO-RRT, we fixed the maximum computation time to 200 s; and we checked that OSPA
was able to run all the simulated scenarios with average time lower than 200 s. Another relevant parameter
for AO-RRT was the time step between each new control action, as we realized it affected results in several
manners. Therefore, we tested different values in our comparison to make it fairer.

We used two metrics to compare the approaches: the average energy consumption of the solution tra-
jectory over all scenarios; and the precision rate, which is the percentage of cases where a feasible solution
was found within the 6-squared-meter tolerance region. Figure 7 shows the output of one of the simulated
experiments for AO-RRT and OSPA, including the obtained solutions and the sampled waypoints in the
trees. The figure depicts the advantages of the search strategy in OSPA; AO-RRT samples random states
more uniformly distributed in the space, while in OSPA, thanks to the reference curve, states are more con-
centrated around the optimal solution. Figure 8 depicts the resulting metrics for the complete comparison.
It can be seen that the precision rate of OSPA is always greater. Also, OSPA achieves more efficient trajec-
tories in terms of energy. Thus, OSPA outperforms the state-of-the-art AO-RRT algorithm for ornithopter
trajectory optimization.

7.2 A case study: landing for perching

OSPA is thought for ornithopter navigation through short and medium distance flights, and it aims to
optimize energy consumption during operation. For those scenarios, we can compute a trajectory online and
then use nonlinear controllers at high rate for trajectory following. Now, we show a particular case study to
demonstrate how OSPA can also be used for landing maneuvers when the ornithopter is going to perch.

8We used the open-source Python implementation provided by the authors.
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Figure 8: Comparison of energy and precision between OSPA and AO-RRT for different time step values (in
parentheses).

ξ δ (◦) f (Hz)

0.079 −1 0
0.107 −2 0
0.122 −3 0
0.081 −4 0
0.090 −5 0
0.093 −6 0
0.115 0 4
0.057 0 5
0.033 0 6

Table 8: Maneuvers used for perching planning. This set Mp was obtained with a threshold ξ∗ = 0.03.

A perching maneuver was studied analytically in [8], consisting of two phases: a gliding phase (almost
horizontal in this case) and a rapid pitch up to a high angle of attack. The example in Figure 3 shows
various stages of this type of maneuvers. Perching maneuvers entail computing trajectories quite fast, as the
ornithopter has no much time for reaction. Also, it is more relevant to land closer to the target rather than
reducing the energy cost, as perching requires of high accuracy, particularly if the available area for landing
is small. Therefore, we measure in this experiment the Euclidean distance to the target state considering
only position, as vehicle velocities and attitude can be sensitive and may be adjusted by lower-level attitude
controllers at high rate.

We created a set of experiments to test OSPA computing trajectories to a landing spot. Typically, the
initial and target positions should be relatively close and the altitude be descendant. Therefore, we set
the ornithopter initially at the origin of coordinates with zero pitch and the target point at a 10-meter
longitudinal distance with z coordinate ranging between 2 and 5 m. Recall that positive z values mean
descending.

Since we aim at lower computation time when planning perching trajectories, we refine the set of maneu-
vers to apply OSPA. We experimentally selected a new reduced set of maneuvers for perching Mp, focusing
specially on those with particular interest for that operation. To do this, we ran our set of experiments and
selected Mp following the same procedure as in Section 6.3. In particular, we used a probability threshold
ξ∗ = 0.03 and obtained the reduced set Mp shown in Table 8. It can be seen that most of these maneuvers
involve gliding as it was demonstrated in [6] for optimized perching maneuvers.

We set OSPA parameters to ts = 1 s, kd = 2 m and kw = 4. Table 9 shows results for the experiments
performed. It is important to remark that, in all cases, the planning time is around 1 s and the distance
error with respect to the target below 0.05 m. Interestingly, the optimized strategy yielded by OSPA was
similar to the profile showed in Figure 3, i.e., a gliding phase followed by a pitch up with maximum upward
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zf (m) Error (m) Time (s)

2 0.049 1.09
2.5 0.005 1.08
3 0.021 0.98

3.5 0.008 1.10
4 0.042 1.08

4.5 0.017 1.11
5 0.033 0.95

Table 9: Results for perching experiments using OSPA. The final point is located 10 meters away in longi-
tudinal distance, and at different altitudes zf . Distance error to the target position and computational time
are shown.

elevator deflection. This indicates that OSPA can be a valid approach in practice for computing trajectories
to approach a landing area where the ornithopter decides to perch.

8 Discussion and Future Work

This work proposed OSPA, a new algorithm for kinodynamic planning of trajectories for autonomous or-
nithopters. The method is able to compute energy-efficient trajectories in an online fashion, combining
gliding and flapping maneuvers. OSPA builds trees dynamically feasible and runs heuristic search to plan
trajectories. This paradigm can be applied to any dynamic model (we used a nonlinear aerodynamic model
for ornithopters) and different flight types. We demonstrated a proper performance of the algorithm for
medium distance flights of up to 250 m, but also for planning short landing trajectories of up to 10 m. Com-
putation time is suitable for online trajectory planning, achieving solutions for short flights in less than 1 s.
Moreover, our experimental results showed that OSPA outperforms alternative probabilistic kinodynamic
planners both in cost (total energy) and accuracy (distance to the target). An open-source implementation
of OSPA and our benchmarks is available online 9. Notice that our current implementation is written in
Python, so there is still room for improvement with more efficient languages like C.

As future work, we mention some potential extensions for OSPA that we discuss in the following.
Improving heuristic performance: One of the main aspects that affects the performance of the heuristic

search in OSPA is the reference curve, as the algorithm relies on having a good approximation of optimal
curves to guide search. We proposed curves computed empirically, but an open mathematical problem is to
calculate the theoretical reference curve that minimizes the energy consumption for a given model. With
a better estimation of that optimal energy curve, the parameters kd and kw could be reduced to compute
pseudo-optimal trajectories more efficiently.

Planning in dynamic scenarios: OSPA can be used for trajectory planning in dynamic scenarios, recom-
puting trajectories online as the environment changes. Nonetheless, another problem to explore would be
to address scenarios with static or mobile obstacles, not only open spaces. This could be done by combin-
ing state-of-the-art collision avoidance algorithms with OSPA, or integrating some procedure for collision
checking within the planner.

Planning in 3D: In this paper, we considered 2D trajectories for the ornithopter. However, OSPA is not
limited to that, as ornithopter models in 3D could be also used with OSPA to plan 3D trajectories. This is
particularly useful for settings where wind effects on lateral displacement cannot be neglected, and it could
be tackled by considering curvature-constrained trajectories as in [1, 36].

Machine learning methods: These days methods for trajectory planning based on machine learning are
spreading fast. One of the issues is the lack of data of real bird flights in order to imitate their trajectories
with ornithopters. In this sense, OSPA may be helpful to generate artificial bio-inspired datasets with
pseudo-optimal trajectories, which could be used for training alternative machine learning methods.

Experiments with real ornithopter: Finally, we plan to use OSPA to compute trajectories on board our
real ornithopter prototype within the framework of the GRIFFIN project. For that, we will combine the

9https://github.com/fragnarxx/kinodynamic-planning
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planner with nonlinear controllers for flight stabilization and trajectory following.
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