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The in-flight catering industry is a major contributor to food wastage. This
wastage is a direct result of the deliberate overproduction of in-flight meals to protect
against meal shortages and dissatisfied passengers. With the global strive towards
sustainability and the resulting impact of wastage on a company’s corporate image,
in-flight catering companies need a solution that strives to achieve zero waste and a
100% passenger satisfaction level.

This dissertation evaluates the value of combining product substitution and de-
mand uncertainty within an inventory decision-making model as a potential solution
opportunity for the wastage dilemma faced by the in-flight catering industry. The
decision-making model’s purpose is to assist in-flight caterers to make improved de-
cisions regarding the quantity of each meal type to produce for the specific flight
under consideration. The model developed is defined as a stochastic multi-objective
Mixed-Integer Programming (MIP) model with fixed recourse and two-way, stock-
out based, partial consumer-driven (static) product substitution. The model relies
on the output of a forecasting model, that consists of a time-inhomogeneous Markov
Chain and a multiple regression model, to forecast the probability distribution of
a flight’s aggregate meal demand. Due to the lack of available data from public
sources, synthetic data is generated to evaluate the model developed.

The model is compared against three alternative models that lack either demand
uncertainty, product substitution or both to validate the value of including these el-
ements in the decision-making model. The comparison results indicate the inclusion

i



of the passenger load uncertainty improves the model’s average reliability to achieve
a 92% minimum Passenger Satisfaction Level (PSL) with at least 9.2%. Further-
more, it is shown that the stochastic passenger load model produces an average of
2.2 fewer surplus meals per flight instance at the expense of a 3.3% lower reliability
when including the substitution behaviour of passengers. This substitution model’s
superior waste minimisation is attributed to the model’s inherent risk-pooling capa-
bilities, and further analysis shows that the value of product substitution increases
when the model becomes more constrained. It is, therefore, concluded that the value
of product substitution depends on the in-flight caterer’s bias towards maximising
either reliability or performance.

Keywords: in-flight catering, food wastage, product substitution, stochastic
programming, pre-emptive goal programming, time-inhomogeneous Markov Chain,
forecasting, inventory decision-making model, synthetic data.
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Chapter 1

Introduction

In-flight caterers are responsible for producing food and beverages for each passenger
on-board a flight. The meal provided has a dual purpose; not only does it satisfy the
hunger of on-board passengers, but it is also used to distract stressed passengers and
to manage their behaviour (McCool, 1995). Additionally, some airlines use in-flight
catering as part of their competitive strategy due to its positive impact on passenger
satisfaction (Teoh and Singh, 2018). This includes offering various meal types such
as vegetarian and Halal meals. The importance of in-flight catering cannot be denied
but, unfortunately, it is creating a significant sustainability issue due to excessive
waste generation. In 2017, airlines generated 5.7 million tons of cabin waste of which
at least 20% consisted of untouched food and beverages (IATA, 2019).

Food waste is a financial burden for any company and an emerging environmen-
tal and social concern. This statement is especially true in the in-flight catering
industry, where surplus meals must be discarded due to stringent health policies
and legislations. This wastage tends to end up in landfills or at incinerations sites,
resulting in the release of unwanted greenhouse gasses. Furthermore, as mentioned
by Sambo and Hlengwa (2018a), the world is becoming a concrete jungle and food
is increasing in scarcity due to the growing population and the farming industry be-
coming less attractive. Consequently, airlines and in-flight catering companies have
a responsibility to minimise food wastage, especially when considering the rapid
growth of the air transport industry.

The extent of in-flight waste is far-reaching as in-flight catering companies and
airlines worldwide are struggling to maintain acceptable levels of waste. The wastage
dilemma results from the over-catering strategy being followed − caterers tend to
inflate meal orders to mitigate the risk of meal shortages, passenger dissatisfaction
and costly flight delays resulting from inaccurate meal demand predictions. This
meal order inflation leads to high numbers of excess meals that are discarded as
waste. These high quantities of waste negatively impact the corporate image of the
catering company and their ability to attract customers due to the global strive
for sustainability (Lasaridi et al., n d; Teoh and Singh, 2018). Evidently, in-flight
catering companies are faced with two conflicting objectives. The primary objective
is to maximise passenger satisfaction to attract and maintain passenger loyalty.
The secondary objective is to minimise waste resulting from excess in-flight meals
to improve the company’s profitability, competitiveness and corporate image.
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This dissertation recognises the need for an inventory decision-making model
that can determine the most efficient in-flight meal order quantities for a specific
flight under consideration. As a potential solution, this dissertation develops and
investigates an inventory decision making model with uncertain demand and product
substitution.

1.1 The extent of in-flight waste

The limited research available regarding in-flight food waste at international and
South African airlines and airline catering companies are summarised in this section
to emphasise the magnitude of the in-flight food waste issue worldwide. The research
hints at the positive relationship between in-flight waste and demand uncertainty.

1.1.1 International

Thamagasorn and Pharino (2019) analysed a halal food production process at an
airline catering company in Thailand. Based on the results of the study, only 63.0%
of the procured food is used to produce meals served to passengers, 24.3% is kept
as buffer stock, and the remaining 12.7% is wasted during production. The authors
warn that food waste can increase if buffer stock is not managed appropriately. If the
stock is not served to passengers before the use-by date, it must be discarded due to
strict food safety standards and policies. The same holds for surplus meals. As such,
the extent of pre-consumer waste is highly dependent on inventory management
and demand fluctuations. Megodawickrama (2018) agrees with this statement. The
author conducted a similar study at an in-flight catering company in Sri Lanka and
observed a negative linear relationship between pre-consumer food waste and the
daily meal demand. During peak periods, demand is somewhat stable as flights
are frequently fully-booked and the number of meals required is, therefore, close to
the flight’s capacity. Accordingly, over-catering is limited, which leads to less waste
generation. During the observed period, July to October 2017, the daily kitchen
waste fluctuated between 1 200 kg to 2 200 kg.

Li et al. (2003) conducted a post-consumer waste composition analysis of in-flight
services at Cathay Pacific Airways Limited during 1996 to 1997. The study focused
on fully loaded flights with 313 economy class passengers and found that an average
of 160.2 kg of food is wasted on a long-haul flight. Appallingly, this total includes
112.2 kg of untouched food. This wastage could potentially indicate that the meal
supply was greater than the total meal demand. This statement is motivated by the
work of Goto et al. (2004). The authors investigated the meal ordering performance
at Canadian Airlines by studying a single flight over a six month period. In this
study, roughly 75% of the flights were over-catered except when the passenger load
was very low or at maximum capacity. The authors estimated the cost resulting from
these excess meals to be $1.8 million annually. Similar results were also obtained
by Blanca-Alcubilla et al. (2019), who performed a related study on 147 flights that
travelled between November and December in 2016. It was estimated that the total
in-flight waste distribution for a plane landing at the Barajas airport would consist of
23% opened meals and 10% unopened meals. El-Mobaidh et al. (2006) investigated
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in-flight waste for Egypt Airline’s economy class passengers. The authors concluded
that 284 tons of post-consumer food, with an energy potential of 2.56 tera joule,
is thrown away annual. Tofalli et al. (2018) also observed alarmingly high waste
generation.

1.1.2 South Africa

The only literature available regarding food waste at a South African airline catering
company was conducted by Sambo and Hlengwa (2018b). The author used Air Chefs
as a case study to investigate the relationship between post-consumer food waste
and waste management policies within the airline catering industry.

Air Chefs is the wholly-owned catering entity of South African Airways (SAA),
the country’s national carrier airline. The catering company was established in 1986
and grew to be the leading airline catering company in South Africa, supplying 11
million meals annually (South African Airways, 2018). Unfortunately, Air Chefs
has been struggling with food waste issues in the past decade. In 2013, Skiti (2013)
reported on three separate occasions where Air Chefs had thrown away various
food items. On one occasion, 435 cinnamon crumpets, 400 cream coffee cakes,
1 200 mince cannelloni meals, 32 kg halloumi cheese, 1 620 carrot cakes and 14 kg of
mustard beef were dumped in a three-day period. Authorities claimed that the waste
resulted from too much food being ordered, theft, fraud and insufficient inventory
management. The author states that an intervention team was hired to improve the
situation but was dismissed two months thereafter, thereby providing no confidence
that the problems were addressed appropriately. Based on the work of Sambo and
Hlengwa (2018b), the food waste problem is still present. The authors investigated
the quantity and monetary value of post-consumer food waste for all SAA economy
class flights returning to Johannesburg and concluded that, during a four-day period,
food worth R 285 355.10 is wasted. The top five wasted commodities were 4 283
desserts, 4 186 starters, 3 821 frilled rolls, 2 622 yoghurts and 2 396 croissants.

This waste issue is especially alarming considering SAA’s dire financial situation.
SAA has reported financial losses since 2011 and officially entered business rescue in
December 2019 (Daniel, 2021). However, the impact of in-flight food waste stretches
beyond economic consequences. This is explained in the following section.

1.2 The impact of in-flight waste on corporate

sustainability

Society is becoming more fixated on environmental and social concerns. This creates
various obligations and expectations for companies worldwide as their environmental
profile is becoming an essential part of their overall reputation (Lasaridi et al., n
d). As such, to ensure corporate sustainability, companies must consider the full
cost of doing business. Based on the Triple-Bottom Line (TBL) theory, this can be
achieved by focussing on three key performance areas: the company’s actual profit,
and its impact on people and the planet.
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Food waste is common for most businesses operating in the hospitality industry
and, unfortunately, has an adverse effect on the corporate sustainability of these
businesses. Below is a brief description of the impact of food waste on each TBL
performance area:

Profit: Food wastage negatively impacts a company’s profitability. According to
Lasaridi et al. (n d), the profit loss resulting from wastage exceeds the purchase
cost of the food commodities, since caterers will be unable to recover the add-
on costs associated with labour, water, energy and waste disposal throughout
the entire supply chain. Sambo and Hlengwa (2018a) reported a few additional
hidden costs, including opportunity costs, lost material, time and risk and
liability costs. Considering South Africa’s weak economy and the competitive
markets, companies such as SAA cannot afford to throw away resources.

People: In 2015, around 25.2% of South Africa’s citizens lived below the food
poverty line (Maluleke, 2019). The food poverty line refers to the amount of
money a person needs to afford the minimum required daily energy intake. In
2015, this value was as low as R441 per month, yet unaffordable to a quarter
of the country’s citizens. The causes thereof include poverty, food insecurity
and inadequate access to food sources. These causes highlight the immorality
of food wastage. Alarmingly, it is estimated that approximately one-third of
edible food is wasted (Thamagasorn and Pharino, 2019), whilst half would still
be edible (Sambo and Hlengwa, 2018a).

Planet: Most of society is unaware of the adverse consequences of dumping food
waste at landfill sites. Due to its moisture content, various harmful gasses,
such as carbon dioxide (CO2) and methane (CH4), are released into the at-
mosphere. These gasses are known causes of the greenhouse effect. According
to Thamagasorn and Pharino (2019), the environmental consequences of food
waste also includes depletion of soil fertility and the loss of resources such as
land and water. Lasaridi et al. (n d) agree, stating that food waste generates
8% of the global greenhouse gas emissions and consumes 30% of all the water
used by agriculture.

The impact of surplus in-flight meals extends further than food waste. Although
the weight of one meal might be considered negligible, the collective impact thereof
can be significant. It is intuitive that an aircraft’s weight has a drastic influence
on its fuel burn. Some airlines have applied interesting strategies to minimise fuel
cost, including reducing seat thickness, minimising in-flight magazines, removing
meal trays and asking passengers to visit the lavatory before departure to ensure
lighter bladders (Anon., 2018). According to Lynes and Becken (2002), a medium-
sized international airline can annually save roughly USD 500,000 (±R 8.5 million)
in fuel cost alone by removing 100 kg of surplus meals per flight.

Surplus meals also result in the waste of packaging materials. Naturally, the
wastage thereof is an additional expense for any company and will negatively affect
the company’s profitability. The planet is also impacted due to excessive pollution
caused by the production of the packaging unit, as well as the biodegradability issue
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of the materials used. Ultimately, the pollution caused has adverse health effects
on the country’s people. To combat this issue of packaging waste, some companies
are exploring more sustainable options. For instance, a design studio in the United
Kingdom known as PriestmanGoode, designed a partially edible and plastic-free
dinnerware alternative (Leedham, 2020). Their 100% biodegradable concept consists
of coffee ground, algae, banana leaves and crispy wafers. Additionally, Air New
Zealand is testing the use of edible cups known as ‘twicce’ (Bryant, 2019). These cups
are vanilla flavoured and can be used to serve coffee and ice cream. Unfortunately,
these cups can further increase the food wastage issue faced by airlines as excess,
expired and uneaten cups will have to be discarded. It is, therefore, no surprise
that some airlines encourage and award discounts to passengers who bring their
own reusable travel mugs (Kollau, 2019).

In agreement with Sambo and Hlengwa (2018a), waste is undoubtedly unsustain-
able and irresponsible from an economic, social and environmental point of view.
Although the in-flight catering industry is starting to partake in the war on waste,
their focus is mostly set on reducing single-use plastics while food is seen as a dis-
posable commodity. Furthermore, the disposal of food at landfill site is the worst
course of action based on the food waste hierarchy. Given the extent and negative
impact of food waste, it is surprising that this issue has received minimal attention.

1.3 The food waste hierarchy

The food waste hierarchy, depicted in Figure 1.1, is a framework used to identify and
prioritise alternative courses of action to minimise and control food waste. According
to Papargyropoulou et al. (2014), this framework considers the three dimensions of
sustainability, which are identical to the above-mentioned TBL performance areas.

Figure 1.1: The food waste hierarchy and strategies (Adapted from Papargyropoulou
et al. (2014)).
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Currently, it is believed that most in-flight food waste end up in landfill sites.
This disposal method is the least preferred method for waste management. The
recovery and recycle methods are concerned with re-purposing food waste into an-
imal food, composting or to act as a source for energy recovery. Although these
methods are more environmentally friendly and can potentially generate a small
income, they are not considered socially responsible. Consequently, food re-use for
human consumption, such as donations, is ranked higher on the food waste hierar-
chy. Unfortunately, food donations can be problematic for companies, especially in
the airline catering industry. For instance, Air Chefs used to donate surplus food
to various charities but stopped doing so in 2013 due to transparency issues in the
charity selection process (Skiti, 2013). Furthermore, Sambo and Hlengwa (2018a)
explain that food donations can also present a high risk to the company’s reputa-
tion; if the charities do not follow correct food safety procedures and food poisoning
occurred, the catering company might be held liable. The authors also state that
governments tend to avoid food banks as it can reveal poverty and the government’s
inability to create jobs for the country’s people.

Waste prevention has the largest area in the food waste hierarchy as it is un-
doubtedly the most sustainable approach. Therefore, the first course of action should
aim to prevent food waste at the source, such as preventing overproduction. This
approach will be the most beneficial for the in-flight catering industry as the over-
production of in-flight meals is believed to be the primary cause of this industry’s
wastage dilemma. The overproduction of in-flight meals is herewith referred to as
the ‘over-catering strategy ’.

1.4 The over-catering strategy

The in-flight catering industry has unique characteristics differentiating it from the
typical catering industry, such as high production rates, off-site meal production and
the time-sensitivity of order deliveries (McCool, 1995). These characteristics create
additional challenges for in-flight caterers. The most prominent is the on-time de-
livery of meal orders in the exact quantity required for each specific meal type. It is,
therefore, of utmost importance that caterers plan an effective production schedule.

In-flight caterers have to start the planning, procurement and production ahead
of flight departure due to the lengthy nature of the food production process. This is
a challenging task as the number of passengers that will board the flight is unknown
until a few hours, or even minutes, before flight departure (Hasachoo and Masuchun,
2016; Megodawickrama, 2018). This challenge is intensified when the airline offers a
variety of in-flight meals because doing so increases the level of uncertainty. Accord-
ingly, the planning must be based on estimated demand. The estimated demand
is usually derived from the number of tickets already booked, a forecast based on
historical data and the experience of the catering company (Goto et al., 2004).

As more information becomes available closer to departure, the caterer must fre-
quently adjust the estimated demand and, subsequently, the production schedule.
In the study conducted by Hasachoo and Masuchun (2016), forecasting errors ac-
counted for 53.17% of the total adjustments made, followed by 28.07% resulting from
changes in customer requirements. These changes require great production schedule
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flexibility, which most caterers cannot guarantee due to production lead times and
various resource constraints, such as time and capital. Consequently, adjustments
could lead to production disruptions, meal shortages and ultimately, costly flight
delays. These consequences will negatively impact passenger satisfaction and the
reputation of the airline and catering company. To compensate for the inaccurate
demand estimations, in-flight caterers turn to over-catering as a means of protection
against potential shortages and flight delays (Thamagasorn and Pharino, 2019).

The undesired trade-off for this over-catering strategy is high levels of post-
consumer waste in the form of surplus meals. It also contributes to increased pre-
consumer waste due to the supply chain bullwhip effect. Wang and Disney (2016)
define ‘the bullwhip effect ’ as ‘the phenomenon where order variability increases as
the orders move upstream in the supply chain’. This increase in order variability is
analogous to the movement of a whip when flicked - the whip’s wave pattern amplifies
in a chain reaction (Daniel, 2019). For this reason, the phenomenon is also known as
‘demand amplification’. The following example illustrates how the bullwhip effect
increases pre-consumer waste; Assume the true demand for apples served on-board
a flight is 20. Due to the over catering strategy, the catering company ordered 30
apples to protect against demand fluctuations. Similarly, the farmer supplying the
apples will increase the order with 20% (36 apples in total) to ensure that at least
30 good quality apples arrive at the catering company. Accordingly, six apples will
be thrown away as pre-consumer waste and ten apples will be discarded as post-
consumer waste. While pre-consumer waste cannot always be avoided completely,
it can be reduced by lowering the amount of over-catering. It is clear that the over-
catering strategy is biased towards the primary objective of maximising passenger
satisfaction and overlooks the secondary objective of waste minimisation.

In conclusion, the over-catering strategy is a coping mechanism for the high lev-
els of meal demand uncertainty present during the meal planning and production
phases and the unreliability of current forecasting methods. These extreme levels
of uncertainty create various forecasting difficulties, which explains why forecast-
ing errors were the leading cause of production schedule changes in Hasachoo and
Masuchun (2016)’s study. It is clear that the in-flight catering industry is in need
of an inventory decision-making model that incorporates meal demand uncertainty
to aid catering companies in making more informed decisions, and to prevent the
over-inflation of meal order quantities. This stochastic model must be able to gen-
erate the desired solutions in real-time as it is expected that a catering company
has to plan and cater for multiple flights a day. To reduce the impact of demand
uncertainty, the concept of product substitution will also be investigated.

1.5 Project description

Most major airlines offer a variety of complimentary meals on their in-flight menu
as part of their competitive strategy. For passengers without specific dietary re-
quirements, the selection of meals served is substitutable; It is believed that these
passengers would be willing to substitute their preferred meal (in the case of a
stock-out) due to the limited availability of alternative food sources on the aircraft.

Traditional forecasting and inventory decision-making models are suboptimal
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when the product under consideration is substitutable because these models consider
the demand for a product in isolation. However, the demand for a substitutable
product is dependent on its inherent characteristics and on the inventory levels of
possible substitutes. Also, these models are often only focused on the single-point
estimate of a product’s demand and, subsequently, ignore valuable information.

This dissertation identifies the substitutability of in-flight meals, along with the
incorporation of the meal demand uncertainty, as the key opportunities for in-flight
waste reduction caused by the over-catering strategy.

1.5.1 Problem statement

In-flight catering companies follow an over-catering strategy to mitigate the risks of
meal shortages and flight delays. The root causes of the strategy are identified as the
high level of uncertainty within the meal planning and production processes − the
final passenger load of a flight and individual meal preferences are unknown up until
flight departure − and the unreliability of forecasting methods. The consequence
of over-catering is high amounts of leftover meals, which are frequently discarded
as waste due to stringent healthy policies. This negatively impacts the catering
company’s TBL performance measures, their corporate image and competitiveness.
This dissertation will address the following research question:

Will the inclusion of product substitution and demand uncertainty within
an inventory decision-making model be able to help an in-flight catering
company reduce waste resulting from surplus in-flight meals, while main-
taining an acceptable level of passenger satisfaction?

1.5.2 Research design

This dissertation will develop a multi-objective inventory decision-making model
that incorporates the effect of product substitution and demand uncertainty. The
model will be used to find the set of the most efficient meal order quantities for a
particular flight. By following the suggested order quantities, the in-flight caterer
should be confident that the desired and pre-defined minimum Passenger Satisfac-
tion Level (PSL) will be achieved. This will reduce the need for the over-catering
strategy. In addition, the most efficient meal order quantities will further maximise
the PSL, if possible, while minimising the number of surplus meals.

The model will exploit the risk-pooling effect resulting from substitutable prod-
ucts. Simply put, instead of having dedicated safety stock for each meal option,
safety stock will be shared among meal options. This will reduce the meal order
quantities required and, ultimately, the number of surplus meals produced. The
most efficient meal order quantities chosen by the model will depend on the level of
meal demand uncertainty and the substitutability between in-flight meals.

The decision-making model will consist of a stochastic and multi-objective Mixed-
Integer Programming (MIP) model with fixed Recourse Programming (RP) and
two-way, stock-out based, partial-consumer driven product substitution. It will also
incorporate forecasting using a time-inhomogeneous Markov Chain. The latter is
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included to predict the probability distribution of the aggregate meal demand ahead
of the particular flight.

The model will be evaluated based on its reliability, performance and timeliness.
The model must be reliable to ensure a reasonable level of confidence to prevent the
over-catering strategy. Its performance must be satisfactorily to indicate that the
model is worthwhile and able to meet the primary and secondary objective. Lastly,
it must be able to generate solutions within a reasonable time to ensure that it is
suitable for the in-flight catering industry as a caterer must plan for multiple flights
per day.

1.5.3 Research methodology

The theoretical area of this dissertation is related to Operations Research (OR).
Rajgopal (2004) defines OR as a ‘scientific approach to solving problems ’, whereby
the key characteristics of a problem is translated into a model that can be analysed
to obtain an optimal solution. The author proposes a seven-step approach to address
OR problems which is mainly followed in this dissertation. However, an additional
step titled ‘Data generation’ is included due to the unavailability of the required data
from public sources. The relevant steps are described below in sequential order.

Problem definition: This project addresses the waste issue experienced by in-
flight caterers. More specifically, this dissertation is aimed at the development
of an inventory support model that can identify the set of the most efficient
meal order quantities for a specific flight under consideration. Doing so will
ensure that the respective in-flight catering company can make informed deci-
sions regarding the order quantity of in-flight meals and the expected outcome.
The most challenging factors in the problem considered are the stochastic na-
ture of a flight’s passenger load and the individual meal choices of the passen-
gers.

Data collection: Various literature is investigated to identify a suitable model so-
lution. This will include the investigation of existing in-flight waste reduc-
tion strategies, forecasting models, product substitution models and OR tech-
niques. The main findings are discussed in the literature review.

Model formulation: The problem is translated into a stochastic mathematical
decision-making model with two conflicting objectives: (1) maximise passen-
gers satisfaction and (2) minimise surplus inventory. While considering the
substitution behaviour of passengers, the model must find the set of meal
order quantities that would best satisfy the objectives after meeting the mini-
mum PSL requirement, given that the meal demand is uncertain. The demand
uncertainty is captured using a capable forecasting model.

Data generation: The model developed is trained and tested using synthetic data
due to the unavailability of public data relating to a flight’s booking process.
Generating the synthetic dataset for the numerical example requires a sound
understanding of the causes of uncertainty within the in-flight meal order
processes and the booking behaviour of passengers.
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Model solution: The model formulated is transformed into its deterministic equiv-
alent so that it can be solved using standard optimisation software. This is
achieved using recourse programming. In addition, the chosen forecasting
model is trained using the data generated. This includes a small-scale sensi-
tivity analysis to identify the most efficient parameters that will maximise the
accuracy of the forecasting model.

Validation and output analysis: The model is evaluated by comparing its reli-
ability, performance and timeliness with similar models that (1) do not allow
substitution, (2) neglects passenger load uncertainty and (3) do not allow sub-
stitution and neglects the passenger load uncertainty. The purpose of the four
models is to evaluate the benefit of including product substitution in the model,
as well as the benefit of explicitly modelling the meal demand uncertainty.

The evaluation process consists of solving each model using LINGO 18.0 for
a specific flight instance, minimum PSL requirement and target weight com-
bination. Thereafter, the output of each model is applied to various possible
realisations of the particular flight instance to quantify the model’s average
reliability and performance. This process is repeated for 16 flight instances
and 2 minimum PSLs and five target weight combinations. Based on the
results, the best all-round decision-making model is identified. The recom-
mended model is further validated against a simple approach that does not
require the development of an inventory decision-making model.

1.5.4 Expected contribution

Teoh and Singh (2018) claim that no previous study is explicitly concerned with
optimising in-flight meal order quantities by considering both aspects of supply and
demand. The most relevant study found is that of Goto et al. (2004). The authors
developed an optimal meal ordering policy for in-flight caterers but assumed only one
available meal type per flight. As such, the expected contribution of this dissertation
is to bridge the gap between the supply and demand of in-flight meals sustainably.
This is achieved by developing a multi-objective decision-making model that can
identify the optimal meal order quantities for the set of meals offered on the in-
flight menu of a particular flight by utilising the concept of product substitution
and stochastic programming. To the authors best knowledge, this is the first study
that attempts to exploit the risk-pooling capabilities of a substitution model to
reduce in-flight waste resulting from surplus meals

The successful development of the decision-making model could help to improve
the sustainability, competitiveness and corporate image of in-flight catering compa-
nies by reducing surplus meals (waste). The model will have global applicability
and could easily be adapted for other industries within the hospitality sector.

1.5.5 Outline of dissertation

This dissertation is structured as follows: A comprehensive literature review is pre-
sented in Chapter 2 in which the suitable models and solution techniques are iden-
tified and explored. The suggested model is discussed Chapter 3 and formulated
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as two interconnected parts: (A) the inventory decision-making model and (B) the
forecasting model. The model formulation pinpoints the input data requirements,
which is generated and presented in Chapter 4. The synthetic data is then used
in Chapter 5 and Chapter 6 to obtain, respectively, the model solution and results.
Recommendations and future research opportunities are summarised in Chapter 7,
followed by the concluding remarks.
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Chapter 2

Literature review

This chapter presents the literature review conducted to identify a suitable solution
model. The existing in-flight waste reduction strategies are investigated first and
include the forecasting models used in the airline industry. Thereafter, product sub-
stitution is discussed and a suitable model is identified. Two additional Operations
Research (OR) techniques are explained afterwards, followed by an in-depth descrip-
tion of the chosen time-inhomogeneous forecasting model.

2.1 Existing in-flight waste reduction strategies

A major challenge in the in-flight catering industry is to forecast the meal demand
with reasonable accuracy. This is due to the excessive variation in the daily meal
demand. Figure 2.1 shows an example of the variation observed by Megodawickrama
(2018) at an in-flight catering company in Sri Lanka from June to October 2017.

Figure 2.1: The daily meal demand variation observed at a flight catering company
in Sri Lanka (Megodawickrama, 2018).

It is intuitive that a reliable meal demand forecast can greatly minimise the safety
stock required. Unfortunately, due to the excessive variation inherently present
in the in-flight catering industry, the accuracy of a forecasting model is limited.
For this reason, the literature reviewed extended further than the frequently used
forecasting models to identify a solution opportunity that utilises the unavoidable
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meal demand uncertainty. To identify such an opportunity, the typical forecasting
models and existing in-flight waste reduction strategies must be scrutinised to find
their shortcomings.

2.1.1 Forecasting techniques

Lee (1990) state that a 10% improvement in forecasting accuracy could increase
the annual passenger revenue by up to 3%. It is, therefore, no surprise that the
field of forecasting in-flight passenger load is widely explored due to its undeniable
importance. Various forecasting techniques exist that have proven success in their
relevant study. Dantas et al. (2017) claim that casual econometric, time series and
artificial intelligence are the most noteworthy forecasting approaches. Note that, as
will be explained later on, this dissertation assumes that the aggregate meal demand
of a flight is equal to its final passenger load.

Casual econometric models are concerned with the cause-and-effect relationship
between the dependant variable and social, economic and service-related factors
(Dantas et al., 2017). Sivrikaya and Tunç (2013) developed a semi-logarithmic
regression model to predict a city’s annual air traffic demand. The model uses geo-
economics and industry-related factors as input, such as urban population, bedding
capacity, travel distance by road and the number of airlines on the route.

Time series models depend on the correlation between past and present obser-
vation to generate a forecast. Wickham (1995) compared the relative performance
of traditional time series forecasting techniques when used to predict short-term
passenger demand for a single day. The author found the advanced pick-up method
combined with exponential smoothing to be superior to the classical pick-up, regres-
sion, exponential smoothing and simple moving average methods. An important ob-
servation made is that all of these models displayed positive biases. Overestimation
of passenger demand is, therefore, expected when applying these models. Zhong
et al. (2016) evaluated the ability of the ARIMA, Holt-Winters and Trend analysis
with decomposition models to predict monthly air passenger traffic and concluded
that the other two models outperformed the ARIMA model.

Lastly, artificial intelligence models produce forecasts by learning and reproduc-
ing hidden patterns. A popular approach in this category is the use of artificial
neural networks. Srisaeng et al. (2015) applied this technique to predict Australia’s
quarterly passenger demand on national scale. The authors demonstrated that this
approach leads to more accurate results when compared with a classical regression
(econometric) model. Alekseev and Seixas (2009) obtained the same conclusion
when using both methods to forecast Brazil’s annual air traffic.

Van Ostaijen et al. (2017) criticises some of the above-mentioned forecasting
techniques by stating that valuable insight is lost when applying them. These fore-
casting techniques only determine a single point estimate for future stochastic events
based on the expected value thereof but give no indication regarding its probability
distribution. For in-flight catering companies, the meal demand distribution should
be equally, if not more important, than the single point estimate. This statement is
motivated with Figure 2.2.
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(a) Minimal uncertainty (b) Moderate uncertainty

Figure 2.2: Two probability distributions with an expected number of five.

Figure 2.2 depicts two different probability distribution scenarios, yet the single
point estimate for each scenario is equal to five. Clearly, a caterer will follow a
different strategy for each scenario. For instance, due to the minimal uncertainty in
Figure 2.2a, the caterer is likely to accept the single point estimate. However, by
knowing that there is a 45% chance that the demand could exceed five meals, as in
Figure 2.2b, additional safety stock could be justified appropriately. The distribution
of the uncertainty clearly influences the level of confidence achievable. Knowing the
distribution could impact the chosen strategy to handle the uncertainty.

As a solution, Van Ostaijen et al. (2017) propose a ‘dynamic booking forecasting
method ’ that is able to determine the expected value of a flight’s passenger load and
its accompanying probability distribution. This technique models the flight booking
process as a time-inhomogeneous Markov chain. The authors compared the perfor-
mance of their proposed model with the advanced-pickup method and the historical
mean method using a real-life case study. They found their model to be superior as
their model was more accurate with up to 8% lower forecasting errors, especially for
short-term forecasts. This forecasting technique is, therefore, considered favourable
for the in-flight meal ordering process as it is heavily reliant on accurate, short-
term forecasts. Furthermore, the additional information regarding the distribution
of the forecast can provide valuable insight regarding the uncertainties faced by the
catering company. This insight can aid in more effective risk mitigation strategy de-
velopments and, subsequently, motivates the development of a stochastic inventory
decision-making model.

2.1.2 Alternative strategies

Brochado and Freedman (2009) claim that there is a direct relationship between the
meal portion size and post-consumer waste. The authors came to this conclusion
by studying the effect of portion sizes on french fries consumption at a university’s
all-you-care-to-eat facility. Interestingly, it was also noted that portion sizes could
be reduced by up to 33% before being noticed. The work of Brochado and Freedman
(2009) raises questions regarding the size of in-flight meals due to the excessive in-
flight post-consumer waste observed in Section 1.1. The results of Teoh and Singh
(2018)’s study support the theory that in-flight meals might be too big.
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Teoh and Singh (2018) developed a multi-objective model aimed at minimis-
ing food waste while maximising passenger’s expectations towards in-flight catering
services. In this study, the passengers were allowed to choose between a standard in-
flight meal or a light meal. A light meal is similar to the standard meal but consists
of a smaller portion. The authors concluded that light meals were preferred by at
least 49% of the passengers on a long-haul flight, which can result in an average food
weight reduction of 28 kg per flight. The benefit of reducing meal portion sizes is
believed to ripple throughout the supply chain as it will reduce overall procurement
and production cost (Brochado and Freedman, 2009). It will also decrease both pre-
and post-consumer waste and can improve the flight’s fuel efficiency.

Goto et al. (2004) addressed a similar objective as this dissertation. The au-
thors realised that caterers are allowed to make changes to the original meal orders
(as obtained from foresting) and acknowledge that the cost associated with these
changes are time-dependent. Accordingly, the authors developed a decision-making
model that can be used to identify an optimal meal ordering policy for a single
meal type. The optimal policy suggests the most appropriate meal order quantity
at a predefined decision point before departure, given that the passenger load is
known at that instance. The goal thereof is to reduce the total cost of the meal
ordering process; the policy weighs the trade-offs between the cost associated with
meal shortages, excess meals and short-notice changes. The authors use a Markov
Decision Process (MDP) to develop this optimal order policy, which includes five
decision points that range between 36 hours to zero hours before flight departure.

The authors applied an aggregated model to 40 selected flights and obtained
promising results. On average, the number of surplus meals reduced to 8.33 meals,
whereas 10.19 excess meals were observed in actual practice. The authors argue that
this result can be further improved by decreasing the bin size used to aggregate the
model. The authors concluded that the appropriateness of the MDP model is depen-
dent on the flight’s duration and not beneficial for domestic flights. While the MDP
model outperformed the airline’s actual practice for 85.7% of the long-haul flights,
the same was not true for short-haul (domestic) flights where current practice dom-
inated 62.5% of the time. That being said, the optimal policy reduced the number
of short-catered domestic flights by 37%. This indicates that an improvement was
indeed observed if the model’s objective was focused on the Passenger Satisfaction
Level (PSL) instead of waste minimisation only. Thus, for domestic flights, passen-
ger satisfaction increased at the expense of waste minimisation. These observations
highlight the multi-objective nature of the in-flight catering industry and indicates
the importance of considering the primary and secondary objectives simultaneously
as the two objectives are conflicting.

2.1.3 The suggested solution opportunity

Merely reducing the overall portion size of in-flight meals is not considered a sus-
tainable approach to reduce waste because it can negatively impact an airline’s
competitiveness. The risk thereof can be mitigated by offering two different meal
portion sizes, as suggested by Teoh and Singh (2018). However, this approach might
not be feasible due to the additional logistics involved.
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Another approach to reducing waste is to improve the forecasting accuracy of
the meal demand. The forecasting techniques listed and the optimal meal ordering
policy approach developed by Goto et al. (2004) can be used to estimate the demand
for a single meal type as they ignored passenger meal type selection such as beef or
vegan. Rajaram and Tang (2001) reported that these subjective forecasts frequently
result in average errors greater than 50%. The authors explain that this is because
the demand for a product is not only dependent on its inherent qualities but is
also influenced by the inventory levels of similar products. Thus, these forecasting
techniques consider the demand for a product in isolation and do not consider the
possibility that a customer would be willing to substitute a product. This leads to
unintentional over- and under-estimation of the product’s demand.

It is suspected that in-flight meal substitution is a common occurrence; Passen-
gers have to settle for another meal choice if their preferred option is out-of-stock,
otherwise, they will have to travel hungry. This substitution behaviour is believed
to be the key to reducing in-flight waste by utilising the risk-pooling effect thereof.

2.2 Product substitution

Product substitution is essentially the act of fulfilling unsatisfied demand with alter-
native products. Vaagen et al. (2011) claim that it is frequently used to safeguard
against future uncertainty. Accordingly, the aspiration is to incorporate product
substitution into the meal order planning processes of in-flight caterers to reduce
the impact of demand uncertainty. Based on intuitive reasoning, it is believed that
doing so will reduce excess meals (waste) by sharing safety stock among poten-
tial substitutes instead of carrying dedicated safety stock for each meal type. This
sharing of safety stock is referred to as the risk-pooling effect.

Conventional inventory decision-making models assume that a sale is lost when a
product shortage occurs. This is a deviation from reality as customers are frequently
willing to substitute if their preferred product is unavailable. This substitution be-
haviour increases the effective demand for substitutable products that can result in
additional shortages and subsequent revenue loss. For example, Yücel et al. (2009)
observed a profit decrease of 23% when ignoring the effect of product substitution,
while Zeppetella et al. (2017) observed a 30% increase in lost sales. Conventional
inventory decision models are, therefore, suboptimal under product substitution. It
is speculated that in-flight passengers will be exceptionally open to meal substitu-
tions as there are no other sources of food on a flight. For this reason, conventional
inventory models, such as the classical Newsvendor model, could be suboptimal
and inappropriate for the in-flight meal ordering processes. Furthermore, Gilland
and Heese (2013) also showed that simply allocating order quantities according to
a product’s average fraction of the total demand will not deliver favourable results.

There is a significant amount of literature relating to inventory support mod-
els with product substitution. This is attributed to the positive impact thereof on
the expected profit of the model. Rajaram and Tang (2001) state that retailers
can always expect higher profits when products are substitutable. All of the lit-
erature studied agree with this statement. Unfortunately, there are contradicting
observations regarding the impact of substitution on the optimal order quantities.
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Figure 2.3: Order quantity vs subtitution fraction at different levels of demand
variation for a two-product case (adapted from Vaagen et al. (2011)).

Intuitively, the optimal inventory levels should decrease due to the risk pooling ef-
fect. However, Huang et al. (2011) and Rajaram and Tang (2001) are among the few
who observed inventory increases. Huang et al. (2011) claim that inventory levels
and the resulting expected profit are influenced by the following model parameters:

• Product substitutability : Profit increases monotonically alongside product sub-
stitutability because it reduces the probability that a customer would leave
empty-handed. Inventory levels can either increase or decrease depending on
the substitutability of the products, as seen in Figure 2.3.

• Demand correlation: Rajaram and Tang (2001) and Huang et al. (2011) show
that optimal inventory levels decrease along with demand correlation. Accord-
ingly, substitution is most beneficial when product demand is highly negatively
correlated. A negative correlation simply means that when one product has a
high demand realisation, the other product will have a low realisation and vice
versa (Netessine and Rudi, 2003). In other words, if one product’s demand
fluctuates positively, it follows that the other product’s demand will fluctuate
negatively. This negative correlation decreases the overall demand variation
between the two substitutable products, which in turn, reduces the quantity
of safety stock required (risk pooling).

• Demand variation: Inventory increases with demand variation due to the need
for additional safety stock to protect against shortages (Yücel et al., 2009).
The effect of demand variations on the order quantity is visible in Figure 2.3.
The significance of product substitution increases with demand variability.

• Newsvendor ratio: This measure is a function of a product’s selling price,
purchasing cost, shortage cost and salvage value (Winston, 2004a). A high
Newsvendor ratio indicates a high-profit product and, as shown by Huang
et al. (2011), will result in increased order quantities. Stock levels for a low-
profit item will be minimal.
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Based on the above, it is encouraging to incorporate the concept of product
substitution in the inventory decision-making model for the in-flight catering indus-
try. It is reasonable to assume that passengers will be willing to substitute due to
the limited availability of food on-board the aircraft. According to Kök and Fisher
(2007), this willingness to substitute is an important parameter. Furthermore, in-
flight meal demand is negatively correlated - the aggregate meal demand is fixed as
only one complimentary meal is served to a passenger. Consequently, the demand
for one meal type comes at the expense of the other meals offered on the menu.
Lastly, the total and individual meal type demands are highly irregular and uncer-
tain. This means that the effect of substitution is expected to be significant. It
should also be noted that an order quantity increase does not necessarily increase
the left-over inventory. It could simply indicate that the model will be able to serve
more customers through improved inventory decisions.

Due to the significant amount of literature relating to product substitution, gen-
eral classifications thereof will be discussed first. The problem addressed in this
report is identified as a two-way, inventory-based partial consumer-driven product
substitution model and relating literature is reviewed after the classification analysis.

2.2.1 Classification of product substitution models

Shin et al. (2015) created a thorough taxonomy of product substitution literature
published between 1974 and 2013. The authors used four criteria to classify the lit-
erature: modelling objective, substitution mechanism, substitution decision-maker
and the direction of substitutability. The four objectives of product substitution,
also known as ‘areas of decision’, are:

• Assortment planning : A retailer is unable to offer the entire selection of prod-
ucts due to resource and technical constraints. Accordingly, the retailer must
choose which products to include in the assortment to maximise profit.

• Inventory decisions : The retailer must decide on the optimal quantity to stock
for each product in the fixed assortment in order to minimise inventory holding
costs while considering each products’ substitution properties.

• Capacity planning : The retailer must find the optimal quantity of products
to stock, given that the capacities of certain resources are restricted. This
objective is an extension of inventory decision problems.

• Pricing decision: The retailer must determine the optimal pricing policy for
each substitutable product to maximise profit. The reason being that the
prices of substitutable products influence substitution behaviour.

These objectives are not mutually exclusive and joint problems are common.
Based on the above, the objective of this dissertation is to find the optimal in-
ventory levels of the in-flight meals served on a specific flight (inventory-decision).
It is assumed that the assortment of meals offered on a specific flight’s menu is
predetermined and fixed as part of the airline’s competitive strategy. Pricing deci-
sions are irrelevant as the meals are assumed to be complimentary with a purchased
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flight ticket. The problem can be extended in future research to include assortment
planning and capacity constraints, such as batch quantities or quantity discounts.

A substitution mechanism is the catalyst for a customer or retailers substitu-
tion behaviour. Shin et al. (2015) identified three mechanisms: assortment-based,
inventory-based and price-based substitution. In assortment–based substitution,
a customer chooses a product without knowing if the product is included in the
retailer’s assortment and will leave empty-handed if the product is not available
(Honhon et al., 2010). In inventory-based substitution, the customer knows the
assortment of products available, but not the individual inventory levels. If the cus-
tomer’s preferred product is out-of-stock, the customer might accept a substitute.
For this reason, inventory-based substitution is also known as stockout-based sub-
stitution. In price-based substitution, the selling price of the products is the driver
behind the substitution behaviour of customers.

Shin et al. (2015) define the substitution decision-maker as ‘the active party in
planning decisions for substitutable products ’. In supplier-driven substitution, the
supplier decides which products should be used as substitutes for specific product
demands, and it is assumed that the customers will willingly accept the chosen sub-
stitutes. Customer-driven substitution decisions are made by different parties and
usually consist of a two-stage process; the supplier chooses the inventory level in the
first stage, after which the customer evaluates substitution alternatives in the second
stage if their first choice is unavailable. By considering consumer-driven substitu-
tion, the retailer (or manufacturer) can increase the likelihood that a customer will
not leave empty-handed. Consumer-driven substitution is mostly applied to retail
settings focused on maximising expected profit.

Lastly, the direction of substitution can be unidirectional (one-way) or bidirec-
tional (two-way) between product pairs. In one-way substitution, product A can
be substituted with product B, but not vice versa. The direction could be either
upwards (substituting low-end products with high-end products) or downwards.

As will become apparent throughout this report, the in-flight meal ordering pro-
cess is best classified as an inventory decision problem with two-way, stockout-based,
(partial) consumer-driven substitution between meal types. This problem type and
existing modelling methods are discussed in the following section.

2.2.2 Two-way, stockout-based, consumer-driven substitu-
tion models with multiple products

Consider a flight with 25 passengers. According to the in-flight menu, passengers
can choose either a chicken, beef, fruit platter or vegan meal. The primary demand
for each meal type is [10, 10, 3, 2] meals, while the number of meals on-board are
[5, 14, 4, 2] respectively. Ideally, the flight attendant will reserve the two vegan
meals for the two vegan passengers, but this requires foreknowledge regarding the
actual meal demand. Realistically, the flight attendant serves passengers according
to their seat number. Consequently, there is a possibility that chicken meals might
reach a stock-out before the two vegetarian passengers were served. A passenger who
initially preferred a chicken meal could then choose a vegan meal as a substitute,
thereby resulting in a shortage of vegan meals that were originally even-catered. In
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this scenario, the effective demand for vegan meals was greater than two.
This example highlights the impact of the sequence of customer arrivals and

their respective individual product choices. For this reason, literature is classified
into two streams based on the modelling of consumer choice. A dynamic model con-
siders individual consumer choices by incorporating the sequential order of customer
arrivals and, therefore, acknowledges the increasing probability of stock-outs as time
progresses (Smith and Agrawal, 2000). The objective function of these models are
considered complex and, according to Mahajan and Van Ryzin (2001) and Netessine
and Rudi (2003), might not be quasi-concave. This means that a global optimum
solution cannot be guaranteed. A static model approximates the dynamic model by
considering the aggregate demand behaviour of customers (Vaagen et al., 2011). It
assumes that products can substitute for one another based on exogenous rules or
probabilities. Yücel et al. (2009) is of the opinion that static models are easier to
analyse and require fewer data.

An important component of a substitution model is the chosen consumer choice
model. A consumer choice model is an analytical model that represents the decision
process of a customer (Shin et al., 2015). In a utility-based choice model, a customer
associates a unique utility (perceived value) to each product and will choose the
product with the highest utility. An exogenous choice model explicitly specifies the
product demand and the actions that will be taken when the product is unavailable
through the set of first-choice probabilities (q) and substitution rules (α).

According to Kök et al. (2009), exogenous demand models are most popular for
stock-out based substitution models. In most of these models, the effective demand
for product i (dei ) is calculated through some variation of (2.1) (Vaagen et al., 2011).

dei = dpi +
∑

j∈I | j 6=i

αij(d
p
j − xj)+, ∀i ∈ I (2.1)

The effective demand for product i consists of its own primary demand (dpi ) and
the additional demand resulting from the anticipated stock-outs of other products
in the assortment (I). The additional demand resulting from product j consists of
a deterministic substitution fraction (αij) of the product’s unmet demand (dpj − xj)
when xj units of product j was ordered. Note, (a)+ denotes max(a, 0).

The primary demand of product i is frequently calculated as a proportion (qi)
of the aggregate demand (D) as shown with (2.2) (Yücel et al., 2009).

dpi = qiD, ∀i ∈ I (2.2)

These proportions are known as first-choice probabilities and can be estimated using
the product’s respective market share. For instance, in the example given earlier,
the total meal demand is equal to the passenger load of 25 passengers. Thus, by
reverse engineering (2.2), the first-choice probability of chicken meals is found to be
40% of the total demand because the primary demand thereof is ten meals.

Dynamic substitution models

Mahajan and Van Ryzin (2001) developed a dynamic substitution model using a
Sample Path Gradient Algorithm (SPGA) to model the sequential arrival of cus-
tomers. The authors used a utility maximisation mechanism to mimic a customer’s
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substitution behaviour. A customer associates a unique utility (perceived value) to
each product and will choose the product with the highest positive utility amongst
the assortment of in-stock products or will leave empty-handed. The model aims
to identify the initial inventory levels that will maximise expected profit but cannot
guarantee a global optimum policy. Furthermore, numerical experiments were con-
ducted by comparing the SPGA with two naive heuristics, including the independent
newsboy model, to investigate the effect of product substitution. The results are en-
couraging for this dissertation, as the authors observed a 20% decrease in inventory
levels when substitution is incorporated. Honhon et al. (2010) claim that the SPGA
model is computationally gruelling. The authors proposed a dynamic programming
heuristic and demonstrated that it is superior in terms of computational speed and
results in higher expected profits under certain general conditions.

Similarly, Kök and Fisher (2007) present an iterative optimisation heuristic for
an assortment-planning problem in the retail industry when faced with shelf space
constraints. In this study, equation (2.1) is modified to incorporate both assortment-
and stockout-based substitution. The potential of the heuristic was demonstrated
when it was applied to a real-world case-study, a supermarket chain in the Nether-
lands, and a profit increase of more than 50% was observed. Unlike other models,
this heuristic explicitly penalises left-over inventory with an amount equal to the
product’s selling price. In this dissertation, penalising surplus meals will help to
achieve the first objective - waste minimisation. In addition, the authors provide a
methodology to estimate the exogenous substitution behaviour parameters and the
product demand required as input.

Smith and Agrawal (2000) propose the use of a discrete Markov process to ob-
tain an exact solution for a multi-product assortment-planning problem, such that
a transition represents an arriving customer. However, they acknowledge that it is
computationally infeasible for even modest-sized problems. Alternatively, the au-
thors develop an exogenous, newsvendor-type model to approximate the solution by
bounding the probability of an item being available to each customer with prede-
fined service levels. Model development assumed that item demand has a negative
binomial distribution, but the authors state that the model holds for other dis-
tribution types as well. The model is solved as a non-linear integer program. A
counter-intuitive observation gained is that it is not always optimal to stock the
most popular product. This observation is important as it indicates that substitu-
tion is more complex than simply increasing the inventory level of the most popular
product, thereby motivating the development of an appropriate model.

Gaur and Honhon (2006) use a locational consumer choice model to determine
the optimal assortment and inventory levels. In a locational model, products are
viewed as a set of quantifiable attributes and customers choice is based on the
product’s location (utility) in the attribute space. Additionally, product demand is
assumed to be normally distributed. Due to the inability to capture the product
demand with a closed equation, the authors propose bounds for the dynamic sub-
stitution model’s expected profit. The lower bound represents the scenario where
customers do not substitute (traditional inventory models). The upper bound as-
sumes that the retailer can first observe the aggregate demand and optimally al-
locates products to customers thereafter (static substitution). This highlights an
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important aspect of the static model, which will be discussed in more detail. The
authors suggest a two-stage stochastic linear program to compute this upper bound.

Static substitution models

Rajaram and Tang (2001) extended the Newsvendor model to include static substi-
tution and developed a tractable service rate heuristic to solve the inventory decision
problem. The core principle behind their heuristic is to approximate the effective
demand using a service rate for each product, γj(xj), such that (dpj−xj)+ is replaced
with dpj [1− γj(xj)] in equation (2.1). The model is restricted in the sense that it
assumes product demands are normally distributed. Using the heuristic, the authors
were able to show that substitution increases the expected profit as improvements
of up to 48.2% were observed when compared with the base model. Unfortunately,
this improvement came at the expense of inventory increases ranging between 1% to
10%. However, the authors state that the order quantity depends on model param-
eters and inventory decreases are, therefore, also possible. Vaagen et al. (2011) raise
a concern regarding the model, stating that the sales of a product is not bounded
by its available demand. The author is of the opinion that this could explain the
monotonous inventory increases observed. Vaagen et al. (2011) further warn that,
while Rajaram and Tang (2001) claim to be concerned with consumer-driven sub-
stitution, the authors are solving supplier-driven substitution.

Huang et al. (2011) used the service-rate approximation approach developed by
Rajaram and Tang (2001) to find the optimal inventory levels for a competitive
newsboy problem with substitution. In a competitive model, each product in the
assortment is managed by a different entity. The final model is one of the few models
that penalises product shortages. In this dissertation, penalising meal shortages will
help to achieve the second objective - high PSLs.

Yücel et al. (2009) developed a static substitution model that simultaneously
considers product assortment, stocking quantities, supplier selection and shelf space
restrictions to maximise expected profit in a retail setting with multiple substitu-
tion attempts. It consists of a Mixed-Integer Programming (MIP) model where
demand uncertainty in equation (2.1) is modelled using a stochastic programming
technique similar to Recourse Programming (RP). RP has the advantage of being
able to accommodate any demand distribution and will be discussed in more detail
in Section 2.3.2. Zeppetella et al. (2017) followed Yücel et al. (2009)’s consumer-
driven substitution approach, but applied it to a production environment to develop
an optimal production schedule. This implementation is unique because one-way,
firm-driven substitution is usually associated with production scheduling. Conse-
quently, the objective is to minimise cost, while considering both capacity and pro-
duction constraints such as batch quantities and production lead times. The authors
developed two models that consider (1) lost sales and (2) backlogged orders. They
motivate the use of the MIP approach due to its ‘rigorousness, flexibility and ex-
tensive modelling capability ’. Vaagen et al. (2011) also developed an inventory and
assortment optimisation model using MIP with RP. As will be explained, the essence
of their model differs from Yücel et al. (2009)’s model through the incorporation of
a ‘qualitative understanding ’ regarding a consumer’s substitution behaviour.
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Model and method selection

According to Gaur and Honhon (2006), the static model represents the upper bound
of the dynamic model. The reason being that the static model optimally allocates
products to customers based on the known aggregate demand. Gilland and Heese
(2013) define this behaviour as an ex post allocation of product demand. But, to
achieve the static model’s expected profit, the products must be reserved for the
assigned passenger. This is not always possible and due to the dynamic arrivals of
passenger, the true profit obtained will likely be much lower than computed. The
dynamic model incorporates this uncertainty, thereby ensuring that the true profit
achieved will be closer to the computed expected value. Thus, the static model is
less reliable and inferior to the dynamic model as it underestimates the amount of
substitution that will occur (Gilland and Heese, 2013). Consequently, the true profit
obtained will be greater when using a dynamic model.

Various literature expressed the computational complexities associated with dy-
namic models. As such, the question arises if it is worthwhile to model individual
customer choice in an inventory model with substitution. Gilland and Heese (2013)
researched this question and concluded that the benefit might be only marginal.
Based on numerical experiments, the true profit obtained from the dynamic model
was, on average, only 1% higher when compared with the static model. That being
said, the authors warn that the performance of the static model declines with limited
shelf space, high substitution fractions (α) and asymmetric stock-out penalty costs.

Ironically and in contrast to the given example, the static model is actually a
somewhat realistic representation of the in-flight meal serving process. Thanks to
today’s modern flight booking technology, airlines know the preferred meal order for
some of the passengers who will board the flight. This can allow them to optimally
allocate a proportion of the available meals. According to Tofalli et al. (2018),
doing so can save more than 30% of the food that is usually thrown away. Based on
personal experience in 2018, Emirates airlines is already following a similar strategy;
If a special meal type is booked 24 hours before departure, the meal is allocated
to the passenger with a personalised sticker (Emirates.com, NA). This strategy is
expected to become a norm in the near future due to the strive for customisation
resulting from the fourth Industrial Revolution.

Based on the above, the benefit of using a dynamic substitution approach for the
in-flight catering industry is deemed not worthwhile, especially when considering
the accompanying complexities and restrictions. This dissertation will focus on
developing a static model with partial consumer-driven substitution using MIP. This
modelling method is chosen due to its extensive modelling capability and flexibility.
This will give in-flight caterers the ability to easily expand the model to include
additional constraints significant to their process. This is particularly useful for the
in-flight catering industry due to different kitchen capacities and changing menus.

The decision-making model will be similar to the work of Yücel et al. (2009) and
Vaagen et al. (2011) and will include a qualitative understanding of the substitution
behaviour of passengers. However, the model will be expanded to addresses the
multi-objective nature of the in-flight catering industry and additional uncertainty
will be incorporated to improve its depiction of reality. The MIP models developed
by these authors will be analysed in the following section.
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2.3 Operations research

The chosen modelling method falls under the discipline of OR, specifically stochastic
programming. A stochastic model refers to an optimisation problem with uncertain
parameters. The uncertainty is represented with at least one random variable with
a known probability distribution (Birge and Louveaux, 2011). The above-mentioned
stochastic MIP models with product substitution and RP are analysed in this sec-
tion, followed by a brief overview of RP and multi-objective programming.

2.3.1 Stochastic mixed integer programming models with
product substitution and recourse programming

Yücel et al. (2009) and Vaagen et al. (2011) both developed a two-stage stochastic
MIP model aimed at maximising the expected profit of a joint assortment planning
and inventory decision problem. There are two important differences between their
respective models to take note of. Firstly, Yücel et al. (2009) explicitly models
multiple substitution attempts, whereas Vaagen et al. (2011) approximate them with
a single attempt. Multiple levels of substitution represents a customer’s repeated
attempts to find a suitable alternative. Secondly, they differ in their definition of
the substitution rules (α versus α̂) and subsequent changes to (2.1).

dei = dpi +
∑

j∈I | j 6=i

αij(d
p
j − xj)+, ∀i ∈ I (2.1)

Recall that, as shown with (2.1), the effective demand of product i (dei ) consists of
its primary demand (dpi ) and the fixed proportion of excess demand from product j.
The exogenous substitution fraction αij indicates the proportion of customers who
will substitute their first-choice product, product j, for product i if their first-choice
is out of stock, such that (2.3) holds.∑

i∈I∪{No substitute}

αij = 1, ∀j ∈ I (2.3)

A dummy variable is included to represent a customer that is not willing to substi-
tute. Table 2.1 provides an example of a substitution fraction matrix.

Table 2.1: An example of a substitution fraction matrix (α).

First-choice (j)

Substitute (i) Chicken Beef
Fruit

Vegan
Platter

Chicken - 0.70 0.15 0.05
Beef 0.50 - 0.05 0.00
Fruit platter 0.20 0.05 - 0.40
Vegan 0.20 0.20 0.30 -
No substitute 0.10 0.05 0.50 0.55

24



If chicken meals reach a stock-out, 50% of the remaining demand will be dis-
tributed to beef meals, 20% to fruit platters and vegan meals each and 10% will deny
a substitute meal. A simple approach to obtain the substitution fraction matrix is
through market research. Alternatively, it can be estimated using a methodology
proposed by Kök and Fisher (2007).

Yücel et al. (2009) directly applied (2.1) using substitution fractions, but made
modifications to include multiple levels of substitution. The authors acknowledge
that substitution can lead to a loss in customer goodwill. For this reason, the authors
incorporated a substitution cost in the objective function that attempts to quantify
the effect thereof in monetary terms. The substitution cost is dependent on the
substitution level and dramatically impacts the amount of substitution observed.

Vaagen et al. (2011) express a concern regarding the use of substitution fractions.
The authors argue that real-time (dynamic) inventory data is required to calculate
these values, yet it is frequently applied in a static model. In the given example, if
chicken meals are not available as a substitute due to the under- or even-catering
thereof, it is intuitive that the substitution fractions of the remaining meal types
should increase. However, due to the static nature of the model, the substitution
fractions are fixed. Yücel et al. (2009) appear to have overcome this issue through
the explicit modelling of three substitution attempts where, for example, the sub-
stitution fraction for the second substitution attempt is approximated as αijαki for
each i, j, k ∈ I combination. The authors argue that considering only three levels
of substitution is reasonable as the substitution fractions become negligibly small
when considering more substitution attempts. Vaagen et al. (2011) propose the use
of a priori substitutability probabilities as a solution for the concerns mentioned
that do not require the explicit modelling of multiple substitution attempts that
could complicate the model.

Vaagen et al. (2011) defines the a priori substitutability probability α̂ij ∈ [0, 1]
as ‘the proportion of customer willing to replace item j with item i’. Stated differ-
ently, it represents the probability that product j can be substitute by product i
given that product i is the only substitute in-stock. The authors state that this
substitution measure integrates a ‘qualitative understanding of market drivers ’ as
it is concerned with the static similarity between the different products in the as-
sortment and market trends. Unlike the above-mentioned substitution fractions, it
is not influenced by the model’s inventory decisions nor dependent on the products
available when the substitution occurs. The authors state that the a priori probabil-
ities can conveniently be defined by a multidisciplinary team with insightful product
and market knowledge.

An example of an a priori substitutability probability matrix is illustrated in
Table 2.2. The a priori probabilities do not have to be symmetric. For instance,
there is a 40% probability that a passenger would accept a vegan meal as a substi-
tute when chicken meals are out-of-stock. However, there is only a 5% chance that
the reverse would occur. The reason being that the majority of the passengers that
request a vegan meal will likely follow a meat-free lifestyle. Furthermore, there are
two noticeable differences when comparing the a priori probabilities to the substi-
tution fractions: (1)

∑
i∈I α̂ij = 1 ∀j ∈ I does not hold, and (2) a dummy variable

is not required to represent unsatisfied customers.
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Table 2.2: An example of an a priori substitution probability matrix (α̂).

First-choice product (j)

Substitute (i) Chicken Beef
Fruit

Vegan
Platter

Chicken - 0.50 0.30 0.05
Beef 0.70 - 0.10 0.00
Fruit platter 0.40 0.20 - 0.40
Vegan 0.40 0.00 0.50 -

By applying the a priori probabilities to equation (2.1) along with slight modi-
fications, Vaagen et al. (2011) claim to be able to approximate a dynamic consumer
choice model. This model will be discussed in detail in the remainder of this section
as this dissertation will follow the suggested a priori substitutability approach. It is
chosen because it corresponds with the static nature of the chosen model, requires
fewer assumptions regarding actual substitution probabilities and can approximate
multiple substitution attempts with a single attempt to simplify the model.

The aim of Vaagen et al. (2011)’s model is to choose the optimal production
quantity, xi, for each product in assortment I that is most likely to achieve the
highest expected profit under stochastic demand. As stated, the authors model
demand uncertainty using two-stage stochastic programming, similar to recourse
programming. The model’s objective function in deterministic form is given in (2.4).

maxZ =
∑
s∈S

ps
∑
i∈I

(viy
s
i + fvit

s
i + giw

s
i − cixi) (2.4)

where

tsi =
∑

j∈I | j 6=i

zsij, ∀ i ∈ I, s ∈ S (2.5)

This function maximises the overall expected profit by summing together the profit of
each scenario s in proportions equal to the scenario’s probability of occurrence, ps.
The expected profit of each scenario consists of the revenue received, the salvage
value for excess inventory (overstock cost), minus the cost of production. The un-
derstocked cost (lost sales) is not considered by the authors.

The authors distinguish between the direct sales and substitution sales for each
product i in assortment I. Direct sales, denoted by ysi , refer to the number of
customers that bought product i as their first-choice. The substitution sales zsij
represent the number of customers who bought product i as a substitute due to a
stock-out of product j. For convenience, tsi is total number of product i sold as a
substitute, as enforced by (2.5).

The selling price of product i is vi. However, to force the model to first meet the
primary demand, a discounted-substitution factor f ∈ [0, 1] is included for the sell-
ing of substitute products. This enforces direct sales before substitution sales, and
prevents the bait-and-catch strategy where the model intentionally under-stocks a
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product so that the unmet demand can be satisfied with a more profitable sub-
stitute. Accordingly, it ensures partial consumer-driven substitution instead of
supplier-driven substitution. With partial consumer-driven substitution, the sup-
plier cannot force a customer to buy a substitute instead of their first-choice, but
can only decide on which products to make available through safety stock as poten-
tial substitutes for the customer to choose from. Lastly, each unit of product i is
produced at a cost of ci and the leftover inventory wsi is salvaged for gi per product.
The objective function (2.4) is subjected to the constraints listed below

Constraints (2.6) to (2.8) are Vaagen et al. (2011)’s adaptation of (2.1). In
constraint (2.6), the number of direct and substitution sales resulting specifically
from the demand for product i, is restricted by the product’s primary demand for
scenario s, denoted by dsi . The reason being that the retailer cannot sell more than
the available demand. Notice that this model does not keep track of the product
shortage quantities.

ysi +
∑

j∈I | j 6=i

zsji ≤ dsi , ∀ i ∈ I, s ∈ S (2.6)

Constraint (2.7) limits the number of substitution sales, zsij, with the deterministic
proportion of excess demand of product j. The deterministic proportion is equal to
the respective a priori substitution probability α̂ij.

zsij ≤ α̂ij(d
s
j − ysj ), ∀ i, j ∈ I, j 6= i, s ∈ S (2.7)

Based on the above, the effective demand for product i is the sum of ysi and tsi .
Constraint (2.8) links the effective demand with the decision variable, the number
of units of product i produced, and the resulting excess inventory denoted by wsi .

wsi = xi − (ysi + tsi ), ∀ i ∈ I, s ∈ S (2.8)

Constraints (2.9) to (2.11) represent the non-negativity constraints.

xi ≥ 0 and integer, ∀ i ∈ I (2.9)

ysi , t
s
i , w

s
i ≥ 0 and integer, ∀ i ∈ I, s ∈ S (2.10)

zsij ≥ 0 and integer, ∀ i ∈ I, i 6= j, s ∈ S (2.11)

While not explicitly used in Vaagen et al. (2011)’s model, (2.12) represents the
authors’ modification of (2.1).

d e, si = d si +
∑

j∈I, j 6=i

zsij, ∀i ∈ I, s ∈ S (2.12)

The drawback of the a priori probabilities is that it is not able to fully describe
the dependencies among the various products. For instance, consider the scenario
where chicken meals are under-catered and the only available substitutes for the
unmet demand is either a fruit platter or a vegan meal. Based on Table 2.2, both
substitutes have a 40% probability of being chosen. However, it is not known whether
or not the 40% of the passengers that would choose a fruit platter as a substitute
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overlap with the 40% of the passengers that would accept a vegan meal, or if these
two groups of passengers are independent. Vaagen et al. (2011)’s model assumes
that the groups are independent. This means that the model could assign a fruit
platter as a substitute to 40% of the unmet demand, while assigning a vegan meal
to another 40% of the unmet demand. Thus, the model is able to assign 80% of the
unmet demand, although it is unlikely in reality that the groups are independent.
The authors warn that this results in an upper bound on the expected profit of
their model.

2.3.2 Two-stage stochastic programming with fixed recourse

Two-stage stochastic programming with fixed recourse, referred to simply as RP, is
a technique used to handle uncertainty within a model. In essence, it incorporates
predefined corrective actions after the uncertainty has been disclosed. According to
Birge and Louveaux (2011), the sequence of events can be described by (2.13):

x→ ξγ → y[x, ξγ] (2.13)

In the first stage, certain decisions, denoted by x, must be made while the uncer-
tainty is still present. The uncertainty is represented with a random variable ξ̃ with
a known probability distribution. The second stage occurs after the outcome of the
uncertainty, represented with ξγ, is revealed. Consequently, second-stage decisions
y[x, ξγ] are functions of the random variable’s outcome and (in some instances) the
first-stage decisions. In Vaagen et al. (2011)’s model, the first-stage decisions are
the order quantities for all products in the assortment as the respective primary
demand thereof is unknown. The second-stage decisions and subsequent corrective
actions are related to the substitution sales and the salvaging of excess inventories.

Based on the examples of Birge and Louveaux (2011) and Ahmed (2019), the
generic objective function of a recourse model is given with (2.14).

maxZ = f(x) + Eξ̃ Q(x, ξ̃) (2.14)

The first term represents the combined effects of first-stage decisions on the objective
function, while the second term relates to the recourse actions from second-stage
decisions. Note, Eξ̃ refers to the expected value of the distribution of ξ̃ (Joubert and
Conradie, 2005).

Regarding the in-flight catering problem, the primary meal demand is uncertain,
but the probability distribution thereof is assumed to be known and fixed. Accord-
ingly, the model should consider the trade-off between over- and under-estimation
of meal quantities. For these types of problems, Birge and Louveaux (2011) suggest
the introduction of two second-stage variables to represent the deviation from the
actual demand. Excess inventory and product shortages are represented with δ+[ξ̃]

and δ−[ξ̃] respectively. These variables can then be calculated using constraints sim-

ilar to (2.15) and (2.16), given that ξ̃ denotes the random demand of the product.

x+ δ−[ξ̃]− δ+[ξ̃] = ξ̃ (2.15)

x, δ+[ξ̃], δ−[ξ̃] ≥ 0 (2.16)
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In Vaagen et al. (2011)’s model, the number of excess meals wi corresponds with

the recourse variable δ+[ξ̃]. However, Vaagen et al. (2011)’s model does not measure

the number of shortages that occurred, meaning that δ−[ξ̃] is not used in the model.
Recourse programming allows the model to take corrective actions after the

second-stage decisions have been made. For instance, Birge and Louveaux (2011)
assume that a penalty p− is paid per unit of unmet demand and a unit of excess
stock is fined with p+. The second-stage value function in (2.14) that accounts for
these penalties is given with (2.17).

Q(x, ξ̃) = q−[ δ−(ξ̃) ] + q+[ δ+(ξ̃) ] (2.17)

The constraint mentioned above captures the uncertainty within a system. How-
ever, the model must be transformed into its deterministic counterpart before it can
be solved using optimisation software. This can be achieved by decomposing the
probability distribution of the random variable to create a set of second-stage re-
alisations, represented with R. The realisation ξγ represents a possible outcome
of the random variable with a probability of occurrence equal to pγ, where γ ∈ R
and

∑
γ∈R p

γ = 1. The deterministic equivalent of the overall objective function is
shown in (2.18).

maxZ = f(x) +
∑
γ∈R

pγ
(
q−( δ−[ξγ] ) + q+( δ+[ξγ] )

)
(2.18)

This requires that (2.15) and (2.16) must be replaced with (2.19) and (2.20) to
account for each realisation ξγ with probability P γ, where γ ∈ R.

x− δ+[ξγ] + δ−[ξγ] = ξγ, ∀ γ ∈ R (2.19)

x, δ+[ξγ], δ−[ξγ] ≥ 0, ∀ γ ∈ R (2.20)

A major shortcoming of the stochastic model developed by Vaagen et al. (2011)
is that it does not consider multiple objectives.

2.3.3 Multi-objective programming

The in-flight catering industry is faced with two conflicting objectives: (1) maximise
the PSL of a flight while (2) simultaneously minimising waste. The two objectives are
conflicting as they come at the expenses of one another. For instance, reducing meal
order quantities will lessen the waste produced, however, it increases the possibility
of meal shortages and, subsequently, a lower PSL. The other extreme corresponds
with the over-catering strategy, where surplus meals are deliberately ordered to
protect against potential shortages.

The multi-objective nature of the research question being addressed necessitates
the need for multi-objective programming. The goal of a multi-objective program-
ming model is to optimise two or more conflicting objectives. According to Rardin
(1998), the emphasis is on finding ‘efficient solutions which are optimal in a certain
multi-objective sense’. This means that the resulting efficient solution might be
suboptimal with regards to each isolated objective, but it is the best solution overall
when considering the collection of objectives and target weights given.
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The proposed multi-objective programming technique is known as pre-emptive
goal programming. This technique focuses on achieving the stated goals with prede-
fined target weights to indicate their importance, instead of minimising or maximis-
ing specific quantities (Rardin, 1998). In pre-emptive goal programming, a target
level or goal is assigned to each objective. The aim thereof is to find a solution
that will achieve the predefined target levels as close as possible by minimising the
sum of deviations from the target values. The advantage of this technique is that
it prioritises the objectives according to how well their respective target is reached.
The implementation of pre-emptive goal programming is briefly explained with the
example given below.

minZ = w1∆1 + w2∆2 (2.21)

subject to

g1 ≤ OF1(x) + ∆1 (2.22)

g2 ≥ OF2(x)−∆2 (2.23)

∆i ≥ 0,∀i ∈ {1, 2} (2.24)

The example contains two objectives: objective 1 and objective 2 represent,
respectively, a maximisation and minimisation objective function. The variable
OFi(x) denotes the value of objective function i ∈ {1, 2} as a function of the decision
variable x. Each objective is assigned a target value gi and ∆i measures the deviation
from the target value as shown in (2.22) and (2.23). Thus, the objective function of
the goal program in (2.21) simply aims to minimise these deviations. An objective
function value equal to zero indicates that both target values have been reached.
This requires that ∆i should be non-negative as enforced with (2.24). A positive
target weight wi is assigned to each target to indicate the importance of achieving
each target. Equal weights indicate that both targets are equally important.

Intuitively, the optimal solution desired by in-flight catering companies would
result in (1) a 100% PSL and (2) zero surplus meals simultaneously. These two
parameters define, respectively, the ultimate goals (g1 and g2) for the two conflict-
ing objectives. The deviation from these two goals (∆1 and ∆2) are simply (1) the
passenger dissatisfaction level achieved and (2) the number of surplus meals pro-
duced. Accordingly, the multi-objective nature of the in-flight catering industry
can be captured in the model using pre-emptive goal programming, by ensuring
that the model’s objective function minimises the weighted sum of the passenger
dissatisfaction level achieved and the total number of surplus meals produced.

It should be stressed that an efficient solution is not always guarenteed when
using pre-emptive goal programming. Rardin (1998) explains that this is because
there is nothing in the goal-programming formulation to encourage further opti-
misation if one or more of the model’s goals are achieved. To enforce an efficient
solution, the author suggest adding a small multiple of each original minimisation
objective and to subtract the same multiple of each original maximisation objective.
An example of the resulting objective function is shown in (2.25)

minZ = w1∆1 + w2∆2 + 0.001(OF2(x)−OF1(x)) (2.25)
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The above is, however, not required for the model being developed for the in-
flight catering industry, since the 100% PSL and zero-waste targets represent the
ultimate goals of the industry. This means that the model will always generate an
efficient solution because the solution cannot be improved after achieving either one
or both of the goals given.

The efficient solution obtainable by an in-flight catering company is strongly
dependent on the primary demand for each meal type offered on the menu. The
primary meal demands are obviously unknown when the caterer needs to start the
meal order planning and production phases for the flight under consideration. The
respective values can be estimated using equation (2.2) along with the set of first-
choice probabilities and the aggregate meal demand forecasted.

2.4 Dynamic passenger load forecasting

This dissertation assumes that each passenger on-board a flight is entitled to re-
ceive one complimentary meal. This means that the flight’s aggregate meal demand
is equal to its final passenger load. Thus, forecasting the final passenger load is
equivalent to forecasting the aggregate meal demand.

Various forecasting techniques have been discussed in Section 2.1.1. It was noted
that these models ignore the distribution of the forecasted variable and, therefore,
overlook valuable information. As will become clearer later on, the distribution of
the passenger load is required in order to include uncertainty within the model being
developed. Consequently, the most suitable forecasting model is that of Van Ostaijen
et al. (2017) who propose the use of a time-inhomogeneous Markov chain to forecast
the dynamic flight booking behaviour of passengers. This includes the probability
distribution of a flight’s final passenger load along with the expected value thereof.

Winston (2004b) states that a Markov chain is a special type of a discrete-
time stochastic process. In essence, it represents a sequence of events where the
probability distribution of the subsequent event’s state, depends only on the current
state. This is known as the memoryless property. The state space C is the set of all
possible states that could occur. The transition probability P i,j is the probability
that the process will transition from state i to state j in one time unit. In a time-
inhomogeneous Markov chain, the transition probabilities are time-dependent; Let
Pt1, t2 represent the Transition Probability Matrix (TPM) from time t1 to t2 such
that it contains all the transition probabilities P i,j

t1, t2 for each i, j ∈ C pair.
In Van Ostaijen et al. (2017)’s model, the Markov chain {Zt} represents the cur-

rent passenger load at t time units before flight departure, where t ∈ {N,N−1, ..., 0}
and N is the forecasting horizon. Thus, t = 0 represents the flight’s departure. The
state space of {Zt} is restricted by K, the maximum number of flight bookings al-
lowed, such that C ∈ {0, 1, ...K}. The authors chose to use time-inhomogeneous
transition probabilities. This improves the forecasting accuracy of the passenger
load, since the booking behaviour of passengers is time-dependent. The memoryless
property of this Markov chain is given in (2.26).

P
it, it−1

t, t−1 = P[Zt−1 = it−1 | Zt = it, Zt+1 = it+1, ..., ZN = iN ]

= P[Zt−1 = it−1 | Zt = it] (2.26)
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Lastly, as illustrated in (2.27), the authors define πt as the probability distribu-
tion of the passenger load at t time units before the flight’s departure.

πt = (P[Zt = 0], P[Zt = 1], ... , P[Zt = K])T (2.27)

This probability distribution of the net passenger bookings at time t − β can be
calculated using (2.28), where β ∈ {1, ..., N − t}.

πt−β =

β∏
l=1

Pt−l+1, t−l · πt (2.28)

Consequently, the expected passenger load at time t can be calculated using (2.29).
Note, πt(i) refers to the ith element in πt.

E[Zt] =
K∑
i=0

πt(i) · i (2.29)

The calculation of the probability distribution and the expected value of the pas-
senger load at time t is straight-forward. However, obtaining the required modelled
TPMs are more complicated. Figure 2.4 depicts the high-level representation of the
process followed by Van Ostaijen et al. (2017), Goto (1999) and Goto et al. (2004).

Figure 2.4: Generating a transition probability matrix (Goto et al., 2004).

In summary, a modelled TPM is estimated using (a) the differences in the pas-
senger loads observed and (b) the frequency of the transitions observed regarding
the net absolute passenger load. Goto et al. (2004) followed a similar approach to
develop an optimal meal ordering policy using a MDP, which is described in more
detail by Goto (1999).

To determine these matrices, historical data of the net passenger load for a
specific flight at time points t∈ {N,N − 1, ...1, 0} are required. The approaches
suggested to generate the three matrices are discussed below.

Equation (2.28) has been emended after receiving confirmation from Van Ostaijen et al. (2017).
The original equation, as provided in the source article, omitted the second subscript of Pt−l+1, t−l.
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(a) Transition probability matrix using differences

The Transition Probability Matrix using Differences (TPM-D), represented with
P̄t, t−1, is based on the differences observed in the historical flight booking dataset.
A difference is simply the change in the passenger load between two sequential pre-
departure time intervals (Zt−1 − Zt). The matrix is then populated using the dis-
tribution of these differences without considering the current passenger load. Thus,
this approach assumes that the passenger load’s net change is independent of the
passenger load at time t.

Figure 2.5: Distributions of the differences observed in a flight’s passenger load
between six successive pre-departure time intervals (Goto et al., 2004).

The first step in obtaining the transition probabilities is to calculate the differ-
ences in passenger load observed for each time interval. Figure 2.5 shows an example
of the distributions of these differences in passenger load between six successive time
intervals, as obtained by Goto et al. (2004).

Up until an hour before departure, the differences observed are normally dis-
tributed near a mean of zero with a few positive outliers. During the final hour, the
normal distribution of the differences is extremely left-skewed with excessive vari-
ation. The differences in the distributions depicted demonstrate that the booking
behaviour of passengers is time-dependent

As a second step, Goto et al. (2004) fitted the trimmed distributions of these dif-
ferences with normal and shifted Poisson distributions. This allowed the authors to
model the probability of observing a given change in passenger load (Yt) using (2.30).

P[Zt−1|Zt] =


P[Yt ≤ −Zt] if Zt−1 = 0

P[Yt ≤ Zt−1 − Zt]− P[Yt ≤ Zt−1 − Zt − 1] if 0 < Zt−1 < K

P[Yt > Zt−1 − Zt − 1] if Zt−1 = K

where Yt ∼ Norm(µ, σ) (2.30)

The trimmed distributions represent all of the differences between the 1st and 90th

percentile thereof. As an alternative approach, Van Ostaijen et al. (2017) maintained
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the initial distributions of the differences. The authors claimed that doing so reduced
the forecasting errors observed.

Lastly, the probability matrix can then be populated where P[Zt−1|Zt] is the
value of the [Zt, Zt−1]

th entry of the matrix. The matrix might include non-zero
probabilities for states that are never reached. As stated by Goto et al. (2004),
this provides a contingency plan for these situations if they occur. Note that each
forecasting interval will require a unique probability matrix. All of the rows in
this matrix will have the same probability distribution, and as the rows increment
upwards, the probability distribution will shift to the left.

The above approach assumes that the difference in passenger load is independent
of the passenger load at time t. However, Goto et al. (2004) observed dependence
during the final transition at one hour before departure. Consequently, the authors
chose to model the final transition probabilities by incorporating a simple linear
regression model given in (2.31), where β0 and β1 are the regression parameters and
ε is the error term.

Ldifference = β0 + β1Z
∗
1 + ε (2.31)

The normal transition probabilities are then calculated using (2.30) by using the
computed Ldifference value as the mean, and the standard deviation is estimated
using the root mean square error (se). As seen, the true passenger load at one hour
before departure (Z ∗1 ) is the only independent variable in the regression model.
Goto (1999) considered including additional covariates, including the Day of Week
(DOW), the season and the forecasted passenger load. However, these covariates
were found to be strongly correlated with the actual passenger load at one hour
before departure and provided negligible gain within their model. For this reason,
the additional covariates were omitted from their regression model.

(b) Transition probability matrix using the absolute passenger load

Represented by ¯̄Pt, t−1, the Transition Probability Matrix using the Absolute Pas-
senger Loads (TPM-APL) is based on the direct transition from one passenger load
to another in successive time intervals. To populate the matrix, Goto et al. (2004)
suggests the use of a frequency table for each forecasting interval, where the (i, j)th

entry contains the total number of flights observed where the passenger load tran-
sitioned from i to j passengers during the particular time interval. Each element
must then be divided by its row’s total to obtain the desired transition probabilities.

According to Van Ostaijen et al. (2017) and Goto et al. (2004), this method
requires a large data set of past passenger load observations and leads to an exces-
sive number of zero entries. The reason being that not all transitions possible are
observed in the dataset. Consequently, the resulting empirical distribution of each
row in the matrix is usually non-smooth and discontinuous. However, the occur-
rence probability of these transitions might still be greater than zero and, therefore,
motivates the combination of the TPM-D and the TPM-APL to correct the missing
probabilities.
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(c) The modelled transition probability matrix

The modelled TPM is obtained by combining the TPM-D and the TPM-APL with
a weighting factor φ ∈ [0, 1] as demonstrated in (2.32). Goto et al. (2004) states
that the most appropriate φ value is flight dependent. That being said, the authors
noted that higher φ values generally lead to more favourable results. The work of
Van Ostaijen et al. (2017) agree with this statement.

P i,j
t,t−1 =


(1− φ) · P̄ i,j

t,t−1 + φ · ¯̄P i,j
t,t−1, if

∑K
j=0

¯̄P i,j
t,t−1 6= 0

P̄ i,j
t,t−1 otherwise.

(2.32)

To help understand the generation of a modelled TPM, consider the fictitious
example given earlier that is now based on the example provided by Goto et al.
(2004). Assume that this flight occurs daily and has a maximum capacity of 42
passengers. Table 2.3 lists a few instances of this flight along with its known pas-
senger load at time t and time t− 1. In this specific example, each instance of the
flight had 39 passengers at time t. This is done deliberately in order to observe
how a single row in the three TPMs are calculated. The row corresponds with 39
passengers at time t.

Table 2.3: The known passenger load at two successive time intervals for seven
instances of the same fictitious flight.

Flight number
Passenger load at

Difference
time t (Zt) time t− 1 (Zt−1)

147 39 33 -7
202 39 35 -4
243 39 35 -4
294 39 38 -1
306 39 39 0
354 39 39 0
416 39 39 0

To calculate the TPM-D for the interval t to t-1, the differences between the
passenger loads are calculated as shown in the last column of Table 2.3. Afterwards,
the distribution of the trimmed differences is fitted with a normal distribution. Since
the mean of these differences is roughly -2, the peak of the normal distribution should
be centred around a passenger load of 37 passengers at time t-1. This is illustrated
in Figure 2.6a.

To interpret the diagram, it means that a passenger load of 39 passengers at
time t has a probability of roughly 15% to change to a passenger load of 37 pas-
sengers. Thus, P̄ 39,37

t,t−1 = 0.15. Similarly, the probability that the passenger load

will remain the same is approximately 13%, hence P̄ 39,39
t,t−1 = 0.13. These transition

probabilities are calculated using equation (2.30).
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Notice that the unobserved transitions, such as a transition to a passenger load
of 36 passengers, also obtained a non-zero probability of occurrence. This is due to
the fitting of a normal distribution to the differences, which helps to smooth out the
transition probabilities.

The TPM-APL load is more trivial. In the example given, the passenger load
of three of the seven flight instances given remained at a passenger load of 39.
Accordingly, the respective transition probability is 3

7
, such that ¯̄P 39,39

t,t−1 = 0.43. The
resulting empirical distribution is depicted in Figure 2.6b. Notice that only the
observed transitions have non-zero transition probabilities.

(a) Normal probability density function (b) Empirical probability density function

(c) Modeled probability density function

Figure 2.6: An example of obtaining the transition probabilities for row 39 in each
of the transition probability matrices when φ = 0.5 (Goto et al., 2004).

The modelled transition probabilities are now obtained by combining the normal
and empirical distributions using equation (2.32). As shown in Figure 2.6c, the
distributions in this example are weighted equally because φ = 0.5. Consequently,
the probability that the passenger load will remain at 39 passengers at time t-1 ,
denoted by P 39,39

t,t−1 , is roughly 28%.

2.5 Concluding remarks

In-flight food waste reduction strategies have received minimal attention. While
most include efforts aimed at improving the forecasting model used, the other two
focused on reducing the impact of the uncertainty within the in-flight meal order-
ing process. In this chapter, product substitution and stochastic programming were
identified as solution opportunities that can take advantage of the unavoidable meal
demand uncertainty.
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The in-flight meal ordering process is classified as a stochastic and multi-objective
problem with two-way, stock-out based, partial-consumer driven product substitu-
tion. The majority of this chapter investigated suitable techniques to model the meal
ordering process. The chosen approach is a stochastic MIP model with fixed RP,
pre-emptive goal programming and static product substitution using a priori substi-
tutability probabilities. It was noted that the model would have to be transformed
into its deterministic counterpart before it can be solved using optimisation software.

The model will be dependent on the output of the chosen forecasting model, a
time-inhomogeneous Markov Chain, to predict and quantify the meal demand un-
certainty within the process. This forecasting model requires that the forecasting
horizon must be divided into a strategic number of intervals. Each interval will re-
quire a unique modelled TPM due to the time-inhomogeneity assumption regarding
the flight booking behaviour of passengers.
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Chapter 3

Model formulation

This dissertation proposes an inventory decision-making model that incorporates the
effect of product substitution and demand uncertainty. The vision for the model is
to guide in-flight caterers regarding the most efficient quantity of meals to produce
for a specific flight. Through its risk pooling effect, it is believed that the model
will be able to reduce the number of excess meals on a flight, while simultaneously
maximising the Passenger Satisfaction Level (PSL) and upholding its minimum re-
quirement. The suggested model consists of two parts and is depicted in Figure 3.1.

Figure 3.1: The suggested inventory decision-making model.

The output of the model is the suggested meal order quantities for each meal
option available on the predefined in-flight menu for a specific flight instance. These
quantities will (1) maximise the likelihood that passengers will receive their preferred
meal or an acceptable substitute as an alternative to ensure that a minimum passen-
ger satisfaction level is achieved, while (2) minimising leftover meals by considering
the meal substitution behaviour of passengers and demand uncertainty. This high-
lights the multi-objective nature of the model. Part A of the stochastic model is
responsible for weighting these objectives in order to generate the stated output.

Part A is the core of the decision-making model and will consist of a stochas-
tic multi-objective Mixed-Integer Programming (MIP) model with fixed recourse
and two-way, stock-out based, partially consumer-driven product substitution. This
modelling base has extensive modelling capabilities and flexibility. This is highly
desired as the product assortment (the flight’s meal menu), and subsequent capac-
ity requirements are changed frequently. Furthermore, it allows the model to be
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easily adapted to a specific catering company’s unique production capabilities. To
determine the most efficient meal order quantities, Part A requires five inputs:

Probability distribution of the final passenger load (π0): A flight’s final passenger
load, Z0, represents the aggregate meal demand as each passenger is entitled
to receive a complimentary meal. This is an important input for the MIP
model as it is required to derive the primary demand for each meal option.

However, recall that the final passenger load is unknown up until the flight’s
departure at time t = 0. Consequently, Z0 must be forecasted, which creates
uncertainty within the model. To handle this uncertainty and to improve the
modelling accuracy, the final passenger load will be treated as a stochastic
variable, denoted by Z̃0. The probability distribution thereof, represented
with π0, will be forecasted using Part B of the model.

Stochastic set of first-choice probabilities (q̃): These probabilities will be used to
estimate the primary demand for each meal option with respect to the aggre-
gate meal demand (Z̃0). The first-choice probabilities can be obtained using
the ratios of meals that were booked by passengers utilising the airline’s online
flight booking system. Since fluctuations are possible, the set of first-choice
probabilities will be treated as a stochastic variable.

A priori substitutability matrix (α̂): This deterministic matrix defines the similari-
ties between the different meal options available on the menu and explains the
substitution behaviour of the passengers. Obtaining the a priori probabilities
requires knowledge about each meal option and can be estimated using expert
knowledge, experience, and market research.

Target weights (wPSL and wMeals): The target weight wPSL indicates the impor-
tance of achieving a 100% PSL, while the target weight wMeals indicates the
importance of producing zero waste. Both targets are considered equally im-
portant when the weight values are equal. The target weights will likely be
flight dependent (i.e. business class vs economy class) and should be in line
with the in-flight catering company and airline’s competitive strategy.

Minimum PSL (pmin): This input represents the minimum PSL that must be
achieved. Satisfaction levels lower than the minimum PSL are unacceptable,
while higher satisfaction levels are desired but not required. The minimum
PSL provides the model with an indication as to how much risk the model is
allowed to take in terms of passenger dissatisfaction. For instance, a minimum
PSL of 90% indicates that the model could risk reducing the total meal order
quantity to reduce waste as a 10% dissatisfaction level is allowed. However, a
minimum PSL of 100% forces the model to almost ignore the waste minimisa-
tion objective because there is no room for any meal shortages or substitutions.

Without the inclusion of the minimum PSL, the model will find the most ef-
ficient weighted balance between the primary and secondary objectives. This
could result in an expected PSL lower than what the in-flight catering com-
pany is comfortable with as it could have a severe impact on the company’s
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reputation. For example, an expected PSL of 94% might not be appropriate
for a business-class flight. One approach to increase the expected PSL is to
change the ratio between the two target weights. This will, however, require
a trial-and-error approach until the correct target weights are found that will
result in a more acceptable expected PSL. This trial-and-error approach will
likely be tedious and time-consuming and is prevented through the inclusion
of the minimum PSL requirement.

The minimum PSL input is flight dependent (i.e. business class vs economy
class) and is influenced by the airline’s strategy.

The purpose of Part B is to forecast π0, the probability distribution of a spe-
cific flight’s final passenger load. The chosen forecasting model consists of a time-
inhomogeneous Markov Chain process, along with a regression model to improve
the forecasting accuracy. The trained forecasting model will require two inputs:

Known passenger load at t = N (Z ∗N): The actual number of passenger reservations
for the flight under consideration at time t = N.

Departure date: The day of the week, month and year of the flight’s departure.

The forecasting model must be trained using historical data of the specific flight
under consideration. Thus, the data required must include the passenger load at
various pre-departure time points for numerous instances of the same flight. It
is assumed that at least two year’s of data is required to capture seasonality and
growth. Unfortunately, the data required could not be obtained from industry or
public data sources. For this reason, synthetic data will be generated by exploiting
the known assignable causes of passenger load uncertainty and the flight booking
behaviour of passengers. The synthetic data will be validated using visual inspection.

Although Part A is responsible for the actual decision-making aspect of the
model, Part B is equally important due to the concept of ‘garbage in, garbage out’.
Simply stated, if the output of Part B is highly unreliable, then the output of Part A
will have no value. The remainder of this chapter explains the model formulation
for each part in more detail.

3.1 Part A: Inventory decision-making model

The purpose of the inventory decision-making model is to decide on the most efficient
meal order quantities for a specific flight. This model will be similar to the work
of Vaagen et al. (2011). Consequently, it will consist of a MIP model with fixed
recourse and product substitution where the substitution behaviour is represented
with exogenous a priori probabilities. However, unlike Vaagen et al. (2011)’s model,
the model developed will incorporate pre-emptive goal programming. This will allow
the model to handle the non-monetary, multi-objective nature of the in-flight meal
ordering process.

In addition, Vaagen et al. (2011)’s model assumes that the stochastic primary
demand for each individual product is known. For the problem considered, each
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meal option’s individual demands will be derived from the flight’s random aggre-
gate meal demand (final passenger load) and the set of first-choice probabilities
using equation (2.2). Recall that a first-choice probability refers to the fraction of
passengers who’s first-choice preference is a specific meal option from the assort-
ment of meals offered on the in-flight menu. Equation (2.2) assumes that the set of
first-choice probabilities are deterministic as they represent the market share of each
product. However, to further improve the accuracy of the model, this dissertation
will treat the set of first-choice probabilities as random variables. The remainder of
this section will discuss the model’s notation and formulation.

3.1.1 Notation

The model consists of various decision variables, utility variables and parameters as
defined in this section. The stochastic elements can be identified with a tilde (Ã),
while sets and vectors are indicated in bold (A).

Sets

A set is a collection of elements that are grouped according to a mutual character-
istic. Only one set will be used in the model:

Let I represent the set of meal types served on the flight under consideration,
such that I ∈ {1, 2, ..., n} and n indicates the number of meal options available.

Decision variable

Decision variables represent the controllable components of the model that can be
manipulated to optimise the given objective function. According to Bean (2011),
decision variables are used by a decision-maker to make informed decisions.

xi , the suggested order and production quantity of meal option i ∈ I for a specific
flight under consideration.

Parameters

Parameters are known values that cannot be manipulated within the model.

pmin , the minimum passenger satisfaction level required.

Z̃0 , random variable describing the final passenger load (the aggregate meal
demand) for the flight under consideration on the day of its departure (t = 0).
Its probability distribution π0 is derived in Part B.

wPSL , the target weight indicating the importance of achieving a 100% PSL.

wMeals , the target weight indicating the importance of producing zero waste.

q̃ , random vector describing the set of first-choice probabilities, such that q̃i
represents the random first-choice probability of meal option i ∈ I.
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α̂ij , the a priori probability that meal option i ∈ I can serve as a substitute
for meal option j ∈ I when the latter is out of stock. Furthermore, it also
represents the level of passenger satisfaction achievable when the mentioned
substitution occurs.

Utility variables

Utility variables provide additional support to ensure that the model functions as
intended, while the final value thereof is considered unimportant.

In this model, all the utility variables are second-stage decision variables. Thus,
A(q̃, Z̃0) indicates that A is a second-stage variable and a function of the stochastic

first-choice probability vector q̃ and the random aggregate demand Z̃0.

di(q̃, Z̃0) , the primary demand for meal option i ∈ I.

δ+i (q̃, Z̃0) , the number of meals of option i ∈ I in excess of its effective demand.

δ−i (q̃, Z̃0) , the number of meals of option i ∈ I in short of its primary demand.

yi(q̃, Z̃0) , the number of meals of option i ∈ I assigned to satisfy its respective
primary demand (direct sales). Thus, the number of passengers who will
receive their first-choice meal, meal option i.

zij(q̃, Z̃0) , the number of meals of option i ∈ I that is assigned to meet the un-
satisfied demand for meal option j ∈ I (substitution sales). Stated differently,
the number of passengers that will receive meal option i as a substitute for
meal option j. Intuitively, zii = 0.

∆Meals(q̃, Z̃0) , the deviation from the zero-waste target of the waste minimisation
objective (the total number of surplus meals produced).

∆PSL( q̃, Z̃0) , the deviation from 100% PSL target of the PSL maximisation
objective (the passenger dissatisfaction level).

3.1.2 Multi-objective stochastic MIP model with fixed re-
course and product substitution

Through the implementation of pre-emptive goal programming, the objective func-
tion in (3.1) minimises the weighted sum of the deviations from the goals of the
in-flight catering industry’s two conflicting objectives − a 100% PSL and zero waste.

minZ = wPSL · E q̃, Z̃0

[
∆PSL(q̃, Z̃0)

]
+ wMeals · E q̃, Z̃0

[
∆Meals(q̃, Z̃0)

]
(3.1)

Simply stated, the objective function minimises the deviation from the ideal so-
lution. The first term of the objective function minimises the expected passenger
dissatisfaction level, thereby indirectly maximising the expected PSL of the flight
under consideration (primary objective). The second term minimises the expected
number of surplus meals produced (secondary objective). The target weights, wPSL

and wMeals, indicate the importance of achieving the goals of the two objectives.
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The objective function is dependent on the recourse actions of the model after the
first-choice probabilities and passenger load uncertainties have been disclosed. Two
recourse variables, δ+i (q̃, Z̃0) and δ−i (q̃, Z̃0), are introduced for each meal option i ∈ I
to measure the over- and under-catering thereof.

The deviation from the zero-waste target is represented with ∆Meals(q̃, Z̃0) and
is calculated using (3.2).∑

i∈I

δ+i (q̃, Z̃0)−∆Meals(q̃, Z̃0) ≤ 0 (3.2)

Since it is impossible to produce a negative amount of waste, (3.2) can be simplified

so that ∆Meals(q̃, Z̃0) is equal to the total number of surplus meals produced.

The passenger dissatisfaction level, denoted by ∆PSL(q̃, Z̃0), represents the de-
viation from the 100% PSL target and is calculated with (3.3).

100

∑
i∈I

(
yi(q̃, Z̃0) +

∑
j∈I, j 6=i α̂ji zji(q̃, Z̃0)

)
∑

i∈I di(q̃, Z̃0)
+ ∆PSL(q̃, Z̃0) ≥ 100 (3.3)

The first term in (3.3) represents the PSL. A passenger is fully satisfied when
the passenger received his first-choice meal. However, when the passenger received
meal option j as a substitute for meal option i, it is assumed that the passenger’s
satisfaction level can be approximated with α̂ji. Thus, the PSL of a flight decreases
with meal shortages and substitutions. Intuitively, the maximum PSL obtainable
is 100% and (3.3) can be simplified accordingly so that the ∆PSL(q̃, Z̃0) is equal to
the passenger dissatisfaction level, calculated as 100% minus the PSL.

It is assumed that most in-flight catering companies will only consider wastage
improvements after the minimum PSL is guaranteed. This PSL restriction provides
confidence in the model’s solutions (given that the model is deemed reliable) and,
subsequently, prevents the need for the over-catering strategy. The restriction is
enforced with (3.4), where pmin represents the minimum PSL requirement.

100−∆PSL(q̃, Z̃0) ≥ pmin (3.4)

The model will optimise the above-mentioned objective function by selectively
choosing the most efficient meal order quantity xi for each meal option i ∈ I. This
decision is made without knowing di(q̃, Z̃0), the primary demand of meal option i.

As shown in (3.5), di(q̃, Z̃0) is approximated using the appropriate stochastic first-

choice probability q̃i and the random aggregate meal demand Z̃0.

di(q̃, Z̃0) ≈ dq̃i Z̃0e, ∀ i ∈ I (3.5)

Recall that Z̃0 is equivalent to the passenger load at departure and the probability
distribution thereof (π0) is the output of the forecasting model developed in Part B.

Evidently, the true value of di(q̃, Z̃0) is only disclosed in the second stage of the
model. Once the true value is known, the model will optimally allocate the available
meal quantities to satisfy the respective demand requirements. This allocation is
carried out with (3.6).

di(q̃, Z̃0) = yi(q̃, Z̃0) +
∑

j∈I, j 6=i

zji(q̃, Z̃0) + δ−i (q̃, Z̃0), ∀ i ∈ I (3.6)
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Variable yi(q̃, Z̃0) denotes the number of passengers who will receive their pre-
ferred meal choice, meal option i. The model will first try to satisfy the demand with
yi(q̃, Z̃0) only because direct sales will minimise the passenger dissatisfaction level.
Doing so ensures that the model exhibits partial consumer-driven substitution and
prevents the bait-and-catch strategy. However, if meal option i is under-catered,
zji(q̃, Z̃0) units of meal option j ∈ I will be used to help satisfy the excess demand.

Lastly, the recourse variable δ−i (q̃, Z̃0) is introduced to measure the unmet demand
(shortage) of meal option i, if any.

Recall that the passengers’ substitution behaviour is captured with a priori prob-
abilities; The probability that a passenger who prefers meal option j will accept meal
option i as a substitute is denoted by α̂ij. Constraint (3.7) utilises α̂ij to estimate the
maximum additional substitution demand for meal option i caused by a stock-out
of meal option j.

zij(q̃, Z̃0) ≤ α̂ij[dj(q̃, Z̃0)− yj(q̃, Z̃0)], ∀ i, j ∈ I (3.7)

Variable zij(q̃, Z̃0) is bounded by the maximum substitution demand in (3.7). Addi-

tionally, zij(q̃, Z̃0) is also restricted by the available stock of meal option i in (3.8).

xi = yi(q̃, Z̃0) +
∑

j∈I, j 6=i

zij(q̃, Z̃0) + δ+i (q̃, Z̃0), ∀ i ∈ I (3.8)

This constraint links the model’s first-stage (left) and second-stage (right) decisions.
It ensures that the model cannot allocate more meals than what was initially ordered.
Additionally, the recourse variable δ+i (q̃, Z̃0) is used to measure the magnitude of
over-catering when xi exceeds the uncensored effective demand for meal option i.

The model formulation assumes that all variables are positive. Furthermore,
variables representing meal quantities are restricted to integer values only. This
motivates the inclusion of constraints (3.9) to (3.12).

xi, yi(q̃, Z̃0), di(q̃, Z̃0) ≥ 0 and integer, ∀ i ∈ I (3.9)

δ+i (q̃, Z̃0), δ
−
i (q̃, Z̃0) ≥ 0 and integer, ∀ i ∈ I (3.10)

zij(q̃, Z̃0) ≥ 0 and integer, ∀ i, j ∈ I (3.11)

∆Meals(q̃, Z̃0), ∆PSL(q̃, Z̃0) ≥ 0, ∀ i ∈ I (3.12)

3.2 Part B: Forecasting model

The purpose of Part B is to forecast the probability distribution of Z̃0, the final pas-
senger load, given that there are Z∗N booking reservations at time t = N . The chosen
forecasting model will consist of a time-inhomogenous Markov Chain as proposed by
Van Ostaijen et al. (2017). However, the model will be adapted to allow overbooking
as this is common practice in the airline industry. The required Transition Prob-
ability Matrix (TPM) for each forecasting interval will be developed by combining
and adapting the approaches followed by Van Ostaijen et al. (2017) and Goto et al.
(2004). The TPMs must be developed using a historical dataset for the flight under
consideration. This set will be referred to as the training dataset, denoted by γ̇.
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3.2.1 Formulating the problem as a time-inhomogeneous
Markov chain

Let the time-inhomogeneous Markov Chain {Zt} represent the passenger load at
time point t before the departure of the flight, where t ∈ T = {N,N − 1, ..., 0} and
Zt ∈ C. Furthermore, let:

N , the number of forecasting intervals.

K , the seating capacity of the flight under consideration.

O , the number of overbookings allowed before the flight’s departure.

C , The state space of {Zt} that consists of all possible passenger load possibilities,
such that

C =

{
{0, 1, ..., K +O}, if t > 0.

{0, 1, ..., K}, otherwise.

Pt, t−1 , the modelled TPM for interval t to t− 1, where element P i, j
t, t−1 represents

the probability that the flight’s passenger load will transition from i to j
passengers during the stated interval, where t ∈ {N,N − 1, ..., 1} and i, j ∈ C.

πt , the probability distribution of Zt, the passenger load at time point t ∈ T.

Z∗t , the true and known passenger load at time point t ∈ T.

The forecasting horizon is measured in hours and divided into N intervals of
varying lengths. Recall that t = N represents the start of the forecasting horizon,
while the flight’s departure occurs at t = 0. Thus, the first forecasting interval
stretches from t = N to t = N-1. The number of intervals and the length of each
interval must be decided strategically. While a large number of intervals could
improve the accuracy of the model, it will also increase the model’s computational
requirements. The reason being that each interval requires a unique modelled TPM
as it is known that the booking behaviour of passengers is time-dependent. This
motivates the use of a time-inhomogeneous Markov Chain. Furthermore, the model
being developed assumes that the state space C is also time-dependent due to the
allowance of overbooking when t > 0.

Van Ostaijen et al. (2017) suggest equation (2.28) to calculate πt−β. However,
the author restricts the utility variable β to belong to the set {1, ..., N − t}. This
restriction is believed to be a potential error because it prohibits the calculation
of most πt∈T variables. For example, to calculate π0 when t = N requires that β
should be equal to N , yet it is not possible since β is restricted to the set {1, 0}.
For this reason, this dissertation will restrict β to belong to the set {1, ..., t}.

Furthermore, there are two approaches that can be used to model a matrix, such
as a TPM. Assume a scenario where the probability to transition from Zt = i to
Zt−1 = j is equal to 30%. Van Ostaijen et al. (2017) followed the approach as
illustrated in Figure 3.2a, where the columns represent the current state (Zt) and
the rows represent the future state (Zt−1).
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(a) Column (Zt) to row (Zt−1). (b) Row (Zt) to column (Zt−1).

Figure 3.2: Illustration of the two approach that can be used to model a TPM.

To ensure consistency with the matrices used in Part A of the model, this dis-
sertation will follow the approach depicted in Figure 3.2b − the rows represent the
current state (Zt) and the column represent the future state (Zt−1). This will have
no impact on the outcome of the forecasting model. The reason being that the two
matrices shown are simply the transpose of one another. However, due to the rules of
matrix multiplication, equation (2.28) is no longer suitable and must be transformed
accordingly. The resulting equation is given with (3.13), where t ∈ {N,N − 1, ..., 1}
and β ∈ {1, ..., t}.

πt−β = πt ·
β∏
l=1

Pt−l+1, t−l (3.13)

Equation (3.13) and the inclusion of overbooking require that πt must be redefined
as shown in (3.14).

πt =

{
(P[Zt = 0], P[Zt = 1], ... , P[Zt = K +O]) t > 0,

(P[Zt = 0], P[Zt = 1], ... , P[Zt = K]) t = 0.
(3.14)

Recall that the main purpose of the forecasting model is to predict π0 using Z ∗N .
This can be achieved using (3.13) where t = N and β = N as demonstrated below.

π0 = πN ·
N∏
l=1

PN−l+1, N−l (3.15)

Notice that πN is required as input for (3.15). Fortunately, it is known that the true
passenger load at time t = N is Z ∗N , meaning that P[ZN = Z ∗N ] = 1. Consequently,
πN can easily be derived and will consist of |C|− 1 zero probability elements (where
ZN 6= Z ∗N) and one element with a probability equal to 1 (when ZN = Z ∗N).

The inventory-decision making model (Part A) is only interested in the distribu-
tion of the final passenger load (π0). However, the single point estimate thereof will
be required to measure the accuracy of the forecasting model and to evaluate al-
ternative models. The single point estimate of the final passenger load, represented
with E[Z̃0], can be calculated using equation (2.29) defined earlier, where t = 0.

E[Z̃0] =
K∑
i=0

π0(i) · i (3.16)

Note that the single point estimate is also known as the expected value. The fore-
casting accuracy of the expected value will be measured using the Mean Absolute
Error (MAE) and the Mean Absolute Percentage Error (MAPE).
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3.2.2 Deriving the transition probability matrices

Recall that the modelled TPM, denoted by Pt,t−1, can be obtained using (2.32).
This equation is modified slightly to allow for overbooking as shown in (3.17).

P i,j
t,t−1 =


(1− φ) · P̄ i,j

t,t−1 + φ · ¯̄P i,j
t,t−1, if

∑
j∈C

¯̄P i,j
t,t−1 6= 0,

P̄ i,j
t,t−1 otherwise.

(3.17)

Each element in Pt,t−1 is the weighted combination of the respective element in the
Transition Probability Matrix using Differences (TPM-D), and in the Transition
Probability Matrix using the Absolute Passenger Loads (TPM-APL) for the respec-
tive interval. The most efficient weighting factor φ will be chosen after conducting
a sensitivity analysis for each φ ∈ {0, 0.05, ..., 0.95, 1}.

(a) The transition probability matrix using differences

The chosen method to calculate the TPM-Ds is a combination of the two approaches
followed by Van Ostaijen et al. (2017) and Goto et al. (2004). Similar to Goto et al.
(2004), the TPM-D for the final interval will be generated using a regression analysis
to capture the dependent relationship between the passenger load at the start of the
final interval and the change observed. Consequently, the formulation of the set of
TPM-Ds consists of three main steps:

1) Calculate the set of differences for each forecasting interval where t− 1 > 0

The first step is to calculate the changes in the passenger load observed during
each forecasting interval using (3.18).

Y γ
t,t−1 = Z∗ γt−1 − Z

∗ γ
t ∀ γ ∈ γ̇, t ∈ {N,N − 1, ..., 1} (3.18)

The set of differences, Yt,t−1, consists of the changes in passenger load observed
during interval t to t-1 for each flight instance γ given in the training dataset γ̇.

2) Calculate the TPM-D for all the intervals between t = N and t = 1

Goto et al. (2004) fitted each interval’s trimmed set of differences with a nor-
mal or shifted Poisson distribution to calculate the individual transition prob-
abilities using equation (2.30). However, Van Ostaijen et al. (2017) obtained
improved accuracy by maintaining the initial probability distribution of the
differences. A possible explanation could be that Goto et al. (2004)’s approach
ignores the potentially long and thick tails of the respective distributions. An
example of such a tail is visible in the first two intervals of Figure 2.5. In con-
trast, the drawback of Van Ostaijen et al. (2017)’s approach is that it assumes
that only the differences observed are possible.

Due to the strive for exceptional accuracy, Van Ostaijen et al. (2017)’s ap-
proach will be followed. This is achieved by first finding ŷt,t−1, the probability
density function of Yt,t−1. Knowing that the [Zt, Zt−1]

th entry of the TPM is

47



equal to P[Zt−1|Zt], the matrix can be populated using (3.19). This equation
is derived from equation (2.30) and ŷt,t−1(i) represents the ith element of ŷt,t−1.

P[Zt−1|Zt] =



∑|C|
i=Zt

ŷt,t−1(Zt−1 − i) if Zt−1 = 0

ŷt,t−1(Zt−1 − Zt) if 0 < Zt−1 < |C|

∑Zt

i=0 ŷt,t−1(Zt−1 − i) if Zt−1 = |C|
(3.19)

3) Calculate the TPM-D for the final interval from t = 1 to t = 0

To calculate the final TPM-D, Goto et al. (2004) used a simple regression analysis
with a single covariate - the known passenger load at one hour before departure.
Goto et al. (2004) claims that this variable is strongly correlated with other possible
covariates and, therefore, excludes them from the regression analysis. However, in
the forecasting model being developed in this dissertation, the passenger load at
one hour before departure will be unknown. Consequently, four covariates will be
included: the forecasted passenger load at the start of the last time interval (Z1), as
well as the flight’s departure month, Day of Week (DOW) and year. It will be shown
in the following chapter that the last three explanatory variables are major causes
of passenger load variation. Thus, the inclusion thereof is expected to improve the
forecasting accuracy of the model. The multiple regression model is given in (3.20).

E[Y1,0 |Z1 = k] = β0 +β1 · (k) + β2XTue + β3XWed + β4XThu + β5XFri

+β6XSat + β7XSun + β8XFeb + β9XMar + β10XApr

+β11XMay + β12XJun + β13XJul + β14XAug + β15XSep

+β16XOct + β17XNov + β18XDec + β19 · (year) + ε (3.20)

The regression model consists of various dummy variables (X) to accommodate
the two categorical covariates - the month and DOW. A dummy variable is equal to
one if it applies to the flight instance under consideration and zero otherwise. Note
that there are no dummy variables for January (month) and Monday (DOW) in
order to prevent multicollinearity. Thus, a flight departing on a Monday in January
is modelled as the base case. Subsequently, the regression parameters represent the
change in E[Y1,0 |Z1 = k] when the departure date of flight instance γ deviates
from the base case. If multicollinearity is not prevented, two or more variables in
the regression model would be highly linearly correlated and will compromise the
statistical significance of the explanatory variables (Allen, 1997).

The output of the regression model, E[Y1,0 |Z1 = k], represents the expected
change in the passenger load during the last interval if Z1 = k ∈ C. For this reason,
it will be used as an approximation for the mean of Y1,0’s normal distribution.
Its standard deviation will be estimated using the root mean square error. The
normal distribution can then be used in conjunction with equation (2.30) to calculate
P[Z0|Z1 = k], the value of the final TPM-D’s [k, Z0]

th entry. This entire process must
be repeated for each k ∈ C in order to populate each row in the matrix.
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(b) The transition probability matrix using net absolute passenger loads

The TPM-APL will be obtained using the method followed by Goto et al. (2004) and
Van Ostaijen et al. (2017). In summary, the matrix is calculated by constructing a
transition frequency table and dividing each row with its respective total.

3.3 Concluding remarks

This chapter focused on the formulation of an inventory decision-making model
(Part A) and a forecasting model (Part B). Together, these two models should aid
an airline catering company to make informed decisions regarding the most efficient
quantity of meals to order and produce for a specific flight under consideration. The
model measures efficiency using the expected PSL obtainable and the accompanying
expected number of surplus meals.

The inventory decision-making model is formulated as a stochastic multi-objective
MIP model with fixed recourse and product substitution. Unlike in Vaagen et al.
(2011)’s model, the model’s objectives are both expressed in non-monetary terms.
This is due to the difficulty in quantifying the loss in customer goodwill resulting
from stock-outs of in-flight meals, and the true cost of wastage. The advantage
thereof is that fewer input data and assumptions are required for the model to func-
tion. Additionally, it is believed that the use of monetary terms might cloud the
intended goal of the model as it could result in the bait-and-catch strategy if the
appropriate parameters are not chosen appropriately.

The inventory decision-making model is heavily dependent on the output of the
forecasting model. Consequently, the forecasting model must be trained using reliable
data from past flight observations. This means that a forecasting model cannot be
shared among different flights that vary, for instance, by destination, seat capacity
or ticket prices. The training of the forecasting model will be conducted in Chapter 5
and will consist of the construction of the modelled TPM’s and a sensitivity analysis
to identify the most favourable weighting factor.

As stated earlier, this dissertation uses a synthetic dataset to train and test both
models. The assumptions and processes followed to generate the datasets will be
discussed in the following chapter.
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Chapter 4

Numerical example and synthetic
data generation

The forecasting model and the inventory decision-making model formulated in Chap-
ter 3 are applied and evaluated using a numerical example to help ease the under-
standing and interpretation of the model’s solution and results. This requires two
datasets: a training dataset to train the forecasting model and a testing dataset to
evaluate the decision-making model’s reliability, performance and timeliness.

The desired datasets are generated in this chapter. To ensure that these datasets
are as realistic as possible, a brief analysis of the major causes of variation in a flight’s
passenger load is conducted. The aim of the analysis is to identify and replicate the
flight booking behaviour of passengers.

4.1 Numerical example

The numerical example focuses on a fictitious company that is currently responsible
for the provisioning of food and beverages for one domestic flight that departs daily
at 9:00 AM. The flight has a seating capacity of 100 passengers (K = 100) and their
current reservation system allows for an overbooking of five passengers (O = 5).
Each passenger on-board the flight is entitled to receive one complimentary meal.
Currently, the in-flight menu (I) consists of a chicken meal, a beef meal, a vegan
meal and a fruit platter meal option. Chicken meals are the most preferred option,
followed by beef meals. Vegan meals are the least preferred option on the menu,
with a maximum primary demand of 5% of the passenger load. This is visible in
Table 4.1, which lists the set of first-choice probabilities (q̃) for five historical flights.

Through extensive market research and the use of expert knowledge, the com-
pany quantified the similarities between the meal options, as shown in Table 4.2.
Recall that these similarity percentages represent the a priori probabilities (α̂). For
example, there is a 70% probability that a passenger who prefers a vegan meal will
accept a fruit platter as a substitute. Additionally, there is also a 10% chance that
the passenger would accept a chicken meal. This is possible because not all of the
passengers who prefer a vegan meal as their first-choice meal are actually practising
a vegan lifestyle.
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Table 4.1: The set of first-choice probabilities for five historical flights of the numer-
ical example.

Flight nr. Chicken Beef Fruit platter Vegan

DF 201 0.54 0.28 0.16 0.02

DF 273 0.51 0.34 0.10 0.05

DF 367 0.46 0.33 0.18 0.03

DF 381 0.58 0.28 0.14 0.00

DF 415 0.45 0.38 0.12 0.05

Table 4.2: The a priori substitution probability matrix of the numerical example.

First-choice product (j)

Substitute (i) Chicken Beef
Fruit

Vegan
Platter

Chicken - 0.8 0.2 0.1

Beef 0.6 - 0.1 0.0

Fruit platter 0.3 0.3 - 0.7

Vegan 0.4 0.3 0.7 -

The company has to start the planning, procurement and production of in-flight
meals 72 hours in advance of the flight’s departure. Additional key events take place
at 15 hours, six hours and one hour before take-off, and the company keeps track of
a flight’s passenger load at these time points. Consequently, these historical records
can be used to train the forecasting model. Doing so enforces the number of intervals
(N = 4) and the individual lengths thereof. The company’s forecasting horizon is
shown in Figure 4.1.

Figure 4.1: The forecasting timeline for the numberical example.

The remainder of this chapter focuses on identifying the major causes of passen-
ger load variation and generating the desired datasets.

4.2 The flight booking behaviour of passengers

There is undeniably countless factors that influence the booking behaviour of pas-
sengers. This dissertation will focus on two key factors, the flight’s duration and
the time of travel. It also acknowledges an important pattern in a flight’s passenger
load during the final hour before its departure.
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Flight duration: domestic flights versus international flights

Flight duration has a major impact on the booking behaviour of passengers.
Chang and Jones (2007) and Megodawickrama (2018) agree with this state-
ment. A possible explanation is that, for international flights, most seats are
booked weeks in advance for reasons such as visa requirements, early-bird dis-
counts and bucket-list holidays. Furthermore, the cost of international flight
tickets is generally significantly higher than the cost of domestic flights. This
discourages impulsive and last-minute booking decisions. Because of these
factors, the passenger load of international flights are not expected to change
or vary drastically during the final few days before departure.

The opposite is true for domestic flights. These flights are more affordable
when compared to international flights and usually do not require a passport or
visa. Thus, impulsive and last-minute bookings are expected to be a frequent
occurrence. This is especially applicable to passengers who travel for business.
Furthermore, due to the lower airfare, passengers might be more likely to
miss their flight or to cancel their bookings on short notice. It is, therefore,
expected that the passenger load of domestic flights would exhibit moderate
to exceptional growth and variation during the final week before departure.

As discussed earlier, Figure 2.5 shows the distribution of the differences in the
passenger load observed for five consecutive time intervals as obtained by Goto
et al. (2004). It is speculated that the authors studied an international flight
because the passenger load remained somewhat stable during the 36 hours
before the flight’s departure. This speculation is based on the fact that the
peaks of the differences in passenger load distributions depicted are located
close to zero when t > 0.

Time of travel: month, Day of Week (DOW) and year

Seasonality is one of the most significant causes of variation in a flight’s pas-
senger load (Megodawickrama, 2018). This is due to the variability in the
tourism industry that differs for each country. The total monthly passenger
traffic for domestic flights in South Africa is shown in Figure 4.2 (Airport
Company South Africa, 2020). It is clear that a relationship exists between
the month of travel and the total passenger traffic.

It is also evident from Figure 4.2 that the air traffic increases annually. The ob-
served annual increases in the total domestic air traffic in South Africa ranged
between 1.3% and 3.8%. The monthly growth observed between the respec-
tive years ranged between -4.8% and 7.9%. This emphasises the excessive
uncertainty regarding a flight’s final passenger load.

Two additional contributing factors are the DOW and the time of departure.
Megodawickrama (2018) found that demand was high on Sundays, Thursdays
and peaked on Saturdays. Wednesdays had the lowest demand, with at least
2 000 fewer meals required when compared to a Saturday. Danesi et al. (2017)
and Koppelman et al. (2008) claim that mid-morning and late-afternoon flights
are most preferred, followed by midday flights.
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Figure 4.2: The total monthly air traffic for domestic flights in South Africa depicting
a seasonality trend and annual growth (Airport Company South Africa, 2020).

The significance of the above-mentioned factors are flight dependant. For
instance, Van Ostaijen et al. (2017) showed that monthly seasonality is an
important factor for tourist flights, while the DOW is an important factor for
business flights.

Pattern in pre-departure passenger load during the forecasting horizon

Goto (1999) observed the pre-departure passenger load for eight consecutive
instances of the same flight on a single day of the week. The author’s observa-
tions are depicted in Figure 4.3 where each line represents the passenger load
of a flight instance with respect to the flight’s capacity. Note the excessive
variation even though the flight instances only differed in departure times.
This highlights an additional, uncontrollable cause of variation - the human
factor in the flight booking process.

At some of the pre-departure time points, the passenger load exceeds the
flight’s seat capacity. This is due to overbooking. Some airlines allow over-
booking to maximise their revenue. These airlines rely on the observed booking
behaviour trend where the passenger load sharply declines during the last hour
before flight departure. This trend is clearly visible in Figure 4.3.

The trend observed indicates that a flight’s passenger load will most likely
decline during the last hour before departure. Goto (1999) speculate that
the cause could be due to last-minute ticket cancellations, missed flights and
the consequences of over-booking. The authors suspect that this last-minute
variability is the key factor that makes passenger load and meal demand pre-
dictions difficult. Furthermore, Goto (1999) observed a negative relationship
between the passenger load shortly before the flight’s departure and the change
in the passenger load observed during the final interval. In other words, the
magnitude of the above-mentioned decrease is dependent on the passenger load
shortly before departure.
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Figure 4.3: The passenger load fluctuations for eight consecutive instances of the
same flight as observed by Goto (1999).

4.3 Synthetic data generation

This section explains the main steps followed to generate the desired datasets for the
numerical example. The goal is to highlight the majority of the assumptions made
regarding the flight booking behaviour of passengers, since these assumptions are
expected to have a significant impact on the model’s reliability and performance.

As stated earlier, two datasets are required - a training and a testing dataset. Both
datasets are obtained by creating a single dataset consisting of the daily flight ob-
servations for a five-year period. The first three years of this dataset constitutes the
training dataset, while the remaining two years will be used for testing purposes.
Table 4.3 lists a few flight instances extracted from the dataset generated.

Table 4.3: A few flight instance examples from the dataset generated.

Number Passenger load Time of travel Meal demanda

γ Z ∗4 Z ∗3 Z ∗2 Z ∗1 Z ∗0 Day Month Year C B FP V

52 40 56 65 66 65 Wed. Feb. 2015 37 16 11 1

386 39 60 75 78 80 Mon. Jan. 2016 38 28 12 2

970 62 85 100 104 100 Thu. Aug 2017 58 23 14 5

1062 58 78 85 84 82 Fri. Nov. 2017 45 32 5 0

1624 70 91 101 105 98 Sun. Jun. 2019 54 37 4 3

aC = chicken, B = beef, FP = fruit platter and V = vegan.

The data generated for each flight instance includes the passenger load at each
time point t ∈ {4, 3, 2, 1, 0}, the DOW, month and year of the flight’s departure and
the final meal demand. The meal demand represents the primary demand for each
in-flight meal option offered. In practice, the primary demand will be challenging
to obtain. A suggested approach is to estimate the demand using the pre-booked
meal records of historical flights.
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The first step to generate the dataset mentioned above is to create a separate
record for each flight instance that departs during the five-year period. This includes
assigning a DOW, month and year to each flight instance in a sequential order. The
passenger load at each time point t is obtained as follows:

Passenger load at t=4 : To obtain Z ∗4 , the base passenger load at time t = 4 is
randomly drawn from a triangular distribution for each flight instance. The
motivation behind the use of a triangular distribution will be discussed shortly.
The base passenger load represents the expected passenger load for a flight
departing on a Monday morning in January during the first year. However, as
discussed in the previous section, the DOW, month and year of departure have
a significant impact on the flight’s expected passenger load. Consequently, the
base passenger load must be transformed accordingly for each flight instance:

1. Add monthly growth: In the previous section, it was found that the av-
erage yearly growth in domestic passenger traffic ranged between 1.3%
to 3.8%. This numerical example will assume a worst-case fixed annual
growth of 4%, which results in a monthly growth of 0.327%, assuming
that compounding is relevant. The monthly growth factor is then used
to add a positive trend to the base passenger load.

2. Add monthly and daily seasonality: After the monthly growth has been
added, the passenger load is multiplied with the flight instance’s respec-
tive monthly seasonality factor. These seasonality factors are measured
with respect to the base month, January, and calculated using the aver-
age passenger traffic for each month as given in Figure 4.2. The resulting
pattern of the monthly seasonality factors is visible in Figure 4.4, which
will be used to visually validate the data generated.

Figure 4.4: The average percentage change (seasonality factor) in the passenger
traffic for domestic flights in South Africa when compared with the month of January
(adapted from Airport Company South Africa (2020)).

A similar process is repeated to add DOW seasonality. The DOW sea-
sonality factors used were assumed while knowing that demand is high
on Sundays, Thursdays and usually peaks on Saturdays.
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Passenger load at t ∈ {3, 2, 1}: The passenger load at time point t ∈ {3, 2, 1} is
calculated by simply adding a difference to the passenger load at time point t-1.
The respective differences are also randomly drawn from a triangular distri-
bution and multiplied with the DOW and monthly seasonality factors. Since
the data is generated for a domestic flight, the triangular distributions’ modes
were chosen to be greater than zero to ensure that the passenger load exhibits
moderate to excessive growth as expected. Figure 4.5 depicts the distribution
of the differences obtained in the dataset for each forecasting interval.

Figure 4.5: The distribution of differences for each forecasting interval in the num-
berical example.

Passenger load at t=0 : Similar to the above, the final passenger load is obtained
by adding a difference to the passenger load at t = 1, where the difference is
sampled from a triangular distribution and multiplied with the seasonality fac-
tors. For this interval, however, the parameters of the triangular distributions
will differ for each flight record to ensure a dependent relationship between
Z ∗1 and the differences obtainable. Furthermore, since it is known that the
passenger load is expected to decline shortly before departure, the modes of
the triangular distributions should be negative. It is apparent from Figure 4.5
that the mean decline during the final interval in the dataset generated is
roughly three passengers. The final passenger load for each flight instance in
the dataset is shown in the top graph in Figure 4.6.

Figure 4.6 illustrates the decomposition of the dataset as a multiplicative time
series. The desired monthly seasonality pattern is clearly visible and corre-
sponds with the pattern in Figure 4.4. In addition, a strong positive trend that
represents the growth in passenger traffic is also observed. These observations

56



Figure 4.6: The decomposition of the final passenger loads in the dataset, which
highlights the existince of the desired seasonality pattern and growth trend.

validate the authenticity of the dataset generated to some extent. Unfortu-
nately, there is a slight pattern visible in the remainder plot that results from
multiplying the differences with fixed seasonality factors. This simply means
that the model’s randomness is sharpened with the seasonality factors.

Regrettably, limited information is available regarding the expected distribu-
tion of the passenger load differences. The distributions observed by Goto
et al. (2004), as shown in Figure 2.5, appear to be slightly right-skewed nor-
mal distributions when t > 0. Furthermore, as stated earlier, Vaagen et al.
(2011) found that a higher accuracy can be obtained by maintaining the distri-
bution of the set of differences instead of fitting a normal distribution to the set
of differences when construction the Transition Probability Matrix (TPM)s.
This further motivates the speculation that the expected distribution of the
passenger load differences is not perfectly normally distributed, but slightly
skewed. For this reason, a triangular distribution was used in the data gener-
ation process because of the ease with which the tails of the distribution can
be manipulated using its min, mode and max parameters to model the desired
skewed distribution.

Meal demand: The primary demand for each meal option is generated by fit-
ting a normal distribution to the respective first-choice probabilities provided
in Table 4.1. In random order, the demand for each meal type is obtained
by randomly selecting a probability value from the meal option’s first-choice
probability distribution. The probability is then multiplied with the flight
instance’s final passenger load obtained previously and rounded upwards to
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obtain an integer value. If, at any given point, the sum of the meal order
quantities exceeds the final passenger load, the current meal type’s order is
reduced to the maximum acceptable quantity. The process is repeated until
the sum of the meal order quantities sampled is equal to the desired final pas-
senger load. The resulting frequency distribution of each meal type’s primary
demand in the dataset generated is graphed in Figure. 4.7

Figure 4.7: The distribution of the primary demand for each meal option offered in
the numberical example.

When utilising the first-choice probabilities provided in Table 4.1, the average
demand probability for chicken meals is 50.8%, followed by 32.2% for beef meals,
14.0% for fruit platters and 3.0% for vegan meals. Almost indistinguishable results
are obtained when analysing the dataset generated: the average demand probability
for chicken meals is 51.5%, followed by 32.1% for beef meals, 13.2% for fruit platters
and 3.2% for vegan meals.

4.4 Concluding remarks

This chapter summarised the numerical example that will be used throughout the
remainder of this dissertation to illustrate the application of the model. Further-
more, a brief overview of the processes followed to generate the required dataset is
also given. The dataset generated is based on the findings obtained from analysing
the flight booking behaviour of passengers in the literature. These findings included
seasonality patterns, growth trends and the inherent flight booking behaviour of
passengers.
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Chapter 5

Model solution

The model formulated in Chapter 3 consists of an inventory decision-making model
(Part A) and a forecasting model (Part B). The focus of this chapter is to develop the
model’s solution, which will be based on the numerical study discussed in Chapter 4.
This solution includes the transformation of the inventory decision-making model,
currently formulated as a stochastic Mixed-Integer Programming (MIP) model, into
its deterministic equivalent. Furthermore, the solution will contain the derivation
of the modelled Transition Probability Matrix (TPM) for each forecasting interval.

5.1 Part A: Inventory decision-making model

Recall that the inventory decision-making model is currently formulated as a MIP
model with fixed recourse and two stochastic variables − the set of first-choice
probabilities q̃ and the final passenger load of the flight under consideration Z̃0. As
a consequence, the model must be converted into its deterministic equivalent in order
to obtain an exact solution using standard optimisation software. This conversion
will be achieved using recourse programming, where each of the stochastic variables
is decomposed into a set of potential realisations and accompanying probabilities.

This section discusses the transformation of the stochastic model, described by
equations (3.1) to (3.12), into its deterministic equivalent. To illustrate this trans-
formation, consider the stochastic model’s objective function given in (3.1).

minZ = wPSLE q̃, Z̃0

[
∆PSL(q̃, Z̃0)

]
+ wMealsE q̃, Z̃0

[
∆Meals(q̃, Z̃0)

]
(3.1)

To convert (3.1) into its deterministic form, the stochastic passenger load Z̃0 is
decomposed into a set of realisations that correspond with C, the state space of the
flight’s passenger load with probability distribution π0. Afterwards, Z̃0 is replaced
with Zv

0 to denote the the vth realisation of the random variable with discreet dis-
tribution {(Zv

0 = C(v), pv = π0(v)), v ∈ V = {1, ..., |C|}}. Similarly, q̃ is replaced
with qs, to represent the set of first-choice probabilities for realisation s ∈ S of the
stochastic variable with discreet distribution {(qs, ps = 0.2), s ∈ S = {1, ..., 5}}. For
the numerical study, the set S consists of the five sets of first-choice probabilities
provide in Table 4.1. Each set represents a possible realisation with a probability of
occurrence of 20%.
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Recall that stochastic objective function minimises the weighted sum of the ex-
pected deviations from the 100% Passenger Satisfaction Level (PSL) target and the
zero-waste target. The expected deviations can be approximated by summing to-
gether the deviations obtained for each individual realisation qs and Zv

0 combination
pair in proportion to their respective probability of occurrences, ps and pv, for each
s ∈ S and v ∈ V . The resulting deterministic objective function is given in (5.1).

minZ =
∑
s∈S

ps
∑
v∈V

pv
(
wPSL∆PSL(qs, Zv

0 ) + wMeals∆Meals(qs, Zv
0 )
)

(5.1)

The deviation variables, represented with ∆Meals(qs, Zv
0 ) and ∆PSL(qs, Zv

0 ), must be
calculated for each unique realisation qs and Zv

0 combination pair. This is achieved
with (5.2) and (5.3), the deterministic equivalents of constraints (3.2) and (3.3).

∆Meals(qs, Zv
0 ) =

∑
i∈I

δ+i (qs, Zv
0 ), ∀ s ∈ S, v ∈ V (5.2)

∆PSL(qs, Zv
0 ) = 100

1−

∑
i∈I

(
yi(q

s, Zv
0 ) +

∑
j∈I, j 6=i α̂ij zij(q

s, Zv
0 )
)

∑
i∈I di(q

s, Zv
0 )

 ,

∀ s ∈ S, v ∈ V (5.3)

Note that (5.2) and (5.3) are not written in a goal-programming format as these
equations are simplified. The simplification is based on the fact that the goals of the
two objectives − a 100% PSL and zero waste − represent the highest performance
possible and cannot be improved any further.

The remaining constraints of the deterministic model are given in (5.4) to (5.13)
below. Note that I = {1, 2, 3, 4} corresponds with the {chicken, beef, fruit platter,
vegan} meals options in the numerical example.

100−∆PSL(qs, Zv
0 ) ≥ pmin, ∀ s ∈ S, v ∈ V (5.4)

di(q
s, Zv

0 ) ≈ dqsi Zv
0e, ∀ i ∈ I, s ∈ S, v ∈ V (5.5)

di(q
s, Zv

0 ) = yi(q
s, Zv

0 ) +
∑

j∈I j 6=i

zji(q
s, Zv

0 ) + δ−i (qs, Zv
0 ),

∀ i ∈ I, s ∈ S, v ∈ V (5.6)

zij(q
s, Zv

0 ) ≤ α̂ij[dj(q
s, Zv

0 )− yj(qs, Zv
0 )], ∀ i, j ∈ I, s ∈ S, v ∈ V (5.7)

xi = yi(q
s, Zv

0 ) +
∑

j∈I, j 6=i

zij(q
s, Zv

0 ) + δ+i (qs, Zv
0 ),

∀ i ∈ I, s ∈ S, v ∈ V (5.8)
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xi, yi(q
s, Zv

0 ), di(q
s, Zv

0 ) ≥ 0 and integer, ∀ s ∈ S, v ∈ V , i ∈ I (5.9)

δ+i (qs, Zv
0 ), δ−i (qs, Zv

0 ) ≥ 0 and integer, ∀ s ∈ S, v ∈ V , i ∈ I (5.10)

zij(q
s, Zv

0 ) ≥ 0 and integer, ∀ s ∈ S, v ∈ V , i, j ∈ I (5.11)

∆Meals(qs, Zv
0 ) ≥ 0, ∀ s ∈ S, v ∈ V (5.12)

∆PSL(qs, Zv
0 ) ≥ 0, ∀ s ∈ S, v ∈ V (5.13)

5.2 Part B: Forecasting model

In this section, the modelled TPMs for the time-inhomogeneous Markov Chain are
created using the training dataset. The TPMs are the most vital components of
the forecasting model as they directly impact the accuracy of the forecast. Accord-
ingly, a small-scale sensitivity analysis is carried out to determine the most efficient
weighting factor needed to calculate the modelled TPMs.

5.2.1 The transition probability matrices

The dataset contains the passenger load of various flight instances at five fixed time
points, thereby imposing four forecasting intervals (N = 4) and a need for four mod-
elled TPMs. Key highlights of the development of these TPMs are discussed below.

A modelled transition probability matrix

As expressed with equation (3.17), a modelled TPM is the weighted combination
of the Transition Probability Matrix using Differences (TPM-D) and the Transition
Probability Matrix using the Absolute Passenger Loads (TPM-APL). Figure 5.1
depicts the latter two TPMs for the first forecasting interval in the dataset that
stretches from 72 hours (t=4 ) to 15 hours (t=3 ) before the departure of the flight.
There is a clear contrast between these two matrices. Note that, unless stated
otherwise, the flight modelled will depart on a Wednesday morning in August 2018.

(a) Differences (b) Absolute passenger load

Figure 5.1: The TPM using differences (P̄4,3) and the TPM using the absolute

passenger load ( ¯̄P4,3) for the first forecasting interval in the training dataset.
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As explained in Section 2.4 and Section 3.2, the TPM-D utilises the probability
distribution of the set of differences observed (ŷt,t−1) to estimate the change in
the passenger load for a specific interval, independent of the current passenger load
when t > 0. Consequently, each row in the matrix consists of an identical but shifted
probability density function. This explains the uniform diagonal line observed in
Figure 5.1a. The dark green vertical line at Z3 = 105 is caused by the upper bound
restriction of the passenger load and will be discussed shortly.

The TPM-APL, shown in Figure 5.1b, consists of an irregular pattern of non-zero
transition probabilities. This irregular pattern is expected because these probabil-
ities are based on the respective transition’s random number of occurrences in the
training dataset. The training dataset does not contain any Z4 observations smaller
than 32 or larger than 72 as the irregular pattern does not exceed these boundaries.
This indicates that, based solely on the TPM-APL depicted, there is zero probabil-
ity that the passenger load at 72 hours before departure (Z4) will be lower than 32
passengers or exceed 72 passengers.

Figure 5.2 depicts the modelled TPM for the first forecasting interval. This
modelled TPM is obtained by combining the matrices shown in Figure 5.1 using
equation (3.17) with an equal weighting factor (φ = 0.5).

Figure 5.2: The modelled TPM for the first forecasting interval (P4,3) when φ = 0.5.

Recall that a row in a TPM represents the flight’s current passenger load (Zt),
while the column represents the future passenger load (Zt−1). Figure 5.3 demon-
strates the transition probabilities for a (partial) single row in each of the TPMs dis-
cussed above. The row depicted corresponds with Z4 = 56, meaning that the three
graphs represent, respectively, P̄ 56,i

4,3 , ¯̄P 56,i
4,3 and P 56,i

4,3 for each i ∈ {54, ..., 105} ⊂ C.
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Figure 5.3: The transition probability distribution obtained from the row in each of
the first interval’s TPMs that corresponds with Z4 = 56, given that φ = 0.5.

Figure 5.3 illustrates the combination process followed to generate a row in the
modelled TPM using equation (3.17). It also demonstrates its purpose − to fill
the missing absolute passenger load transition probabilities and to smooth-out the
probability distribution.

P i,j
t,t−1 =


(1− φ) · P̄ i,j

t,t−1 + φ · ¯̄P i,j
t,t−1, if

∑
j∈C

¯̄P i,j
t,t−1 6= 0,

P̄ i,j
t,t−1 otherwise.

(3.17)

As stated, the probability distributions in each row of the TPM-D are identical but
shifted, while the probability distributions in each row of the TPM-APL will vary
drastically. In fact, the probability distribution in some rows of the TPM-APL might
be non-existent. This occurs when no transition in an entire row of the matrices was
captured in the training dataset, such that

∑
j∈C

¯̄P i,j
t,t−1 = 0 . When this happens,

the respective row in the modelled TPM is set equal to the same row in the TPM-D.
It is intuitive from Figure 5.1b that this will happen with certainty when Z4 < 32 or
72 < Z4 because transitions were only observed when Z4 ∈ {32, ..., 72}. Figure 5.4
provides an example by depicting the row that corresponds with Z4 = 80.

Figure 5.4: The transition probability distributions obtained from the row in each
of the first interval’s TPMs that corresponds with Z4 = 80, given that φ = 0.5.
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The training data set did not contain any observations with a passenger load of
80 passengers at time t = 4. Consequently, the row that corresponds with Z4 = 80
in the TPM-APL will not contain any non-zero transition probabilities as seen in
Figure 5.4. Accordingly, the particular row in the modelled TPM is set equal to the
same row in the TPM-D because

∑
j∈|C|

¯̄P 80,j
4,3 is equal to zero. This is an important

detail of equation (3.17) that was not discussed previously.
Notice that the probability distribution of the TPM-D in Figure 5.4 is, as ex-

pected, identical but shifted when compared with its counterpart in Figure 5.3.
However, since Z3 is not allowed to exceed 105 passengers, the exceeding tail of the
distribution is cumulated at Z3 = 105 as enforced by equation (3.19). This results
in the noticeable vertical line at Z3 = 105 in the respective TPMs.

The set of modelled transition probability matrices

The modelled TPM for each forecasting interval is shown in Figure 5.5. These four
matrices constitute the time-inhomogeneous Markov Chain forecasting model. Evi-
dently, the modelled TPMs are unique when compared with one another and thereby
validates the assumption of time-inhomogeneity between the forecasting intervals.

Figure 5.5: The set of modelled TPMs (with φ = 0.5) for a flight instance that will
depart on a Wednesday morning during the August month of year 4.
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A noticeable difference between the modelled TPMs is the width of the diagonal
line depicting the non-zero transition probabilities. The width of the line represents
the degree of uncertainty within the respective forecasting interval. Consequently,
the line’s width is expected to correspond with the spread of the passenger load
differences observed during the interval. From Figure 4.5, the spread of differences
for the first interval is roughly 30 passengers, and eight passengers for the final
interval. This explains why the width of the first interval’s diagonal line is almost
three times thicker than the final interval’s diagonal line.

A second difference that is not immediately apparent is the x-intercept of the
diagonal line. This factor relates to the expected change in the passenger load during
the respective interval; During the first interval, the passenger load will increase
with at least 15 passengers, while only a slight change is expected during the final
forecasting interval.

Recall that the modelled TPM for the final forecasting interval (interval 4) has
two major differences. Firstly, its TPM-D is calculated using a multiple regression
model, and secondly, overbooking is not allowed. Thus, Z0 cannot exceed 100 pas-
sengers. For this reason, the modelled TPM for the final interval is discussed below.

The modelled transition probability matrix for the final interval

As stated earlier, the probability distributions in each row of a TPM-D are identical
but shifted. This statement does not hold for the final forecasting interval. This
is because the probability distribution in each row of the final interval’s TPM-D is
calculated using a multiple regression model. This is done to account for the de-
pendence between Z1 and the change observed in the passenger load. Consequently,
the probability distribution in each row of the particular matrix will vary because
each row in the matrix represents a different realisation of Z1. This can be observed
in Figure 5.6, where the probability distribution of three different rows of the final
interval’s TPM-D are compared with one another.

Figure 5.6: The varying probability distributions of three different rows in the final
forecasting interval’s TPM-D.

The regression model also includes three additional covariates - the Day of Week
(DOW), month and year of the flight’s departure. Accordingly, the TPM-D will be
unique for each day, month and year combination. Thus, the final interval’s TPM-D
(and the resulting modelled TPM) will vary for flights with different departure dates.
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This is validated in Figure 5.7, which compares a single row obtained from three
separate TPM-Ds that vary according to the modelled flights’ departure DOW,
month and year as shown. The rows depicted correspond with Z1 = 95.

Figure 5.7: The varying probability distributions of the same row obtained from
three seperate final TPM-D that differ due to the flights’ departure dates.

Although the probability distributions shown in Figure 5.6 and Figure 5.7 do
not vary drastically, their impact on the accuracy of the passenger load forecast is
expected to be significant based on the literature reviewed.

Lastly, an overbooking of 5 passengers is allowed in the numerical example to
maximise passenger revenue. However, due to the 100 passenger seat capacity of
the aircraft, overbooking is not allowed during the final forecasting interval. This
means that, while Zt ∈ {4, 3, 2, 1} is restricted by 105 passengers, Z0 is restricted by
100 passengers. The effect of this on the modelled TPMs is shown in Figure 5.8.

(a) Allows overbooking (b) Prohibits overbooking

Figure 5.8: An extraction from the third and final forecasting interval’s modelled
TPMs to demonstrate the effect of overbooking on the transition probabilities.

Figure 5.8a shows an extraction of the modelled TPM for the third interval.
This TPM contains non-zero transition probabilities for some of the Z1 realisations
greater than the flight’s seat capacity to allow for the occurrence of overbooking.
The same is not true for the modelled TPM of the final interval shown in Figure
5.8b, since overbooking is not allowed.
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5.2.2 Sensitivity analysis

The weighting factor φ is an important component in the development of the mod-
elled TPMs, since it determines the relative weight between the TPM-D and the
TPM-APL, where applicable. A high φ value tips the scale in favour of the TPM-APL.

In this section, a small-scale sensitivity analysis is conducted to determine the
most favourable φ value. The sensitivity analysis will investigate the impact of φ on
the accuracy of the forecasting model developed. The accuracy will be measured us-
ing the Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE)
of the forecast. Thus, the φ value that corresponds with the lowest MAE and MAPE
values obtained will be deemed the most favourable weighting factor. The MAE and
MAPE for a specific φ value will be calculated using (5.14) and (5.15).

MAE(φ) =
1

|γ̇|
·
∑
γ∈γ̇

|E[Z γ
0 (φ)]− Z γ∗

0 | (5.14)

MAPE(φ) =
100

|γ̇|
·
∑
γ∈γ̇

|E[Z γ
0 (φ)]− Z γ∗

0 |
Z γ∗

0

(5.15)

The equations given require the use of equation (3.16) to forecast E[Z γ
0 (φ)], the

expected final passenger load for each flight instance γ in the testing dataset γ̇.
These equations use the set of modelled TPMs that are generated using the relevant
φ value. However, recall that each flight observation will require a unique modelled
TPM for the final forecasting interval as the flight observations differ in terms of
their DOW, month and year of departure. Consequently, a unique modelled TPM
for the final interval must be generated for each flight instance γ in the testing
dataset γ̇. Lastly, Z γ∗

0 represents flight instance γ’s true passenger load at t = 0
and is obtained directly from the dataset.

The above-mentioned process was followed to calculate the MAE and MAPE for
each φ value in the set {0, 0.01, ..., 0.99, 1}. The results are plotted in Figure 5.9.
Evidently, higher values of φ are generally more favourable. This conclusion is in-
line with the work of Goto et al. (2004) and Van Ostaijen et al. (2017). The most
favourable weighting factor, represented with φ∗, is equal to 0.91 as it resulted in
the lowest MAE and MAPE error measures. Consequently, the modelled TPMs
generated earlier with φ = 0.5 are now known to be suboptimal, and a new set of
modelled TPMs must be generated with φ∗ = 0.91 to maximise the accuracy of the
forecasting model. The new modelled TPMs and the output of the regression model
are presented in Appendix A.

Note that the testing dataset had to be used to conduct the sensitivity analysis. If
the training dataset was used, the most favourable weighting factor value would have
approximated a value of one so that the modelled TPM would have been identical
to the TPM-APL. This is because the TPM-APL is based on the actual transitions
observed in the training dataset, meaning that it will maximise the accuracy of the
forecasting model if applied in isolation to the exact same dataset. When using
a different dataset, the value of the TPM-D becomes more prominent due to the
occurrence of transitions that are not accounted for in the TPM-APL.
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(a) Mean absolute error

(b) Mean absolute percentage error

Figure 5.9: The relationships between the weighting factor (φ) and the MAE and
MAPE of the forecasting model obtained from the testing dataset.

Using the testing dataset to identify φ∗ is slightly counter-intuitive, especially
considering that a testing dataset will not exist when the model is used in actual
practise. Fortunately, it is not crucial to complete a sensitivity analysis to identify
a reasonable weighting factor because, based on the work of Goto et al. (2004) and
Van Ostaijen et al. (2017), it is known that high weighting factor values are generally
more favourable. This is further motivated by the fact that the accuracy difference
between the most favourable and a lesser favourable weighting factor value is almost
insignificant. Consequently, if the in-flight catering company is unable to complete
a sensitivity analysis to identify φ∗, it is suggested that a weighting factor in the
range of [0.90; 0.98] should be chosen.

5.3 Concluding remarks

This chapter presented the model solution that integrates the numerical example
with the model formulated in Chapter 3. The model solution consists of two key
components: (1) the deterministic inventory decision-making model that can be
solved using standard optimisation software, and (2) the set of modelled TPMs that
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encompass the forecasting model for a specific flight under consideration.
Recourse Programming (RP) was used to derive the deterministic equivalent of

the stochastic inventory decision-making model. The drawback of this approach is
that it might require excessive solving times to generate a solution. This is alarming
when considering the model’s target audience − in-flight catering companies that
require solutions in real-time to cater for multiple flights per day. It is, however, be-
lieved that the benefit of using RP outweighs this risk that could easily be addressed
by reducing the number of realisations used to represent each of the stochastic vari-
ables. The benefit of RP is that the problem can be modelled with two stages, which
ensures that the model is a more realistic depiction of reality. In the first stage, the
caterer must decide on the number of each meal type to produce without knowing
the primary demand thereof. The primary demands are revealed in the second stage
and the passengers are served accordingly (recourse actions).

As stated earlier, the forecasting model is unique to a specific flight, since the
booking-behaviour of passengers will vary due to factors such as the flight’s duration,
destination, and seasonality availability. Consequently, the forecasting model must
be trained using historical data of the particular flight. Training the forecasting
model consists of the derivation of the modelled TPMs. However, recall that the final
forecasting interval’s modelled TPMs depends on the particular flight observation’s
DOW, month and year of departure. Thus, the final forecasting interval’s modelled
TPM must be derived individually for each flight observation under consideration
using the constant parameters of the multiple regression model.

This chapter analysed the modelled TPMs derived using an equal weighting
factor (φ = 0.5). However, the sensitivity analysis concluded that a weighting factor
of 0.91 will likely maximise the accuracy of the forecasting model. Consequently, new
modelled TPMs had to be generated using φ = 0.91 to form the model solution. The
new modelled TPMs and the regression model results are presented in Appendix A.
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Chapter 6

Model results

This chapter analyses the results obtained when applying the model developed to
the testing dataset of the numerical example. The output of the forecasting model
(Part B) will be presented first because it is used as an input for the inventory
decision-making model (Part A). In addition, the value of the inventory decision-
making model will be validated by comparing the model developed with similar
models that lack either passenger load randomness or product substitution, or both.

6.1 Part B: Forecasting model

The forecasting model consists of the three modelled Transition Probability Ma-
trix (TPM)s and the regression model given in Appendix A. Recall that the pur-
pose thereof is to forecast π0, the probability distribution of a specific flight’s final
passenger load. This section discusses the results obtained after deriving π0 for each
individual flight instance in the testing dataset. Three examples are demonstrated
with Figure 6.1 to Figure 6.3.

Figure 6.1: The probability distribution of the final passenger load for a flight in-
stance instance that departs on a Wednesday in August 2018, with a passenger load
of 38 passengers at 72 hours before take-off.
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Figure 6.1 depicts the resulting π0 for a flight instance that will depart on a
Wednesday morning in July 2018. It is known that the flight had 38 passenger
reservations at the start of the forecasting horizon (Z∗4). Based on the probability
distribution depicted, there is a 63.6% probability that the final passenger load will
fall within the range of 65 to 75 passengers. The expected value, also known as the
single point estimate, is 68 passengers. The forecasting model showed prominence for
this specific flight instance, as the true final passenger load (Z∗0) was 69 passengers.

The benefit of using π0 instead of the expected value is demonstrated with
Figure 6.2. For the flight instance shown, the true final passenger load is equal
to 84 passengers, but the expected value thereof underestimated this outcome with
seven passengers. However, when using π0, the possibility that the passenger load
could be 84 passengers is not discarded, as seen from the visual depiction of π0.

Figure 6.2: The probability distribution of the final passenger load for a flight in-
stance that departs on a Tuesday in November 2018, with a passenger load of 47
passengers at 72 hours before take-off.

Lastly, Figure 6.3 shows the π0 for a flight instance that departs during the high
demand period − a Saturday morning in April. Based on π0, there is a 83.1% chance
that the passenger load will exceed 97 passengers. The expected value and the true
final passenger load are both equal to 99 passengers.

The time required to train the forecasting model and to derive the respective π0
for a flight instance is negligible. This means that the forecasting model is convenient
and suitable for the in-flight catering industry, where real-time information is needed
on a daily basis. Due to the rapid speed of the current model, in-flight caterers could
consider expanding the forecasting model by increasing the number of forecasting
intervals (N) used to further improve its accuracy. Doing so will reduce the width of
the respective forecasts. Two additional considerations include increasing the size of
the training dataset and adding extra significant covariates in the regression model.
Possible covariates include the time of travel, the number of flights occurring on the
departure day and public holidays to name a few.
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Figure 6.3: The probability distribution of the final passenger load for a flight in-
stance that departs on a Saturday in April 2018, with a passenger load of 68 pas-
sengers at 72 hours before take-off.

Quantifying the accuracy of the forecasting model is challenging as it is difficult
to capture the added benefit of using the distribution of the final passenger load.
The most intuitive approaches to measure forecasting accuracy is to use the expected
value of the final passenger load to calculate the Mean Absolute Error (MAE) and
the Mean Absolute Percentage Error (MAPE). When following these approaches,
a MAE of 4.8 passengers and a MAPE of 5.9% is obtained. The resulting distri-
bution of the forecasting errors is visible in Figure 6.4. Roughly 63% of the flight
instances resulted in a forecasting error of five or fewer passengers, while 42% were
underestimated with at least one passenger.

Figure 6.4: Distribution of the forecasting error when using the expected value of
the final passenger load.

The benefit of incorporating the distribution of a particular flight’s final pas-
senger load instead of using its expected value is validated in the following section,
which focuses on the evaluation of the inventory decision-making model developed.
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6.2 Part A: Inventory decision-making model

This section evaluates the inventory decision-making model developed by comparing
its reliability, performance and timeliness with three alternative models that lack
either meal demand randomness or product substitution, or both. These alternative
models complete the strategic-scenario planning matrix shown in Figure 6.5.

Figure 6.5: Strategic-scenario planning matrix.

The inventory decision-making model developed in this dissertation, simply re-
ferred to as the Solution Model, corresponds with the fourth quadrant in the strategic-
scenario planning matrix. The second quadrant represents Alternative Model 2. In
contrast with the Solution Model, this model ignores the substitution behaviour of
passengers and assumes that the aggregate meal demand is deterministic. Alterna-
tive Model 1 and Alternative Model 3 ignore either product substitution or meal
demand uncertainty as indicated with their respective quadrant. It is important to
note that all four models include q̃, the uncertainty regarding the first-choice meal
preferences of on-board passengers. Thus, all four models are stochastic models.

The alternative models are obtained by slightly modifying the Solution Model.
For instance, to ignore meal substitution, zij must simply be set equal to zero. Recall
that this variable indicates the number of meal type i used as a substitute for the
out-of-stock meal type j, where i, j ∈ I. The deterministic meal demand can be
enforced by replacing Z̃0 with the expected meal demand instead of using recourse
programming to decompose the stochastic variable. The important characteristics
related to each axis of the strategic-scenario planning matrix are summarised below:

Substitution: zij ≥ 0, ∀i, j ∈ I

No substitution: zij = 0, ∀i, j ∈ I

Stochastic meal demand: Z̃0 ≈ Zb ∀ b ∈ {1, ..., 5} [Recourse programming]

Deterministic meal demand: Z̃0 ≈ E[Z̃0] [Expected value]
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The purpose of the strategic-scenario planning matrix is to determine the com-
bined and isolated impact of product substitution and meal demand uncertainty on
the decision-making model. In other words, the goal is to determine if these two
elements are worthwhile and contribute towards a solution for the wastage prob-
lem faced by in-flight catering companies. This can be achieved by comparing the
performance, reliability and timeliness of the Solution Model with that of the three
alternative models.

6.2.1 Model simplification

The inventory-decision making model attempts to imitate reality by incorporating
uncertainty. This uncertainty includes the aggregate meal demand of the flight un-
der consideration and the first-choice meal preferences of passengers. To handle this
uncertainty, recourse programming was used to transform the model into its deter-
ministic equivalent by decomposing the random set of first-choice probabilities into
five realisations sets, and to represent the stochastic passenger load with 101 po-
tential realisations. Unfortunately, this model solution is accompanied by excessive
computational requirements that are likely infeasible for most in-flight catering com-
panies. The reason being that it will require expensive hardware and unconstrained
solving time, which creates the need to simplify the model.

This dissertation made use of a 3.1 GHz Intel(R) Core(TM) i3-2100 CPU with
6.0 GB of RAM to solve the inventory decision-making model. After applying a
trial-and-error process, the following changes were made to the model defined in
Chapter 5 to try to ensure that the model is solved within a reasonable time:

Set of first-choice probabilities: Reduce the number of realisations to three,
such that the distribution of qs changes to

{
(qs, P s = 1

3
), s ∈ S = {1, 2, 3}

}
.

Aggregate meal demand: Recall that π0 represents the probability density func-
tion for the final passenger load of a particular flight with state space C. Since
the fictitious flight in the numerical example has a maximum seat capacity of
100 passengers (K), C consists of 101 possible realisations when including the
possibility of having zero passengers. To simplify the model, the number of
possible realisations for Z̃0 is reduced to only five realisations. The process
followed is described below.

As seen from Figure 6.1 through Figure 6.3, each π0 consists of numerous
transition probabilities that approximate zero. It is speculated that these
transition probabilities provide negligible value. Thus, the first step is to trim
both tails of π0 that accumulates to approximately 1% on each side of the dis-
tribution. These tails are then summed together with the closest neighbouring
realisation’s transition probability to ensure that

∑
i∈|C| π0(i) = 1 still holds.

This radically reduces the number of realisations. Afterwards, the remaining
realisations and their respective transition probabilities are divided into five
bins. The new realisation value associated with bin b, represented with Zb

0,
corresponds with the average of the realisations allocated to that bin. Note
that the new realisation values were rounded upwards to obtain integer values.
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As the final step, Zv
0 and pv must be replaced, respectively, with Zb

0 and pb in
the model solution given in Section 5.1. The discreet distribution of Zb

0 is given
with

{
(Z0

b, pb), b ∈ {1, ..., 5}
}

, where pb represents the sum of the transition
probabilities allocated to bin b. Figure 6.6 provides a visual representation of
the process described using the flight instance depicted in Figure 6.1.

(a) The probability distribution of the final passenger load (π0) representing the probability
of occurrence (pv) for the 101 possible realisations (Zv0 ).

(b) The trimmed probability distribution of the final passenger load (π0), colour code to
indicate the five bins.

(c) The resulting five passenger load realisations (Zb0) with their respective probability of
occurrences (pb) that are used as input for the simplified inventory decision-making model.

Figure 6.6: A graphical representation of the process followed to reduce the number
of the passenger load realisations required in order to simplify the model.

The MAE in the expected final passenger load obtained after applying the above
changes to each flight instance increased with only 0.006. Thus, simplifying the
model will slightly lower its accuracy, but the improved solving time significantly
outweighs the loss in accuracy.
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6.2.2 Model comparison process

This section briefly highlights the process followed to evaluate the models. The
process starts by selecting a flight instance from the 730 flight instances in the testing
dataset. The probability distribution of the flight instance’s final passenger load,
π0, is then obtained using the forecasting model developed (Part B). Thereafter, π0
is simplified to consist of only five possible realisations. For the remainder of this
section, flight instance 217 will be used as an example. This flight instance’s π0 and
simplified π0 are visible in Figure 6.6a and Figure 6.6c.

The simplified π0 is used as input into the Solution Model and each of the three
alternative models. These models are then solved individually using LINGO 18.0 to
obtain x, the set of suggested meal order quantities that the respective model deems
most efficient when considering the minimum Passenger Satisfaction Level (PSL),
the two conflicting objectives and the chosen target weights. An example of the
solutions obtained by each of the four models when pmin = 92%, wPSL = 1 and
wMeals = 5 are listed in Table 6.1.

Table 6.1: The model solutions and the expected outputs obtained when solving
flight instance 217 with a minimum PSL of 92%, wPSL = 1 and wMeals = 5.

Model
Order quantity (x) Expected

C B FP V PSL (%) Waste

Solution Model 41 24 11 2 97.6 9.3
Alternative Model 1 33 23 10 2 92.5 0.0
Alternative Model 2 36 21 10 3 93.4 3.7
Alternative Model 3 42 25 12 3 99.0 12.9

Two additional outputs are also recorded in Table 6.1. These outputs represent
the solution’s expected outcomes, the expected PSL and the expected number of sur-
plus meals produced when the model’s solution, the suggested meal order quantities,
are ordered for the particular flight instance under consideration. For simplicity, the
outputs will be represented with pexpected and mexpected and are calculated by adding
constraints (6.1) and (6.2) to the model solution formulated in Section 5.1.

pexpected = 100−
∑
s∈S

ps
∑

b∈{1,...,5}

pb
(
∆PSL(qs, Zb

0)
)

(6.1)

mexpected =
∑
s∈S

ps
∑

b∈{1,...,5}

pb
(
∆Meals(qs, Zb

0)
)

(6.2)

The two expected outcomes of a model’s solution will be used as benchmarks to test
and compare the performance and reliability of each model.

In summary, the models’ are evaluated by simulating a thousand realisations of
the flight instances under consideration. Thereafter, the model’s solution is applied
to each realisation to analyse the objective function output, the actual PSL and the
actual number of surplus meals produced. This process consists of the three main
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steps described below. The pseudo-code for Step 1 is given in Algorithm 1, while
the pseudo-code for the Step 2 and Step 3 are combined in Algorithm 2 given in
Appendix B.

Step 1 - Create a set of realisations:

The flight instance selected is simulated a thousand times to create a set of
realisations, denoted by R. Each realisation consists of the final passenger load
for the flight, as well as the primary demand for each meal type in I. For each
realisation r ∈ R, the final passenger load Z∗, r0 is obtained by sampling from
C = {0, ..., 100} with probability distribution π0. Thereafter, the primary
demand for each meal type is sampled using the same process followed when
creating the synthetic dataset in Chapter 4. Recall that the sum of the primary
meal demands must be equal to the final passenger load.

As an example, the first realisation (r = 1) sampled a final passenger load of 72
passengers and the primary demands for {chicken, beef, fruit platter, vegan}
meals are {39, 19, 10, 4} meals. For the 752nd realisation, a final passenger load
of 75 passengers was sampled with primary demands equal to {39, 29, 3, 4}.

Step 2 - Simulate the dynamic passenger demand order for each realisation:

This step entails mimicking the random order in which passengers are served
on-board the flight. In other words, it simulates the dynamic ‘arrival ’ of
passengers. Recall from the example given in Section 2.2.2 that the dynamic
arrival of passengers has a significant impact on the substitution behaviour
of passengers unless meal items are pre-allocated to the passengers. For the
purpose of evaluating the model, pre-allocated meals will not be considered
in this dissertation to simulate the ‘worst-case’ scenario when airlines do not
allow pre-booking of meals. Thus, while the model developed is static, it is
evaluated on its ability to perform well in a dynamic environment.

For each realisation r ∈ R, the dynamic order of passenger demands is ob-
tained by sampling Z∗,r0 meals from {d r1 , d r2 , d r3 , d r4} without replacement. Vari-
able d ri represents the primary demand for meal type i ∈ I associated with
flight realisation r.

For the 752nd realisation, 75 meals are drawn randomly from {39, 29, 3, 4}
units of the respective meal type. The resulting passenger demand order is
{chicken, beef, chicken, ..., fruit platter, beef}. This means that the first
passenger served on the flight will order a chicken meal as his first-choice,
while the second passenger prefers a beef meal. The last passenger to be
served will also try to order a beef meal as his first-choice, but might have to
consider a substitute if beef meals are out-of-stock.

Step 3 - Apply model solution:

This step measures the model under consideration’s ability to satisfy the dy-
namic demand order of each realisation r ∈ R when using its solution’s sug-
gested meal order quantities. This is done while incorporating the substitution
behaviour of passengers. This means that each model is tested with the as-
sumption that a passenger will consider a substitute meal if the passenger’s
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first, second or third preference is out-of-stock. Ultimately, this step calculates
the objective function output (OFr), the actual PSL (pactualr ) and the actual
number of surplus meals (mactual

r ) obtained after applying the model’s solu-
tion to each realisation r in the set R. The objective function output of each
realisation is calculated with (6.3).

OFr = wPSL(100%− pactualr ) + wMealsmactual
r (6.3)

As an example, assume that the Solution Model’s suggested solution is applied
to the set of realisations of flight instance number 217. Each realisation is
evaluated with order quantities x = {41, 24, 11, 2} as the model found these
quantities to be most efficient. In other words, each realisation will assume
that x represents the meal inventory levels before passengers are served. For
instance, consider the 752nd realisation. Since the first passenger prefers a
chicken meal, the stocking quantity of chicken meals will reduce to 40 meals
after this passenger is served. Similarly, the stocking quantity of beef meals
will reduce to 23 meals after the second passenger is served. This process will
continue as long as the passenger’s preferred meal is in-stock. However, notice
that this realisation’s primary demand for beef meals is 29 meals, while there
are only 24 beef meals available on-board the flight. Similarly, vegan meals
are under-catered with 2 meals. This means that at least seven passengers will
need to consider a substitute meal. The process followed to incorporate the
substitution decision process of a passenger is described below.

If the passenger’s first-choice meal (fc ∈ I) is out of stock, the passenger might
choose his second preference. This second preference meal corresponds with
the highest α̂j, fc value, where j ∈ I. If the passenger’s second preference (j) is
in-stock, the passenger must decide if he wants to accept the substitute. This
decision is modelled by randomly selecting a value in the range [0,1] with a
uniform probability. If the value selected is smaller than or equal to α̂j, fc, the
passenger accepts the substitute and the meal is served to the passenger. If
the passenger does not accept the substitute or if the substitute is also out
of stock, the process is repeated to consider the passenger’s subsequent meal
preferences. The passenger will forfeit a meal if he does not accept any of the
substitutes available, which then represents a meal shortage.

When applying the Solution Model to the 752nd realisation, three shortages
and six surplus meals occurred. Due to the under-catering of five beef meals,
three passengers accepted a chicken meal as a substitute, which led to a short-
age of one chicken meal. Furthermore, three passengers accepted a fruit platter
as a substitute for either a beef or vegan meal, and three passenger forfeited
a meal altogether. This resulted in a 93.9% actual PSL for the 752nd realisa-
tion. Fortunately, the actual PSL exceeds the minimum PSL of 92%. Thus,
mactual

752 = 6 and pactual752 = 93.9%, which resulted in a objective function output
equal to 36.1 when using weights wPSL = 1 and wMeals = 5.

This step must be repeated for each of the three alternative models. This
ensures that the models are evaluated based on the same set of realisations.
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The above describes the process followed to determine the actual outputs of
each model when applied to flight instance number 217 with pmin = 92% and target
weights wPSL = 1 and wMeals = 5. To obtain more insight, 15 additional flight
instances and four extra target weight combinations are selected and analysed us-
ing the exact same process. The process is also repeated without a minimum PSL
requirement (pmin = 0) to highlight the purpose thereof. Lastly, two additional
constraints are added to the decision-making models to evaluate the impact of ad-
ditional constraints, such as batch order restrictions, on the models.

The 16 flight instances were strategically selected from a random sample to ensure
that a variety of π0 outcomes are analysed. The π0 of the chosen flight instances, as
obtained using the forecasting model, are depicted in Figure B.1 and Figure B.2 in
Appendix B.

6.2.3 Model comparison results

The four models are evaluated based on each model’s reliability, performance and
timeliness. The reliability of a model refers to the model’s ability to guarantee the
minimum PSL required, as well as the two expected outcomes of its solutions. A
model’s performance relates to how closely the model is able to achieve the 100%
PSL target and the zero-waste target. Lastly, a model’s timeliness is concerned with
the solving time and effort required by the model to generate an efficient solution.
The results obtained are discussed in the remainder of this section.

Reliability comparison

The reliability of a model refers to the model’s ability to guarantee the minimum
PSL required, as well as the two expected outcomes of its solutions. A distinction
is made between a model’s MPSL-reliability and its output-reliability.

A model’s output-reliability simply refers to the probability that the expected
outcome(s) of a model’s solution − the expected PSL or the expected number of
surplus meals − will be achieved. It is estimated by calculating the fraction of the
total flight instance realisations that achieved or further improved on the expected
outcome of the relevant solution generated by the model under consideration. Three
output-reliabilities are considered and the results obtained for each target weight
combination analysed without a minimum PSL requirement (pmin = 0) are provided
in Figure 6.7 at the end of the discussion of the main observations given below.

The expected PSL output-reliability: This reliability measure represents the
probability that the actual PSL achieved will be equal to or greater than
the expected PSL of the model’s solution when applied to the specific flight
instance under consideration. Thus, it represents P[pactual ≥ pexpected].

The subtle decreasing trend visible in Figure 6.7a indicates that this reliability
measure is dependent on the target being favoured. Thus, higher reliabilities
are obtained when the 100% PSL target is favoured. Alternative Model 3 ob-
tained the highest expected PSL output-reliability with 68.9% when wPSL = 10
and wMeals = 1, as well as the lowest outcome with 40.8% when wPSL = 1
and wMeals = 10. Overall, this model ranked first with an average of 57.1%.
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The Solution model ranked second with 55.4%, followed by the two determin-
istic passenger load models, Alternative Model 2 with 50.3% and Alternative
Model 1 with 49.7%.

The stochastic passenger load models − the Solution Model and Alternative
Model 3 − are notably superior when wPSL > wMeals and obtained the highest
reliabilities overall. This observation hints towards the benefit of incorporat-
ing demand uncertainty within the inventory decision-making model. The
results obtained thus far are not promising for the substitution models − the
Solution Model and Alternative Model 1 − because both of the substitution
models ranked below their respective non-substitution model. Take for ex-
ample the Solution Model that obtained a 1.7% lower average expected PSL
output-reliability when compared with Alternative Model 3.

The expected waste output-reliability: This reliability measure represents the
probability that the actual number of surplus meals produced when apply-
ing the model’s solution to the particular flight instance, will not exceed the
solution’s expected value. Thus, it represents P[mactual ≤ mexpected].

Except for Alternative Model 1, the reliabilities obtained increase along with
the relative importance of the zero-waste target. This increase is visible in
Figure 6.7b. Although counter-intuitive, the opposite is true for Alternative
Model 1 that ranked last in terms of the expected waste output-reliability, with
a dreadful average of 25.3%. Alternative Model 3 obtained the highest average
with 68.4%, and Alternative Model 2 and the Solution Model ranked second
and third with 57.4% and 52.4%, respectively.

Based on the reliability ranking, the stochastic passenger load models are
more reliable than their respective deterministic passenger load model. Unfor-
tunately, the two substitution models obtained the lowest reliability outcomes.

The overall output-reliability: The two reliability measures discussed above con-
sider a single expected outcome in isolation while the overall output-reliability
measure considers both of the expected outcomes together. Accordingly, this
reliability measure represents the probability that both of the solution’s ex-
pected outcomes will be achieved or improved upon simultaneously when the
model’s solution is applied to the particular flight instance under considera-
tion. Thus, it represents P[pactual ≥ pexpected ∩ mactual ≤ mexpected].

Alternative Model 3 obtained the highest overall output-reliability with 32.2%,
followed by the Solution Model with 22.3% and Alternative Model 2 with
21.7%. Alternative Model 1 resulted in the worst reliability since only 6.4% of
its realisations achieved both of the expected outcomes of the model’s solution.

The overall output-reliabilities of the models are significantly lower than the
expected waste and the expected PSL output reliabilities discussed above. Al-
though intuitive, this indicates that it is more difficult for the model to achieve
both of the expected outcomes simultaneously. If the model over-estimated
the meal demand, pactual and mactual will likely be much higher than expected,
which has a positive impact on the expected PSL output reliability. However,
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this over-estimation will most likely have a negative impact on the overall
output reliability because mactual could exceed mexpected. Similarly, the under-
estimation of meal demand will have a positive impact on a model’s expected
waste output reliability and a negative impact on the expected PSL and the
overall output reliability.

The low overall output-reliabilities indicate that the models frequently over-
and under-estimated the meal demand. Recall that this over- and under- es-
timation of meal demand is a common occurrence in the in-flight catering
industry due to the excessive variation and uncertainty inherently present in
the flight booking processes. Thus, although care was taken to develop a suit-
able passenger load forecasting model, the accuracy of this model is limited by
the excessive variation and the randomness within the flight booking process.

(a) The expected PSL output-reliability (b) The expected waste output-reliability

(c) The overall output-reliability

Figure 6.7: The three categories of output-reliabilities per target weight combination
obtained when no minimum PSL is required (pMin = 0).

From the analysis of the three output-reliabilities, promising results are obtained
for the inclusion of the demand uncertainty within the inventory decision-making
model. The same is, unfortunately, not true for product substitution because Alter-
native Model 3 was found to be superior for all three output-reliabilities investigated.
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Recall that Alternative Model 3 incorporates in-flight meal demand uncertainty but
ignores the meal substitution behaviour of passengers caused by stock-outs. Fig-
ure 6.8 visually validates Alternative Model 3’s superiority.

Figure 6.8: The average output-reliability when no minimum PSL is required.

Figure 6.8 summarises the models’ average output-reliability for each of the three
categories analysed without a minimum PSL requirement. The green bars represent
the substitution models, while the stochastic passenger load models are distinguished
with darker shades of blue or green.

A major concern regarding all four models is the generally low output-reliabilities
obtained because they indicate that the expected outputs of the models’ solutions are
unreliable. This concern is most prominent for the expected PSL output-reliability.
Recall that the results of this reliability measure ranged between 40.8% to 68.9%.
It is argued that in-flight caterers will continue to follow the over-catering strategy
out of fear of obtaining an unacceptably low PSL that could damage the company’s
reputation and competitiveness, if the actual PSL obtainable is not guaranteed.
Higher output-reliabilities would be able to provide confidence to the in-flight cater-
ing company to trust the solutions generated by the chosen decision-making model.

The intuitive approach to obtain a higher expected PSL output-reliability or to
achieve a desired PSL is to choose a target weight combination that drastically
favours the 100% PSL target. However, identifying the appropriate target weight
combination is a time-consuming process and will still not guarantee the desired
outcome. This highlights the purpose of the minimum PSL requirement.

A positive and non-zero minimum PSL requirement (pmin > 0) provides a means
for an in-flight caterer to ensure that an acceptable PSL will be achieved before the
model attempts to minimise wastage. Its purpose is to compensate for the low
output-reliabilities and, subsequently, to provide the necessary confidence to the
in-flight catering company to reduce the need for the over-catering strategy. Its
ability to fulfil its purpose is, however, dependent on the model’s MPSL-reliability.
The MPSL-reliability is the most important reliability measure. It represents the
probability that the actual PSL obtained when using the model’s suggested solution
will be greater than or equal to the minimum PSL required. Stated differently, it
represents the probability that constraint (3.16) will hold when the model’s solution
is applied to the flight instance under consideration. Recall that this constraint
forces the model to generate a solution that satisfies pexpected ≥ pmin.
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The MPSL-reliability of a model is estimated by calculating the fraction of the
total flight instance realisations that obtained an actual PSL greater than or equal
to the minimum PSL required. This process is depicted visually in Figure 6.9 for
flight instance number 217 with a minimum PSL requirement of 92% and target
weights wPSL = 1 and wMeals = 5.

Figure 6.9: A visual demonstration of the flight-specific MPSL-reliability calculation
for flight instance number 217 when a minimum PSL of 92% is required with target
weights wPSL = 1 and wMeals = 5.

The horizontal line represents the minimum PSL required. The fraction of the set
of realisations on or above the horizontal line represents the MPSL-reliability specific
to flight instance number 217 and the chosen target weights. This process was
repeated to calculate the flight-specific reliability for each of the 16 flight instances
and five target weight combinations considered. The resulting (average) MPSL-
reliability of each model per target weight combination is shown in Figure 6.10.

Figure 6.10: The MPSL-reliability per target weight combination analysed with a
minimum PSL requirement equal to 92%.

Notice that the target weight combinations are ordered from favouring the 100%
PSL target to favouring the zero-waste target.The decreasing trend indicates that
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this reliability measure is dependent on the target being favoured. A simple ex-
planation for this observation is as follows. When wPSL > wMeals, the 100% PSL
target being favoured is in-line with the purpose of the minimum PSL requirement
and supports the ordering of additional safety stock to achieve a higher PSL that
exceeds the minimum requirement. This provides tolerance for when the actual PSL
obtained is lower than expected. However, when wPSL < wMeals, the zero-waste tar-
get being favoured conflicts with the minimum PSL requirement as it opposes the
ordering of safety stock to achieve a PSL greater than the bare minimum required.

The MPSL-reliabilities of the stochastic passenger load models are exceptionally
high. Both models obtained MPSL-reliabilities greater than 87% for each of the tar-
get weight combinations analysed. Overall, Alternative Model 3 obtained the highest
average MPSL-reliability with an impressive 96.0%. The Solution Model followed
with a sufficient average of 92.7%. The deterministic passenger load models, Alter-
native Model 2 and Alternative Model 1, resulted in an average of 83.2% and 80.4%.

It should be stressed that the two deterministic passenger load models obtained
unsatisfactory MPSL-reliabilities below 70% when wPSL < wMeals. The cause of
the deterministic passenger load models’ low MPSL-reliabilities is related to the
fact that these model’s do not compensate for the possibility that a flight’s final
passenger load could exceed its expected value. On average, the final passenger load
surpassed its expected value for 47.3% of the realisations simulated for each model.

The substitution models obtained either a comparable or a slightly lower MPSL-
reliability when compared with each model’s respective non-substitution model. The
causes of the lower reliability outcomes are believed to be due to the substitution
models’ static nature and the models’ simplifying assumption regarding the depen-
dencies among the various substitute meals. The causes will be discussed in more
detail in Section 6.2.4.

Figure 6.11 depicts the models’ average output-reliability for the three categories
analysed with a 92% minimum PSL requirement. Note that the individual outcomes
per target weight combination is given in Figure B.3 in Appendix B.

Figure 6.11: The average output-reliability when a 92% minimum PSL is required.

The inclusion of the minimum PSL requirement influences the output-reliabilities
obtained. When a 92% minimum PSL is required, the average expected PSL output-
reliability of the Solution Model and Alternative Model 3 are, respectively, 7.0%
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and 11.6% higher when compared with the relevant reliabilities obtained without
a minimum PSL requirement (Figure 6.11 versus Figure 6.8). Unfortunately, the
average expected waste output-reliability of the two models are, respectively, 6.7%
and 15.6% lower. The significant differences in the output-reliabilities are attributed
to the fact that the models have to order additional in-flight meals to ensure that
the minimum PSL can be achieved. This increase in the total meal order quantity
(
∑

i∈I xi) reduces the number of meal shortages and substitutions but also increases
the likelihood of wastage.

Despite the improvement observed in the expected PSL output-reliability when
including a minimum PSL requirement, the expected outputs of the models’ are
still considered unreliable. This unreliability further motivates the importance of
the minimum PSL requirement. Accordingly, the MPSL-reliability of a model is
undeniably one of the most important factors to consider. This is because a model
with a low MPSL-reliability will provide no value to an in-flight catering company as
it will not be able to reduce the company’s dependence on the over-catering strategy.
For this reason, the deterministic passenger load models will not be discussed any
further because the models obtained unsatisfactory MPSL-reliabilities below 70%.

Performance comparison

The performance of a model relates to how well the model compares with the ideal
model that would be able to ensure that the goals of the two objectives are achieved
simultaneously. It is quantified by calculating the model’s weighted deviation from
the in-flight catering industry’s ultimate targets − a 100% PSL and zero waste.
Accordingly, the output of the model’s objective function is indicative of the model’s
performance. The model that generates solutions with the lowest objective function
outputs has the highest performance level.

Figure 6.12 shows the objective function output obtained for each individual
flight instance analysed when using target weights wPSL = 1 and wMeals = 5 with a
92% minimum PSL requirement.

Figure 6.12: The flight-specific objective function outputs obtained when using tar-
get weights wPSL = 1 and wMeals = 5 with a 92% minimum PSL.
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To clarify, the objective function value depicted for each flight instance represents
the average objective function output for the set of realisations analysed relating to
the particular flight instance, model and the stated targets weights. The objective
function output for each realisation is calculated using equation (6.3). The average
of the flight-specific objective function outputs is given in Figure 6.13 for each of
the five target weight combinations considered.

Figure 6.13: The average objective function output per target weight combination
analysed with a 92% minimum PSL requirement.

The performance of the two models depicted are almost identical for target
weights where wPSL ≥ wMeals. However, the Solution Model outperforms Alterna-
tive Model 3 when the zero-waste target is favoured. The Solution Model’s superior
performance is attributed to the model’s greater waste minimisation capabilities. As
seen in Figure 6.14a, the model consistently produced the lowest number of left-over
meals per flight instance.

(a) Actual wastage (b) Actual PSL achieved

Figure 6.14: The average of the actual outputs obtained per target weight combi-
nation analysed with a 92% minimum PSL requirement.
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Figure 6.14 shows the average actual number of surplus meals produced and
the average actual PSL achieved for each target weight combination analysed when
pmin = 92%. Each error line represent the average of one standard deviation from
the actual outcome’s average for the respective target weight combination.

Overall, the Solution Model produced 2.2 fewer surplus meals per flight instance
when compared with Alternative Model 3. This highlights the substitution model’s
risk-pooling capabilities. The trade-off for the Solution Model’s lower wastages are
lower actual PSLs, as seen in Figure 6.14b. The actual PSL achieved by the Solution
Model is, on average, 0.7% lower than that of Alternative Model 3. However, the
benefit in terms of waste minimisation outweighs this drawback, especially when
wPSL ≤ wMeals, as seen with the model’s superior performance in Figure 6.13.

The Solution Model’s lower wastage is due to its smaller total meal order sizes,
which in turn, are attributed to the model’s risk-pooling capability. The model’s
average total meal order size is 89.1 units, while Alternative Model 3 ordered an
average of 2.8 extra meals per flight instance. Recall that smaller meal orders are
more desired because it reduces the amount of pre-consumer waste produced re-
sulting from the supply chain bull-whip-effect. Pre-consumer waste production was
not considered when calculating the models’ performance. Subsequently, the differ-
ences between the models’ performances depicted in Figure 6.13 is, in reality, more
significant in favour of the Solution Model. The model’s superior performance vali-
dates the value of incorporating the substitution behaviour of passengers within the
decision-making model as a potential solution opportunity for the wastage dilemma
faced by the in-flight catering industry.

Timeliness comparison

While arguably not as important as a model’s reliability or performance, the solving
time required by the model influences the model’s feasibility and usefulness in the
in-flight catering industry. This is because most in-flight catering companies need
to plan and cater for several flights per day. It is, therefore, important that the
decision-making model should be able to generate solutions within a reasonable
time with minimal effort. If the model is too time-consuming, it could become a
bottleneck in the meal planning and production process and will likely be passed
over by employees.

Figure 6.15: The spread in the solving time recorded.
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Figure 6.15 depicts the spread in the solving time recorded for both models after
solving the 16 flight instances with five different target weight combinations and
a 92% minimum PSL requirements using LINGO 18.0. The solving time required
by Alternative Model 3 is negligible (0 seconds) and ideal for the in-flight catering
industry, whereas the Solution Model is slightly more time-consuming and incon-
sistent. This is because even though the Solution Model required less than three
minutes to generate a solution for 86.3% of the flight instances analysed, various
outliers occurred that required up to 34 minutes of solving time. An outlier refers
to a solution that required more than 179 seconds of solving time. Unfortunately,
the root cause behind the outliers observed could not be pinpointed.

The distribution of the solving time required by the Solution Model is consider-
ably positively skewed with a median of 16.5 seconds, an average of 2 minutes and a
standard deviation of roughly 5 minutes. Based on the results obtained, there is only
5% probability that the solving time required will exceed 10 minutes. However, the
overall range in the solving time recorded creates additional uncertainty and could
discourage the use of the Solution Model.

In addition to the above, the Solution Model requires more effort to generate
a solution when compared with Alternative Model 3. This effort refers to the ad-
ditional input required by the substitution model, namely the a-priori probability
matrix (α̂). This input requires various assumptions and can be considered as an
additional risk due to the possibility of using inaccurate a-priori probabilities that
could have a devastating impact on the model’s reliability and performance.

Additional batch order constraints

Economies of scale benefits, kitchen capacity limitations and batch order restrictions
are common factors that must be considered by in-flight caterers during the meal
order planning and production process. When present, these factors can greatly
influence the most efficient solution. The models were further evaluated to confirm
that the value of product substitution increases when the model is constrained by
some of these factors. This evaluation required the addition of constraints (6.4) and
(6.5) to the deterministic model solution discussed in Section 5.1.

xi
4

= qi, ∀i ∈ {1, 3} (6.4)

q1, q3 ≥ 0 and integer (6.5)

These two constraints ensure that meal option i ∈ {1, 3} can only be ordered in
multiple batches of four meals, where qi represents the number of batches of meal
type i ∈ {1, 3} ordered.

The results obtained were in favour of the Solution Model when repeating the
comparison process given in Section 6.2.2 with the additional batch order con-
straints. The Solution Model and Alternative Mode 3 produced, receptively, 0.2
and 1.6 extra surplus meals per flight instance when compared with the results ob-
tained when the batch order constraints were omitted. Subsequently, the Solution
Model’s performance remained relatively stable, while Alternative Mode 3’s perfor-
mance worsened. The change in the models’ performance is visible in Figure 6.16,
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which depicts the models’ performance obtained with and without the batch order
constraints (BOC).

Figure 6.16: The objective function output obtained per target weight combination
analysed when batch order constraints (BOC) are included (pmin = 92%).

These results confirm that the value of product substitution increases when the
model is constrained, which increase the Solution Model’s appeal. Furthermore,
both of the models’ average MPSL-reliability increased with approximately 0.6%,
and the change observed in the models’ average actual PSL is negligible. The average
solving time required by the Solution Model reduced by roughly 40 seconds, and its
standard deviation improved by almost 2 minutes.

6.2.4 Model comparison discussion and recommendation

The purpose of the previous section was to evaluate the benefit of including meal
demand uncertainty and product substitution within the inventory decision-making
model developed for the in-flight catering industry. In this section, the main con-
clusions are summarised and discussed to reach a model recommendation.

All four models obtained low output-reliabilities with averages below 70%. The
output-reliabilities obtained do not provide satisfactory confidence that an accept-
able PSL will be achieved when using the solutions generated by any of the four
models. Without a satisfactory confidence level, the in-flight catering company
will continue to follow the over-catering strategy, which defeats the purpose of an
inventory decision-making model. For this reason, a model’s MPSL-reliability is
considered its most important characteristic. The impact of product substitution
and demand uncertainty on the MPSL-reliability of the decision-making model de-
veloped is summarised below using the axis of the strategic scenario planning matrix.

Stochastic passenger load [••] vs. deterministic passenger load [••]:
Recall that the stochastic passenger load models incorporate the uncertainty
regarding a flight’s final passenger load, whereas the deterministic passenger
load models approximate the uncertainty by using its expected value. The
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stochastic passenger load models were found to be considerably more reliable
in achieving the minimum PSL required. Both of the stochastic passenger
load models obtained MPSL-reliabilities greater than 87% for each of the tar-
get weight combinations analysed. This outcome indicates that these models
can provide a reasonable level of confidence. The same is not true for the de-
terministic passenger load models that obtained poor MPSL-reliabilities below
70% when the zero-waste target is favoured. These results validate the benefit
of incorporating demand uncertainty within the decision-making model.

The cause of the deterministic passenger load models’ poor MPSL-reliabilities
is due to the fact that these models do not compensate for the possibility that
the flight’s final passenger load could exceed its expected value. As a conse-
quence, the models’ frequently underestimate the in-flight meal demand, which
leads to unintentional meal shortages and lower than expected actual PSLs.

Substitution [••] vs. no substitution [••]:
Recall that substitution models refer to the models that consider the substi-
tution behaviour of passengers, while the non-substitution models ignore this
behaviour. Unfortunately, the substitution models were found to be less re-
liable in achieving the minimum PSL requirement when compared with each
model’s respective non-substitution model. Overall, the MPSL-reliability of
the Solution Model is 3.3% lower than that of Alternative Model 3. Similarly,
Alternative Model 1 is 2.8% less reliable than Alternative Model 2.

The Solution Model obtained an MPSL-reliability of 92.7% when pmin = 92%.
When incorporating a 5% tolerance for the minimum PSL requirement such
that pmin = 87.4%, the MPSL-reliability of the Solution Model increases to
98.7%, now only 0.6% lower than that of Alternative Model 3. This outcome
indicates that the majority of the realisations that did not meet the 92% mini-
mum PSL requirement were only slightly lower. The causes of the lower actual
PSLs are believed to be due to the models’ static nature and the simplifying
assumption regarding the dependencies among substitutes.

Static substitution models: Recall that the solutions of a static substitu-
tion model are generated based on the assumption that the products will
be optimally allocated to the customers. However, in this report, the
models were tested in a dynamic and more realistic environment where
the passengers are served in a random order and the aggregate demand
is unknown. This means that the optimal allocation of meals could not
be guaranteed. As a consequence, the actual PSL was frequently lower
than the solution’s expected PSL. Intuitively, this has a negative impact
on the models’ MPSL-reliability if the expected PSL was not sufficiently
higher than the minimum PSL required.

Dependencies among substitutes: As stated earlier, the drawback of the a
priori probabilities is that it is not able to fully describe the dependencies
among the various substitutes. For instance, consider the scenario where
chicken meals are under-catered and the only available substitutes for the
unmet demand are either fruit platters or vegan meals. Based on the a
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priori probabilities provided in Table 2.2, both substitutes have a 40%
probability of being chosen. The models assume that these probabilities
are independent as it is not feasible to model the individual dependencies
between substitutes. Accordingly, the model assumes that 40% of the
unmet demand could be assigned to each substitute such that 80% of the
total unmet demand is allocated. This allocation is unlikely in reality
and, according to Vaagen et al. (2011), results in an upper bound on the
expected outcome, the solution’s expected PSL. Consequently, the actual
PSL is frequently lower than the expected PSL and the minimum PSL.

Intuitively, the method used to approximate a flight instance’s PSL also influ-
ences a model’s MPSL-reliability. In the model formulation given in Chapter 3,
the PSL is calculated based on the assumption that a passenger is only fully satis-
fied when the passenger received his first-choice meal. However, when the passenger
received meal option j as a substitute for meal option i, the passenger’s partial satis-
faction level is approximated with the a priori probability α̂ji. It is argued that this
assumption is realistic, since a passenger will encounter some level of dissatisfaction
when the passenger has to select a substitute. However, it could be argued that this
approach overestimated a passenger’s dissatisfaction. For instance, based on the a
priori probabilities given in Table 4.2, it was assumed that a passenger was only
40% satisfied when accepting a vegan meal as a substitute for a chicken meal. It is
recommended that further research should be conducted to identify the true level
of dissatisfaction a passenger will encounter when asked to choose a substitute meal
to improve the model’s accuracy. More accurate dissatisfaction levels could improve
the Solution Model’s MPSL-reliability, and subsequently, improve its appeal.

The evaluation of the performance and timeliness of the models were only dis-
cussed for the stochastic passenger load models due to the models’ consistency in
achieving remarkably high and reasonable MPSL-reliabilities for each of the tar-
get weight combinations analysed. The benefit of modelling the meal substitution
behaviour of passengers within the decision-making model became evident after
evaluating the models’ performance with a 92% minimum PSL requirement. This is
because the substitution model − the Solution Model − obtained the lowest objec-
tive function outputs when compared with the non-substitution model − Alternative
Model 3. Thus, the solutions generated by the Solution Model result in actual out-
puts with less combined and weighted deviation from the 100% PSL target and the
zero-waste target. Simply stated, the model is able to find the most favourable
balance between the two weighted objectives. The Solution Model’s superior perfor-
mance is attributed to its impressive waste minimisation capabilities as it produced
2.2 fewer surplus meals per flight instance when compared with Alternative Model 3.
While 2.2 fewer surplus meal per flight might not sound impressive, the annual cu-
mulative impact thereof is significant from an economic, social and environmental
point of view. Furthermore, due to its smaller meal order sizes, the Solution Model
also has a desirable impact on pre-consumer waste production.

The Solution Model’s superior performance became more significant when batch
order constraints were included in the model formulation. This outcome further
validates not only the benefit of product substitution, but also its applicability in
the in-flight catering industry. The reason being that batch order constraints and
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kitchen capacity limitations, to name a few, are common factors that have to be
taken into account by in-flight caterers on a daily basis.

In conclusion, the Solution Model is superior in terms of performance, whereas
Alternative Model 3 is superior in terms of reliability. The recommended model
is, therefore, dependent on the catering company’s bias towards maximising either
performance or reliability. Thus, the decision-making model should incorporate the
substitution behaviour of the passenger if the in-flight caterer desires maximum
performance, but should be excluded when the caterer desires maximum reliability.
It should be noted that the model should include the passenger load uncertainty
regardless of the in-flight caterer’s bias to improve the model’s reliability.

The recommendation stated above does not take into account the in-flight cater-
ing company’s available resources, time constraints and risk limitations. The So-
lution Model is slightly more time- and effort-intensive and is accompanied by an
additional risk. This could influence the in-flight caterer’s bias and the model’s ap-
plicability. For instance, a time-drive catering company with limited computational
resources could be discouraged to choose the Solution Model because of the model’s
longer and uncertain solving time requirements. In contrast, an environmentally
conscious in-flight catering company that aims to attract like-minded passengers
might prefer the Solution Model due to its superior waste minimisation capabilities.

6.2.5 Model validation

In an attempt to validate the two stochastic passenger load models, the models were
compared against a simple approach that does not require the explicit development
of a decision-making model. In the Simple Approach Model, the meal order quanti-
ties for a specific flight is obtained by dividing the flight’s expected passenger load
according to the estimated market share of each meal type offered on the in-flight
menu. Thereafter, the order quantities are inflated with a predefined rate, denoted
by f , to add safety stock. The process is expressed mathematically in (6.6).

xi = d(1 + f)
(
E[ q̃i]E[Z̃0]

)
e, ∀i ∈ I (6.6)

The market share of meal type i is approximated as the expected value of the meal’s
random first-choice probability. The meal order quantity of meal option i ∈ {1, 3}
is further rounded upwards to the nearest multiple of four to take into account the
batch order restrictions discussed in Section 6.2.3. After a trial-and-error approach,
an inflation rate of 3% is chosen to ensure that the Solution Model and the Simple
Approach Model’s MPSL-reliability are similar when the target weights are equal.
Doing so ensures that the models can be compared fairly with one another. If the
MPSL-reliabilities are similar, the model with the highest performance (lowest objec-
tive function output) is superior. Figure 6.17 depicts the models’ MPSL-reliabilities
and objective function outputs.

Despite obtaining a 0.15% higher MPSL-reliability when wPSL = wMeals, the
Simple Approach Model with f = 3% produced an average of 0.41 less surplus
meals per flight instance and provided a 0.13% higher actual PSL when compared
with the Solution Model. These results indicate that the Simple Approach Model’s
set of meal order quantities (xi ∈ I) is more efficient than that of the Solution
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(a) The MPSL-reliability

(b) The objective function output

Figure 6.17: Outcome of the model validation process (the stochastic passenger load
models vs the Simple Approach Model) with a 92% minimum PSL requirement.

Model. Stated differently, the Simple Approach Model with f = 3% is superior
to the Solution Model. The same conclusion was reached for Alternative Model 3
after comparing the model against the Simple Approach Model with f = 5.6%. The
last-mentioned model is 0.13% more reliable and ensured a 0.2% higher actual PSL,
even though it produced 1.54 less surplus meal per flight instance than Alternative
Mode 3 when wPSL = wMeals.

Regrettably, since the models are not superior to the Simple Approach Model, the
decision-making models developed could not be validated as a solution opportunity
to lessen the wastage dilemma faced by the in-flight catering industry.

It is important to take note that the models cannot be compared when the
models’ MPSL-reliabilities (or performance) are not similar. To explain, consider
the fact that the reliability and performance of the Solution Model are higher than
that of the Simple Approach Model with f = 3% when wPSL > wMeals, as seen in
Figure 6.17. The higher reliability and performance would imply that the Solution
Model is superior. This is, however, not the case because the MPSL-reliability and
performance of the Simple Approach Model could be improved by simply choosing
an inflation rate greater than 3% when wPSL > wMeals. A higher inflation rate would
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increase the safety stock quantities, which in turn would increase the actual PSL
and the model’s MPSL-reliability obtained. The model’s performance would then
most likely improve since wPSL > wMeals. However, if the models’ MPSL-reliabilities
are similar, the models’ performances provide an indication of the efficiency of the
models’ solutions relative to one another.

It should be mentioned that the solutions of the Simple Approach Model are
fixed, regardless of the values of the chosen target weights. This occurs because
the Simple Approach Model’s solutions are not influenced by the minimum PSL
required or the target weights assigned to the 100% PSL target and the zero-waste
target. This independence explains the Simple Approach Model’s uniform MPSL-
reliabilities shown in Figure 6.17a. Furthermore, this independence highlights a
disadvantage of the Simple Approach Model as its solutions cannot be aligned with
the airline’s corporate strategies.

A major advantage of the Simple Approach Model is its simplicity − it is cap-
tured with a single equation that is easy to understand. However, it is also its
greatest disadvantage when various constraints have to be considered. Unlike the
Simple Approach Model, the two stochastic passenger load models can be easily
adapted to incorporate various constraints. Accordingly, the stochastic passenger
load models should not be disregarded completely because these models could po-
tentially be superior when more constraints have to be incorporated, or when the
models are improved as discussed in the following section.

6.2.6 Improvement opportunity

An approach to improve the MPSL-reliability and the performance of the decision-
making model is to incorporate the known pre-booked meals of the flight under
consideration. Recall that most airlines allow passengers to pre-book their preferred
meal ahead of the flight’s departure. Including this additional information in the
model can lower the uncertainty within the model. In turn, this will result in less
deviation from the targets and improve the model’s reliability and performance.

The first step to add the additional information is to ensure that enough of meal
type i ∈ I is ordered to cover mi, the known number of pre-booked meals of the
respective meal type. This requires the addition of constraint (6.7).

xi ≥ mi, ∀ i ∈ I (6.7)

Since more information regarding di, the primary demand of meal type i, is now
available, constraint (3.5) must be updated.

di(q̃, Z̃0) ≈ dq̃i · Z̃0e, ∀ i ∈ I (3.5)

The updated constraint is given with (6.8).

di(q̃, Z̃0) ≈ mi + dq̃i · (Z̃0 −
∑
i∈I

mi)
+ e, ∀ i ∈ I (6.8)

The first term in the constraint represents the known primary demand for meal
type i . The second term approximates the additional primary demand resulting

94



from the remaining passengers that did not pre-book any meals. Recall that (A)+

represents max(0, A) and is used to correct situations where Z̃0 was underestimated.
Two additional approaches that can also be used to improve the decision-making

model is to decompose the set of first-choice probabilities q̃ using more than three
realisations, and to use more than five bins when simplifying a flight instance’s π0.
These approaches can, however, increase the solving time required by the model.

6.3 Concluding remarks

This chapter provided an in-depth analysis of the results obtained when applying
the model developed to the numerical example’s testing dataset. In summary, the
analysis included an inspection of the output of the forecasting model, an evaluation
of four decision-making models and an attempt to validate the recommended models.

The forecasting model exhibited optimistic results. Unfortunately, the added
benefit of forecasting the distribution of the final passenger load versus the single
point estimate thereof could not be measured explicitly. It was, however, tested
when evaluating the decision-making models by comparing the deterministic pas-
senger load models with the stochastic passenger load models. Unlike the stochastic
passenger load models, the deterministic passenger load models were deemed unre-
liable. This outcome validated the benefit of forecasting the distribution of a flight’s
final passenger load and using it to represent the uncertainty within the model.

The decision-making model developed in Chapter 5 was evaluated and validated
by comparing its reliability, performance and timeliness with three alternative mod-
els to identify the impact of product substitution and passenger load uncertainty.
The four models were solved using LINGO 18.0 to obtain x, the suggested meal
order quantities that the respective model deems most efficient. LINGO 18.0 is
an optimisation modelling software for linear, non-linear and integer programming
(LINDO Systems Inc, NA). The models developed fall under the mixed-integer lin-
ear programming category and were solved using the branch-and-bound solver to
obtain the globally optimum solution.

As stated, only the two stochastic passenger load models are considered reason-
ably reliable, which confirmed the value of incorporating the passenger load uncer-
tainty within the inventory decision-making model. Including product substitution
has a desired impact on the model’s performance and an undesired impact on its reli-
ability and resource requirements. For this reason, the value of product substitution
was deemed inclusive and dependent on the in-flight catering company’s bias and
requirements. The stochastic passenger load models were further evaluated against
the Simple Approach Model that does not require the formulation and development
of a decision-making model. Unfortunately, unfavourable results were obtained and
the models could not be validated as a solution for the wastage dilemma faced by
the in-flight catering industry.
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Chapter 7

Conclusion and recommendations

In-flight catering companies worldwide are faced with the major challenge of meeting
the catering requirements of a flight without knowing its final passenger load. This
challenge is intensified when a variety of in-flight meal options are offered on-board
the flight as it is accompanied by additional uncertainty. The high uncertainty levels
within the process make it difficult to obtain reasonably accurate demand predictions
using single-point forecasting models and deterministic inventory decision-making
models. As a result, in-flight caterers tend to follow an over-catering strategy to
mitigate the risk of meal shortages, costly flight delays and passenger dissatisfac-
tion. The drawback of this strategy is the high number of surplus meals that must
be discarded as waste. Not only is this food waste a financial burden, but it is
also considered unethical from a social and environmental point of view. Catering
companies are, therefore, faced with two conflicting objectives − maintain a high
and acceptable level of passenger satisfaction while minimising waste resulting from
excess meals.

The aim of this dissertation was to investigate if the inclusion of demand uncer-
tainty and product substitution within an inventory decision-making model would
be able to help an in-flight catering company reduce waste resulting from surplus
in-flight meals, while maintaining an acceptable level of passenger satisfaction. This
required the development of a suitable inventory decision-making model that can
be used to determine the most efficient set of meal order quantities for a specific
flight. The most efficient set of meal order quantities should, firstly, provided suffi-
cient confidence to the catering company that the minimum Passenger Satisfaction
Level (PSL) required by the catering company will be achieved. This will reduce the
need for the catering company to implement the over-catering strategy. Secondly,
the most efficient set of meal order quantities will also minimise the weighted sum
of deviations from the targets of the two conflicting objectives − a 100% PSL with
zero surplus meals (waste).

The model developed can be classified as a stochastic multi-objective Mixed-
Integer Programming (MIP) model with fixed recourse and two-way, stock-out based
partial consumer-driven product substitution. A MIP model was selected due to its
flexibility and ease with which it can be changed to accommodate the specific needs
of an in-flight catering company. Product substitution was incorporated through the
use of a priori substitution probabilities to approximate the substitution behaviour
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of passengers. The multi-objective nature of the in-flight catering industry was ad-
dressed using pre-emptive goal programming, where the target weights were used to
indicate the relative importance of the two targets. This ensures that the model can
be aligned with the strategies of the in-flight catering company and airline. Lastly,
the model incorporated demand uncertainty through the inclusion of the stochastic
final passenger load and the random set of first-choice probabilities. For this reason,
the model had to be transformed into its deterministic equivalent before it could
be solved using standard optimisation software. This was achieved using recourse
programming to decompose each stochastic variable into a set of realisations with
known occurrence probabilities. Each set of realisations was simplified in size to
ensure that a solution can be generated within a reasonable time when using a 3.1
GHz Intel(R) Core(TM) i3-2100 CPU with 6.0 GB of RAM. It is expected that
this simplification had an undesired consequence on the model’s performance and
reliability. Further research is required to identify the computational resources com-
monly available at an in-flight catering company. Greater computational resources
will require less simplification and, ultimately, could improve the decision-making
model’s value and appeal.

A forecasting model was also developed to estimate the probability distribution
of the flight under consideration’s final (stochastic) passenger load. The forecasting
model consisted of a time-inhomogeneous Markov chain and a multiple regression
model. Furthermore, the forecasting model was extended to allow overbooking be-
fore the departure of the flight. The drawback of the forecasting model is that it must
be trained separately for flights that vary by departure date, duration, destination
and passenger class, to name a few factors. Fortunately, the training of the forecast-
ing model is almost instantaneous but requires a fair amount of historical data of
past observations of the flight under consideration. A possible approach to overcome
the two drawbacks could be to group flights with similar booking behaviours and
seasonality trends to share the trained forecasting model. It should also be noted
that, due to the modular design of the inventory support model (Part A and Part
B), the chosen forecasting model could easily be replaced with an alternative model
if it meets the requirements of the MIP decision-making model. It is, therefore,
recommended that further research should be conducted to validate that the chosen
forecasting model is the superior choice. The first phase of this validation study
should focus on improving the chosen forecasting model. Potential improvement
opportunities include increasing the number of intervals in the forecasting horizon
and adding more covariates to the forecasting model’s regression analysis. Possible
covariates to consider include public holidays, the number of flights occurring on the
day under consideration and the time of day when the flight is scheduled to depart.

The model developed was evaluated against three alternative models that lacked
either passenger load uncertainty, product substitution or both. Together, these four
models corresponded with the four quadrants of a strategic scenario planning matrix.
Its purpose was to investigate the value of incorporating product substitution and
demand uncertainty within the decision-making model. It was argued that the
inclusion of demand uncertainty would improve the model’s reliability because the
additional information provides the model with the ability to compensate for demand
fluctuations. Furthermore, it was argued that the inclusion of the meal substitution
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behaviour of passengers would allow the model to consider the sharing of safety
stock among substitutable meals to reduce the number of surplus meals produced.

Favourable results were obtained for the inclusion of the uncertainty regarding
a flight’s final passenger load. Overall, the stochastic passenger load models were
at least 9.2% more reliable in achieving the minimum PSL required when compared
with the models that ignored the passenger load uncertainty. The deterministic pas-
senger load models were deemed unreliable because the models obtained reliability
outcomes below 70% when the zero-waste target was favoured. In contrast, the re-
liability of the stochastic passenger load models exceeded 87.0% irrespective of the
weight assigned to the 100% PSL and zero-waste targets. These results validated
the value of passenger load uncertainty and the inclusion thereof in the decision-
making model is, therefore, recommend. To further improve the model’s reliability,
it is recommended that the model should be expanded to include the known number
of pre-booked in-flight meals to lessen some of the uncertainty faced by the model.

The benefit of the inclusion of product substitution is, unfortunately, inconclu-
sive as it depends on the in-flight catering company’s bias towards maximising ei-
ther reliability or performance. When the model incorporates the meal substitution
behaviour of passengers, the model’s performance improves while its reliability is
slightly reduced. The performance improvement is accredited to the risk-pooling
capabilities of the substitution model. On average, the substitution model produced
2.2 fewer surplus meals per flight instance when compared with the stochastic passen-
ger load model that ignored the passenger’s substitution behaviour. As a trade-off,
the substitution model is 3.3% less reliable in guaranteeing a 92% minimum PSL
requirement. Possible explanations for the model’s reliability reduction relate to the
model’s static nature and the model’s inability to capture the dependencies among
the in-flight meals available as substitutes. This uncovers a potential future research
opportunity where the comparison process should also include a dynamic product
substitution model. Based on the results obtained, the research question stated in
Chapter 1 can be answered as follows:

The majority of this dissertation demonstrated and validated the value of
passenger load uncertainty and product substitution within an inventory
decision-making model for the in-flight catering industry; Including the
flight’s final passenger load uncertainty will improve the decision-making
model’s reliability in achieving the minimum PSL required, while the in-
clusion of product substitution will reduce the number of surplus meals
produced at the expense of a slightly lower reliability outcome. Unfortu-
nately, the decision-making models − with and without product substitu-
tion − could not be validated as a solution opportunity for the wastage
dilemma faced by the in-flight catering industry.

Regrettably, the inventory decision-making models developed could not be vali-
dated against a simple approach that does not require the explicit development of a
decision-making model. In summary, the decision-making models could not provide
a higher performance at a similar level of reliability when compared with this ap-
proach. That being said, the validation process did not sufficiently take into account
the major advantage of the decision-making model − its modelling flexibility. The
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decision-making model’s flexibility ensures that the model can easily accommodate
various constraints simultaneously that will influence the most efficient solution, and
subsequently, the model’s performance and reliability. This statement is validated
with the change observed in the models’ performances in Section 6.2.3 when two
batch order constraints were added to the model formulation. Based on the re-
sults, it is expected that the decision-making model with product substitution will
be more beneficial, and potentially superior, when the model has to incorporate
additional process constraints. Subsequently, it is still inconclusive as to whether or
not the inventory decision-making model developed is worthwhile, and if it can help
an in-flight catering company reduce waste resulting from surplus in-flight meals
while maintaining an acceptable level of passenger satisfaction. Further research is
required where the validation process should consider various process scenarios with
different process constraint severities and combinations.

In addition to the above, it is recommended that further research should also be
conducted to identify the true level of dissatisfaction a passenger will encounter when
asked to choose a substitute meal. This research should aim to address the concern,
as mentioned in Section 6.2.4, that the decision-making model overestimates a pas-
senger’s dissatisfaction level when using a-priori probabilities. The over-estimation
of a passenger’s dissatisfaction hinders the decision-making model’s full potential
because it discourages the model to utilise the substitutability of in-flight meals.

It should be emphasised that the results and conclusions made within this report
are based on synthetic data. While care was taken to generate an appropriate
dataset, it is impossible to capture all of the elements that influence the flight
booking behaviour of passengers. It is recommended that the work completed in
this dissertation should be repeated using actual industry data with realistic process
constraints to challenge and validate the conclusions made.

In conclusion, this dissertation evaluated the potential of demand uncertainty
and product substitution within an inventory decision-making model as a solution
opportunity for the wastage dilemma faced by the in-flight catering industry. To the
author’s best knowledge, no previous study has attempted to utilise the risk-pooling
capabilities of a product substitution model to reduce in-flight waste resulting from
surplus meals. It is, therefore, believed that this report makes a valuable contribu-
tion to the in-flight catering industry and the global strive towards sustainability.
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Yücel, E., Karaesmen, F., Salman, F. S., and Türkay, M. (2009). Optimizing product
assortment under customer-driven demand substitution. European Journal of
Operational Research, 199(3):759–768.

Zeppetella, L., Gebennini, E., Grassi, A., and Rimini, B. (2017). Optimal production
scheduling with customer-driven demand substitution. International Journal of
Production Research, 55(6):1692–1706.

Zhong, Z., Salleh, S. R., Chow, W., and Ong, Z. (2016). Studies of air traffic
forecasts, airspace load and the effect of ads-b via satellites on flight times. In
Advanced Free-Space Optical Communication Techniques and Applications II, vol-
ume 9991, page 99910B. International Society for Optics and Photonics.

104

https://www.flysaa.com/documents/51855150/0/SAA_IAR+2017.pdf/22db54be-b1f5-404a-99fd-d12f3fe9e56b
https://www.flysaa.com/documents/51855150/0/SAA_IAR+2017.pdf/22db54be-b1f5-404a-99fd-d12f3fe9e56b


Appendix A

The forecasting model

The modelled Transition Probability Matrix (TPM)s that encompass the forecasting
model are given in this appendix, along with the results of the regression model that
it used to derive the final interval’s modelled TPM specific to a flight observation.

The modelled transition probability matrices

Figure A.1: The modelled TPM for the first interval (P4,3) when φ∗ = 0.91.
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Figure A.2: The modelled TPM for the second interval (P3,2) when φ∗ = 0.91.

Figure A.3: The modelled TPM for the third interval (P2,1) when φ∗ = 0.91.
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The regression model

Recall that the regression model is formulated as shown in (A.1).

E[Y1,0 |Z1 = k] = β0 +β1 · (k) + β2XTue + β3XWed + β4XThu + β5XFri

+β6XSat + β7XSun + β8XFeb + β9XMar + β10XApr

+β11XMay + β12XJun + β13XJul + β14XAug + β15XSep

+β16XOct + β17XNov + β18XDec + β19 · (year) + ε (A.1)

The values of the above parameters are listed in Table A.1.

Table A.1: The parameters of the multiple regression model obtained using the
training dataset.

β0 β1 β2 β3 β4

1.20484 -0.04065 0.13544 -0.03031 0.11691

β5 β6 β7 β8 β9

0.09537 -0.12318 -0.09479 0.06336 -0.37080

β10 β11 β12 β13 β14

-0.22819 0.11583 -0.14645 0.06945 0.22776

β15 β16 β17 β18 β19

-0.06298 -0.34846 -0.10650 -0.12855 0.05243

The root mean square error (se) of 1.509905 is obtained using (A.2), where ZRM
0

denotes the estimated final passenger load obtained using the regression model.

se =

√∑
γ∈γ̇(ZRM

0 − Z ∗0 )2

|γ̇|
(A.2)
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Appendix B

Model results

B.1 Pseudocode for model comparison process

Data: π0, q
Result: Matrix containing Z∗0 and di∀I for 1000 realisations
Function:

rMatrix ← Initialize matrix for 1000 flight instance realisations
for each realisation r in the range 1 to 1000 do

Z∗,r0 = sample from {0,1,...,99,100} with probability distribution π0
for each meal type i ∈ I in random order do

fcprobi = sample first-choice prob. from norm(mean(qi), std(qi))
dri = ceiling( fcprobi · Z∗,r0 )

if
∑

j∈I d
r
j exceeds the aggregate demand Z∗,r0 then

reduce dri to ensure that
∑

j∈I d
r
j = Z∗,r0

end

end
rMatrix[r, ] ← store Z∗,r0 and dri∀I

end
return rMatrix

End Function
Algorithm 1: Step 1 - Create a set of realisations for a specific flight
instance with the given probability distribution π0.
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Data: rMatrix, x, wPSL, wMeals, α̂
Result: Model reliability and additional statistics
Function:

for each realisation r in rMatrix do
reliabilityCount = 0 for each meal type i in I do

inStock[i] = x[i]
end
pOrder = sample Z∗,r0 meals from {dr1, dr2, dr3, dr4} without replacement
for each passenger p from 1 to Z∗,r0 do

fc = pOrder[p]
if inStock[fc] > 0 then

Increment y[fc] with one unit to assign meal to passenger
Decrement inStock[fc] with one unit to remove stock

end
else

while passenger did not receive a meal do
if no possible substitute remaining then

Increment underCater with one unit
Exit while loop

end
sub = remaining substitute with highest α̂sub, fc value
if inStock[sub] > 0 then

subProbability = randomly sample from {0, ..., 1}
if subProbability ≤ α̂sub, fc then

Increment z[sub][fc] to assign sub to passenger
Decrement inStock[fc] with one unit
Exit while loop

end

end
Remove sub as a possible substitute meal

end

end

end
∆r
PSL = calculate deviation from goal 1

∆r
Meals = calculate deviation from goal 2

objectiveV aluer = w1 · devr1 + w2 · devr2
if objectiveV aluer ≤ BMV then

Increment reliabilityScore
end
rMatrix[r, ] ← store devr1, dev

r
2 and objectiveV aluer

end
modelReliability = reliabilityScore / 1000
return modelReliability, rMatrix

End Function
Algorithm 2: Step 2 and 3 - Determine model reliability.
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B.2 Selected flight instances

Figure B.1 and Figure B.2 shows the final passenger load probability distributions
(π0) of the 16 flight instances (F) analysed. Notice that a few flight instances (such as
flight instance numbers 428 and 423) look very similar. It is believed that this is the
result when only a few related transitions are observed when creating the Transition
Probability Matrix using the Absolute Passenger Loads (TPM-APL). Thus, these π0
are heavily reliant on the Transition Probability Matrix using Differences (TPM-D)
which results in the similar distributions observed.

Figure B.1: The probability distribution of the final passenger load (π0) of the first
eight of the 16 flight instances analysed.
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Figure B.2: The probability distribution of the final passenger load (π0) of the last
eight of the 16 flight instances analysed.
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B.3 Output-reliability results

Figure B.3 presents the results obtained per target weight combination analysed for
the three output-reliability measures when pMin = 92%.

(a) The expected PSL output-reliability

(b) The expected waste output-reliability

(c) The overall output-reliability

Figure B.3: The output-reliabilities per target weight combination analysed with a
92% minimum PSL requirement.
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