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Abstract

The importance of vaccination and the logistics involved in the procurement, storage and distribution of

vaccines across their cold chain has come to the forefront during the COVID-19 pandemic. In this paper, we

present a decision support framework for optimizing multiple aspects of vaccine distribution across a multitier

cold chain network. We propose two multi-period optimization formulations within this framework: first to

minimize inventory, ordering, transportation, personnel and shortage costs associated with a single vaccine;

the second being an extension of the first for the case when multiple vaccines with differing efficacies and costs

are available for the same disease. Vaccine transportation and administration lead times are also incorporated

within the models. We also develop robust optimization versions of the single vaccine model to account for

the impact of uncertainty in model parameters on the optimal vaccine distribution solution. We use the

case of the Indian state of Bihar and COVID-19 vaccines to illustrate the implementation of the framework.

We present computational experiments to demonstrate: (a) the organization of the model outputs; (b)

how the models can be used to assess the impact of cold chain point storage capacities, transportation

vehicle capacities, and manufacturer capacities on the optimal vaccine distribution pattern; and (c) the

impact of vaccine efficacies and associated costs such as ordering and transportation costs on the vaccine

selection decision informed by the model. We then consider the computational expense of the framework

for realistic problem instances, and suggest multiple preprocessing techniques to reduce their computational

burden. Finally, we also demonstrate how the robust versions of the single vaccine model outperform the

deterministic version under multiple levels of uncertainty in key model parameters. Our study presents

public health authorities and other stakeholders with a vaccine distribution and capacity planning tool for

multi-tier cold chain networks.
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1. Introduction

The COVID-19 pandemic that originated in China rapidly spread throughout the world, and has caused

more than five million deaths worldwide (Worldometers.info, 2022) and an estimated economic loss of nearly

four trillion US dollars (statista.com, 2021). While moderately effective treatments have been developed,

vaccines offer the best chance for a long-term solution to the pandemic. Therefore, a number of vaccines

have been successfully developed and vaccination programmes across the world are being operationalized,

with multiple large countries having vaccinated more than half their populations (WHO, 2021). Success-

fully conducting a vaccination programme for a large population entails significant operational challenges

(NCCVMRC, 2014; Azadi et al., 2020). In particular, ensuring efficient distribution of the vaccines from

the manufacturer to the medical centers where they are administered to eligible recipients among the public

involves logistical challenges across multiple fronts, especially when multiple tiers of the vaccine storage and

distribution network need to be traversed. In this context, we present in this paper a decision support tool,

based on an integer linear programming framework, that facilitates optimal distribution of vaccines from the

manufacturer to the point of administration across a multi-tier vaccine cold chain network. We demonstrate

the applicability of this decision support framework for the case of the distribution of COVID-19 vaccines

across the state of Bihar in India.

In most countries, vaccines are typically ordered from their manufacturer by a central planning au-

thority such as the central or state government. The vaccines are then routed through one or more stor-

age/distribution facilities before they are delivered to the point of administration, typically a medical center

such as a primary health center. Each of these storage/distribution facilities are referred to as a cold chain

point, because most vaccines must be stored and transported in refrigerated or sub-zero conditions. For

example, in India, the vaccine cold chain of the public health system has multiple tiers: large government

medical store depots (GMSDs) maintained by the central government, state level state vaccine stores (SVSs),

regional vaccine stores (RVSs), and district vaccine stores (DVSs). The vaccines themselves are typically

administered at medical facilities within a district which can be subcenters, primary health centers, commu-

nity health centers, or district hospitals (NCCVMRC, 2014). Such multi-tier cold chains can be found in

many countries. For example, Bangladesh has a four-tier vaccine chain: central vaccine store, district vaccine

stores, Upazila or subdistrict vaccine stores, with vaccines being administered at the next tier (unions and

wards) (Guichard et al., 2010). Niger also has a four-tier vaccine cold chain similar to that of Bangladesh

(Assi et al., 2013). The Indian multi-tier vaccine cold chain is depicted in Figure 1. Given this, it is evident

that a comprehensive decision support framework for optimizing vaccine distribution across multi-tier cold

chain networks can prove useful for health planning authorities.

In this paper, we develop such an integer linear programming (ILP) based decision support framework

that can optimize, given a planning horizon with discrete time units (e.g., an eight week period) and vaccine

demand by recipient subgroup (e.g., of different age groups) for each time unit, the following aspects of

vaccine distribution across the cold chain: (a) the cold chain facility from which the next lower-tier cold
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chain facility must order (if an order is to be placed in a given time unit); (b) quantities of each vaccine

(from a set of multiple vaccines available for a given disease) to be ordered at each cold chain tier in each

time unit; (c) number of vehicles required to transport the vaccine quantities ordered in each time unit;

(d) inventory levels at each cold chain facility in the network; (e) the number of vaccination staff required

in each facility in each time unit; and (f) the number of vaccines to be administered to each subgroup in

each time unit. The decision support framework attempts to optimize the above decisions by minimizing

a total vaccine distribution cost objective function that takes into account fixed and variable costs (where

applicable) associated with each of the above decisions. For example, we consider fixed and variable ordering

and transportation costs, inventory holding costs, and vaccination workforce resizing costs. We incorporate

measures for the priority of each vaccine recipient subgroup by incorporating a shortage cost per recipient

in each subgroup: higher the shortage cost, higher the priority of recipients in that subgroup. Vaccine costs

and efficacies are also considered, facilitating decisions regarding which vaccine to order for a given disease.

Previous work involving optimization of various aspects of vaccine distribution have focused on three

main areas. The first involves optimizing timing of vaccine development (e.g., which strain of the virus

to incorporate in the vaccine, as studied by Kornish & Keeney (2008)), and determining vial size and

vaccine inventory replenishment schedules so that open vial wastage is minimized Azadi et al. (2019, 2020).

The second area involves optimizing vaccine allocation across multiple recipient subgroups or geographical

regions to minimize the impact of a disease (Chick et al., 2008; Yarmand et al., 2014). The third area involves

optimizing aspects of production and distribution of vaccines. For example, Hovav & Tsadikovich (2015)

develop a nonlinear integer programming model to optimize distribution of a single vaccine across three tiers.

Our work is concerned with the third area, and our research contributions with respect to previous work in

this area are detailed in the subsequent section. In addition, we discuss the various approaches adopted in

the literature to assess the impact of uncertainty in the vaccine cold chain and their models on the optimal

vaccine distribution policies generated by these models. In this context, we discuss our contribution: the

development of robust optimization versions of the base model in our decision support framework.

The rest of the paper is organized as follows. In the following section, we present the relevant literature.

In Section 3, we describe the vaccine distribution problem, and the single-vaccine and multiple vaccine integer

programming formulations. We also describe our proposed robust optimization version of the single vaccine

model. In Section 4, we illustrate the application of the single vaccine and multi-vaccine formulations (for two

vaccines) for the COVID-19 case, potential methods to accelerate solution times for the models within the

framework, and computational experiments illustrating the performance of the robust version of the single

vaccine model when considering multiple uncertainty characterization methods. In Section 5, we conclude

the paper.
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2. Literature Review

In this section, we motivate our work with respect to the extant vaccine supply chain management

literature. In the vaccine supply chain literature, researchers have focused on the following main research

directions: a) vaccine composition, b) allocation of vaccines among the target population, and c) production

and distribution of vaccines. We discuss the literature in the first two areas in Appendix A, and given

the more direct relevance of the third area, we discuss it below. We conclude with an account of the

literature on handling parameter uncertainty associated with supply chain models, and a listing of our

research contributions with respect to the relevant literature.

2.1. Production and Distribution of Vaccines

Vaccine production is characterised by uncertain production yields and demand, longer manufacturing

times and frequent changes in composition of vaccines. Federgruen & Yang (2008) study a problem in which

the decision maker has to satisfy uncertain demand by sourcing vaccines from multiple suppliers who in

turn have uncertain production yields. One way to manage uncertainty in production yields and demands

is to adjust the pricing and selling strategies. Cho & Tang (2013) studied three selling strategies namely,

advance, regular and dynamic selling. The authors analyse and present the options that are beneficial to

the manufacturer and the retailer. Eskandarzadeh et al. (2016) extended the work for a risk averse supplier

in which the risk of lower production yield is controlled through pricing and quantity as decision variables.

With regard to vaccine inventory management at a single site (e.g., a clinic), Lim et al. (2017) develop a

lean-inspired set of processes using secondary vaccine packaging and simplified inventory tracking for more

efficient inventory management at the site under consideration.

With regard to vaccine distribution across a network of demand sites, Chen et al. (2014) develop a linear

programming model for maximizing the number of fully immunized children. The authors assume that

vaccine supply is sufficient to meet demand, consider costs to a very limited extent in their model, and also

do not support decision-making regarding transportation or vaccination staff capacity as part of their model.

In more recent work, Lim et al. (2022) attempt to optimally redesign vaccine distribution networks entirely

- that is, they optimize both the number of intermediate distribution centers (aside from the central store

and vaccine administration clinics) and their location via a mixed integer formulation. They also determine

the number of trips between tiers in their network required to fully meet vaccine demand. The authors

motivate their work based on the study by Assi et al. (2013), who found via simulation that removing one

of the intermediate tiers (the regional tier) of Niger’s vaccine cold chain improves the efficiency of vaccine

distribution in achieving immunization coverage.

A key study relevant to our work - which is to develop a comprehensive framework for optimal vaccine

distribution across an existing multi-tier vaccine cold chain network - is that by Hovav & Tsadikovich

(2015). The authors present a multi-echelon (cost-benefit) model for inventory management of an influenza

vaccine supply chain in Israel. The objective of the model is to minimize vaccination costs. The authors
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present a network flow approach to model the distribution of vaccines across their three-tier supply chain

(manufacturers, distribution centers and recipients). A key drawback of their study is that they formulate

their problem as a mixed-integer nonlinear optimization problem. Further, they do not consider fixed costs

associated with transportation (e.g., the cost of booking a vehicle for transporting vaccines from one cold

chain tier to another cold chain tier), or vaccination staffing decisions (they assume a fixed vaccination

staff size). Our work addresses these shortcomings by: (a) developing an integer linear program of vaccine

distribution across the vaccine cold chain, (b) integrating both fixed and variable transportation and storage

costs as well as staffing decisions at vaccination sites within our model, and (c) extending our single vaccine

model to consider multiple vaccines for the same condition, which supports decision-making regarding which

vaccine to administer to which recipient subgroup. We also modify their conceptualization of shortage

costs associated with not receiving a vaccine, which we discuss in Section 3.4. Our work also considers the

importance of considering uncertainty in parameters in the overall vaccine supply chain.

2.2. Uncertainty Modeling in Supply Chain Applications

The vaccine supply chain is inherently complex, with uncertainties in product selection, production and

distribution phases. At the selection stage, uncertainty arises when a public health organization (typically

WHO) decides which variant of the virus should be targeted in the current vaccination season. Since vaccine

production incurs a long lead time, manufacturers are typically unable to fully satisfy the demand in the

vaccination season. The next level of uncertainty occurs in the yield of the production process. The final

level of uncertainty occurs in the demand side - for example, vaccine hesitancy in the target population,

antigenic drift in the virus, etc. Researchers have primarily studied supply chain contracts as ways to deal

with uncertainties arising in these scenarios. Cho (2010) studied the impact of yield uncertainty in an

influenza vaccine supply chain in an uncertain product scenario - that is, uncertainty associated with which

viral strain might cause an outbreak in the current season. The author proposes an optimal dynamic policy

to improve social welfare. Cho & Tang (2013) studied three strategies to mitigate supply side and demand

side uncertainty. The first is an advanced selling strategy where selling happens before both supply and

demand is realised, the second involves regular selling where selling happens after the demand and supply

are realised, and finally, the case of dynamic selling which incorporates both advanced and regular selling

strategies. Arifoğlu et al. (2012) studied the impact of yield uncertainty and demand side uncertainty due

to self-interested individuals on an influenza vaccine supply chain. Dai et al. (2016) proposes supply chain

contracts as a mechanism to address the problem of inefficiencies occurring due to supply side and demand

side uncertainties. In recent work, Arifoğlu & Tang (2021) propose vaccination incentives to demand side

and a “menu of transfer payments” to the supply side to mitigate inefficiencies occurring due to uncertainties

in the influenza vaccination supply chain. Chandra & Vipin (2021) studied subsidy contracts to coordinate

a vaccination supply chain with stochastic production yields. The authors show that subsidy contracts can

achieve channel coordination in a vaccination supply chain with varying production yields.
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Very few studies have used mathematical optimization techniques to deal with uncertainties arising

in vaccination supply chain. Özaltın et al. (2018) studied the composition and production decisions of

influenza vaccine as a bilevel multi stage stochastic mixed integer program. At the upper level of the

optimization problem, composition decisions (which influenza strains to include in the vaccine) are made

while at the second level production decisions are made conditional to the upper level decisions. Sazvar et al.

(2021) studied a capacity planning problem in designing a resilient supply chain which faces uncertainties

due to disruptions. The authors propose a multi-objective optimization model for the same. The authors

incorporate redundant capacities as a means to counter risk arising from disruption. In this work, we consider

uncertainties in production and distribution by considering uncertainty in multiple parameters associated

with vaccine distribution across the cold chain, such as ordering costs, holding costs, demand, production

capacities and storage capacities. We adopt a robust optimization approach to model the multi-echelon

vaccine supply chain problem.

In the following subsection, we present the main contributions of our study with respect to the extant

literature.

2.3. Contributions of Our Study

The main contributions of our work with respect to the literature discussed above are listed below.

1. To the best of our knowledge, our model represents the most comprehensive multi-echelon inventory

flow optimization model for a vaccine cold chain in terms of the set of decisions - facility selection

at each tier, vaccine choice, vaccine quantities, number of transportation vehicles per time period,

vaccination staff, recipient subgroups to be vaccinated, etc. - supported.

2. Our model is an integer linear program model of the network flow in a vaccine cold chain which, in

contrast to the existing nonlinear integer program models developed for similar vaccine cold chain

networks (Hovav & Tsadikovich (2015)), can yield exact optimal solutions.

3. Our study is the first inventory flow model for the vaccine cold chain network in the Indian context

that incorporates entities at government, state, region, district and clinic levels.

4. Our model provides a framework for integrating both fixed and variable vaccine transportation costs.

5. The model allows for determining the optimal vaccination staff levels required to satisfy the vaccine

demand in a given time frame.

6. The model incorporates lead times associated with transportation between cold chain entities as well

as the time required to prepare and administer newly arrived batches of vaccines at the clinic tier in

the cold chain network.

7. To the best of our knowledge, our model provides the most comprehensive accounting of vaccine

recipient subgroup prioritization considerations to date.

8. In our knowledge, our framework is the first to provide a robust optimization approach towards mod-

eling uncertainty associated with vaccine distribution across cold chain networks.
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Our model can be extended to any vaccine or even multiple vaccines together taking into account the

respective capacity requirements of each vaccine. We deal with the tactical decisions of allocation-location as

well as strategic decisions of capacity planning, inventory level management, and vaccine recipient subgroup

choice.

3. Development of the Decision Support Framework

In this section, we first describe the decision problem that our framework addresses, and then describe

the mathematical models within our framework. We then outline the model parameter estimation process

to conclude this section.

3.1. Decision Problem Description

We develop an integer linear programming based framework for optimizing the decisions that need to

be taken with regard to vaccine distribution across a hierarchical cold chain network. We consider decisions

associated with the logistics of ordering, transporting, storing, and administering vaccine doses across the cold

chain network. In addition to the above set of logistical decisions that are key to any supply chain network,

we also introduce vaccination staff capacity planning at the last tier of the cold chain as the number of

vaccine units that can be administered at any health centre would depend on the availability of the health

workers responsible for doing so. We also consider decisions regarding the prioritization of subgroups of

eligible recipients of vaccine units within our framework by associating subgroup-specific unit costs of not

vaccinating a recipient belonging to each subgroup. We illustrate this by categorizing potential recipients by

age. We consider this particular criterion for subgroup formation given its wide use in COVID-19 vaccination

policies across the world.

Decision-making in our framework starts from when the vaccines are ready to be transported from the

manufacturer(s) through the subsequent tiers at different time periods. We associate one or more costs with

every decision that we consider in our model, and hence the models within our framework aim to minimize

a stylized total cost of operating a vaccine cold chain subject to cold chain storage capacity, transportation

capacity, vaccination staff capacity, and administrative constraints. Given that we illustrate the application

of our framework to the cold chain network in India, we now provide a brief overview of the same.

In India, the vaccine cold chain consists of the following tiers after the manufacturer, listed from the

highest tier onwards to the lowest tier: GMSD (Government Medical Store Depot), SVS (State Vaccine

Store), RVS (Regional Vaccine Store), DVS (District Vaccine Store) and the clinics (PHCs, CHCs and DHs)

where the vaccines are actually administered to the intended recipients. The schematic of the flow of vaccines

through the cold chain is shown in Figure 1.

India has 7 GMSDs located mostly in major cities: Mumbai, New Delhi, Chennai, Kolkata, Hyderabad,

Guwahati and Karnal. It has 39 state vaccine stores, 123 regional vaccine stores, 644 district vaccine stores,

and 20000+ public health centres (which include primary and secondary care facilities) spread across the
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Figure 1: Flow of vaccines in Indian vaccine cold chain. This figure is adapted from the figure on page 3 of the National Cold

Chain Assessment India by UNICEF (NCCVMRC, 2014).

country (Inclentrust, 2011). For our analysis, we consider the Indian state of Bihar, which has one state

vaccine store (SVS) located at its capital city, Patna. We construct a framework that encompasses all the

cold chain tiers in Figure 1; however, our framework can be utilized even if, in practice, one or more tiers

do not play a role in a given region in vaccine distribution. From a modeling standpoint, we assume that

vaccine manufacturers ship vaccine doses to the GMSDs, which in turn ship to the SVS in the state under

consideration. These supply vaccines to the entire state through intermediate levels or tiers comprising of

regional vaccine stores (RVS) and district vaccine stores (DVS). DVSs then transport the vaccines to primary

health centres (PHCs) and community health centres (CHCs) which actually administer the vaccine doses

to the local population.

In the total operating cost of the cold chain we include vaccine inventory ordering and holding costs at

each CCP, fixed and variable transportation costs where fixed costs account for the one-time ordering cost

of the vaccine transport vehicles, and the variable costs depend on the distance between CCPs and include

fuel, costs of maintaining cold storage in the vehicles, etc. As mentioned earlier, we also include the cost

of vaccines, and shortage costs associated with not vaccinating an eligible recipient which are different for

different population subgroups. We also consider wages, hiring and firing costs of health workers to facilitate

vaccination staff capacity planning. We describe how these parameters were estimated later in this section.

We develop integer linear programs that consider a single vaccine for a given disease as well as multiple

vaccines for a disease. We begin by describing the single vaccine formulation.
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3.2. Single Vaccine Model

We list below all the index sets associated with the single vaccine model, including index sets for each

cold chain tier, recipient subgroups and time periods.

• Manufacturer index, m ∈ {1, 2, 3, ....,M}

• Government medical store depot index, g ∈ {1, 2, 3, ...., G}

• State vaccine store index, s ∈ {1, 2, 3, ...., S}

• Regional vaccine store index, r ∈ {1, 2, 3, ...., R}

• District vaccine store index, d ∈ {1, 2, 3, ...., D}

• Primary health center index, i ∈ {1, 2, 3, ...., I}

• Recipient subgroup index, j ∈ {1, 2, 3, ...., J}

• Time period index, t ∈ {1, 2, 3, ...., T}

Model parameters

• Inventory holding cost parameters at each cold chain point: hgt , hst , h
r
t , hdt , hit. Units: INR/dose/week.

• Transportation cost (fixed + variable) per vehicle transporting vaccines from one cold chain point to

another cold chain point at the next tier (e.g., manufacturer m to GMSD g, or DVS d to clinic i):

Kmg, Kgs, Ksr, Krd, Kdi.

Units: INR/truck. Transportation cost = (variable costs [diesel costs + labour costs + refrigeration

costs] + fixed ordering cost) × number of vehicles.

• Vaccine inventory holding capacity at each CCP: Bg
t , Bs

t , Br
t , Bd

t , Bi
t. Units: doses.

• Capacity of each vehicle transporting vaccines from one CCP to the next lower-tier CCP (e.g., manu-

facturer m to GMSD g, or DVS d to clinic i): Cmg
t , Cgs

t , Csr
t , Crd

t , Cdi
t . Units: doses/vehicle.

• Fixed cost (ordering) of ordering vaccine by a CCP at a given level from the next higher-tier CCP (e.g.,

GMSD g from manufacturer m, or clinic i from DVS d): Smg
t , Sgs

t , Ssr
t , Srd

t , Sdi
t . Units: INR/delivery.

• Maximum number of vehicles available for transportation from one CCP to the next lower-tier CCP

(e.g., manufacturer m to GMSD g, or DVS d to clinic i): Nmg, Ngs, Nsr, Nrd, Ndi. Units: vehi-

cles/week.

• Lead times of delivery of vaccines from one CCP to the next lower-tier CCP (e.g., manufacturer m to

GMSD g, or DVS d to clinic i): Lmg, Lgs, Lsr, Lrd, Ldi. Units: weeks.
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• Lead times of administration of vaccines at the clinics (i): Lij . Units: weeks.

• Initial vaccine inventory held at the CCPs: Ig0 , Is0 , Ir0 , Id0 , Ii0 Units: doses.

• Miscellaneous parameters:

– Demand by sub-group j at clinic i at time t (in doses/week): Dij
t

– Shortage cost (INR) of not vaccinating a customer in subgroup j at time t : P j
t

– Clinical services cost per customer in subgroup j (e.g., INR/dose): V j

– Average time (e.g., minutes/dose) required for administration of one vaccine dose: To

– Availability of a health worker in hours at clinic i for time period t (e.g., 40 hours/week): N i
t

– The production capacity of manufacturer m at time t (in doses): Bm
t

– Wastage factor (proportion of each dose wasted; that is, effective dose volume required per dose

is 1
w ): w

– Wages of health workers per time period (e.g., INR/week): L

– Fixed cost (INR) of hiring one health worker: E

– Fixed cost (INR) of firing one health worker: F

– Probability of exposure to the disease-causing pathogen p

– Probability of developing the disease after vaccination upon exposure to the pathogen η

Total Demand

The following is the total demand by all the subgroups at all the clinics across the entire planning horizon.

Q =
∑T

t

∑I
i

∑J
j

Dij
t

w

Decision Variables

In the single vaccine formulation, we make decisions regarding the amount of inventory to be held at each

CCP across the planning horizon, the number of doses to be ordered by a lower-tier CCP from a higher-tier

CCP at each time period, number of vehicles required for transporting the vaccine units from one CCP to

a lower-tier CCP, vaccination staff numbers at each clinic, the number of doses to be administered, and the

number of people to be vaccinated in each subgroup in each time period.

• Number of vaccine doses held at each CCP at the end of time t: Igt , Ist , Irt , Idt , Iit .

• Number of vaccine doses delivered from one CCP to the next lower-tier CCP at the beginning of time

t (e.g., from manufacturer m to GMSD g, or from DVS d to clinic i): qmg
t , qgst , qsrt , qrdt , qdit .

• Number of vehicles required for transporting vaccines from one CCP to the next lower-tier CCP at

time t (e.g., manufacturer m to GMSD g, or DVS d to clinic i): nmg
t , ngst , nsrt , nrdt , ndit .
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• Binary assignment variable indicating whether an order has been placed from a CCP by the next

lower-tier CCP (e.g., order placed by GMSD g from manufacturer m): xmg
t , xgst , xsrt , xrdt , xdit

• Number of persons not vaccinated (i.e., number of shortages) and number of vaccine doses administered

in subgroup j in clinic i at time t, respectively: sijt , wij
t

• Number of health workers working, hired and fired in clinic i at time t respectively: nit, h
i
t, f

i
t

Objective Function

The goal of the model is to minimize the total cost associated with vaccine distribution across the cold

chain network. The objective function below is constructed from the different subcosts associated with the

decisions considered in the cold chain.

Min JHCO =

∑
t

∑
m

∑
gK

mgnmg
t +

∑
t

∑
g

∑
sK

gsngst +
∑

t

∑
s

∑
rK

srnsrt +
∑

t

∑
r

∑
dK

rdnrdt +
∑

t

∑
d

∑
iK

dindit +

Transportation cost × number of vehicles from one CCP to next lower-tier CCP

∑
t

∑
g h

g
t I

g
t +

∑
t

∑
s h

s
tI

s
t +

∑
t

∑
r h

r
t I

r
t +

∑
t

∑
d h

d
t I

d
t +

∑
t

∑
i h

i
tI

i
t+

Holding cost per dose × inventory at cold chain points

∑
t

∑
i

∑
j p P

j
t s

ij
t +

∑
t

∑
i

∑
j (1− η) p P j

t w
ij
t

Shortage cost per person × number of persons not vaccinated at clinic

∑
t

∑
i

∑
j V

jwij
t +

Clinical services cost per dose × consumption of vaccine units at clinic

∑
t

∑
m

∑
g S

mg
t xmg

t +
∑

t

∑
g

∑
s S

gs
t x

gs
t +

∑
t

∑
s

∑
r S

sr
t x

sr
t +

∑
t

∑
r

∑
d S

rd
t xrdt +

∑
t

∑
d

∑
i S

di
t x

di
t +

Ordering cost (cost incurred if even one vaccine unit is ordered)

∑
t

∑
i Ln

i
t +
∑

t

∑
iEh

i
t +
∑

t

∑
i Ff

i
t

Labour costs (wages, hiring and firing costs)

12



Subject to:

• Production capacity constraints associated with the manufacturers. The number of units transported

from the manufacturer to the GMSDs cannot exceed the production capacity of the manufacturer at

time t.
G∑

g=1

qmg
t ≤ Bm

t ∀ m, t (1)

• Facility selection constraints. These constraints restrict the CCP at a given level (b) to order only from

one CCP at the next higher-tier CCP (a).∑
a

xabt ≤ 1 ∀ b, t if a ∈ {g, s, r, d} then b := next lower-tier value from{s, r, d, i} (2)

For example, ∑
g

xgst ≤ 1 ∀ s, t

• To ensure consistency of x and q. These constraints ensure that x and q are zero/non-zero simultane-

ously.

qabt ≤ (NabCab
t ) xabt ∀ a, b, t if a ∈ {m, g, s, r, d} then b := next lower-tier value from{g, s, r, d, i} (3)

For example,

qmg
t ≤ (NmgCmg

t ) xmg
t ∀ m, g, t

• Transportation vehicle capacity constraints. The number of vehicles needed to transport the requisite

number of doses from one CCP to the next lower-tier CCP will depend on the capacity of the vehicles

and the number of doses being transported.

qabt
Cab

t

≤ nabt ∀ a, b, t if a ∈ {m, g, s, r, d} then b := next lower-tier value from{g, s, r, d, i} (4)

For example,
qmg
t

Cmg
t

≤ nmg
t ∀ m, g, t

• Inventory balance constraints. This constraint balances the inflow and outflow of vaccine doses to and

from a CCP, taking lead times for vaccine delivery into account.

Ibt−1 +

A∑
a=1

qabt−Lab = Ibt +

C∑
c=1

qbct ∀ b, t (5)

Here, if b ∈ {g, s, r, d}, then a := next higher-tier value from {m, g, s, r} and c := next lower-tier value

from {s, r, d, i}. For example,

Igt−1 +

M∑
m=1

qmg
t−Lmg = Igt +

S∑
s=1

qgst ∀g, t
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We write the inventory balance constraint for the clinic separately given that vaccine doses are con-

sumed at this CCP.

Iit−1 +

D∑
d=1

qdit−Ldi = Iit +

J∑
j=1

wij
t ∀i, t

• Inventory Capacity Constraints. The amount of inventory held at a CCP cannot exceed the available

capacity of the cold chain equipment at that CCP.

Iat ≤ Ba
t ∀ a, t a ∈ {g, s, r, d, i} (6)

For example,

Igt ≤ B
g
t ∀ g, t

• Consumption balance constraints. The sum of administered doses and the intended doses not admin-

istered should be equal to the demand at time t.

wij
t + sijt =

Dij
t

w
∀ i, j, t (7)

• Constraints on consumption incorporating lead time of administration. This constraint implies that

the number of vaccine doses administered at a clinic i at time t cannot be greater than the inventory

level present Li periods ago. This constraint implies that a consignment of vaccine doses is likely to be

consumed over a certain period of time, and not as soon as the consignment is delivered to the clinic.

Note that this constraint is removed if Lij = 0.

J∑
j=1

wij
t ≤ Iit−Lij ∀ i, t (8)

• Medical personnel availability constraints. This constraint restricts the number of vaccine units that

can be administered over a time period t based on the availability of vaccination personnel during

worker hours and the time it takes to administer a single vaccine dose.

J∑
j=1

Tow
ij
t ≤ N i

tn
i
t ∀ i, t (9)

• Health Workers Balance Constraints. A vaccination workforce size balance constraint to model poten-

tial movement of vaccination personnel across clinics depending upon the demand at various clinics.

nit = nit−1 + hit − f it ∀ i, t (10)

The extension of the single vaccine formulation to consider multiple vaccines for the same disease is provided

in Appendix B.
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3.3. Robust Formulation: Single Vaccine Model

The single vaccine and multiple vaccine formulations that we have presented assume that there is no

uncertainty associated with model parameter estimates. However, as outlined earlier, this assumption is

unlikely to be realistic in nature. Many model parameter estimates such as ordering costs, holding costs,

manufacturing capacities and recipient demand are likely to be subject to uncertainty. Therefore, in order

to account for uncertainty in these parameter estimates, we develop a robust optimization version of our

single vaccine formulation.

In our study, we consider two types of uncertainty sets, box and budgeted uncertainty sets, thus yielding

two robust formulations. We present the formulations and the additional parameters, decision variables and

constraints required in each case. By uncertainty set, we mean that for each concerned parameter, we assume

that it can take any value between [ai − δi, ai + δi], where, ai is the deterministic value and δi is the likely

deviation of that parameter estimate.

We present the formulation for the box uncertainty set case below, and provide the budgeted uncertainty

set formulation in Appendix F.

Box Uncertainty Set Formulation.

Box uncertainty set helps us model the worst case scenario. Since the objective of our problem is to

minimize the overall cost function, the worst case occurs when the parameters corresponding to the ordering

costs and the holding costs at each tier are such that the corresponding objective function terms take the

maximum values. The objective function should then be as shown below:

Min JHCO =

∑
t

∑
m

∑
gK

mgnmg
t +

∑
t

∑
g

∑
sK

gsngst +
∑

t

∑
s

∑
rK

srnsrt +
∑

t

∑
r

∑
dK

rdnrdt +
∑

t

∑
d

∑
iK

dindit +

Transportation cost × number of vehicles from one CCP to next lower-tier CCP

max
hg
t ,h

s
t ,h

r
t ,h

d
t ,h

i
t

{
∑

t

∑
g h

g
t I

g
t +

∑
t

∑
s h

s
tI

s
t +

∑
t

∑
r h

r
t I

r
t +

∑
t

∑
d h

d
t I

d
t +

∑
t

∑
i h

i
tI

i
t }+

Holding cost per dose × inventory at cold chain points

∑
t

∑
i

∑
j p P

j
t s

ij
t +

∑
t

∑
i

∑
j (1− η) p P j

t w
ij
t

Shortage cost per person × number of persons not vaccinated at clinic

∑
t

∑
i

∑
j V

jwij
t +
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Clinical services cost per dose × consumption of vaccine units at clinic

max
Smg
t ,Sgs

t ,Ssr
t ,Srd

t ,Sdi
t

{
∑

t

∑
m

∑
g S

mg
t xmg

t +
∑

t

∑
g

∑
s S

gs
t x

gs
t +

∑
t

∑
s

∑
r S

sr
t x

sr
t +

∑
t

∑
r

∑
d S

rd
t xrdt +∑

t

∑
d

∑
i S

di
t x

di
t }+

Ordering cost (cost incurred if even one vaccine unit is ordered)

∑
t

∑
i Ln

i
t +
∑

t

∑
iEh

i
t +
∑

t

∑
i Ff

i
t

Labour costs (wages, hiring and firing costs)

In the above formulation, note that S̄mg
t , S̄mg

t , S̄gs
t , S̄sr

t , S̄rd
t , S̄di

t , h̄gt , h̄st , h̄
r
t , h̄dt and h̄it are the determin-

istic values and δSmg, δSgs, δ
S
sr, δSrd, δSdi, δ

h
g , δhs , δhr , δhd and δhi are the maximum deviations of the respective

parameters.

Further, one can easily note from the above formulation that the objective function will achieve its worst

case (maximum in this case) value when worst case deviations are allowed for all the coefficients. Therefore,

the robust counterpart for box uncertainty case is as shown below.

Min J =

∑
t

∑
m

∑
gK

mgnmg
t +

∑
t

∑
g

∑
sK

gsngst +
∑

t

∑
s

∑
rK

srnsrt +
∑

t

∑
r

∑
dK

rdnrdt +
∑

t

∑
d

∑
iK

dindit +

Transportation cost × number of vehicles from one CCP to next lower-tier CCP

∑
t

∑
g(h̄gt + δhg )Igt +

∑
t

∑
s(h̄

s
t + δhs )Ist +

∑
t

∑
r(h̄rt + δhr )Irt +

∑
t

∑
d(h̄dt + δhd )Idt +

∑
t

∑
i(h̄

i
t + δhi )Iit+

Holding cost per dose × inventory at cold chain points

∑
t

∑
i

∑
j p P

j
t s

ij
t +

∑
t

∑
i

∑
j (1− η) p P j

t w
ij
t

Shortage cost per person × number of persons not vaccinated at clinic

∑
t

∑
i

∑
j V

jwij
t +

Clinical services cost per dose × consumption of vaccine units at clinic
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∑
t

∑
m

∑
g(S̄mg

t + δSmg)xmg
t +

∑
t

∑
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∑
s(S̄

gs
t + δSgs)x

gs
t +

∑
t

∑
s

∑
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∑

t

∑
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∑
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t +
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t

∑
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t +

Ordering cost (cost incurred if even one vaccine unit is ordered)

∑
t

∑
i Ln

i
t +
∑

t

∑
iEh

i
t +
∑

t

∑
i Ff

i
t

Labour costs (wages, hiring and firing costs)

Subject to constraints: 1 - 10.

We now describe how the parameters associated with our formulations are estimated.

3.4. Model Parameter Estimation

To illustrate the implementation of our framework, we work witht the Indian state of Bihar. Thus the

vaccine cold chain network and associated equipment data we have used to parameterize the models within

our framework is that associated with Bihar. The vaccine delivery network in Bihar operates through 1 SVS,

9 RVSs, 38 DVSs, and 606 clinics (MOHFW, 2017). The map of the cold chain network in Bihar is shown

in Figure 2.

Figure 2: Map of vaccine cold chain network in Bihar, This figure is adapted from the Immunization Cold Chain and Vaccine

Logistics Network Factbook (MOHFW, 2017).
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Estimation of cold chain and transportation vehicle capacity

Thus, there are 654 cold chain points within the vaccine distribution network in the state of Bihar. We

determined that a total of 1,946 cold chain equipment - such as walk-in freezers, coolers, and ice-lined

refrigerators - are used across the cold chain network in the state (MOHFW, 2017). The numbers of each

equipment type, the dimensions of the refrigerated and insulated vans (NCCVMRC, 2014) and the cold boxes

(MOHFW, 2016) and estimates of other associated parameters such as the utilization factor are given in

Table D.4 in Appendix D. We have assumed that the cold chain equipment for a given district is uniformly

distributed across all its health centers where the vaccines are administered. For calculating the capacity of

these cold chain equipment, the packed vaccine volumes per dose for the two types of COVID-19 vaccines

were taken from official data released by the Indian government (MOHFW, 2021).

Vaccines are transported in refrigerated vans from the manufacturer to the GMSD and from the GMSD

to the SVS (for long distances), and in insulated vans from the SVS to all other downstream cold chain points

(NCCVMRC, 2014). The capacities of these vans were calculated by assuming standard dimensions of the

vehicles with a certain utilization factor. Utilization factor is a number less than 1 which is multiplied with

the storage shelf volume to arrive at the actual fraction of space available for storing vaccines. It is based

on the fact that the entire storage space available for storing vaccines cannot be used due to loss of vaccine

doses caused by vaccine handling practices, packaging dimensions, etc. The most commonly used estimate

for this parameter is 0.67 (WHO, 2017). The distances between each CCP were estimated via the Bing Maps

application, and used to populate a distance matrix. The distance is then multiplied by fuel (diesel) cost to

get the variable transportation cost. Fixed transportation costs have been reasonably assumed to account

for the one-time ordering cost of a vehicle.

Estimation of demand

In order to demonstrate how the optimization framework can be used to prioritize certain subpopulations

over others, we assumed that the population of the state can be divided into three subgroups categorized

on the basis of age: children (less than 18 years), adults (between 18 to 60 years) and elderly (60 years and

above). Assuming one dose of vaccine administered per person within a given planning horizon, the weekly

demand for each subgroup at each clinic is calculated from the population distribution by age among all the

districts in the state. The population distribution by age was obtained from the most recent census data

published by the Indian government (MHA, 2011a). This is multiplied with the growth rates by age group

(MHA, 2011b) to arrive at the estimates of the population size of each subgroup.

Estimation of other parameters

The production capacity of the manufacturer has been assumed to be around 2 billion doses for the

entire country (European Pharmaceuticals, 2020). However, as shown in Section 4.1, we analyze how the

manufacturing capacity affects the extent to which demand is satisfied across the planning horizon.
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The inventory holding cost has been assumed to be Rs 0.3 per unit vaccine per week for all CCPs at

all the tiers. The ordering costs at each tier have been reasonably assumed with costs per order increasing

with the level of the CCP tier. We note here that the vaccine ordering costs at each cold chain tier can be

considered to be proxy measures of the efficiency of the ordering process at a given tier. Thus these costs

can be adjusted depending upon the perception of the decision-maker or analyst using this proposed decision

support tool regarding the efficiency of the ordering process at a given cold chain tier. Note that ordering

costs can be varied across specific facilities within a cold chain tier. Hence it is the relative values of the

ordering costs both within and across cold chain tiers that are of more importance than the actual estimates

themselves. A similar argument can be made for the fixed costs associated with transportation as well.

The wages, hiring, and firing cost of vaccination staff have been reasonably assumed by collecting data on

standard wages. The wages are taken as the median salary of nurses (monthly) in Bihar which are adjusted

appropriately to obtain the weekly wages. The hiring and firing costs have been accordingly assumed as

some proportion of the monthly salary of the nurses.

We explain the estimation of the shortage costs within the context for the multiple vaccine model, which

we can consider as a generalization of the single vaccine model. We develop our modeling of the costs of

not vaccinating eligible recipients based on the notion of shortage costs introduced in Hovav & Tsadikovich

(2015); however, we extend their conceptualization in the following ways: (a) we modify their shortage cost

model to incorporate the multiple vaccine case, which involves including a measure of vaccine effectiveness in

the shortage cost model; and (b) we include the costs of the loss of life due to the disease in question, as well

as the costs of illness (but not mortality), among both vaccinated and unvaccinated persons. The shortage

costs are included in the objective function of the multi-vaccine formulation in the following manner:∑
t

∑
i

∑
j

p P j
t s

ij
t +

∑
t

∑
k

∑
i

∑
j

p (1− ηk) P j
t w

ijk
t

Here p is the probability of exposure to the SARS-CoV2 virus (we assume exposure to the virus leads to

developing symptomatic or asymptomatic COVID-19 with 100% probability), and ηk is the effectiveness

of the vaccine in preventing symptomatic infection. Thus 1 − ηk represents the probability of developing

COVID-19 upon exposure to the virus after getting vaccinated. The probability of exposure to the disease

p can be estimated using serosurvey data (for example, 56% of the population residing in certain areas of

New Delhi were found in a serosurvey to have COVID-19 antibodies (The Hindu, 2021) or can even be set

to 1.0 for endemic diseases. We multiply both terms by P j
t (the shortage cost associated with a person in

the jth subgroup developing a symptomatic form of the disease under question) to get the costs incurred in

each case. P j
t is given by the following formula:

P j
t =

[
mI
(
L− Ā

)
+ (1−m) ∗R

]
Here m is the case fatality rate for the disease, I is the per-capita income, Ā is the average age in the jth

subgroup, L is the population average life expectancy and R is the cost of treatment incurred by the payer
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(e.g., the government, or the societal cost as a whole) per case of the disease. Vaccine effectiveness (ηk)

values have been taken from the official data given for each vaccine. A sero-survey (which tested people

for COVID-19 antibodies via serological tests) was conducted in Delhi in the month of January 2021, and

estimated that about 56% of the Delhi residents were exposed to the SARS-CoV2 virus (The Hindu, 2021).

This gives us an estimate of p, the probability that a person is exposed to the virus. We considered the most

recent estimate of the case fatality rate of COVID-19, found out the difference between the average age of

the subgroup and life expectancy (∼ 69 years) (World Bank, 2018) and multiplied this with the per capita

income (Rs 1,25,408) (Financial Express, 2019) of India to estimate the shortage cost in case the person dies

from COVID-19. If the person does not die (the probability of survival is 1−m), then additional treatment

fees are incurred which is given by R. These estimates were rounded to obtain the shortage costs actually

used in the model. We would like to emphasize here that we provide these details to illustrate how shortage

costs for a particular vaccine can be calculated and that this may be modified based on the disease under

consideration as well as the data available for the vaccine(s) and the disease. For example, we assume that

the mortality probability remains the same for vaccinated and unvaccinated people; however, this can be

modified easily if required.

The fraction of available CCP and transportation vehicle storage capacity for COVID-19 vaccine has

been estimated as a ratio of the total demand for COVID-19 to the total demand for all the other vaccines,

taking into account their respective packed vaccine volumes per dose. We note here that a single average

packed vaccine volume per dose is taken for all the other vaccines for ease of calculation.

The values for each of the estimated/assumed parameters are given in Table 1.

We now discuss the computational implementation of the model framework, example analyses that can

be carried out using the single vaccine and multiple vaccine models, and preprocessing methods to decrease

the computational overhead of the single vaccine model.

4. Computational Implementation of the Decision Support Framework

We organize our presentation of the numerical experiments that we perform with the single vaccine,

multiple vaccine and robust formulations as follows. First, we demonstrate how solving the single and

multiple vaccine formulations yield results that can inform decisions associated with the distribution of

vaccines across the CCP that we consider. As part of this, we consider the impact of certain parameters

on the optimal ordering and inventory patterns generated by these formulations. Next, we consider the

computational cost of the single vaccine formulation, and discuss preprocessing techniques that can be used

to speed up solution generation as well as improve the quality of the solutions. Finally, we discuss how the

robust formulation can be used and its performance with respect to the standard single vaccine formulation.
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Table 1: Optimization model parameter estimates. aAssumed. eEstimated. 1The values indicated here are the demand values

of each subgroup averaged over all the districts of Bihar

Parameter Estimate

Inventory holding costs (INR/dose/week)a For all CCPs 0.3

Fixed Transportation cost (INR)a

m→ g 40,000

g → s 20,000

s→ r 12,000

r → d 10,000

d→ i 5,000

Diesel cost (INR/km) e Across the cold chain 14

Packed vaccine volume (cm3/dose) e

Covishield 0.2109

Covaxin 0.086

Measles 3.3

Ordering cost (INR/delivery)a

m→ g 200,000

g → s 100,000

s→ r 75,000

r → d 25,000

d→ i 15,000

Demand Dij
t (doses/week)e 1

Children (<18) ∼ 100,000

Adults (18 - 60) ∼ 100,000

Elderly (>60) ∼ 15,000

Shortage cost P j
t (INR) e

Children (<18) 216,661

Adults (18 - 60) 285,814

Elderly (>60) 322,729

Transportation capacities (cm3/truck) e
Insulated van 960,000

Refrigerated van 9,675,850

Cost of vaccine (INR/dose) e
Covishield 780

Covaxin 1,410

Effectiveness of vaccine ηk
e

Covishield 0.937

Covaxin 0.778

Probability of getting exposed to SARS-CoV2 p e 0.56

Time required for administering a dose of vaccine (min/dose) a 5

Availability of medical personnel administering vaccines (min/week) a 3,360

Cost of hiring of medical personnel administering vaccines (INR) a 5,000

Cost of firing of medical personnel administering vaccines (INR) a 2,000

Weekly wages of medical personnel administering vaccines (INR) e 6,175

Vaccine production capacity of the manufacturers (doses/year) e 2,000,000,000

Fraction of capacity reserved for storing COVID-19 vaccines e 0.59

21



4.1. Single Vaccine Model

We begin by demonstrating the output of the single vaccine model within the decision support framework

that we develop. In order to illustrate how the output of the decision support framework can be organized

and analyzed, we consider a relatively small component of the cold chain in the state of Bihar, especially at

the district level: we include only two districts (which we refer to henceforth as districts 1 and 2, respectively).

This implies that in addition to the manufacturer, the GMSD, the SVS, and 9 RVSs, we consider 2 DVSs

and 16 clinics, with 10 located in district 1 and 6 in district 2. Further, for ease of representation of the

model output, we consider a 6 week planning horizon.

We present the output of the single vaccine model for the above cold chain for two cases: in the first

case, all model parameters are estimated from Table 1 (which we refer to as the base case), and in the

second case, we consider a vaccine with a higher packed volume per dose of 3.3 cm3/dose (for the measles

vaccine). We present the model output in this manner because the COVID-19 vaccine packed volumes per

dose (e.g., 0.211 cm3/dose) appear to be significantly lower than those of other commonly used vaccines,

implying that the capacity required to transport and store vaccines other than the COVID-19 vaccines is

likely to be significantly lower. This also provides us with an opportunity to demonstrate how storage

and transportation capacity affects the optimal ordering, inventory storage, shortages, and staffing decisions

associated with vaccine distribution across the cold chain. The output for the base case is provided in Table 2

and the output for the higher packed volume per dose case is provided in Table 3. Tables 2 and 3 do not

list the decisions for every facility in the cold chain network; from the sake of brevity, they only contain the

facilities between which vaccines are transported in a given time period. For example, for the base case, we

see that all of the ordering and transportation occurs in week 1, and that the vaccines are transported to the

clinics along the following path: manufacturer → the GMSD → the SVS → RVS 5 → DVS → the clinics.

We first note from Tables 2 and 3 that the number of shortages incurred (Tables 2b,3b), the inventory

held at different time periods across the planning horizon at different CCPs, which we refer to henceforth as

the inventory pattern (Tables 2c, 3c) and the vaccination staff’s recruitment schedule (tables 2d, 3d) remain

the same for both the cases. However, we see that the ordering and vaccine transportation patterns as seen

in Tables 2a and 3a are different when the storage and transportation capacity are significantly different.

We observe that for the base case, a single DVS (DVS 1) supplies the vaccine units to all the 16 clinics.

It receives the entire supply from a single RVS (RVS 5), which happens to be the nearest RVS to the SVS.

The reason for a single cold chain point handling the entire supply in the RVS and DVS tiers is the higher

capacity available for transportation due to lower packed volumes (more than 2.5 million doses per vehicle

from both the district and the regional level). All the 16 clinics order from only district 1 because the

shortest route, in terms of the sum of the distances of the clinics and RVSs from DVS 1 and DVS 2, is the

lowest for RVS 5 and DVS 1 among all possible routes.

However, this does not hold for the case with the higher packed volume per dose. A single district cannot

cater to the demand of all 16 clinics because of the reduced transportation capacity available for vaccines
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with higher packed volume per dose. A vehicle from a DVS can only transport 171,736 doses at a time,

which is less than the combined demand of all the clinics (333,616 doses). Therefore, the supply gets split

among the two districts, with both districts ordering their respective vaccine quantities from RVSs 5 and 6,

which are the nearest RVSs to the SVS. Also, we notice that ‘cross-ordering’ from the DVSs occurs at the

clinic level, which means that certain clinics receive vaccines from DVSs in districts other than the district

in which they are located. This happens primarily because of the restriction on transportation capacity.

If the clinics were to order from the DVSs in their district only, then additional orders would need to be

placed, which in turn result in additional ordering and transportation costs. This does occur given the

overall cost minimization objective across the cold chain. This analysis thus illustrates the interplay of

the ordering costs, transportation distances, and vaccine transport vehicle capacity. Therefore, the optimal

ordering and vaccine transport pattern that our proposed framework yields does not necessarily conform to

the ‘shortest’ paths (based on inter-facility distances) across the cold chain. Other factors, an example being

the vaccine transport vehicle capacities, also play an important role in guiding the logistics of distribution

and administration of vaccines.

We also notice from tables 2b and 3b that there are shortages in weeks 1 and 2 in both the cases, which

result in shortage costs being incurred. This is seen because we have assumed a vaccine delivery lead time of

1 week from DVSs to clinics, and we also assume that one week is required to prepare a newly arrived batch

of vaccines at the clinic level so that it is ready for administration to the set of eligible recipients served at

that clinic. Therefore, there is a delay of two weeks before the first set of doses get administered. In order to

avoid this delay and the subsequent shortage costs incurred, an analyst using this model can simply set the

planning horizon to begin the required number of time periods (depending upon the lead times associated

with vaccine delivery from one tier to the next lower tier) before the actual demand is incurred, and can

set the demand during this ‘lead time’ period to be zero. We also note that our current assumption of lead

times at only the DVS and clinic level is only to illustrate the impact of lead times on the shortage patterns

across the planning horizon; depending upon the vaccine ordering, transportation and vaccine administration

patterns, lead times may need to be incorporated at other tiers also.

In continuation with the above analyses, we study the impact of cold chain capacity in more detail -

storage and transportation vehicle capacity - on the optimal shortage and inventory patterns generated

by our model. For this, using the high packed volume per dose case (as packed volumes per dose higher

than that of the COVID-19 vaccines appear to be more prevalent), we vary the fraction of the storage and

transportation capacity available for the vaccine under consideration and report the total shortages incurred

at the end of the planning horizon and the inventory pattern at each cold chain tier. We find that for a

given parameterization of the model, there exists a threshold or critical value of this fraction (0.15 in our

case) above which the number of shortages incurred becomes constant. Below this fraction, the number of

shortages increases and consequently result in increasing shortage costs as well. In addition to the decreased

storage capacity, the cap on the number of vehicles that are available at a cold chain point for transportation
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Table 2: Ordering, shortage, inventory, and clinic-level vaccination staffing patterns for the lower packed vaccine volume per

dose case across the planning horizon.

(a) Vaccine ordering pattern and associated costs incurred across the planning horizon.

Route
Ordering Pattern Transportation Costs (INR)

Ordering Costs (INR)
Week Quantity Fixed Variable Total

M → GMSD 1 333,616 40,000 14,000 54,000 200,000

GMSD → SVS 1 333,616 20,000 7,700 27,700 100,000

SVS → RVS 5 1 333,616 12,000 1,172 13,172 75,000

RVS 5 → DVS 1 1 333,616 10,000 3,465 13,465 25,000

DVS 1 → Clinic 1 1 26,704 5,000 0 5,000 15,000

DVS 1 → Clinic 2 1 26,704 5,000 0 5,000 15,000

DVS 1 → Clinic 3 1 26,704 5,000 638 5,638 15,000

DVS 1 → Clinic 4 1 26,704 5,000 424 5,424 15,000

DVS 1 → Clinic 5 1 26,704 5,000 0 5,000 15,000

DVS 1 → Clinic 6 1 26,704 5,000 413 5,413 15,000

DVS 1 → Clinic 7 1 26,704 5,000 649 5,649 15,000

DVS 1 → Clinic 8 1 26,704 5,000 363 5,363 15,000

DVS 1 → Clinic 9 1 26,704 5,000 0 5,000 15,000

DVS 1 → Clinic 10 1 26,704 5,000 499 5,499 15,000

DVS 1 → Clinic 11 1 11,096 5,000 5,430 10,430 15,000

DVS 1 → Clinic 12 1 11,096 5,000 5,430 10,430 15,000

DVS 1 → Clinic 13 1 11,096 5,000 5,705 10,705 15,000

DVS 1 → Clinic 14 1 11,096 5,000 587 10,587 15,000

DVS 1 → Clinic 15 1 11,096 5,000 5,454 10,454 15,000

DVS 1 → Clinic 16 1 11,096 5,000 5,430 10,430 15,000

(b) Shortage pattern and associated costs incurred across the planning horizon.

Clinic Weeks
Number of shortages

Total Shortage Cost (INR)
Children Adults Elderly

1-10 1,2 3,004 3,204 468 515,671,968

11-16 1,2 1,248 1,331 195 214,264,288
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(c) Inventory holding patterns and the associated costs incurred across the planning horizon.

CCP Weeks Number of Inventory units held Total Inventory cost (INR)

GMSD, SVS, RVS, DVS All 0 0

Clinics 1-10 2; 3; 4; 5 26,704; 20,028; 13,352; 6,676 20,028

Clinics 11-16 2; 3; 4; 5 11,096; 8,322; 5,548; 2,774 8,322

(d) Vaccination staffing pattern across the planning horizon: number of health workers hired, fired, and total staff numbers at the

clinics.

Clinic Weeks Number hired Number fired Staff numbers

1-10 3,4,5,6 10,0,0,0 - 10,10,10,10

11-16 3,4,5,6 5,0,0,0 - 5,5,5,5

to the next lower-tier cold chain point also leads to this increase in the number of shortages incurred.

Further, the critical fraction of cold chain capacity below which the shortages start increasing remains the

same regardless of the lead times assumed across the cold chain, as this increase in the shortages is only due

to the limits on storage and transportation capacity and is not related to the lead time.

We also note that even at low capacities, the proportion of eligible recipients in each subgroup not

receiving the vaccines is the lowest in the highest priority subgroup (close to 0% in elderly) and the highest

in the lowest priority subgroup (close to 100%) at lower fractions of available capacity. In other words, the

subgroup with a higher shortage cost (a proxy for higher priority) is always catered to first, after which other

subgroups are considered. Note that an optimization formulation is not necessarily required to determine

which subgroups should be vaccinated first once the shortage costs are determined, at least for the single

vaccine. However, in situations where there are multiple vaccines for a single disease (i.e., the multiple

vaccine model presented in this paper), the shortage costs become relevant, as we discuss in the following

section, to determine which vaccine is to be administered, especially if there are trade-offs between vaccine

efficacy and various associated costs - the cost per dose of the vaccine itself, its holding cost, ordering cost,

transportation costs, etc. The interplay between the shortage costs, efficacy, and all the associated costs

listed above may prove difficult to unravel without a formulation such as that we present here. Further, we

included it as a placeholder for the case where the single vaccine formulation is extended to consider multiple

vaccines for multiple diseases. In this case, similar or overlapping subgroups on the basis of demographic

characteristics might be present, implying that using shortage costs in conjunction with vaccine efficacies and

their costs might become necessary to determine the optimal set of vaccines and the associated subgroups

to vaccinate.

We also briefly discuss the impact of this parameter on the inventory pattern across the cold chain. At

lower values of this parameter, since the shortages are very high, the number of vaccines ordered at each

tier is very less, which subsequently results in lower inventory levels. At higher values, since the capacity of
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Table 3: Ordering, shortage, inventory, and clinic-level vaccination staffing patterns for the higher packed vaccine volume per

dose case across the planning horizon.

(a) Ordering pattern and associated costs incurred across the planning horizon.

Route
Ordering Pattern Transportation Costs (INR)

Ordering Costs (INR)
Week Quantity Fixed Variable Total

M → GMSD 1 333,616 40,000 14,000 54,000 200,000

GMSD → SVS 1 333,616 20,000 7,700 27,700 100,000

SVS → RVS 5 1 171,320 12,000 1,172 13,172 75,000

SVS → RVS 6 1 162,296 12,000 1,248 13,248 75,000

RVS 5 → DVS 1 1 171,320 10,000 3,465 13,465 25,000

RVS 6 → DVS 2 1 162,296 10,000 1,300 11,300 25,000

DVS 1 → Clinic 1 1 26,704 5,000 0 5,000 15,000

DVS 1 → Clinic 2 1 26,704 5,000 0 5,000 15,000

DVS 1 → Clinic 5 1 26,704 5,000 0 5,000 15,000

DVS 1 → Clinic 8 1 26,704 5,000 363 5,363 15,000

DVS 1 → Clinic 9 1 26,704 5,000 0 5,000 15,000

DVS 1 → Clinic 10 1 26,704 5,000 499 5,499 15,000

DVS 1 → Clinic 15 1 11,096 5,000 5,454 10,454 15,000

DVS 2 → Clinic 3 1 26,704 5,000 5,344 10,344 15,000

DVS 2 → Clinic 4 1 26,704 5,000 5,030 10,030 15,000

DVS 2 → Clinic 6 1 26,704 5,000 5,248 10,248 15,000

DVS 2 → Clinic 7 1 26,704 5,000 4,768 9,768 15,000

DVS 2 → Clinic 11 1 11,096 5,000 0 5,000 15,000

DVS 2 → Clinic 12 1 11,096 5,000 0 5,000 15,000

DVS 2 → Clinic 13 1 11,096 5,000 275 5,275 15,000

DVS 2 → Clinic 14 1 11,096 5,000 232 5,232 15,000

DVS 2 → Clinic 16 1 11,096 5,000 0 5,000 15,000

(b) Shortage pattern and associated costs incurred across the planning horizon.

Clinic Weeks
Number of shortages

Total Shortage Cost (INR)
Children Adults Elderly

1-10 1,2 3,004 3,204 468 515,671,968

11-16 1,2 1,248 1,331 195 214,264,288
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(c) Inventory holding pattern and associated costs incurred costs incurred across the planning horizon.

CCP Weeks Number of Inventory units held Total Inventory cost (INR)

GMSD, SVS, RVS, DVS All 0 0

Clinics 1-10 2; 3; 4; 5 26,704; 20,028; 13,352; 6,676 20,028

Clinics 11-16 2; 3; 4; 5 11,096; 8,322; 5,548; 2,774 8,322

(d) Vaccination staffing pattern across the planning horizon: number of health workers hired, fired, and total staff numbers at the

clinics.

Clinic Weeks Number hired Number fired Staff numbers

1-10 3,4,5,6 10,0,0,0 - 10,10,10,10

11-16 3,4,5,6 5,0,0,0 - 5,5,5,5

vehicles is now higher, given the fact that more numbers of vaccines can be transported in fewer orders due

to the high capacities, the algorithm tries to transport all the vaccines further to the next level as soon as

it receives the order leading to zero inventory levels at all tiers. As we decrease the value of this parameter

from the higher end, due to the reduced vaccine transportation capacities across tiers, it gets stored in the

inventory and hence inventory level increases. Higher levels of inventory are seen for the GMSD and the

SVS compared to the other CCPs due to the higher ordering costs at these cold chain tiers.

We conclude this section with a discussion of the manufacturer’s capacity on the optimal vaccine dis-

tribution patterns across the cold chain. We note before proceeding with the discussion that an 8 week

planning horizon was used for these sets of numerical experiments. It has been evident from the COVID-19

vaccination program that the capacity of the manufacturer to meet the demand has been a significant factor

in the success of the vaccination program, and hence we examine its impact on logistical considerations

across the vaccine cold chain as well. From Figure 3, we observe that when the manufacturing capacity

is very low, the optimal solution satisfies the demand of a limited number of clinics, selected because they

represent the shortest routes across the cold chain network, to minimize the ordering and the transportation

costs. Further, only the demand of the subgroup with the highest priority (elderly recipients) is met due to

limited manufacturing capacity. Given the limited manufacturer capacity (especially when the total capacity

is less than that required for a subgroup in a single period), instead of transporting vaccines as they become

available, vaccine doses are accumulated at the GMSD in each period until the inventory becomes sufficiently

high to meet the demand of that subgroup in the limited number of clinics. These are then transported

across the cold chain to the clinics without inventory accumulation at the CCPs in the intermediate tiers

(i.e., inventory held is zero at all tiers where lead times are zero). Note that the clinics are selected in this

situation on the basis of whether they are part of the shortest routes across the cold chain network; however,

if clinics are to be prioritized due to some other criteria that become relevant at the time of decision-making

(e.g., disease outbreak is high in the catchment area of a particular set of clinics), then any of the associated
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(a) Vaccine inventory held at the GMSD. (b) Vaccine inventory held at the SVS.

(c) Total vaccine inventory held at the RVSs. (d) Total vaccine inventory held at the DVSs.

(e) Total vaccine inventory held at the clinics.

Figure 3: Inventory holding patterns across the planning horizon at each cold chain tier: impact of manufacturer capacity.

costs with those clinics (fixed or variable transportation or ordering costs) can be altered to ensure higher

priority for the clinics in the catchment area of interest.

We notice that when the manufacturing capacity is sufficient, the optimal solution yielded by the model

holds inventory at lower and intermediate tiers as the ordering and transportation costs from these are

significantly lesser than those at higher tiers. Contrary to the case with very low manufacturing capacity, we

see from Figures 3e and 3c that as the manufacturing capacity increases, the inventory levels at the clinics

increase from zero while the same decrease to zero at GMSD. The intermediate tiers (SVS, RVS, DVS) hold

inventory at initial time periods when the capacity is sufficient to do so, which is depicted in yellow in Figures

3b, 3c and 3d.

In order to limit the length of the article, we present the computational experiments from the multiple

vaccine model in Appendix E.
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4.2. Single Vaccine Model: Runtime Analysis and Preprocessing

The formulations that we propose in this paper support making a multitude of decisions optimally,

ranging from optimal routing and scheduling decisions for the cold chain network to vaccine recipient group

selection and vaccination staffing decisions. The results discussed in Sections 4.1 and Appendix E are

generated for relatively small instances of the cold chain network, and are meant primarily to illustrate (a)

how the output of various models within our framework can be organized, and (b) the types of analyses

that can be performed using our decision support framework. However, realistic instances of the cold chain

network are likely to be significantly larger. Thus, it is important to analyze the computational expense of

the optimization formulations within our framework for more realistic instances of the cold chain network

given the multitude of decisions that we attempt to inform through our models.

We begin by considering the computational cost of solving the single vaccine model for the two cases

presented in Section 4.1 for the entire state of Bihar: the base case (with the lower packed volume per dose)

and the case with the higher packed volume per dose vaccine. This yields a problem with 1 SVS, 9 RVSs,

38 DVSs and a total of 606 clinics. We use the Gurobi commercial solver with its Python programming

application process interface to solve the problem. All computational analyses were run on a workstation

with an Intel R Core i5-7200 processor with a clock speed of 2.50 gigaHertz and 8 gigabytes of memory. As

part of these analyses, we define the following measure, referred to as the MIP gap, of how close the solution

generated by the solver is to the dual objective bound for the optimization problem (i.e., a lower bound for

minimization integer programs).

MIP gap =
|ZP − ZD|
|ZP |

Here ZP is the primal objective bound (i.e., the incumbent objective function value), and ZD is the dual

objective bound obtained after 42000s. The MIP gap can be used to specify a termination criterion for the

algorithm; for example, if set to 1%, it implies that the algorithm will terminate if the primal objective

function value is within 1% of the dual objective bound. Thus in the subsequent discussion, we compare

the computational expense of the formulation in terms of the computational runtime required to achieve an

MIP gap less than some prespecified threshold (e.g., 1%).

Solving the single vaccine model for the entire state of Bihar for the base case required 95 seconds to

yield an MIP gap of 0.0032%; however, when the larger packed volume per dose was used, the solver did not

reach an MIP gap below 1.12% even after 10,000 seconds. This is not unexpected because, as discussed in

Section 4.1, when the transportation and storage capacities are sufficiently high (the base case analysis), the

solver just selects the shortest route to the clinics each time it ships vaccines during the planning horizon.

However, when these capacities are lower (as in the higher packed volume per dose case), the algorithm

has to consider ordering from DVSs other than those in the district where a given clinic is located in order

to satisfy the demand associated with a given clinic. It is in these situations that employing preprocessing

techniques to reduce computational runtimes becomes relevant.

We remind readers here that the vaccine cold chain in India consists of the following tiers, in order of flow:
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vaccine manufacturers, GMSDs (national level tier), SVSs (state level tier), RVSs (regional level tier) to DVSs

(district level tier), clinics or vaccination centers (where vaccine administration actually occurs). In order to

gain a preliminary understanding of the basis on which routes are selected through this network, we consider

a simpler problem by removing the RVS tier entirely and analyse the optimal solution generated for such a

network. Note that the removal of a tier in this manner is not an unrealistic operation, and has support in

the literature (Assi et al., 2013); in situations such as the COVID-19 pandemic where the vaccination rate is

crucial, public health authorities may elect to speed up the vaccine ordering and delivery process by skipping

intermediate tiers. We anticipate developing a decision support software tool utilizing this framework which

allows removal or inclusion of as many tiers as required for the actual vaccine distribution process. The

optimization problem formulation will also be automatically selected based on the tiers included in the

model.

As discussed above, clinics do not necessarily order from the DVS in the district where they are located

when transportation and storage capacities are limited. ‘Cross-ordering’ can happen between districts due

to the interplay of storage and transportation capacities, ordering and transportation costs. For example,

a DVS in a district with lower demand may, in addition to satisfying the demand of its own district, also

satisfy the demand of another district with a higher demand. This often occurs because of the limit on the

capacity of the vehicles used to transport vaccines from the SVS to the DVSs, which implies that the DVS in

the district with higher demand may need an additional order from the SVS, perhaps even in a previous time

period, to fully satisfy the demand of the clinics in its district in a given time period. This would imply that

additional fixed ordering and fixed transportation costs are incurred (associated with vaccine delivery from

the SVS to the DVS), and in situations where these are higher than the sum of the corresponding costs and

also the transportation costs from a DVS in another district to the clinic under consideration, cross-ordering

occurs.

The benefit of preventing cross-ordering from the perspective of computational expense is clear from the

above analysis. Thus, we constructed a relationship between the fixed transportation cost and the ordering

cost from the SVS to the DVS by decreasing these costs from their current estimates and determining

whether cross-ordering occurs at each combination of estimates of these costs. In Figure 4, we depict this

relationship. On the Y-axis, we have the multipliers of the fixed transportation cost from the SVS to the DVS

(for example, a value of 0.5 implies the fixed transportation cost is half the current estimate), and on the

X-axis, we have the multipliers of the corresponding fixed ordering cost. A point on the graph implies that

at combinations of these fixed costs below this point, cross-ordering does not occur. For example, the point

(0.15, 0.8) on the graph indicates that at fixed ordering and transportation costs that are simultaneously

less than 15% and 80% of the current estimates, respectively, cross-ordering does not occur. As discussed

earlier, if these fixed costs are taken to be proxies of the efficiency of the vaccine ordering process, then the

above result implies increasing the efficiencies of the ordering process to points below the graph would yield

intuitive vaccine distribution patterns across the cold chain network.
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Figure 4: Threshold points below which cross ordering stops

The above analysis is used to illustrate how our computational framework can be used to determine

relationships such as that depicted in Figure 4 for the specific instance of the cold chain of interest to the

analyst. Deriving such a relationship would help reduce computational expense of the framework, and also

yield more intuitive vaccine distribution patterns that may in turn help motivate efforts to make ordering

processes more efficient.

We now consider other types of preprocessing that do not require changes to model parameter estimates.

To illustrate the use of one of these techniques, we continue with the higher packed volume per dose case

for the subsequent analyses, but without lead times at any of the tiers. We begin by observing the ordering

pattern in the solution generated by running the solver for 42,000 seconds for this instance of the problem.

We see that all 606 clinics order from the four nearest districts to them. This suggests that adding constraints

to this effect - that clinics order from the four nearest districts to them - could reduce the number of cuts in

the branch and cut algorithm employed by the solver and yield significantly faster computational runtimes

such that the MIP gap threshold is breached.

Therefore, we add preprocessing constraints that restrict the clinics to order only from their four nearest

DVSs. Then, we specify the solution obtained by running this preprocessed model for 10,000 seconds as the

initial solution to the original instance of the problem without preprocessing constraints and run the solver

for 32,000 seconds. The trajectories of the objective function values against the runtime observed in each of

the following three cases is depicted in Figure 5:
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Figure 5: Objective function trajectories by time with and without preprocessing.

1. No preprocessing

2. With preprocessing constraints

3. With initial solution obtained via the preprocessed model

We see from Figure 5 that the objective function value for the preprocessed version of the model is lower

than that from the version without preprocessing, and that it is reached significantly faster (in around 1,000

seconds) than the version without preprocessing. The same observation holds for the version with the initial

solution obtained from the preprocessed version also. The MIP gap for the model with the preprocessing

constraints is also significantly lower than those for the other models: s0.012% versus 0.0197% and 0.0181%

for the model with no preprocessing and the model with the initial solution from preprocessing, respectively.

We now use these insights for the realistic problem instance discussed in the beginning of this section

- the higher packed volume per dose case for the entire state of Bihar, with lead times - which had not

breached the MIP gap threshold of 1% even after 10,000 seconds. First, we apply preprocessing constraints

that restrict each clinic from ordering from its nearest n districts. We then varied n to determine how it

impacts the time taken to breach the MIP gap threshold. We find that when n = 6, the MIP gap reaches

0.69% in 4,279 seconds. When n = 8 or n = 10, the MIP gap is not breached even after 10,000 seconds;

however, when n = 12, the MIP gap reaches 0.47% in 1,008 seconds.

Finally, we specify the solution obtained from adding preprocessing constraints restricting each clinic to

order from its nearest 12 DVSs as the initial solution to the problem without preprocessing constraints. We

find that the MIP gap reaches 0.04% in 1,481 seconds.

The above analyses indicate how the computational expense associated with the models in our framework

can be reduced by applying one or more of the preprocessing techniques discussed above.
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4.3. Robust Version of the Single Vaccine Formulation: Computational Experiments

In this section, we present the analyses pertaining to the robust optimization version of the single vaccine

model. We modeled uncertainty in ordering costs, holding costs, demand, manufacturing capacity and cold

chain capacity at the clinic level. Ordering costs and inventory holding costs are typically not straightforward

to estimate (Hopp & Spearman, 2011). Hence we analyze the impact of uncertainty in these parameters

on the optimal solution of the single vaccine model. In the following analyses, we compare the level of

conservativeness of the deterministic formulation and robust formulation with box and budgeted uncertainty

sets using randomly generated data instances.

More specifically, we compare the performance of the deterministic formulation with the robust for-

mulations with box and budgeted uncertainty sets with data instances generated randomly based on the

deviations considered in the robust formulations. We generate 10 instances with low levels of uncertainty,

10 with medium levels of uncertainty and 10 with high levels of uncertainty and substitute it in the optimal

network created by the deterministic and robust formulations. In the case of low uncertainty, the parameter

data is allowed to deviate between 0 to 50% of the original deviations considered in the uncertainty sets.

For the case of medium uncertainty and high uncertainty data instances the corresponding figures are 50%

to 100% and 100% to 150% respectively. The results of the experiments are presented in Tables F.5a, F.5b

and F.5c in Appendix F. In the table, the objective function values of the deterministic case and the ro-

bust formulations with box uncertainty and with budgeted uncertainty sets, respectively, are presented in

columns 2, 3 and 4. The entries in the table show that though the performances of the robust formulations on

estimated deterministic parameters are poor when compared to the deterministic case (which is optimized

for this data), the robust formulations provide cost savings in all the randomly generated data instances

irrespective of the level of uncertainty. The magnitude of cost savings achieved through the formulation with

box uncertainty set over the deterministic formulation varies between INR 0.36 million to INR 0.64 million

in the case of low uncertainty, INR 0.27 million to INR 0.81 million in case of medium uncertainty and INR

0.24 million to 0.87 mn INR in case of high uncertainty. This is given in the column 4 of the Tables F.5a,

F.5b and F.5c respectively. In column 5 of the tables we provide the cost savings obtained through the

robust formulation with budgeted uncertainty set over the robust formulation with box uncertainty set over

varying levels of uncertainty. The results show that with a carefully selected budget, the decision maker can

save significant cost while using robust formulation with budgeted uncertainty sets. The cost saving varies

between INR 0.56 million to INR 0.91 million for low uncertainty, INR 0.39 million to INR 1.04 million for

medium uncertainty and INR 0.40 million to INR 1.20 million for high uncertainty cases.

Thus the above results demonstrate the advantage of the robust formulations when the model parameter

estimates are subject to uncertainty. The experiments also suggest the advantage of incorporating uncertainty

modeling for the decision makers under limited budgets available for the vaccination exercise.
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5. Discussion & Conclusions

We present in this paper a decision support framework for optimal vaccine distribution across the vaccine

cold chain network. We present two integer linear programming models within the framework: a model

considering a single vaccine for a single disease, and a model considering multiple vaccines for a single

disease. The model can be extended to incorporate multiple vaccines for multiple diseases as well. Finally,

we develop two robust optimization formulations for the single vaccine model: one with box uncertainty sets

and the other with budgeted uncertainty sets. As discussed in Section 2, a key advantage of our optimal

vaccine distribution framework is that it only contains linear integer programming models in comparison

with previous work, facilitating easier generation of exact solutions.

The single and multiple vaccine models support a multitude of decisions, ranging from routing and

scheduling of vaccine deliveries across the cold chain network within the planning horizon to hiring and

firing decisions for vaccination staff at each clinic. We also consider every single tier within the vaccine cold

chain network described by the Government of India (NCCVMRC, 2014). However, we understand that not

all these decisions may be relevant for a public health planning authority when planning vaccine distribution

across the cold chain. Therefore thus, we intend to incorporate this framework within a computational

decision support tool in a modular form. This implies that the tool will allow an analyst to choose, for

instance, whether to use the single vaccine or the multiple vaccine model; or to use the robust versions of

these formulations. Further, the analyst will have the option of deciding whether to include or exclude a

particular cold chain tier from their analysis. For example, as discussed in Section 4.2, the analyst can choose

to exclude the regional vaccine store from their analysis, and the appropriate formulation will then be selected

in the back-end of the decision support tool. The analyst will also be able to choose whether to include

or exclude certain sets of decisions in their analysis: for example, they may choose to exclude vaccination

staffing decisions, in which case the appropriate terms will automatically be omitted from the formulation in

the back-end. Preprocessing can also be included automatically to a certain extent; for example, if generating

the solution to the analyst’s instance of the model requires more than some prespecified threshold runtime,

then preprocessing techniques such as those discussed in Section 4.2 can automatically be deployed.

A key limitation of the framework that we propose involves the multitude of parameters that need

to be estimated for each model within the framework. For example, an analyst may not have access to

primary data required to estimate inventory holding costs for a vaccine at every cold chain point within the

network. However, we note that such data may be available to public health authorities overseeing vaccine

distribution; hence for analysts working in these organizations, estimating these parameters may be a one-

time effort. Further, as discussed in the preceding sections, it is the relative value of these parameters that

are more relevant than actual estimates themselves. For example, if it is known that the ordering process

at a particular cold chain tier, or a particular group of facilities within a cold chain tier (e.g., clinics in a

particular district), is significantly more efficient than at comparable tiers or facilities, then the ordering

costs for these facilities can be adjusted (starting from a reasonable initial estimate) to reflect the disparity

34



in efficiency in their respective ordering processes.

Overall, given the ubiquity of multi-tier vaccine cold chain networks within public health systems across

the world (as discussed in Section 1), we believe that the decision support framework that we propose in

this study can be useful for stakeholders within public health planning authorities in these health systems.
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Appendix A. Literature Review: Vaccine Composition & Allocation

We discuss the literature associated with vaccine composition and allocation below. The relevant vaccine

production and distribution literature is provided in Section 2.

Appendix A.1. Composition of Vaccines

In the context of composition of vaccines, policymakers are interested in determining the vaccines to

be used for a particular disease, since a disease might have multiple vaccines. Since this decision has to

be taken before the onset of the disease due to long production times of vaccines, there is substantial

uncertainty regarding demand for the vaccine and the schedule of vaccination. Researchers have studied

multiple strategies to take better decisions to aid decision makers in this scenario. Wu et al. (2007) suggests

that including only the predicted strain of influenza for vaccine development is only slightly suboptimal.

Kornish & Keeney (2008) study the “commit or defer” policy, in which the vaccine manufacturer at any

time period commits to produce or defers the production decision until more information about the incoming

demand is available. Cho (2010) extended the work of Kornish & Keeney (2008) by incorporating production

yield of vaccines and efficacy of vaccines in their study. Özaltın et al. (2011) studied the possibility of

choosing multiple strains for inclusion in the vaccine. The authors present a multistage stochastic mixed

integer program to address the problem.

A closely related problem to the composition of vaccines is that of vial size determination. Vaccine vial

sizes plays a major role in avoiding vaccine wastage, because a vial has multiple doses and once opened the

vial has to be used within a specific time period. Azadi et al. (2020) present a case study from Niger and

Nigeria, in which they study the effect of parameters such as the number of supply chain echelons, vaccine vial

size and vaccine technologies on coverage rates and vaccine availability in clinics. One limitation of the study

is that operational costs have not been included. Azadi et al. (2019) present a case study from Bangladesh

in which the authors are interested in minimization of inventory replenishment and open vial wastage costs.

The authors developed a two-stage stochastic programming model to address the problem. The authors

show that a combination of vial sizes is more effective in reducing open vial wastage than the prevalent

practice of using single-sized multi-dose vials. Dhamodharan & Proano (2012) considered both vaccine vial

size determination and inventory management in which they studied optimal vaccine vial size determination

and inventory re-ordering points to devise a policy that provides best trade-off between procurement costs

and coverage levels.

Appendix A.2. Allocation of Vaccines

Allocation of vaccines across the target population is also a problem of significant complexity. Here, the

decision maker is interested in deciding which population subgroup should be vaccinated and which group

should not be. Another variant of the problem also deals with allocating resources to different regions or

different stakeholders to mitigate the spread of the disease. Sun et al. (2009) studied a multi-player version of
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the problem in which different countries have their own vaccine stockpiles and at the onset of the pandemic,

they have to decide how best to allocate the stock within their population and with other countries. The

authors identify the conditions under which the optimal solution of a central planner (WHO) is optimal to

all countries. Such a solution involves agreeing to an allocation scheme that will benefit every stakeholder.

Mamani et al. (2013) studied the problem of vaccine allocation between countries in which there are both

international as well as intranational transmissions of the disease. The authors propose a contract which

reduces both the financial burden and also the number of infected people due to the influenza pandemic.

Under a single decision maker setting, Uribe-Sánchez et al. (2011) studied a simulation optimization

model, parameterized using historical data from a pandemic outbreak, to devise dynamic mitigation strategies

to contain an influenza pandemic. Yarmand et al. (2014) study a vaccine allocation model in which vaccine

allocation is done in two phases. In the first phase, a limited number of doses are allocated to each region,

while in the second phase additional doses are allocated so as to contain the pandemic efficiently. The

authors present a two phase stochastic linear program to solve the problem.

Appendix B. Multiple Vaccine Model

In our proposed multiple vaccine formulation (an extension of the single vaccine formulation in Sec-

tion 3.2), the cold chain points are indicated by the same indices as for the single vaccine formulation.

However, we have an additional index for the vaccine type.

• Vaccine index, k ∈ {1, 2, 3......K} (K ≤M)

Parameters

• Inventory holding cost parameters for vaccine k at each cold chain point: hkgt , hkst , hkrt , hkdt , hkit . Units:

INR/dose/week.

• Transportation cost (fixed + variable) per vehicle transporting vaccines from one CCP to the next

lower-tier CCP (e.g., manufacturer m to GMSD g, or DVS d to clinic i): Kmg, Kgs, Ksr, Krd, Kdi.

Units: INR/vehicle.

• Vaccine inventory holding capacity at each CCP: Bg
t , Bs

t , Br
t , Bd

t , Bi
t. Units: cm3.

• Capacity of each vehicle transporting vaccines from one CCP to the next lower-tier CCP (e.g., manu-

facturer m to GMSD g, or DVS d to clinic i): Cmg
t , Cgs

t , Csr
t , Crd

t , Cdi
t . Units: cm3.

• Fixed cost (ordering) of ordering vaccine by a CCP from the next higher-tier CCP (e.g., GMSD g

from manufacturer m, or clinic i from DVS d): Skmg
t , Sgs

t , Ssr
t , Srd

t , Sdi
t . Units: INR/delivery. Note

that the parameters Skmg
t alone are indexed by vaccine type (the index k) along with manufacturer,

GMSD and time indices. This is done to account for the possibility that a manufacturer may supply

more than one vaccine and the fact that different vaccines may have different ordering processes at the

interface between the manufacturer and the government, and hence may incur different ordering costs.
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• Maximum number of vehicles available for transportation from one CCP to the next lower-tier CCP

(e.g., manufacturer ‘m’ to GMSD g, or DVS d to clinic i): Nmg, Ngs, Nsr, Nrd, Ndi. Units: vehicles.

• Lead times of delivery of vaccines from one CCP to the next lower-tier CCP (e.g., manufacturer m to

GMSD g, or DVS d to clinic i): Lmg, Lgs, Lsr, Lrd, Ldi. Units: weeks.

• Lead times of administration of vaccines at the clinics: Lij . Units: weeks.

• Initial inventory of vaccine k held at the CCPs: Ikg0 , Iks0 , Ikr0 , Ikd0 , Iki0 Units: doses.

• Miscellaneous parameters:

– Demand by sub-group j in the clinic i at time t (in doses/week): Dij
t

– Shortage cost (INR) of not vaccinating a customer in subgroup j at time t P j
t

– Clinical services cost per customer in subgroup j (e.g., INR/dose) for vaccine k: V kj

– Average time (e.g., minutes/dose) required for administration of one vaccine dose: To

– Availability of a health worker in hours at clinic i for time period t (e.g., 40 hours/week): N i
t

– The production capacity of manufacturer m for vaccine k at time t (in doses): Bmk
t

– Wastage factor (proportion of each dose wasted; that is, effective volume required per dose is 1
w ):

w

– Wages of health workers per time period (e.g., INR/week): L

– Fixed cost (INR) of hiring one health worker: E

– Fixed cost (INR) of firing one health worker: F

– Packed vaccine volume per dose (cm3/dose) of vaccine k: Pk

– Probability of getting exposed to SARS-CoV2 p

– Probability of developing the disease after vaccination by vaccine k upon exposure to SARS-CoV2

ηk

Total demand

The following is the total demand by all the subgroups at all the clinics across the entire planning horizon.

This is the same as that for single vaccine formulation.

Q =
∑T

t

∑I
i

∑J
j

Dij
t

w

Decision Variables

• Number of doses of vaccine k held at each CCP at the end of time t: Ikgt , Ikst , Ikrt , Ikdt , Ikit

• Number of doses of vaccine k delivered from one CCP to the next lower-tier CCP at the beginning of

time t (e.g., from manufacturer m to GMSD g, or from DVS d to clinic i): qkmg
t , qkgst , qksrt , qkrdt , qkdit
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• Number of vehicles required for transporting vaccines from one CCP to the next lower-tier CCP at

time t (e.g., manufacturer m to GMSD g, or DVS d to clinic i): nmg
t , ngst , nsrt , nrdt , ndit .

• Binary assignment variable indicating whether an order has been placed from a CCP by the next

lower-tier CCP (e.g., order placed by GMSD g from manufacturer m): xkmg
t , xgst , xsrt , xrdt , xdit . Note

that, similar to the vaccine ordering costs, the decision variables xkmg
t alone are indexed by vaccine

type (the index k) along with manufacturer, GMSD and time indices.

• Number of persons not vaccinated (i.e., number of shortages) and number of doses of vaccine k admin-

istered in subgroup j in clinic i at time t, respectively: sijt , wijk
t

• Number of health workers working, hired and fired in clinic i at time t respectively: nit, h
i
t, f

i
t

Objective Function

Min J =

∑
t

∑
m

∑
gK

mgnmg
t +

∑
t

∑
g

∑
sK

gsngst +
∑

t

∑
s

∑
rK

srnsrt +
∑

t

∑
r

∑
dK

rdnrdt +
∑

t

∑
d

∑
iK

dindit +

Transportation cost × no of trucks from one cold chain point to other

∑
t

∑
k

∑
g h

kg
t Ikgt +

∑
t

∑
k

∑
s h

ks
t I

ks
t +

∑
t

∑
k

∑
r h

kr
t I

kr
t +

∑
t

∑
k

∑
d h

kd
t Ikdt +

∑
t

∑
k

∑
i h

ki
t I

ki
t +

Holding cost × Inventory at cold chain points

∑
t

∑
i

∑
j p P

j
t s

ij
t +

∑
t

∑
k

∑
i

∑
j (1− ηk) p P j

t w
ijk
t

Shortage cost associated with getting disease without and with vaccination

∑
t

∑
k

∑
i

∑
j V

k
j w

ijk
t +

Clinical cost × Consumption of vaccine units at clinic

∑
t

∑
k

∑
m

∑
g S

kmg
t xkmg

t +
∑

t

∑
g

∑
s S

gs
t x

gs
t +

∑
t

∑
s

∑
r S

sr
t x

sr
t +

∑
t

∑
r

∑
d S

rd
t xrdt +

∑
t

∑
d

∑
i S

di
t x

di
t +

Ordering cost (cost incurred if even one vaccine unit is ordered)

∑
t

∑
i Ln

i
t +
∑

t

∑
iEh

i
t +
∑

t

∑
i Ff

i
t
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Labour costs (Wages, hiring and firing costs)

Subject to constraints:

• Production capacity constraints associated with the manufacturers.

G∑
g=1

qkmg
t ≤ Bmk

t ∀ k,m, t (B.1)

• Facility selection constraints.∑
a

xabt ≤ 1 ∀ b, t if a ∈ {g, s, r, d} then b := the next lower-tier value from {s, r, d, i} (B.2)

For example, ∑
g

xgst ≤ 1 ∀ s, t

• To ensure consistency of x and q.

K∑
k=1

qkabt Pk ≤ (NabCab
t ) xabt ∀ a, b, t (B.3)

Here, if a ∈ {m,g,s,r,d}, then b := the next lower-tier value from {g,s,r,d,i}. For example,

qkmg
t ≤ (NmgCmg

t ) xkmg
t ∀ k,m, g, t

K∑
k=1

qkgst Pk ≤ (NgsCgs
t ) xgst ∀ g, s, t

• Number of vehicles. ∑K
k=1 q

kab
t Pk

Cab
t

≤ nabt ∀ a, b, t (B.4)

Here, if a ∈ {m,g,s,r,d} then b := the next lower-tier value from {g,s,r,d,i}. For example,∑K
k=1 q

kmg
t Pk

Cmg
t

≤ nmg
t ∀ m, g, t

• Inventory balance constraints.

Ikbt−1 +

A∑
a=1

qkabt−Lab = Ikbt +

C∑
c=1

qkbct ∀ k, b, t (B.5)

Here, if b ∈ {g,s,r,d}, then a := next higher-tier value from {m,g,s,r} and c := next lower-tier value

from {s,r,d,i}. For example,

Ikgt−1 +

M∑
m=1

qkmg
t−Lmg

= Ikgt +

S∑
s=1

qkgst ∀ k, g, t

Ikit−1 +

D∑
d=1

qkdit−Ldi
= Ikit +

J∑
j=1

wijk
t ∀ k, i, t
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• Inventory Capacity Constraints.

K∑
k=1

Ikat Pk ≤ Ba
t ∀ a, t a ∈ {g, s, r, d, i} (B.6)

For example,
K∑

k=1

Ikgt Pk ≤ Bg
t ∀ g, t

• Consumption balance constraints.

K∑
k=1

wijk
t + sijt =

Dij
t

w
∀ i, j, t (B.7)

• Constraints on consumption incorporating lead time of administration.

J∑
j=1

wijk
t ≤ Ikit−Lij ∀ i, k, t (B.8)

• Medical Personnel Availability Constraints.

J∑
j=1

K∑
k=1

Tow
ijk
t ≤ N i

tn
i
t ∀ i, t (B.9)

• Health Workers Balance Constraints.

nit = nit−1 + hit − f it ∀ i, t (B.10)

Appendix C. Robust Single Vaccine Formulation with Budgeted Uncertainty Sets

We present the robust formulation (from Section 3.3) of the single vaccine formulation with budgeted

uncertainty sets here.

Budgeted Uncertainty Set Formulation. Budgeted uncertainty set is a less conservative form of the

box uncertainty set. Here, for each parameter subject to uncertainty, we specify the number of coefficients

that can take the worst case deviation. This is unlike the box uncertainty set where every coefficient takes

the worst case deviation in an additive manner. For our case, we define the following additional parameters.

• Maximum deviation of inventory holding cost at each CCP: δhg , δhs , δhr , δhd , δhi . Units: INR/dose/week.

• Maximum deviation of fixed cost of ordering vaccine from a CCP by the next lower-tier CCP: δSm, δSg ,

δSs , δSr , δSd . Units: INR/delivery.

• Number of inventory holding cost parameters with uncertainty at each tier: τhg , τhs , τhr , τhd , τhi .

• Number of ordering cost parameters with uncertainty at each tier: τSm, τSg , τSs , τSr , τSd .
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The plain robust version of this problem with budgeted uncertainty set is given below.

Min J =

∑
t

∑
m

∑
gK

mgnmg
t +

∑
t

∑
g

∑
sK

gsngst +
∑

t

∑
s

∑
rK

srnsrt +
∑

t

∑
r

∑
dK

rdnrdt +
∑

t

∑
d

∑
iK

dindit +

Transportation cost × number of vehicles from one CCP to next lower-tier CCP

∑
t

∑
g h̄

g
t I

g
t + max

yh
g

δhg y
h
g I

g
t +

∑
t

∑
s h̄

s
tI

s
t + max

yh
s

δhs y
h
s I

s
t +

∑
t

∑
r h̄

r
t I

r
t + max

yh
r

δhr y
h
r I

r
t +

∑
t

∑
d h̄

d
t I

d
t +

max
yh
d

δhdy
h
d I

d
t +

∑
t

∑
i h̄

i
tI

i
t }+ max

yh
i

δhi y
h
i I

i
t+

Holding cost per dose × inventory at cold chain points

∑
t

∑
i

∑
j p P

j
t s

ij
t +

∑
t

∑
i

∑
j (1− η) p P j

t w
ij
t

Shortage cost per person × number of persons not vaccinated at clinic

∑
t

∑
i

∑
j V

jwij
t +

Clinical services cost per dose × consumption of vaccine units at clinic

∑
t

∑
m

∑
g S̄

mg
t xmg

t +max
yS
mg

δSmgy
S
mgx

mg
t +

∑
t

∑
g

∑
s S̄

gs
t x

gs
t +max

yS
gs

δSgsy
S
gsx

gs
t +

∑
t

∑
s

∑
r S̄

sr
t x

sr
t +max

yS
sr

δSsry
S
srx

sr
t +∑

t

∑
r

∑
d S̄

rd
t xrdt + max

yS
rd

δSrdy
S
rdx

rd
t +

∑
t

∑
d

∑
i S̄

di
t x

di
t + max

yS
di

δSdiy
S
dix

di
t +

Ordering cost (cost incurred if even one vaccine unit is ordered)

∑
t

∑
i Ln

i
t +
∑

t

∑
iEh

i
t +
∑

t

∑
i Ff

i
t

Labour costs (wages, hiring and firing costs)

Subject to: 1 - 10 and∑
a

ySab = τSa if a ∈ {m, g, s, r, d} then b := next lower-tier value from{g, s, r, d, i} (C.1)

For example, ∑
m

ySmg = τSm

∑
a

yha = τha a ∈ {g, s, r, d, i} (C.2)
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For example, ∑
g

yhg = τhg

0 ≤ ySab ≤ 1 ∀a if a ∈ {m, g, s, r, d} then b := next lower-tier value from{g, s, r, d, i} (C.3)

For example,

0 ≤ ySmg ≤ 1 ∀m

0 ≤ yha ≤ 1 ∀a a ∈ {g, s, r, d, i} (C.4)

For example,

0 ≤ yhg ≤ 1 ∀g

where ySab and yha are binary variables which indicate whether the corresponding coefficients undergo devia-

tion or not. Since the linear relaxation objective function of the inner maximization problem is the same as

the original integer program’s objective function, we take these variables to be continuous from 0 to 1. We

reduce the above bilevel problem to a single level by taking the dual of the inner maximization problem. We

now present the single level robust counterpart of the above problem.

Min J =
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Holding cost × Inventory at cold chain points
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Shortage cost × Shortage of vaccine units at clinic
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jwij
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Clinical cost × Consumption of vaccine units at clinic
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g ≥ 0 ∀g

αS
a −→ unbounded a ∈ {m, g, s, r, d} (C.9)

For example,

αS
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47



Table D.4: Initial data required for estimation of capacities. 1The dimensions are estimated based on the commercially available

trucks and cold boxes in India taken from https://www.indiamart.com/

No of CCE units in Bihar (MOHFW, 2017)

WIF (Walk in Freezer) 3

WIC (Walk in Cooler) 17

ILR (In-line Refrigerator) 1039

DF (Deep Freezer) 887

Miscellaneous (WHO, 2017)

Utilization factor 0.67

Standard dimensions of vehicle storage areas1

Length (cm) 244

Breadth (cm) 229

Height (cm) 259

Standard dimensions of cold boxes1

Length (cm) 54.4

Breadth (cm) 44.5

Height (cm) 42

αh
a −→ unbounded a ∈ {g, s, r, d, i} (C.10)

For example,

αh
g −→ unbounded

Here αS
a , αh

a , βh
a and βS

a are the dual variables associated with constraints C.5 - C.10.

Appendix D. Model Parameterization: Supplementary Information

Preliminary parameters used in the estimation of optimization formulation parameters (see Table 1 in

Section 3.4 for model parameter estimates based on these) are provided below.

Appendix E. Multiple Vaccine Model: Computational Implementation

We present the results of the computational implementation (from Section 4) of the multiple vaccine

model below. As done for the single commodity model, we begin our analysis for the multiple vaccine model

with two cases: first with lower packed volumes per dose for each vaccine considered in the model, and a

second case with higher packed volumes per dose for each vaccine. We consider two vaccines, which differ in

their packed vaccine volume per dose, efficacy and cost of administration. Assuming sufficient manufacturing

capacity, lead times of 1 week for delivery to the clinics from the DVS and preparation/administration at

the clinics, we run the model for two sets of packed volumes:
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• Lower packed volume per dose.

Vaccine 1: a packed volume per dose of 0.211 cm3/dose, efficacy 93.7%, and a cost per dose of

INR 780.

Vaccine 2: a packed volume per dose of 0.086 cm3/dose, efficacy 77.8%, and a cost per dose of

INR 1,410.

• Higher packed volume per dose.

Vaccine 1: a packed volume per dose of 3.3 cm3 per dose, efficacy 93.7%, and cost per dose of INR

780.

Vaccine 2: a packed volume per dose of 1.719 cm3 per dose, efficacy 77.8%, and cost per dose of

INR 1410.

We observe that, as expected, with sufficient manufacturer capacity for both vaccines, the optimal solution

from the multiple vaccine model reduces to that obtained from the single vaccine model. This is because all

other parameter values - such as ordering, inventory holding, and fixed and variable transportation costs -

are assumed to be the same for both vaccines, and the difference in the costs per dose of the vaccines is not

high enough compared to the shortage cost (as is likely to be the case) to prevent the higher efficacy vaccine

to be administered. Thus we see that the higher efficacy - to be precise, the vaccine with the higher shortage

cost - is selected for administration to the recipients.

In the current multiple vaccine formulation, we have used only a single efficacy parameter for the vac-

cines. However, vaccine efficacy may be measured with respect to multiple clinical endpoints: for example,

efficacy in preventing symptomatic disease, in reducing transmission, in preventing severe disease and/or

hospitalization, or in preventing death. Costs can be associated with each of these endpoints to arrive at a

more comprehensive measure of vaccine efficacy. Further, some vaccines can be significantly more expensive

to store or transport, and even ordering costs can be significantly higher, especially if both domestically

manufactured vaccines and imported vaccines are considered for the same group of recipients. While we

reserve the consideration of these complexities for future research, our work provides a proof-of-concept

for how these considerations can be integrated within a decision support framework for optimizing vaccine

distribution across the cold chain network.

We now illustrate how the multiple vaccine model can be used to determine the conditions under which

the higher efficacy vaccine is not administered. We begin by analyzing the impact of manufacturer capacity.

It can be seen from Figure E.6 that even at low manufacturing capacities, the higher efficacy vaccine is

delivered to its full capacity - that is, if the manufacturer is able to deliver 100 doses at the beginning of

week t, all 100 doses are delivered. The remainder of the demand is fulfilled by the lower efficacy vaccine.

We see that it is only at extremely low values of the manufacturer’s capacity (above 10 units per week) that

minimizing the costs of ordering two vaccines are prioritized lower than minimizing the shortage costs, and

hence the lower efficacy vaccine units are also ordered to meet the demand requirement. It is unlikely that
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the situation depicted in this graph is likely to realistically occur at the figures observed; however, depending

upon the differences in ordering, transportation and storage costs, such a situation may come to pass at

significantly higher manufacturer capacities. This analysis provides an illustration of how our model can be

used to determine the threshold capacity of the manufacturer of the higher dose vaccine below which the

lower efficacy vaccines are also selected for administration.

Figure E.6: Proportion of the manufac higher efficacy vaccine administered among the total number of vaccine doses adminis-

tered as a function of the manufacturing capacity of the higher efficacy vaccine.

We now investigate the impact of costs per dose of the vaccines considered in this model. While the

vaccine with higher efficacy yields a lower shortage cost, its cost per dose could be greater than that of the

vaccine with lower efficacy. The multiple vaccine model can be used to determine the difference in the costs of

the two vaccines at which the vaccine with the lower efficacy administered, given the sufficient manufacturer

capacity for both the vaccines. We illustrate this now. In this analysis, we keep all the costs for the two

vaccines same except for their shortage costs and costs per dose. We see from Figure E.7a that when the

difference between the cost of vaccine is less than INR 19,300, it is always the higher efficacy vaccine that is

administered but beyond this, some doses of the lower efficacy vaccine are also administered.

We see that once this threshold difference in costs per dose between the vaccines is breached, the cost

of the higher efficacy vaccine dominates the shortage cost for the subgroup comprising children, but does

not do so for the adult and elderly subgroups due to their higher shortage costs. Hence, the demand for

the subgroup comprising children is met by the lower efficacy vaccine while the other subgroups receive the

higher efficacy vaccine. When the cost per dose difference exceeds INR 25,200, adults also receive the lower

efficacy vaccine, and when it exceeds INR 28,600, all recipients receive the lower efficacy vaccine.

Once again, we note that while it is very unlikely that vaccines will differ in their costs per dose by

as much as INR 19,300, the lower efficacy vaccine may be preferred if differences in other associated costs
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(a) Impact of differences in vaccine costs per dose on quanti-

ties of each vaccine administered.

(b) Impact of higher efficacy vaccine costs multiplier on quan-

tities of each vaccine delivered

Figure E.7: Impact of vaccine costs on the quantities of each vaccine delivered

are also significantly higher for the higher efficacy vaccine, and the vaccine efficacies are not substantially

different. This is illustrated in Figure E.7. In this analysis, we increased all fixed and variable costs that

could conceivably be greater for the higher efficacy vaccine (e.g., the cost per dose, the fixed and variable

transportation costs, inventory holding, and fixed ordering costs), and we find that when these costs are 9

times that of the lower efficacy vaccine, the lower efficacy vaccine starts receiving orders. As the vaccines

become closer in efficacy, the value of this multiplier will also accordingly decrease.

We now consider the computational expense of the single vaccine model within our framework, and

describe methods to reduce runtimes for various types of analyses.

Appendix F. Robust Optimization Analysis for the Single Vaccine Model: Computational

Experiments

The tables providing the results of computational experiments comparing the robust formulation optimal

objective function values with the deterministic single vaccine formulation - for the random parameter data

instances - are given below (see Section 4.3 for the experiment descriptions).
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Table F.5: Comparison of objective function values with random parameterization for the deterministic and robust formulations.

Notes: w.r.t. = with respect to; min = minimum; avg = average; max = maximum.

(a) Objective function value comparison: low uncertainty.

Data

Instance

Objective function values (× 1011 INR) Savings

from box

w.r.t. deter-

ministic

Savings

from box

w.r.t.

budgeted

Deter-

ministic

case

Robust:

box un-

certainty

Robust:

budgeted

uncertainty

Optimal 8.7494845 8.7495986 8.7495895 -11407257.70 903158.80

1 8.7494849 8.7494793 8.7494719 563985.81 739440.36

2 8.7494847 8.7494805 8.7494732 418337.92 731649.16

3 8.7494857 8.7494794 8.7494714 632768.84 800031.42

4 8.7494847 8.7494803 8.7494711 444728.56 916506.33

5 8.7494852 8.7494800 8.7494719 511858.06 812630.18

6 8.7494858 8.7494793 8.7494735 648470.09 582883.34

7 8.7494854 8.7494795 8.7494739 594246.13 562443.31

8 8.7494851 8.7494794 8.7494726 570654.01 672332.75

9 8.7494842 8.7494806 8.7494723 361341.66 824485.18

10 8.7494853 8.7494801 8.7494730 522370.92 715842.28

Min 8.7494842 8.7494793 8.7494711 361341.65 562443.31

Avg 8.7494851 8.7494798 8.7494725 526876.20 735824.43

Max 8.7494858 8.7494806 8.7494739 648470.09 916506.33
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(b) Objective function value comparison: medium uncertainty.

Data

Instance

Objective function values (× 1011 INR) Savings

from box

w.r.t. deter-

ministic

Savings

from

budgeted

w.r.t. box

Deter-

ministic

Case

RO with

Box Un-

certainty

RO with

Budgeted

Uncertainty

Optimal 8.7494845 8.7495986 8.7495895 -11407257.70 903158.80

1 8.7494847 8.7494819 8.7494740 278925.43 791754.17

2 8.7494851 8.7494815 8.7494754 360520.21 614332.42

3 8.7494850 8.7494812 8.7494732 384622.74 796839.63

4 8.7494874 8.7494795 8.7494719 796858.27 753806.82

5 8.7494858 8.7494822 8.7494717 362171.20 1049977.81

6 8.7494860 8.7494785 8.7494704 744509.69 808824.25

7 8.7494847 8.7494809 8.7494727 386078.45 814890.82

8 8.7494866 8.7494803 8.7494706 622986.67 971418.98

9 8.7494850 8.7494768 8.7494728 818478.55 397647.07

10 8.7494871 8.7494789 8.7494735 819194.68 538759.51

Min 8.7494847 8.7494768 8.7494704 278925.43 397647.07

Avg 8.7494857 8.7494802 8.7494726 557434.59 753825.15

Max 8.7494874 8.7494822 8.7494754 819194.68 1049977.81

53



(c) Objective function value comparison: high uncertainty.

Data

Instance

Objective function values (× 1011 Savings

from box

w.r.t. deter-

ministic

Savings

from

budgeted

w.r.t. box

Deter-

ministic

Case

RO with

Box Un-

certainty

RO with

Budgeted

Uncertainty

Optimal 8.7494845 8.7495986 8.7495895 -11407257.70 903158.80

1 8.7494883 8.7494797 8.7494730 857243.55 670113.06

2 8.7494868 8.7494824 8.7494742 442556.27 820460.64

3 8.7494879 8.7494829 8.7494712 500555.12 1167683.27

4 8.7494857 8.7494806 8.7494685 510244.64 1209990.55

5 8.7494860 8.7494782 8.7494717 781184.27 644152.12

6 8.7494860 8.7494820 8.7494739 401890.94 806757.01

7 8.7494864 8.7494828 8.7494747 361491.55 812712.97

8 8.7494829 8.7494804 8.7494727 245400.37 775316.73

9 8.7494830 8.7494783 8.7494683 477469.37 998984.07

10 8.7494885 8.7494797 8.7494757 879117.37 409429.39

Min 8.7494829 8.7494782 8.7494683 245400.37 409429.39

Avg 8.7494861 8.7494807 8.7494724 545715.35 831559.98

Max 8.7494885 8.7494829 8.7494757 879117.37 1209990.55
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