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Abstract

This paper examines scheduling problem denoted as P |seq, ser|Cmax in Graham’s nota-

tion; in other words, scheduling of tasks on parallel identical machines (P ) with sequence-

dependent setups (seq) each performed by one of the available servers (ser). The goal is

to minimize the makespan (Cmax). We propose a Constraint Programming (CP) model

for finding the optimal solution and constructive heuristics suitable for large problem

instances. These heuristics are also used to provide a feasible starting solution to the

proposed CP model, significantly improving its efficiency. This combined approach con-

structs solutions for benchmark instances of up to 20 machines and 500 tasks in 10

seconds, with makespans 3% to 11.5% greater than the calculated lower bounds with

a 5% average. The extensive experimental comparison also shows that our proposed

approaches outperform the existing ones.

Keywords: Scheduling, Parallel machines, Sequence-Dependent setups, Servers,

Constraint Programming, Heuristic
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1. Introduction

In recent years, manufacturing has become more complex than ever. Factories must

handle a large variety of products on multiple production lines, customers demand highly

∗Corresponding author
Email address: vilem.heinz@cvut.cz (Vilém Heinz)

Preprint submitted to Computers & Industrial Engineering June 1, 2023



proprietary products of small-batch volumes, and companies are constantly forced to

adapt to market shifts. We are in an environment where the organization of work and

effective utilization of production capacities is a crucial yet very complex problem to

tackle [4].

In this paper, we focus on a scenario often encountered in real-world production.

Imagine a production environment with multiple identical machines. Tasks are to be

freely assigned to these machines. Depending on their assignment and order, adjustments

on said machines (sequence-dependent setups) are performed between them by servers.

The number of servers can be arbitrary, and any server can perform any setup.

Example. To illustrate the importance of the considered problem, we provide an exam-

ple of a production planning challenge tackled by an existing company. This company

produces plastic tubes of different shapes and sizes but from the same material and with

a very similar manufacturing process. Thus, all machines they use are the same and

depending only on their settings, they produce plastic tubes of different shapes and/or

sizes. These machines’ settings are adjusted by workers present in the factory. Since

every tube shape and size requires different machine settings to be produced, adjust-

ment between each tube pair in production has its own unique sequence and can require

variable time to adjust. Clearly, there is no need to adjust the machine between the

production of tubes of the same shape and size.

In general, this scheduling problem containing servers, parallel identical machines and

sequence-dependent setups is encountered at paint shops, printing houses, custom com-

ponent manufacturing and 3D printing, foods, chemical, and other production industries

where the machines are used for multiple types of different products with the necessity

of adjustments. We refer the reader to Huang et al. [5], Kim et al. [6] and Hamzadayi et

al. [7] for similar problem examples.

Needless to say, human resource capacity in such productions is sometimes disre-

garded during the scheduling phase because of its complex real-world restrictions and

uncertainties, leaving decisions to expert knowledge. We argue that even in such cases, a

solution with human resource capacity taken into account can help to guide this decision

process and improve the overall solution.
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1.1. Approach

We propose an efficient Constraint Programming (CP) [8] model as an exact approach

to the considered problem. As demonstrated in Laborie et al. [9], CP is more effective than

conventionally used Integer Linear Programming (ILP) for many scheduling problems.

However, since the problem is NP-hard, the CP model’s execution is still exponential in

the worst case. Thus, we propose constructive heuristic algorithms that provide a solution

in polynomial time. We also discuss several applicable improvements, yielding better

solutions in exchange for more prolonged but still polynomial executions. Ultimately,

we combine both approaches by using a heuristic solution as a starting point of the

CP model, leveraging their distinct strengths. This combination results in significant

performance improvement of the CP model, making much larger instances solvable. In

general, this method of providing a starting solution to the main algorithm is called warm

starting, and it was successfully applied to various scheduling problems, such as in de

Abreu et al. [10] or Pour et al. [11].

1.2. Contribution and Paper Outline

We summarize the key contributions of the paper as:

1. Addressing a new scheduling problem with servers, arising as a natural generaliza-

tion of particular cases Huang et al. [5], Kim et al. [6] and Hamzadayi et al. [7]

which lay important groundwork studying aspects of our considered problem. This

results in a problem combining sequence-dependent setup times and machine-task

independence with extension to multiple servers availability.

2. Proposing CP model utilizing cumulative resource function that can solve instances

of up to ten machines and tens of tasks to the optimality usually under an hour.

With a warm start, the CP model can be very effectively used on instances of tens

of machines and hundreds of tasks in just several-minute runtimes.

3. Proposing domain-specific heuristics that provide feasible solutions to instances of

hundreds of machines and tens of thousands of tasks between several seconds and

several minutes of runtime. With the optional improvements applied, solutions

have a lower bound gap of 3.5% to 20% with an 8% average, measured on the

benchmark instance set.
3



4. Providing more efficient approaches than the state-of-the-art for related problems

proposed in papers Huang et al. [5], Kim et al. [6] and Hamzadayi et al. [7]. Both

CP model as an alternative to ILP models and warm started CP model, as an al-

ternative to state-of-the-art heuristics, show improvements in efficiency over their

respective counterparts as they are able to solve instances of said related problems.

This finding is very important as it proves that our approaches are not just address-

ing a new problem but also doing it efficiently compared to related state-of-the-art

approaches. For our considered problem benchmark instances of sizes up to 20

machines and 500 tasks, in 10 seconds of computation, the warm started CP model

provides solutions with makespans 3% to 11.5% greater than the calculated lower

bounds with a 5% average.

The rest of the paper is organized as follows: Section 2 formally describes the problem

and its complexity. Section 3 lists relevant literature on similar problems and discusses

the current state-of-the-art approaches. Section 4 describes the proposed CP model.

Section 5 describes developed constructive heuristics, proposes ways of improving their

solutions in a trade-off with computational time and describes constructive heuristics

warm start application to the CP model. Section 6 contains the experimental results,

discusses differences between proposed approaches and provides a comparison to the

current state-of-the-art. Section 7 sums up the findings discovered in this paper.

2. Problem Statement

The considered problem is denoted P |seq, ser|Cmax in Graham’s notation. P denotes

parallel identical machines task scheduling, seq denotes sequence-dependent setups, ser

denotes presence of servers performing said setups and Cmax denotes the overall goal of

minimizing the makespan. We define problem input parameters in the following way:

• Let M = {M1, . . . ,Mm} be a set of identical machines where every machine can

execute at most one task or one setup at a time. The number of machines m is

given by the problem instance.

• Let R = {R1, . . . , Rr} be a set of available servers. Servers are considered to be

identical. The number of servers r is given by the problem instance and we generally
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expect it to be strictly lower than m.

• Let T = {T1, . . . , Tt} be a set of independent non preemptive tasks where each task

can be executed on any machine. Every task is described by its processing time

given by the problem instance, denoted pi ∈ N.

• Let O = [oi,j ] ∈ (N ∪ {∞})t×t be the setup times matrix given by the problem

instance, where oi,j denotes the setup length between tasks Ti and Tj.

t
0 Cmax2 4 6 8 10 12 14 16 18 20

R2

R1

M3

M2

M1 T1 T2 T3 T4

T5 T6 T7 T8

T9 T10 T11

R2 R1 R2

R1 R2 R2

R1 R1

O5,6 O9,10 O2,3 O10,11

O1,2 O6,7 O3,4 O7,8

Figure 1: A Gantt chart of identical parallel machine production with
sequence-dependent setups performed by servers.

The problem solution is defined by task assignments to machines and the order of

tasks on each machine. For every task Ti in the problem solution, let si ∈ N0 be start

time and ci ∈ N completion time of that task in the resulting schedule. Then, let us

define set of present setups in the schedule as U= {U1, . . . ,Uu}. Let sy ∈ N be the

start, py ∈ N the processing time and cy ∈ N the completion time of the setup Uy in the

resulting schedule.

We consider the solution feasible if the following conditions hold:

(A1) Every task must be executed without preemption, i.e., it cannot be temporarily

suspended during the execution, so si + pi = ci must hold.

(A2) If task Tj is next after Ti in the machine sequence, setup oi,j must be performed

by a server and sj - ci ≥ oi,j must hold. This also means that no setup must be

executed before the first task on each machine.

5



(A3) Setup must be performed by exactly one server.

(A4) Setups are non-preemptive, sy + py = cy must hold for any Uy ∈ U .

(A5) If Uy is the setup between tasks Ti and Tj then ci ≤ sy and cy ≤ sj must hold.

(A6) For any two setups Uy, Uz performed by the same Rx, sz ≥ cy or sy ≥ cz must

hold. This also ensures that server can perform at most one setup at a time.

Finally, the makespan minimization can be thought of as the minimization of the

latest task completion time.

Fig. 1 shows an example of feasible schedule of the considered problem. In this case,

we have 3 machines (M1 to M3), 2 servers (R1 and R2) and 11 tasks (T 1 to T 11). Each

row in Fig. 1 represents the schedule of one problem’s resource, either a machine or a

server. Setups on machines are marked by server performing them. The zero represents

the start and Cmax the end of the schedule, i.e. makespan. Task processing times and

their respective setups in the schedule are in Table 1. The makespan is 21.

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11

4 2 2 2 3 2 2 1 6 4 5

O5,6 O9,10 O2,3 O10,11 O1,2 O6,7 O3,4 O7,8

3 3 2 3 2 3 2 3

Table 1: Processing and setup times of the tasks in Fig. 1.

2.1. Complexity of the Problem

The problem addressed in this paper is a more general variant of the NP-hard prob-

lem PD|seq, ser = 1|Cmax tackled in Vlk et al. [2], where only one server is considered

and every task is dedicated to only one specific machine.

We can reduce instance of PD|seq, ser = 1|Cmax to instance of P |seq, ser|Cmax by

setting the setup times between all pairs of tasks dedicated to different machines in

PD|seq, ser = 1|Cmax instance to be infinity in P |seq, ser|Cmax instance. This makes

the solution, where two tasks originally assigned to different machines are placed on the

same machine infeasible. Since the availability of only one server is implicitly supported

by our problem definition, the reduction is complete, showing that P |seq, ser|Cmax is

NP-hard.
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3. Related Work

The existing related problems can be classified into three categories; first containing

papers focused on sequence-dependent problems, second containing papers dedicated to

problems with servers and third containing papers combining both properties. We discuss

each in its section, while in the last one we also consider relations of existing problems

to ours.

3.1. Problems with Sequence-Dependent Setup Times

Allahverdi et al. [12] survey showed that many papers tackling sequence-dependent

setup scheduling exist. Papers like Vallada et al. [13] and Lee et al. [14] focused on

heuristics, handling instances of up to lower hundreds of tasks in a few minutes of com-

putational time. More recent papers usually focus on combination with other interesting

properties.

Lunardi et al. [15] focused on sequence-dependent scheduling with job decomposition,

precedence constraints, preemption, unavailability periods and partial overlaps. Their

metaheuristic was compared to CP proposed in Lunardi et al. [16]. Comparison indi-

cated that CP alone could not handle some large instances and improved slower, but it

guarantees improvement until an optimal solution is found. This suggests that using a

faster method to warm start the CP model, which further improves the solution, might

be a promising way to tackle similar problems.

Rauchecker et al. [17] tackled the problem of unrelated parallel machines with sequence-

dependent setup times focusing on high-performance computing and parallelization. It

is shown that by applying their branch-and-price algorithm in a parallel manner, the

computations can be reduced from hours to just minutes of computation.

3.2. Problems with Servers

Amir et al. [18] proposed an ILP formulation for a single server, two parallel identical

machines scheduling problem. They found that their model could not compute instances

larger than 12 tasks. However, they show that when specific conditions are met, there

exist fast approaches applicable in such constrained scenarios. A more effective block

model ILP formulation for the two parallel identical machines problem was formulated
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by Hasani et al. [19]. This model provides an optimal solution to certain instances of

up to 250 tasks in 3600 seconds. Alternatively the problem can be modeled by timed

automata [20], but their performance is much lower.

A scheduling and lot sizing problem with a common setup operator (server) is studied

in Tempelmeier et al. [21]. The setups performed by the operator are considered to be

scheduled without overlaps. The setups are associated only with the following task,

making them sequence-independent. The proposed ILP formulations can solve instances

of tens of tasks, usually under a 1-minute time limit.

A problem involving setups performed by operators of different capabilities has been

studied in Chen et al. [22]. The problem is modelled using time-indexed formulation and

solved by decomposition into smaller subproblems using Lagrangian relaxation. Sub-

problems are solved using Dynamic Programming (DP), and feasible solution is obtained

by the composition of the subproblems. If that is impossible, the Lagrangian multipliers

are updated using the surrogate subgradient method as in Zhao et al. [23]. The downside

is that the time-indexed formulation yields a model with pseudo-polynomial size, which

is unsuitable if large processing and setup times are present. The proposed approach can

handle instances of tens of machines in a matter of minutes.

3.3. Problems with Sequence-Dependency and Servers

Papers Vlk et al. [1] and Vlk et al. [2] study problem with sequence-dependent setups.

However, tasks are dedicated to machines, and a single server is assumed. CP models,

an ILP model, and heuristics utilizing the problem’s decomposition are proposed in both

papers. The resulting subproblems deal with task ordering on machines independently.

The results show that proposed CP models can find a solution for instances of tens of

machines and tens of tasks for each machine in 1 minute. The proposed LOFAS algorithm

with a heuristic can solve instances of up to 1000 tasks on 5 machines. The same problem

as in Vlk et al. [2] is studied in Huang et al. [5]. An ILP model and a Genetic Algorithm

(GA) are proposed. It is stated that ILP formulation is unusable in a real-world scenario.

The GA approach can solve instances of 10 machines and 100 tasks in under 50 seconds.

The problem in Kim et al. [6] allows assignment of tasks to any machine. However,

since setups are sequence-independent, there is no direct comparison in terms of gener-

ality to the aforementioned papers. Again, only one server is allowed. ILP formulations
8



and hybrid heuristics are proposed. The results show the ILP model can solve instances

of 6 machines and up to 40 tasks, providing optimal or close to the optimal solution in

3600s. The hybrid heuristic solves the same instances under 1 minute, with resulting

schedules 2% to 5% longer than schedules obtained by ILP in 3600s.

Paper Hamzadayi et al. [7] generalizes Vlk et al. [2], Huang et al. [5] and Kim et

al. [6], tackling machine-independent with sequence-dependent setups. However, it still

considers only one server, limiting its real-world applicability. ILP model is proposed,

while the best performing proposed heuristic is GA. The results show that the ILP model

can find the optimal solution in 18000 seconds for instances of 3 machines and 9 tasks.

The GA can solve instances of 10 machines and 100 tasks in one minute.

Papers tackling more general problems than our considered P |seq, ser|Cmax also exist.

In Costa et al. [24], a hybrid GA to a problem extended by server’s skill (server’s setup

execution speed) and parallel unrelated machines is proposed. While the proposed GA

can be applied to our problem, their experimental results show that its scalability is

lower than the scalability of our proposed approach. Their proposed ILP model has no

detailed results provided.

In more recent work by Yeppes-Borrero et al. [25], unrelated machines and setups

requiring multiple servers are considered. Provided experimental results show that their

proposed ILP model does not scale too well. While their proposed heuristic scales well,

their results indicate it does not scale as well as our proposed approach.

Luis Fanjul-Peyro [26] considers unrelated machines and multiple types of resources,

i.e., servers. ILP model and exact approaches are proposed, but no heuristic approach is

provided, so the scalability of the provided approaches is poor.

Other papers tackling more general problems like Lee et al. [27], Caricato et al. [28],

Yeppes-Borrero et al. [29] or papers considering servers and sequence-dependency in

different settings like Gnatowski et al. [30] exist, but their respective problem definitions

are even more distant to ours than the problem definitions of the aforementioned papers.

In conclusion, research shows that while papers addressing less or more general prob-

lems exist, to the best of our knowledge, no paper tackles exactly our considered prob-

lem, which represents many real-world production scenarios. It is apparent from this

section that as problem complexity increases, the ability to solve larger instances de-
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creases rapidly, especially for exact approaches. While more general problem approaches

do not provide the same efficiency and scalability as ours, our proposed approaches offer

improved efficiency over existing approaches for less general problems. Furthermore, as

seen in this section, the majority of works also employ ILP modelling as an exact ap-

proach. However, results from Vlk et al. [2] show that CP is far more suitable than ILP

for this kind of scheduling problem. This contrasts with the current state of literature

and is a good reason to investigate CP capability further.

4. Constraint Programming Approach

The first approach we use to solve the considered P |seq, ser|Cmax problem is Con-

straint Programming (CP). Specifically, we use IBM ILOG CP Optimizer CP solver.

The following few paragraphs describe basic CP concepts used. A reader familiar with

CP formalism can skip to Section 4.1, where model specifics are explained.

The main modelling expression used is interval variable. As the name suggests, it

represents some activity with its required reserved time in the schedule. Its length is

denoted by LengthOf, start time by StartOf and completion time by EndOf. While

LengthOf is given by the problem instance, StartOf and EndOf are determined by

the CP solver. We use the interval variables to represent tasks and setups in our problem.

StartOf EndOf

LengthOf

Figure 2: Interval variable in the schedule.

Every interval variable can be set optional. Depending on the model’s conditions and

optimization criteria, the optional interval variable is present or absent in the solution.

Unlike the present variable, the absent variable does not have to conform to the model’s

constraints. We can also specifically enforce the presence/absence of variables by in-

troducing constraints implying either. One example is global constraint Alternative

which makes subset (usually of size one) of variables of given set present and rest absent

while respecting other conditions in the model.
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To model the relations we use constraints. In addition to the linear algebraic con-

straints known from the ILP modelling, CP offers more complex ones such as logic

constraints, scheduling constraints, global constraints and others. Global constraints are

especially useful, enabling us to model specific predefined relations over a set of variables

in a concise and computationally optimized way. One such constraint is the aforemen-

tioned Alternative. This is a big reason why CP is so effective for some types of

problems.

4.1. Model Formulation

Since PD|seq, ser = 1|Cmax problem considered in Vlk et al. [2] is a more constrained

variant of our problem, we utilize some of the ideas proposed in it. There are two key

ideas behind the proposed model. First, since servers are identical, we do not have to

represent which specific server is performing which setup. So rather than considering

particular servers, we consider only how many servers we need at a particular time to

perform the setups currently scheduled. Second, we do not represent every possible

setup between a pair of tasks by a variable. Thus, we avoid the quadratic number of

setup variables and related constraints; the number will equal the number of tasks. This

is achieved by representing every possible setup following some particular task by one

interval variable only.

When constructing the model, we must first ensure that every task is executed in

the produced schedule. We denote the set of interval variables representing tasks as

IT and the interval variable of specific task Ti as ITi . We use inequalities instead of

equalities when assigning the processing times to variables in IT so the interval variable

representing task can prolong itself until a server is available to perform the following

setup. This will be useful later. Still, at least time equal to the task’s processing time

must be reserved in the schedule so that it can be executed. We assign the relaxed

processing length to the interval variables as follows:

∀ITi ∈ IT : LengthOf(ITi ) ≥ pi. (CP-1)

Since we do not know which task will be assigned to which machine, we use the

Alternative constraint. For every ITi ∈ IT and for every machine Mk ∈ M we add
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a new optional interval variable IT
Opt

i,k . Then for each task, all its optional variables are

passed to the Alternative constraint, ensuring that only one will be present. This way,

every task will be present on exactly one machine. We also associate selected present

IT
Opt

i,k with the interval variable ITi representing our task in other model’s conditions by

passing ITi as an argument to Alternative constraint. The resulting constraints are

following:

∀ITi ∈ IT : Alternative

(

ITi ,
⋃

Mk∈M

{

IT
Opt

i,k

}
)

. (CP-2)

To ensure that tasks do not overlap on any particular machine, for every machine,

we add NoOverlap constraint containing optional interval variables representing tasks

scheduled on that machine. NoOverlap constraint ensures that no two interval vari-

ables from a given set overlap in the produced schedule. Note that formally, interval

variables passed to NoOverlap constraint must be wrapped in sequence variable whose

explanation we omit as it has no semantic significance in this case. NoOverlap con-

straint can also be given transition matrix, which defines empty interval sizes between

the end of one and the start of the following interval variable in the given set. We use our

setup times matrix O as the transition matrix of the NoOverlap constraint to insert

setup times between tasks in the final machine schedules. The resulting formulation is

following:

∀Mk ∈ M : NoOverlap




⋃

IT
i ∈IT

{IT
Opt

i,k }, O



 . (CP-3)

We define a set IS of interval variables, where ISi represents setup following its re-

spective ITi from IT . Notice that while setup times are already present between tasks

thanks to Eq. (CP-3), we need these variables for server constraints. Since we do not

need a setup after the last task on each machine, it will be a dummy setup of zero length.

Due to that, we merely set the length of the setup variables to be at least zero, and the

actual length of the setup executed will be determined later:

∀ISi ∈ IS : LengthOf(ISi ) ≥ 0. (CP-4)

Next, we synchronize the start and completion times between tasks and setups. We
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use constraint EndAtStart(IA, IB), ensuring that the interval variable IA is completed

exactly when the interval variable IB starts. Using it, we can set the end of every task

equal to the start of its following setup since the task’s length is assigned by inequality

and can be prolonged. The resulting constraints are following:

∀ITi ∈ IT : EndAtStart(ITi , I
S
i ). (CP-5)

Now, we constrain ending times of all setups. We achieve this by using

StartOfNext(I ′) constraint, which returns the start time of the next interval vari-

able following I ′ in the sequence. Thus, we can get the start time of the optional interval

variable representing the next task after the given one in the machine sequence. Then,

we set the end of the setup bigger or equal to the following task’s start time. Using

equality would not suffice because StartOfNext evaluates to 0 for absent IT
Opt

i,k and

the last task on every machine. Note that even though the setup could theoretically be

prolonged and end after the following task’s start because of the inequality, it does not

affect the feasibility of task placement and can be fixed by shortening such setups to the

correct lengths after the solution is found. Thus, the final constraints are as follows:

∀ISi ∈ IS , ∀Mk ∈ M : EndOf(ISi ) ≥ StartOfNext(IT
Opt

i,k ). (CP-6)

Finally, we set the maximum number of concurrently executed setups less or equal

to the servers available. We achieve this by using the expression Pulse(I ′, a). This

expression specifies that a units of resource, in our case servers, is used during interval

I ′. The cumulative function is composed of Pulse terms for each ISi representing the

use of precisely one server. At any point in the schedule, the function is upper-bounded

by the number of servers r provided:

∑

IS
i
∈IS

Pulse(ISi , 1) ≤ r. (CP-7)

13



In the end, we minimize the makespan by minimizing the end of the last task:

Max




⋃

IT
i
∈IT

{EndOf(ITi )}



 . (CP-Cmax)

Thus, the complete CP model further denoted as CP0 is defined as follows:

Minimize (CP-Cmax)

s.t.

(CP-1)− (CP-7)

An alternative CP model formulation where every setup was represented by its own

interval variable was considered, but it was omitted from the paper due to having no-

ticeably worse performance.

5. Constructive Heuristic Algorithms

Since the considered P |seq, ser|Cmax problem is NP-hard, using (only) an exact

approach is computationally intractable for many larger problem instances. Therefore,

it is essential to develop heuristic methods that produce a feasible solution of reasonable

quality in an affordable time. In this section, two constructive heuristic algorithms are

proposed:

• Locally Optimal Selection of Setups (LOSOS),

• Resolution of Setup Overlaps Lazily (ROSOL).

The main difference between the two is that LOSOS handles server allocation dur-

ing task scheduling while ROSOL handles it in a separate phase after task sequences on

machines are set. Three external functions called GenerateStartingTasks, Select-

NextTask and OptimizeScheduleEnds are used by both algorithms:

• GenerateStartingTasks selects a starting (first) task for every machine. The

baseline version of this method selects tasks randomly.

• SelectNextTask provides a suitable task to follow after the current last one

scheduled on a machine. The baseline version of this method selects the following

14



task greedily by picking yet unscheduled task with the shortest setup time from

the currently ending task to itself.

• OptimizeScheduleEnds re-optimizes the ending parts of machines’ schedules

after all tasks are assigned. This is important since the end of the machine schedule

is the least compact and optimized part. The baseline version of this method only

considers shortening the longest machine by moving the task to another machine.

Further improvements to these functions are proposed in Section 5.3. For now, we con-

sider them as black-box functions providing us with the described output.

To allow easy reproduction of the algorithms, described pseudocodes for both algo-

rithms are provided in Appendix A.

5.1. Locally Optimal Selection of Setups (LOSOS)

The idea of LOSOS is to iteratively construct chains of tasks on machines, always

selecting the next task greedily according to some given evaluation function while at the

same time considering server availability.

The algorithm steps are following. First, GenerateStartingTasks is called to

set starting tasks to machines. Then, a queue of servers is created, keeping track of

times when servers are ready to work. Now, while there are tasks to schedule, the

following is repeated. Machine with the currently shortest schedule is found. The task

to follow the currently ending task is selected by SelectNextTask. Then, the soonest

available server is assigned to perform the setup. After all, tasks are assigned to machines,

OptimizeScheduleEnds is called to re-optimize the schedule.

Start GenerateStartingTasks SelectNextTask
Assign soonest available

server to the setup

All tasks
scheduled

OptimizeScheduleEnds Stop

no

yes

Figure 3: Flowchart of LOSOS algorithm.
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The algorithm is visualized in Fig. 3. It has polynomial time complexity O((log(r) +

log(m) + t) · t+m) if priority queues are used for servers. Baseline time complexities of

GenerateStartingTasks and OptimizeScheduleEnds are considered to be O(m)

and SelectNextTask baseline time complexity to be O(t).

5.2. Resolution of Setup Overlaps Lazily (ROSOL)

The problem of LOSOS is that it does not consider upcoming server requirements

when scheduling tasks and setups. To solve this, ROSOL first ignores server constraints

when scheduling. Then, in the additional phase, further logic is applied to resolve these

constraints violations in a more informed way.

The algorithm steps are following. First, GenerateStartingTasks is called to set

starting tasks to machines. Then, while there are unscheduled tasks, we repeatedly find

the machine with the currently shortest schedule and assign task selected by Select-

NextTask to it. When all tasks are scheduled, the problem is solved without servers’

constraints, and OptimizeScheduleEnds is called to balance the schedule and reduce

possible unnecessary conflicts arising when assigning the servers.

We ensure that servers’ constraints hold in the following way. We move from schedule

start to its end, checking if the number of concurrently performed setups k does not

exceed the number of servers r. If it does, we need to postpone (move to the later time

in the schedule) k − r setups until at least one server performing non-postponed setup

is free. The non-postponed setups are executed fully without preemption, meaning that

they cannot be postponed once their execution started. We repeat this until we reach

the end of the schedule. Finally, we call OptimizeScheduleEnds again.

The key remaining question is how to choose which setups to postpone. This is

decided based on the tolerance coefficient of the machine. Machine’s tolerance coefficient

is equal to the difference between its schedule length and the current makespan plus

the setup length currently to be executed on that machine. The tolerance coefficient is

calculated for every machine involved in the conflict, and setups on machines with k− r

lowest tolerance coefficients are postponed.

The algorithm is visualized in Fig. 4. It has polynomial time complexity; O((m+ r ·

log(m) + t) · t) if priority queues are used where possible and if only relevant places are

checked for setup conflicts. Same as for LOSOS, we consider time complexities of external
16
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Figure 4: Flowchart of ROSOL algorithm.

methods to be O(m) for GenerateStartingTasks and OptimizeScheduleEnds and

O(t) for SelectNextTask.

5.3. Constructive Heuristics Improvements

Algorithms LOSOS and ROSOL are efficient in most cases, but they are greedy heuris-

tics, exploring only a very limited part of solution space. For certain instances, this can

lead to a solution very far from the optimum. Therefore, this section focuses on mak-

ing both algorithms take less greedy and more informed decisions by extending methods

GenerateStartingTasks, OptimizeScheduleEnds and SelectNextTask. The

proposed improvements are:

• Selecting starting tasks in an informed way. (GenerateStartingTasks)

• Optimizing the endings of machine schedules with additional task swapping.

(OptimizeScheduleEnds)

• Improving setup/task selection using task priority coefficient. (SelectNextTask)

• Improving setup/task selection using idleness reduction. (SelectNextTask)

5.3.1. Starting Tasks Selection

There is no way of choosing the best possible starting tasks without solving the

entire problem, but we can devise methods that will, on average, improve the results.

The description of the best performing method out of the tested ones follows.
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Consider T StartingTasks denoting m selected starting tasks and zj denoting

minTi∈T (oi,j), i.e., the shortest setup from any Ti ∈ T to a given Tj . Then, T
StartingTasks

are selected such that for every TStarting ∈ T StartingTasks, zStarting is one of them biggest

zj from all Tj ∈ T . In other words, we are looking for m tasks with their minimal pre-

ceding setup being one of m biggest ones from all tasks. This way, we avoid performing

setups for tasks that would require a long time, even when placed after their best com-

patible preceding task. Since only setup times vary depending on the sequence, testing

shows a considerable improvement over picking tasks randomly. The asymptotic time

complexity of the resulting method is O(t2), thus having no impact on the asymptotic

time complexity of LOSOS or ROSOL when used.

Please note that this method works well because we assume all machines to execute

their first task without a setup. If we would want this task selection method to work

well in a case where setup is also necessary before the first task, we could add m virtual

zero-length tasks with required setup lengths to the other tasks and infinite setup lengths

from all other tasks to these virtual tasks.

5.3.2. End of Schedule Optimization

It has been observed that the most problematic part of the schedule is its end. The

remaining tasks have only a few possible options where to be scheduled with their best

compatible preceding tasks usually already unavailable, resulting in long setups and large

differences between individual machine schedule lengths. Re-optimizing the end of the

schedule reduces this effect. It is split into two phases:

1. First, we find the machine with the longest schedule, denoted Mlongest. We take

its last task and check if it can be moved to another machine while decreasing the

makespan. If yes, we move it to the machine with the shortest resulting schedule

after the move. We find new Mlongest and repeat this step until it decreases the

makespan.

2. Second, we switch ending tasks between pairs of machines to reduce the makespan

further. If possible, a pair of machines is chosen so that the makespan decreases

after the switch. If not, pair of machines is chosen such that the maximum schedule

length of the pair decreases while the makespan does not increase, giving us a pos-
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sibility for future improvement. The best pair in regards to reducing the makespan

or machine schedule length is selected. Again, we repeat this until no machine pair

meets the criteria.

Potentially the optimization could be improved by looping the steps or considering

more than just subsets of two machines. However, this would impact the time complexi-

ties of LOSOS and ROSOL and the analysis of built schedules showed that the application

of these two steps improved and equalized the schedule well enough. Considering the

properties of machine schedules, the asymptotic time complexity of the resulting method

is O(m2), thus having no impact on the asymptotic time complexity of LOSOS or ROSOL

(m ≤ t) when used.

5.3.3. Coefficient of Task Selection Priority

The baseline version of SelectNextTask method used in LOSOS and ROSOL chooses

the next task to be scheduled greedily based on the setup length minimization. This

works well for some distributions of setup lengths, but it has a fundamental flaw. As we

deplete tasks with short setup times, it can happen that tasks having only long setups

will remain, causing huge setbacks at the end of the schedule. The problem is further

amplified because as long setups pile up at the end, they cause a shortage of available

servers. If long setups were dispersed throughout the solution against the shorter ones,

the problem would not occur. Hence, it is often better to take the locally suboptimal

solution to obtain shorter setup times at the end of the schedule.

Thus, we are looking for a way of predicting which tasks should be saved for later

and which are to be used immediately. As one possible way to evaluate this, we propose

a function calculating so-called task coefficient for the given task. We can think of this

task coefficient as a measure of future usefulness compared to the usefulness now. So

unlike in the baseline version of SelectNextTask, where only the currently scheduled

task and the next one to follow were considered, other possible future placements of the

next task are considered as well.

The calculation is following. Let Ti represent currently ending scheduled task, Tj

represent task considered to follow Ti and Tunresolved denote the set of tasks waiting to

be scheduled or currently being executed. Then Tx1, Tx2, Tx3 ∈ Tunresolved denote tasks
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with smallest, second smallest and third smallest setup time to Tj respectively, with

setups denoted as ox1,j , ox2,j and ox3,j . The resulting task coefficient is then calculated

as follows:

TaskCoefficientj(Ti, Tunresolved)

= o4i,j+
︸ ︷︷ ︸

current usefulness

|oi,j − ox1,j |·(oi,j − ox1,j) + |oi,j − ox2,j|·(oi,j − ox2,j) + (oi,j − ox3,j)
︸ ︷︷ ︸

possible future usefulness

.

(1)

It is clear from Eq. (1) that the largest emphasis is still on setup between Ti and Tj,

but other future scheduling possibilities are taken into account. To decide which task to

follow after Ti, task coefficients are calculated for all possible tasks to follow Ti, and the

one with the smallest task coefficient is chosen.

We considered several polynomial functions with different numbers and different pow-

ers of elements, but experiments showed that the one proposed in Eq. (1) performs the

best. However, the efficiency of task coefficient is influenced by the setup times distri-

bution. Its asymptotic time complexity is O(t2) but since SelectNextTask is called t

times in both LOSOS and ROSOL, it increases the overall complexity of both algorithms.

5.3.4. Idleness Reduction

We can further improve SelectNextTask method by considering future availabili-

ties of servers when only one currently unoccupied one remains. This is only applicable

when calling SelectNextTask from LOSOS as ROSOL handles servers after task assign-

ments and orders are already decided.

Let Ti denote the currently ending task, Tj denote the next earliest ending task except

for Ti and Tunscheduled denote the set of yet unscheduled tasks. Let Rl denote the only

available unoccupied server at the moment when the setup after Ti is being scheduled

and Rs denote the next earliest ending server except for Rl. Now, let us consider two

issues with the current way of setup scheduling:

1. If we choose Tx ∈ Tunscheduled to follow after Ti with too long oi,x in-between, it

might happen that when Tj ends, both Rl and Rs will be occupied, thus no server

will be available to execute setup following Tj. Therefore, the machine with Tj

scheduled on it would idle instead of executing the following setup.
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2. If we assign too short oi,x to Rl, then after oi,x is finished, there might be no

machine requiring the server. In consequence, Rl would idle instead of executing

other longer oi,x, which might have to be executed later, thus negatively affecting

the makespan. Instead, executing a longer setup would maximize this free window’s

use and possibly shorten future setup times.

To address issue 1, we calculate difference between ends of Tj and Ti as td = cj − ci.

Then, we choose task Tx with oi,x ≤ td, so after Rl finishes setup between Ti and Tx, it

will be ready to execute setup following Tj once Tj finishes. If more tasks have oi,x ≤ td,

we choose one according to the selection criteria, e.g. task coefficient. In case there is no

Tx ∈ Tunresolved with oi,x ≤ td, we pick Tx with the smallest possible oi,x and again use

selection criteria for possible tie breaking.

We only consider issue 2 when we have some estimation of possible task usefulness

elsewhere, like the aforementioned task coefficient. Otherwise, we could potentially exe-

cute longer setups without a good reason. We calculate td again but embed it into the

task coefficient calculation, changing o4i,j in task coefficient equation to max(0, oi,j−td)
4.

This way, we only emphasize the portion of the setup time, where the server could already

work on a different machine, weighing more other scheduling possibilities.

Addressing issue 1 is more important than addressing issue 2 since we rather let server

wait while machines execute as we minimize the makespan. Thus, if issue 1 arises, we

disregard issue 2 and also any task utility metric like task coefficient. It is clear that both

issues and task coefficient are partially in a trade-off, and some weighted decision between

them could be derived, but this was not further examined. Since the task coefficient must

be executed because of the issue 2 and the time complexity of additional operations is

lower, the overall asymptotic time complexity is O(t2). Since SelectNextTask is called

t times in both LOSOS and ROSOL, it increases the overall complexity of both algorithms.

5.4. Model Warm Starting: Synergy of the Approaches

To improve the CP model’s computational performance, we consider warm starting,

a commonly used technique of obtaining a feasible or partial starting solution by using

existing efficient algorithms for a similar problem. We developed and tested multiple

warm starting methods but using the constructive heuristics proposed in this section
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yielded the best results as they provide quality solutions in a very short time.

Because the execution time of constructive heuristics is negligible compared to the

CP model, we execute both and select the better solution as a warm start. Based

on preliminary testing, the most efficient configuration is to execute LOSOS with all

improvements and ROSOL with starting task selection and end of schedule optimization.

As we showed before, improvements to SelectNextTask method noticeably increase

computational complexity, so executing ROSOL without them saves computational time

for the CP model. Also, since task coefficient and idleness reduction do not guarantee

improvement, having diversity between LOSOS and ROSOL solution is good.

The initial solution is passed to the CP model by assigning tasks to machines given

the warm start solution assignment and ordering. We also add setup time spaces between

tasks and set their start and end times accordingly.

6. Experimental Evaluation

In this section, we compare our proposed approaches to each other and then to the

state-of-the-art approaches to similar problems. All experimental results were executed

at a single core of the Intel Xeon 4110 processor running at 2.1GHz. A graphic card

was not used in any of the calculations. Algorithms were implemented using C++. For

CP, IBM ILOG CP Optimizer 20.1.0 was used, while for ILP, Gurobi 9.5 was used. All

generated instances and solutions obtained by different approaches can be found enclosed

on the GitLab repository [31].

In all following tables, m denotes the number of machines, t the number of tasks

and r the number of servers. By symbol ∞, we denote that no feasible solution was

found. The approaches are compared by the Relative Difference (RD) calculated as

(compared − baseline)/baseline = RD, where compared denotes the objective value of

the evaluated approach and baseline denotes the objective value of the approach (or

lower bound) to which the comparison is made.

6.1. Comparison of Our Approaches

We decided to compare all our approaches on the same instance set to show where

their efficiencies meet. To make this possible, m is set between 12 and 20, t between 15m

22



and 20m and r is either 2 or 5. The processing and setup times of instances used in this

subsection were randomly sampled from a uniform distribution between 1 and 50. The

range of the distribution is based on Hall et al. [3] which states that instances with both

big and small variances of their attributes should be involved in the evaluation process.

In subsection 6.2, we evaluate using methodologies given by the compared papers. Based

on these comparisons, we show that our approaches are performant on various different

ranges of attributes. However, no distribution of attributes in the compared papers has

a range starting from 1. Thus, we include instances with such high variance in the

comparison of our own. The uniform distribution was chosen as it is a common practice.

Since the constructive heuristics took between 1ms and 650ms to execute depending

on the particular instance and improvements used, to obtain relevant comparison, we set

CP model executions time limits considerably small. However, the results of supplemen-

tary experiments provided in Appendix D show that warm started CP models can be

effectively applied to instances of up to 50 machines and 1000 tasks. With an hour time

limit, the relative gap between the heuristics and CP model solutions is higher than on

the tests performed in Table 2.

In further text, LOSOS and ROSOL denote algorithms without any improvements ap-

plied, LOSOSSE denotes LOSOS execution with GenerateStartingTasks and Opti-

mizeScheduleEnds improvements applied and LOSOSSEIC execution with all improve-

ments applied. There is no ROSOLSEIC as idleness reduction cannot be applied to ROSOL

and the results for ROSOLSE are not reported since the improvement achieved is very simi-

lar to LOSOSSE. To distinguish CP model variants, CP0 denotes model without warm start,

CPWS-SE denotes model with better solution from LOSOSSE and ROSOLSE used as warm

start and CPWS-SEIC denotes model with better solution from LOSOSSEIC and ROSOLSE

used as a warm start. All results referenced in this subsection are in the Table 2. The

last column of the table contains lower bounds. The percentage in the round brackets

in columns LOSOSSEIC and CPWS-SEIC(10s) denotes RD to lower bound for each instance.

The lower bound calculation with additional information can be found in Appendix C.

Constructive heuristics. The difference between LOSOS and ROSOL is not very pro-

nounced, with ROSOL being slightly better. A more noticeable difference between the

two can be observed on instances with a smaller number of servers since ROSOL assigns
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servers to setups in a more informed way. Regarding the effect of improvements proposed

in Section 5.3, based on the results from Table 2, application of all improvements together

yields more than 4% average decrease in the objective. We consider this enhancement

notable given the sizes of relative gaps between the heuristics and the respective lower

bounds provided in Table 2. However, for a few instances like number 1 or 14 in Table 2,

LOSOSSEIC does not yield the best solution out of all heuristics as it does not guarantee

improvement. Thus, if constructive heuristics are used without the CP model, it would

make sense to execute LOSOSSE/ROSOLSE and LOSOSSEIC and pick the better solution as

LOSOSSE has fairly negligible execution time. Regarding heuristics scalability, the graph

provided in Appendix B shows that without the use of task coefficient and idleness re-

duction, even instances of hundreds of machines and tens of thousands of tasks can be

solved in several seconds to several minutes of runtime.

CP models. Considering CP models, testing shows that CP0 is not very usable for larger

instances. The warm started variants yield incomparably better results than CP0 in

a fraction of its time limit. They also noticeably improve the warm started solution,

showing that the model scales well and is effective once a reasonable starting solution

is provided. In cases where the warm started model produced a solution with the same

objective as the warm start, it was still able to construct the problem and search part

of the solution space, meaning the problem was still feasible for the model in such a

short time limit given. Using all improvements in warm starting showed beneficial as

CPWS-SEIC provided better results than CPWS-SE. Also, note that the warm starting is

included within the time limit.
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parameters objective value [-]
# m t r LOSOS ROSOL LOSOSSE LOSOSSEIC CP0(120s) CPWS-SE(10s) CPWS-SEIC(10s) LB

1 12 180 2 436 418 427 419 (9.7%) 406 398 399 (4.5%) 382
2 12 180 5 418 418 418 409 (7.1%) 399 403 402 (5.2%) 382
3 12 240 2 580 563 553 541 (8.4%) 1798 515 518 (3.8%) 499
4 12 240 5 545 545 543 542 (8.6%) 564 519 517 (3.6%) 499
5 12 300 2 738 763 719 704 (5.9%) 7741 688 685 (3.0%) 665
6 12 300 5 743 743 712 710 (6.8%) 5492 686 685 (3.0%) 665
7 14 210 2 460 458 443 430 (9.4%) 1464 413 412 (4.8%) 393
8 14 210 5 440 440 434 426 (8.4%) 407 415 410 (4.3%) 393
9 14 280 2 612 615 595 587 (8.7%) 6406 563 563 (4.3%) 540

10 14 280 5 615 615 583 569 (5.4%) 6501 561 557 (3.1%) 540
11 14 350 2 759 741 752 748 (8.7%) 2950 727 727 (5.7%) 688
12 14 350 5 730 730 730 720 (4.7%) 3623 713 710 (3.2%) 688
13 16 240 2 456 414 433 434 (16.0%) 4823 395 395 (5.6%) 374
14 16 240 5 407 406 407 408 (9.1%) 1068 394 394 (5.3%) 374
15 16 320 2 603 609 591 569 (6.8%) 7775 573 560 (5.1%) 533
16 16 320 5 580 580 580 557 (4.5%) 8261 553 551 (3.4%) 533
17 16 400 2 732 728 708 687 (5.7%) 9769 700 687 (5.7%) 650
18 16 400 5 707 707 698 679 (4.5%) 6824 697 679 (4.5%) 650
19 18 270 2 436 433 411 437 (19.7%) 1717 400 403 (10.4%) 365
20 18 270 5 411 411 402 405 (11.0%) 5758 382 382 (4.7%) 365
21 18 360 2 579 577 573 552 (10.4%) 7260 549 549 (9.8%) 500
22 18 360 5 557 550 539 534 (6.8%) 8522 533 525 (5.0%) 500
23 18 450 2 722 720 698 703 (9.8%) 7681 686 686 (7.2%) 640
24 18 450 5 717 717 686 680 (6.2%) 8514 686 680 (6.2%) 640
25 20 300 2 493 472 473 457 (14.5%) 5630 445 445 (11.5%) 399
26 20 300 5 454 447 445 434 (8.8%) 7550 430 419 (5.0%) 399
27 20 400 2 588 577 568 568 (9.4%) 9822 547 547 (5.4%) 519
28 20 400 5 558 558 546 551 (6.2%) 8943 546 546 (5.2%) 519
29 20 500 2 765 752 743 724 (10.9%) 12811 705 705 (8.0%) 653
30 20 500 5 715 716 697 676 (3.5%) 11874 695 676 (3.5%) 653
∑

- - - 17556 17423 17107 16860 172353 16517 16414 15600
RD - - - 12.54 % 11.69 % 9.66 % 8.08 % 1004.83 % 5.88 % 5.22 % 0.0 %

Table 2: The comparison of all proposed approaches.

6.2. Comparison to Existing Approaches

To evaluate whether our approaches have state-of-the-art quality, we compare them

with existing ones. This is important as a comparison only between our approaches pro-

vides no external point of reference in regards to their overall quality. However, as the

literature review revealed, there is no paper tackling our considered P |seq, ser|Cmax prob-

lem. Thus, we use problems PD|seq, ser = 1|Cmax, P |ser = 1|Cmax and P |seq, ser =

1|Cmax for the comparison as they are just restricted variants of P |seq, ser|Cmax. The

instances of said problems are transformed to the instances of P |seq, ser|Cmax so our

approaches can be used to solve them. However, this makes the instances more complex

than the original ones, even if their set of feasible solutions is the same, so our approaches

might have to do more computations when solving them.

To compare the existing exact approaches realized by ILP models to our CP0, we
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formalized them using Gurobi 9.5. This way, we could make a direct comparison on the

same hardware and with the same time limits, thus obtaining an entirely fair compar-

ison. The problem instances used in the comparison were generated according to the

descriptions provided in each respective paper.

As for the heuristic comparison, we compare our proposed heuristic alternative

CPWS-SEIC to existing heuristics. Since the comparison methodology differs for every

paper, it is described in each paper’s respective subsection. Again, all instances were

generated according to their respective original paper descriptions.

All comparisons are made on instance sizes chosen by the original paper. Table layouts

are not entirely consistent because they partially adopt layouts from their respective

papers to make the comparison easier to evaluate.

6.2.1. Dedicated Machines with Single Server

In Huang et al. [5], problem denoted PD|seq, ser = 1|Cmax, where only 1 server is

present, and tasks are dedicated to machines is considered. The PD|seq, ser = 1|Cmax

instances were transformed to P |seq, ser|Cmax instances by setting infinite length setup

times between tasks that are not supposed to be on the same machine. This way, if the

CP solver would schedule tasks originally dedicated to different machines on the same

machine, the resulting schedule would be infinitely long, thus infeasible.

There were no computational results provided for the MIP model in Huang et al. [5],

only a statement that it performs poorly. In comparison, both ILP and CP0 were given

a 3600-second time limit. Even though CP0 had to tackle larger problem instances, it

performed much better, solving all instances and in most cases proving the optimality as

well. The results can be seen in Table 3. Note that t/m in Table 3 denotes the number

of tasks per machine.
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parameters objective value [-] CPU time [s]
# m t/m Setup LB Setup UB mip[5] CP0 mip[5] CP0

1 2 4 5 25 329 329 0.154 0.015
2 2 4 5 50 351 351 0.137 0.006
3 2 4 25 50 394 394 0.109 0.014
4 2 6 5 25 403 403 3.676 0.698
5 2 6 5 50 423 423 22.444 0.082
6 2 6 25 50 508 508 134.017 0.711
7 2 8 5 25 469 469 682.419 1.194
8 2 8 5 50 489 489 654.805 0.184
9 2 8 25 50 627 627 3600.0 13.423
10 3 6 5 25 419 419 54.212 1.443
11 3 6 5 50 432 432 24.088 1.576
12 3 6 25 50 543 539 3600.0 28.06
13 3 9 5 25 682 673 3600.0 4.838
14 3 9 5 50 ∞ 693 3600.0 5.317
15 3 9 25 50 941 837 3600.0 14.113
16 3 12 5 25 ∞ 743 3600.0 88.882
17 3 12 5 50 ∞ 767 3600.0 69.836
18 3 12 25 50 ∞ 1042 3600.0 3600.0
19 4 8 5 25 577 552 3600.0 11.106
20 4 8 5 50 754 582 3600.0 10.479
21 4 8 25 50 1063 831 3600.0 3600.0
22 4 12 5 25 ∞ 768 3600.0 3600.0
23 4 12 5 50 ∞ 813 3600.0 3600.0
24 4 12 25 50 ∞ 1278 3600.0 3600.0
25 4 16 5 25 ∞ 1078 3600.0 2065.339
26 4 16 5 50 ∞ 1097 3600.0 3600.0
27 4 16 25 50 ∞ 1678 3600.0 3600.0

Table 3: MIP model proposed in Huang et al. [5] compared to CP0.

The heuristic comparison in Huang et al. [5] was realized by comparing their Genetic

Algorithm (GA) to a lower bound denoted as LB2. We calculated the LB2 on the

generated instances and compared RD between our CP model and LB2 on said instances

to their RD between GA and LB2 on their instances (in paper denoted as GA-LB2 gap),

obtaining a reasonably fair comparison. Because CPWS-SEIC uses constructive heuristics

for warm starting and those do not respect machine dedication, we had to use much

less effective CP0. The time limits were set according to the runtimes of the GA in the

original paper. Note that t/m in Table 4 denotes the number of tasks per machine.

The results in Table 4 show that out of 30 cases, CP0 provided better RD to LB2 than

GA in 16 instances and worse in 13 instances. CP0 excelled at solving smaller instances,

but its effectivity decreased with increasing size. This is because we had to use CP0

instead of CPWS-SEIC, solved a larger problem instance than the GA and also because of

the very short time limit, which would generally favour heuristics. The largest tested

instance had only a 30-second time limit. In conclusion, the comparison shows that even

when tackling a much more restricted case of our problem with our less tailored approach
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without its main improvements applied, it still produces competitive results.

parameters objective value [-] RD [%]
# m t/m Setup LB Setup UB LB2 CP0 GA[5] CP0

1 2 5 5 25 380 380 0.0 0.0
2 2 5 5 50 390 390 0.47 0.0
3 2 5 25 50 463 463 0.43 0.0
4 2 10 5 25 671 671 0.46 0.0
5 2 10 5 50 691 691 1.1 0.0
6 2 10 25 50 855 855 1.08 0.0
7 3 5 5 25 380 380 0.04 0.0
8 3 5 5 50 390 390 0.42 0.0
9 3 5 25 50 463 463 1.56 0.0
10 3 10 5 25 689 689 0.57 0.0
11 3 10 5 50 717 717 1.51 0.0
12 3 10 25 50 874 926 1.82 5.95
13 5 5 5 25 380 380 0.09 0.0
14 5 5 5 50 390 390 1.94 0.0
15 5 5 25 50 552 605 2.03 9.6
16 5 10 5 25 689 689 0.69 0.0
17 5 10 5 50 717 740 2.14 3.21
18 5 10 25 50 1225 1353 5.48 10.45
19 7 5 5 25 380 380 0.48 0.0
20 7 5 5 50 390 413 4.38 5.9
21 7 5 25 50 769 827 1.89 7.54
22 7 10 5 25 689 692 1.18 0.44
23 7 10 5 50 717 846 6.37 17.99
24 7 10 25 50 1683 1823 5.94 8.32
25 10 5 5 25 402 402 2.36 0.0
26 10 5 5 50 418 541 6.99 29.43
27 10 5 25 50 1112 1180 2.31 6.12
28 10 10 5 25 689 800 3.81 16.11
29 10 10 5 50 717 1186 22.98 65.41
30 10 10 25 50 2391 2568 6.87 7.4

Table 4: GA proposed in Huang et al. [5] compared to CP0.

6.2.2. Sequence-Independent Setups with Single Server

In Kim et al. [6], problem denoted P |ser = 1|Cmax, where only 1 server is present,

and setups are sequence-independent and executed before every task is considered. The

P |ser = 1|Cmax instances were transformed to P |seq, ser|Cmax instances in two steps.

First, the instance’s setup times matrix was extended to sequence-dependent format by

simply duplicating the setup times. Second, m zero-length tasks were added to the

instance, each one ending up as the first task on one of the machines. Then, the setups

between these zero-length tasks and their following real tasks emulate the setup before

the first task on each machine in P |ser = 1|Cmax problem.

We implemented a better performing MIP model from Kim et al. [6] denoted as mip-

2 and compared it to our CP0. Table 5 shows the comparison results for instances of 6

machines with either 20, 30, or 40 tasks, with two additional settings, α and p. Parameter
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α represents the amount of variance in task and setup times, where 0.1 means a maximum

of 10% deviation from average on either side. Parameter p describes a multiplier of the

setup length; the bigger it is, the longer the setups can be. The results show that CP0

always returned the same or better solution than the MIP model. The models were given

a 3600-second time limit.

parameters (20, 6) (30, 6) (40, 6)
α p mip-2[6] CP0 mip-2[6] CP0 mip-2[6] CP0

0.1 0.5 205 205 284 278 382 370
0.1 0.7 213 210 291 288 390 380
0.1 1 225 225 322 316 420 413
0.3 0.5 190 186 278 274 375 366
0.3 0.7 193 192 291 282 383 375
0.3 1 212 212 314 307 415 403
0.5 0.5 190 186 285 279 381 373
0.5 0.7 193 189 293 282 387 377
0.5 1 213 211 324 309 421 408

Table 5: MIP-2 model proposed in Kim et al. [6] compared to CP0.

To evaluate the efficiency of the hybrid heuristic denoted as HA in Kim et al. [6],

authors calculated RD (in paper denoted as gap percentage) between HA results and

results of mip-2 running for 3600 seconds. Because we obtained mip-2 results in the

previous comparison, we can compare HA against CPWS-SEIC by comparing their calculated

RD with RD between CPWS-SEIC and mip-2. This comparison should be fair even if there

is any difference between their and our hardware because the mip-2 results and the

CPWS-SEIC results were obtained on the same computer. Thus, if our machine would

be faster, the mip-2 results to which CPWS-SEIC is compared would also profit from the

computational power increase. CPWS-SEIC’s time limit was set according to the HA’s

runtime limit stated in Kim et al. [6].

The results in Table 6 show that for every single instance, CPWS-SEIC provided a better

solution than HA. In 25 out of 30 instances, CPWS-SEIC with limited time also provided

better results than mip-2 running for 3600 seconds, with only 2 instances being worse.

We believe that the consistency and size of the difference ensure that our approach

improves over the compared one, even if the comparison method would slightly influence

the results.
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parameters objective value [-] RD [%]
# m t p α mip-2[6] CPWS-SEIC HA[6]/mip-2[6] CPWS-SEIC/mip-2[6]
1 6 20 0.5 0.1 205 205 1.87 0.0
2 6 20 0.7 0.1 213 210 2.34 -1.41
3 6 20 1 0.1 225 225 2.72 0.0
4 6 20 0.5 0.3 190 186 1.06 -2.11
5 6 20 0.7 0.3 193 193 2.15 0.0
6 6 20 1 0.3 212 216 2.72 1.89
7 6 20 0.5 0.5 190 187 3.15 -1.58
8 6 20 0.7 0.5 193 190 2.02 -1.55
9 6 20 1 0.5 213 214 4.03 0.47
10 6 30 0.5 0.1 284 280 1.24 -1.41
11 6 30 0.7 0.1 291 289 2.21 -0.69
12 6 30 1 0.1 322 320 1.74 -0.62
13 6 30 0.5 0.3 278 275 1.29 -1.08
14 6 30 0.7 0.3 291 283 2.65 -2.75
15 6 30 1 0.3 314 313 2.42 -0.32
16 6 30 0.5 0.5 285 279 2.68 -2.11
17 6 30 0.7 0.5 293 284 2.9 -3.07
18 6 30 1 0.5 324 312 2.7 -3.7
19 6 40 0.5 0.1 382 372 2.22 -2.62
20 6 40 0.7 0.1 390 382 3.55 -2.05
21 6 40 1 0.1 420 415 2.05 -1.19
22 6 40 0.5 0.3 375 367 1.4 -2.13
23 6 40 0.7 0.3 383 376 2.7 -1.83
24 6 40 1 0.3 415 407 4.66 -1.93
25 6 40 0.5 0.5 381 374 0.91 -1.84
26 6 40 0.7 0.5 387 378 2.36 -2.33
27 6 40 1 0.5 421 414 3.86 -1.66

Table 6: HA proposed in Kim et al. [6] compared to CPWS-SEIC.

6.2.3. Single Server

In Hamzadayi et al. [7], P |seq, ser = 1|Cmax problem is considered, meaning the

only difference compared to our problem is the presence of just 1 server. For the exact

approach comparison, we changed the original testing time limit from 18000 to 3600

seconds to obtain the MIP model and CP0 results in a more reasonable time. It can be

seen from the Table 7 that CP0 was always on par or better than the MIP model. In fact,

in cases where results were the same, we know that CP0 reached the optimal solution.

Model CP0 was also able to prove optimality in some instances where the MIP model did

not even reach the optimal solution.
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parameters objective value [-] CPU time [s]
# m t mip[7] CP0 mip[7] CP0

1 2 6 200 200 2.135 0.043
2 2 8 237 237 144.502 0.305
3 2 10 334 334 3600.0 0.957
4 2 14 441 415 3600.0 3600.0
5 2 20 687 611 3600.0 3600.0
6 3 9 188 188 577.058 0.696
7 3 12 279 253 3600.0 7.166
8 3 15 376 346 3600.0 3600.0
9 3 21 ∞ 373 3600.0 3600.0
10 3 30 ∞ 667 3600.0 3600.0
11 4 12 205 196 3600.0 15.741
12 4 16 231 199 3600.0 3600.0
13 4 20 381 309 3600.0 3600.0
14 4 28 ∞ 448 3600.0 3600.0
15 4 40 ∞ 656 3600.0 3600.0
16 5 15 230 209 3600.0 1972.226
17 5 20 369 247 3600.0 3600.0
18 5 25 668 299 3600.0 3600.0
19 5 35 ∞ 458 3600.0 3600.0
20 5 50 ∞ 669 3600.0 3600.0
21 7 21 265 167 3600.0 3600.0
22 7 28 ∞ 264 3600.0 3600.0
23 7 35 ∞ 334 3600.0 3600.0
24 7 49 ∞ 425 3600.0 3600.0
25 7 70 ∞ 640 3600.0 3600.0
26 10 30 ∞ 210 3600.0 3600.0
27 10 40 ∞ 275 3600.0 3600.0
28 10 50 ∞ 355 3600.0 3600.0
29 10 70 ∞ 457 3600.0 3600.0
30 10 100 ∞ 678 3600.0 3600.0

Table 7: MIP model proposed in Hamzadayi et al. [7] compared to CP0.

The authors in Hamzadayi et al. [7] evaluated their GA effectivity by comparing it

to their other proposed approaches. However, most instances had no results for the MIP

model, so we had no way of fairly comparing CPWS-SEIC to the GA without executing the

GA ourselves. Thus, we reimplemented the GA according to the paper’s description and

to the best of our knowledge, denoting it in the following text as GAR.

The results in Table 8 show CPWS-SEIC outperforming GAR in every case except two,

where they yielded the same result. The runtime of CPWS-SEIC for each instance was set

equal to the runtime obtained by GAR on our hardware, which was lower than runtimes

reported in Hamzadayi et al. [7]. Thus, CPWS-SEIC had no unfair advantage considering

the time limit. Every machine-task combination was run 20 times to even out the GA’s

random nature, and the rounded average was reported. The last column shows the RD

of objective values of GAR to CPWS-SEIC. It is noticeable that the difference gets more

significant with the growing instance’s size. This is probably the result of GA’s inability
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to effectively find improvements in such a vast solution space.

parameters objective value [-] RD [%]
# m t CPWS-SEIC GAR[7] GAR[7] to CPWS-SEIC

1 2 6 201 201 0.0 %
2 2 8 255 256 0.39 %
3 2 10 333 337 1.2 %
4 2 14 443 464 4.74 %
5 2 20 650 693 6.62 %
6 3 9 200 200 0.0 %
7 3 12 267 271 1.5 %
8 3 15 331 340 2.72 %
9 3 21 451 479 6.21 %
10 3 30 643 696 8.24 %
11 4 12 204 211 3.43 %
12 4 16 253 262 3.56 %
13 4 20 332 351 5.72 %
14 4 28 458 495 8.08 %
15 4 40 649 714 10.02 %
16 5 15 206 213 3.4 %
17 5 20 272 287 5.51 %
18 5 25 332 355 6.93 %
19 5 35 447 492 10.07 %
20 5 50 661 741 12.1 %
21 7 21 212 223 5.19 %
22 7 28 280 304 8.57 %
23 7 35 334 373 11.68 %
24 7 49 460 528 14.78 %
25 7 70 646 755 16.87 %
26 10 30 230 251 9.13 %
27 10 40 294 327 11.22 %
28 10 50 369 421 14.09 %
29 10 70 495 580 17.17 %
30 10 100 713 844 18.37 %

Table 8: GA proposed in Hamzadayi et al. [7] compared to CPWS-SEIC.

7. Conclusion and Future Work

This paper addressed the scheduling of tasks on non-dedicated machines with

sequence-dependent setups that are performed by servers. Initially, the Constraint Pro-

gramming model was proposed to formalize and optimally solve the problem. However,

the CP model is suitable only for specific instance sizes. Thus, two polynomial construc-

tive heuristics LOSOS and ROSOL were proposed. Since the execution of constructive

heuristics is very fast, improvements to these methods were proposed, enhancing the

solution’s quality in a trade-off with the execution time. To reach the best solution pos-

sible, the CP model and constructive heuristics were combined into a warm started CP

model called CPWS-SEIC which provides high-quality solutions even for short time limits

and large instances. As demonstrated, CPWS-SEIC can effectively solve instances of tens of
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machines and hundreds of tasks.

The efficiency of the proposed approaches was evaluated and compared against the

existing state-of-the-art ones. Since, to the best of our knowledge, there is no paper

tackling our considered P |seq, ser|Cmax problem, we compared our approaches to ap-

proaches for problems PD|seq, ser = 1|Cmax, P |ser = 1|Cmax and P |seq, ser = 1|Cmax.

The comparison was achieved by transforming the instances from original problems to

our problem, however, this meant that our approaches had to tackle more complex in-

stances. Despite that, our CP model proved to be better than all compared MIP models,

providing better or equal solutions to every single instance tested and also being much

better at proving the optimality. As for the comparison of CPWS-SEIC to the heuristics for

the compared problems, CPWS-SEIC provided on par results against genetic algorithm for

the most restricted problem PD|seq, ser = 1|Cmax and better results than heuristics for

P |ser = 1|Cmax and for P |seq, ser = 1|Cmax. It also has the additional advantage of

being able to reach optimum if enough time is provided.

In conclusion, we showed that our approaches are effective, relevant, and can be

used for more specific problems with better efficiency than the existing approaches. We

consider this the most significant contribution of this paper and see a great promise in

applying proposed approaches in real-world production scenarios.

To accommodate even more real-world productions, we see great potential in intro-

ducing setups over setups to simulate operations like the movement of server from one

machine to another, as we did not see this addressed anywhere in the literature.
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Appendix A. Constructive Heuristic Pseudocodes

Appendix A.1. Locally Optimal Selection of Setups (LOSOS)

Algorithm 1 Pseudocode of LOSOS algorithm.

1: function LOSOS Solve
2: TStartingTasks ← GenerateStartingTasks ⊲ called function
3: for each Mm ∈M do

4: Schedule Mm ← TStartingTasks
m

5: end for

6: TRemaining ← T \ {TStartingTasks}
7: WorkersFreeFromTime← {0} → |R| ⊲ List of zeroes of size |R|.
8: while TRemaining 6= ∅ do
9: ClosestEndingMachine← argmin(End(M))

10: ClosestEndingTask← T−1,ClosestEndingMachine ⊲ Last task is indexed by ”-1”.
11: NextTask, SetupLength← SelectNextTask(ClosestEndingTask, TRemaining)
12: ⊲ called function
13: Start(NextSetup)← max(End(ClosestEndingTask),min(WorkersFreeFromTime))
14: Start(NextTask)← Start(NextSetup) + SetupLength

15: Schedule ClosestEndingMachine← NextSetup

16: Schedule ClosestEndingMachine← NextTask

17: argmin(WorkersFreeFromTime)← Start(NextTask)
18: TRemaining ← TRemaining \ {ClosestEndingTask}
19: end while

20: OptimizeScheduleEnds ⊲ called function
21: end function

Starting tasks T StartingTasks are selected, and one is assigned to every machine.

There are multiple possible criteria for choosing T StartingTasks; the best one is discussed

in detail in subsection 5.3.1. After these tasks are assigned, they are removed from the

set of remaining tasks, which is denoted by TRemaining. See lines 2 to 6.

Data structure representing all servers’ availability is created, denoted by

WorkersFreeFromT ime. In algorithm implementation, the priority queue with the

earliest available server on top was used. At the start, all servers are considered ready

to work; thus, their availability is set to time 0. See line 8.

The earliest ending task, denoted by ClosestEndingTask, and its respective machine,

denoted by ClosestEndingMachine, are found. In algorithm implementation, a priority

queue was used for storing the machines. Then, a suitable task, denoted by NextTask,

and its respective setup length from ClosestEndingTask are found. The methods of

NextTask selection are discussed in detail in Section 5.3. See lines 11 to 14.
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The earliest available server is selected to perform the resulting NextSetup between

ClosestEndingTask and NextTask. The setup’s starting time is calculated according

to server’s and ClosestEndingMachine’s availability and then is scheduled. After that,

NextTask is also scheduled to ClosestEndingMachine and is removed from TRemaining.

See lines 16 to 22.

Finally, the end of the schedule is optimized by calling the OptimizeScheduleEnds.

This is especially important if the default greedy NextTask selection strategy was used,

as it tends to leave long setups to the end. See line 25.

Appendix A.2. Resolution of Setup Overlaps Lazily (ROSOL)

The selection and assignment of T StartingTasks and the selection of

ClosestEndingTask, ClosestEndingMachine and NextTask is the same as in

LOSOS. The only difference here is that there is no data structure for servers. Thus,

the NextSetup and NextTask are assigned to machines without considering server

availability. See lines 2 to 17.

The problem is now solved without considering servers’ constraints. Before checking

if it adheres to said constraints, OptimizeScheduleEnds is called to reduce makespan

if possible. Calling OptimizeScheduleEnds is beneficial, even if the solution does not

adhere to server constraints, because machines’ balancing will reduce future collisions

when OptimizeScheduleEnds is called again at the end of the algorithm. See line 18.

All machines that are not in SetMachines and currently have a setup scheduled are

found and added to set FreeMachines. If needed, these machines’ current setups can

be moved to a later point in the schedule. On the other hand, SetMachines contains

machines where the currently executed setup will not move under any circumstances as

it has been already confirmed for the execution. T imeStep is updated either by the

end of the present task or setup on the machine. Also, if some fixed machine previously

executing a setup is finished at current T ime, it is removed from SetMachines. See lines

24 to 36.
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If the current number of setups executed is higher than the number of servers, some

setups from FreeMachines will have to be moved to a later point in the schedule. The

coefficient of move priority is computed based on the machine length compared to the

makespan and the length of the currently present setup on the machine. This helps us

determine how would the move affect the makespan and waiting times of other machines

for free server. See lines 37 to 42.

While free servers are available, the machine with the lowest coefficient is selected

and moved to SetMachines, fixing its setup execution, thus allocating a server to it. See

lines 43 to 47.

When all servers are busy, and there are still setups currently being executed, they

are moved to a later point in the solution together with their following tasks and setups

on the same machine. The makespan of the solution is updated, and T ime is moved by

T imeStep. See lines 48 to 53.

After resolution of the servers’ collisions, the end of the schedule is again optimized.

See line 57.
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Algorithm 2 Pseudocode of ROSOL algorithm.

1: function ROSOL Solve
2: TStartingTasks ← GenerateStartingTasks ⊲ called function
3: for each Mm ∈M do

4: Schedule Mm ← TStartingTasks
m

5: end for

6: TRemaining ← T \ {TStartingTasks}
7: while TRemaining 6= ∅ do
8: ClosestEndingMachine← argmin(End(M))
9: ClosestEndingTask← T−1,ClosestEndingMachine ⊲ Last task is indexed by ”-1”.

10: NextTask, SetupLength← SelectNextTask(ClosestEndingTask, TRemaining)
11: ⊲ called function
12: Start(NextSetup)← End(ClosestEndingTask)
13: Start(NextTask)← Start(NextSetup) + SetupLength

14: Schedule ClosestEndingMachine← NextSetup

15: Schedule ClosestEndingMachine← NextTask

16: TRemaining ← TRemaining \ {ClosestEndingTask}
17: end while

18: OptimizeScheduleEnds ⊲ called function
19: SetMachines← ∅ ⊲ Machines fixed to execute current setup.
20: T ime← 0 ⊲ T ime represents current time point in solution.
21: while T ime < Makespan do ⊲ Makespan represents solution’s makespan.
22: T imeStep←∞ ⊲ The amount of time to move.
23: FreeMachines← ∅ ⊲ Machines with movable current setup.
24: for each Mm ∈M do

25: if Mm in T ime executes a setup then

26: FreeMachines← FreeMachines
⋃
{Mm}

27: T imeStep← min(T imeStep,End(CurrentSetupm)− T ime)
28: ⊲ Currently executed setup given the current Time.
29: else

30: if Mm ∈ SetMachines then

31: SetMachines← SetMachines \ {Mm}
32: end if

33: T imeStep← min(T imeStep,End(CurrentTaskm)− T ime)
34: ⊲ Currently executed task given the current Time.
35: end if

36: end for

37: if |FreeMachines|+|SetMachines|> |R| then
38: for each Mm ∈ FreeMachines do

39: SetupLength← End(CurrentSetupm)− Start(CurrentSetupm)
40: MachineReserve←Makespan− End(Mm)
41: Coefficient(Mm)←MachineReserve+ SetupLength

42: end for

43: while |SetMachines|< |R| & |FreeMachines|> 0 do

44: Mk ← argmin(Coefficient(FreeMachines))
45: FreeMachines← FreeMachines \ {Mk}
46: SetMachines← SetMachines

⋃
{Mk}

47: end while

48: for each Mm ∈ FreeMachines do

49: Move tasks/setups starts/ends after current Time on Mm by T imeStep

50: end for

51: Makespan← max(End(M))
52: end if

53: T ime← T ime+ T imeStep

54: end while

55: OptimizeScheduleEnds ⊲ called function
56: end function
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Appendix B. Large instance runtimes
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Figure B.5: Runtimes of heuristics without expensive (task coefficient and idleness re-
duction) improvements. The x-axis labels are in format m | t | r.

Appendix C. Lower bound calculation

The lower bound calculation to assess overall quality of our proposed approaches is
following:

• First, Mp =
∑t

i=1
pi

m
is calculated.

• For every task Tj , zj = minTi∈T (oi,j), i.e., the shortest setup from any Ti∈ T to a
given Tj , are calculated and added to multiset Z. Next, m largest zj are removed
from Z, yielding Z ′. Then, Mo =

∑

z∈Z′

z
m

and Ro =
∑

z∈Z′

z
r
are calculated.

• Finally, lowerbound = max(Mp +Mo, Ro). Please note that Mp +Mo represent
smallest possible time that the longest machine will take to execute the schedule,
while Ro smallest possible time that the longest working server will take to perform
the setups in the schedule.
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Appendix D. CP scalability

# m t r LOSOSSEIC ROSOLSE CPWS-SEIC(3600s)
1 30 600 3 568 548 521
2 30 600 6 546 548 522
3 30 750 3 676 672 647
4 30 750 6 668 672 647
5 40 800 4 555 557 534
6 40 800 8 560 554 533
7 40 1000 4 703 689 668
8 40 1000 8 689 689 668
9 50 1000 5 565 559 537
10 50 1000 10 556 559 535
11 50 1250 5 707 710 678
12 50 1250 10 697 710 681
∑

- - - 7490 7467 7171
RD - - - 4.45 % 4.13 % 0.0 %

Table D.9: The comparison between the warm starts (LOSOSSEIC and ROSOLSE) pro-
vided to CPWS-SEIC and solutions attained by CPWS-SEIC in an hour runtime.
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