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Abstract

A new algorithm is introduced for analyzing possible nestings in mobile ambient calculus. It improves both
time and space complexities of the technique proposed by Nielson and Seidl. The improvements are achieved
by enhancing the data structure representations, and by reducing the computation to the control 3ow analysis
constraints that are e4ectively necessary to get to the least solution. These theoretical results are also supported
by experimental tests run on a Java-based tool that implements a suite of algorithms for nesting analysis of
mobile ambients.
c© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The calculus of mobile ambients has been introduced in [1,2] with the main aim of explicitly
modeling mobility. In particular, ambients are arbitrarily nested entities which can move around
through suitable capabilities. Recently, big e4orts have been devoted to the study of control 3ow
analysis (CFA) of such a calculus [3,4]. In particular, some analyses have been applied to the
veri:cation of security properties [5–9]. The idea of [6,7,9] is to compute an over-approximation of
ambient nestings that may occur during process computation, thus detecting possible intrusions and
unwanted information 3ows.
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Time and space complexities are key issues for evaluating scalability and practical impact of any
static analysis proposal. They become even more important when code mobility is possible, as low
complexities would allow the very useful task of performing on-the-3y analysis of untrusted code
migrating into a system. The computation of ambient nesting analysis, like [3,4,6], requires consid-
erably high complexities; thus, the design of eGcient techniques turns out to be very important. This
is the main motivation behind [10], where Nielson and Seidl reduce the worst-case time complexity
of [3] from O(N 5) to O(N 3) steps, with N being the size of the analyzed process.

The :rst contribution of this paper is to re:ne the complexity results of [10], by considering, for
a given process, its number Na of ambients, its number Nt of capabilities and the sum NL =Na +Nt .
In particular, for the best algorithm proposed in [10], we :nd a time complexity of O(N 2

a ·NL) steps
and a space complexity of O((N 2

a · NL)logNL) bits. We also prove that this algorithm performs at
least 2 ·N 2

a ·NL steps and uses at least 2 · (N 2
a ·NL)logNL bits, even in the best case. As a matter of

fact, the algorithm :rst performs a translation of the CFA constraints into Horn clauses. Then, these
clauses are processed through satis:ability standard algorithms [11] in order to compute the least
solution. As such algorithms always consider all the clauses corresponding to the CFA constraints,
even in the best case, all the clauses need to be generated. It turns out that the number of clauses
is exactly 2 · N 2

a · NL. A similar analysis is also provided for the less eGcient O(N 4) algorithm
of [10].

The second contribution of this paper is to propose two new algorithms that improve both time
and space complexities of the ones proposed in [10].

The gist of our proposal is to face the problem by a direct operational approach (i.e., with-
out passing through Horn formulas), and to limit the computation to the CFA constraints that are
e4ectively necessary to determine the least solution. This is done in an on the 5y (dynamic) fashion,
by combining a careful choice of data representation (namely, a bu4er suite) with a selection policy
which identi:es the constraints that are potentially activated by an element while adding such an
element to the solution, so that no useless repetition occurs. We prove that our best algorithm has a
worst-case time complexity of O(N 2

a · NL) steps and a space complexity of O((Na · NL)logNL) bits.
Thus, it highly improves the space complexity of the best algorithm in [10]. More precisely, we
also prove that time complexity depends on the size of the least solution and thus it may decrease
down to c ·Na ·NL, for a constant c, when the solution is linear with respect to the dimension of the
process. As 2 ·N 2

a ·NL steps are always performed by the best algorithm of [10], with our algorithm
we obtain a signi:cant reduction of the execution time for “small” solutions.

In order to get these complexity improvements, we :rst apply our new technique to the less
eGcient O(N 4) algorithm of [10]. As such an algorithm works on a simpler analysis speci:cation,
we also obtain a simpler algorithm, easier to explain and understand. We then show that all the
results scale up to the more eGcient O(N 3) solution.

The ideas behind our new proposals are quite general. Thus, this paper may be considered as an
important step towards the de:nition of a technique that could be applicable to compute CFA in
di4erent settings.

Finally, we have implemented the new algorithms in the boundary ambient nesting analysis
(Banana) tool [12], a Java applet available at http://www.dsi.unive.it/∼focardi/BANANA/
that allows us to provide some experimental results.

The rest of the paper is organized as follows. In Section 2, we introduce the basic terminology of
mobile ambient calculus and we brie3y report the CFA of [3]. In Section 3, we study in depth the

http://www.dsi.unive.it/~focardi/BANANA/
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complexity of the algorithms presented in [10]. Then, in Section 4, we present our algorithms and
the complexity results. Section 5 reports some preliminary experimental results obtained through the
Banana tool. Section 6 concludes the paper with :nal remarks.

2. Background: mobile ambients

The mobile ambient calculus has been introduced in [1,2] with the main aim of explicitly mod-
eling mobility. Ambients are arbitrarily nested boundaries which can move around through suitable
capabilities. The syntax of processes is given in Fig. 1, where n∈Amb denotes an ambient name.

Intuitively, the restriction (	n)P introduces the new name n and limits its scope to P; process 0
does nothing; P | Q is P and Q running in parallel; replication provides recursion and iteration as
!P represents any number of copies of P in parallel. By n‘

a < P = we denote the ambient named n with
the process P running inside it. The capabilities in‘

t
n and out‘

t
n move their enclosing ambients in

and out ambient n, respectively; the capability open‘
t
n is used to dissolve the boundary of a sibling

ambient n. The operational semantics of a process P is given through a suitable reduction relation
→. Intuitively, P → Q represents the possibility for P of reducing to Q through some computation.

Formally, the de:nition of → is given in terms of a structural congruence ≡, that equates terms
up to trivial syntactic restructuring. Fig. 2 reports the de:nition of ≡, where M is a capability and
fn(P) denotes the set of free names of P, i.e., the names of P that are not bound by a restriction

Fig. 1. Mobile ambients syntax.

Fig. 2. Structural congruence.



210 C. Braghin et al. / Computer Languages, Systems & Structures 30 (2004) 207–230

Fig. 3. Reduction relation.

operator. Processes that only di4er for renaming of bound names are implicitly equated. Reduction
→ is formally de:ned in Fig. 3. We will use the standard notation P →∗ Q to denote a reduction
of process P to process Q performed in 0 or more steps.

Labels ‘a ∈ Laba on ambients and labels ‘t ∈ Labt on capabilities (transitions) are introduced as it
is customary in static analysis to indicate “program points”. They will be useful in the next sections
when developing the analysis. We denote with Lab the set of all the labels Laba ∪ Labt . We use
the special label env∈ Laba to denote the external environment, i.e., the environment containing the
process under observation.

Given a process P, we also introduce the notation Laba(P) to denote the set of ambient labels
in P plus the special label env, Labt(P) to denote the set of capability labels in P, and Lab(P) to
denote Laba(P) ∪ Labt(P). Moreover, Na = |Laba(P)|, Nt = |Labt(P)|, and NL = |Lab(P)| = Na + Nt .
With N we denote the global number of operators occurring in P. Note that NL ¡N , as there is
at least one occurrence of 0 in every non-empty process.

Example 2.1. Process P1 models a cab driving a client from site1 to site2. The execution of P1 is
depicted in Fig. 4 (where labels have been omitted for the sake of readability) and is described as

site‘
a
1

1 < client‘a2 < in‘t3 cab : call‘a4 < out‘t5 client : out‘t6 site1 : in‘
t
7 site2 : 0 = =

| cab‘a8 < open‘t9 call : 0 = = |

site‘
a
10

2 < 0 =:

Initially, cab and client are in site1, while site2 is empty. The client enters the cab by applying its
capability in‘

t
3 cab. Thus, process P1 moves to

site‘
a
1

1 < cab‘
a
8 < open‘t9 call : 0 |

client‘
a
2 < call‘a4 < out‘t5 client : out‘t6 site1 : in‘

t
7 site2 : 0 = = = = |

site‘
a
10

2 < 0 =:
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call

out client.

in site2
out site1.

cab

open call

site1

client

in cab .

call

out client.

in site2
out site1.

site1

cab

open call

client

site1

cab

client

site2

site2

site2

site2

site2

site2

clientcall

out site1.
in site2

client

out site1.
in site2

site1

client

site1

cab

open call

site1

cab

cab

in site2

Fig. 4. The cab example.
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Now, the client tells the cab its destination by releasing ambient call, which consumes its
out‘

t
5 client capability.

site‘
a
1

1 < cab‘
a
8 < open‘t9 call : 0 | call‘a4 < out‘t6 site1 :in‘

t
7 site2 : 0 = |‘a2 < 0 = = = |

site‘
a
10

2 < 0 =:
Then, the client request satisfaction is modeled by opening (dissolving) the client call. At this

point, process P1 has reached the state

site‘
a
1

1 < cab‘
a
9 < out‘t6 site1 :in‘

t
7 site2 : 0 | client‘a2 < 0 = = = | site‘a11

2 < 0 =:
Then, the cab exits site1 and it enters site2, as expected by the client:

site‘
a
1

1 < 0 = |site‘a10
2 < cab‘

a
9 < client‘a2 < 0 = = =:

Observe that for such a process P1 the label sets are the following:

Laba(P1) = {‘a1; ‘a2; ‘a4; ‘a8; ‘a10};
Labt(P1) = {‘t3; ‘t5; ‘t6; ‘t7; ‘t9};
Lab(P1) = {‘a1; ‘a2; ‘t3; ‘a4; ‘t5; ‘t6; ‘t7; ‘a8; ‘t9; ‘a10}:

Thus, Na = 5, Nt = 5, NL = 10, and N = 15 (NL plus three 0 and two |).

In the rest of the paper, we assume that the ambient and capability labels occurring in a process
P are all distinct. Performing the CFA with all distinct labels produces a more precise result that
can be later approximated by equating some labels.

2.1. Control 5ow analysis

The CFA of a process P described in [3] aims at modeling the possible ambient nestings occurring
in the execution of P. It works on pairs (Î ; Ĥ), where:

• The :rst component Î is an element of ˝(Laba(P) × Lab(P)). If process P, during its execution,
contains an ambient labeled ‘a having inside either a capability or an ambient labeled ‘, then
(‘a; ‘) is expected to belong to Î .

• The second component Ĥ ∈˝(Laba(P)×Amb) keeps track of the correspondence between names
and labels. If process P contains an ambient labeled ‘a with name n, then (‘a; n) is expected to
belong to Ĥ . 1

• The pairs are component-wise partially ordered by set inclusion.

The analysis is de:ned as usual by a representation and a speci:cation function [13]. They are
recalled in Figs. 5 and 6, respectively, where 
 denotes the component-wise union of the elements
of the pairs.

1 We are assuming that ambient names are stable, i.e., n is a representative for a class of �-convertible names, following
the same approach of [4]. In [3,10], an alternative treatment of �-equivalence is used, where bound names are annotated
with markers, and a marker environment me is associated to constraints.



C. Braghin et al. / Computer Languages, Systems & Structures 30 (2004) 207–230 213

Fig. 5. Representation function for the CFA.

Fig. 6. Speci:cation of the CFA.

The representation function aims at mapping concrete values to their best abstract representation.
It is given in terms of a function �CF

‘ (P) which maps process P into a pair (Î ; Ĥ) corresponding to
the initial state of P, with respect to an enclosing ambient labeled with ‘. The representation of a
process P is de:ned as �CF

env(P).

Example 2.2. Let P2 be the process n‘
a
1 <m‘a2 < out‘t n : 0 = =. The representation function of P2 is

�CF
env(P2) = ({(env; ‘a1); (‘a1; ‘

a
2); (‘a2; ‘

t)}; {(‘a1; n); (‘a2; m)}). Notice that all ambient nestings are cap-
tured by the :rst component {(env; ‘a1); (‘a1; ‘

a
2); (‘a2; ‘

t)}, while all the correspondences between am-
bients and labels of P2 are kept by the second one, i.e., {(‘a1; n); (‘a2; m)}.

The speci:cation states a closure condition of a pair (Î ; Ĥ) with respect to all the possible moves
executable on a process P. It mostly relies on recursive calls on subprocesses except for the three
capabilities open, in, and out. For instance, the rule for open-capability states that if some ambient
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labeled ‘a has an open-capability ‘t on an ambient n, that may apply due to the presence of a sibling
ambient labeled ‘a

′
whose name is n, then the result of performing that capability should also be

recorded in Î , i.e., all the ambients/capabilities nested in ‘a
′

have to be nested also in ‘a.

Proposition 2.3 (Hansen et al. [3]): Let P be a process. If (Î ; Ĥ) |=CF P and �CF
env(P) ⊆ (Î ; Ĥ) and

P →∗ P′, then �CF
env(P

′) ⊆ (Î ; Ĥ).

Example 2.4. Consider again process P2 of Example 2.2. Note that it may evolve to n‘
a
1 < 0 = | m‘a2 < 0 =.

It is easy to prove that the least solution for P2 is (Î ; Ĥ), where Î = {(env; ‘a1); (env; ‘a2); (‘a1; ‘
a
2);

(‘a2; ‘
t)}, Ĥ = {(‘a1; n); (‘a2; m)}. Notice that the analysis correctly captures through the pair (env; ‘a2)

the possibility for m to exit from n.

3. Re ning the complexity analysis for Nielson and Seidl algorithms

In this section, we re:ne the worst-case complexity results for the algorithms presented in [10]
by recalculating them as functions of Na, Nt , and NL, instead of N . We also calculate the minimum
number of steps performed by the algorithms even in the best case. The results of this section
will be useful to compare the techniques of [10] with our new algorithms that will be presented in
Section 4.

3.1. The 8rst algorithm of Nielson and Seidl—NS1

In the following, we will use NS1 to refer to the O(N 4) algorithm for the CFA of mobile
ambients presented in [10]. NS1 is based on a formulation of the analysis which is equivalent to the
one presented in the previous section. The constraints in Fig. 6 are rewritten as ground Horn clauses
by instantiating the universally quanti:ed variables in all possible ways. To estimate the number of
these ground Horn clauses, notice that:

• the number of capabilities is obviously O(Nt), since Nt is the cardinality of Labt(P);
• a constraint for an open-capability involves two universal quanti:cations that range over Laba(P),

whose cardinality is Na, plus another universal quanti:cation that ranges over Lab(P), whose
cardinality is NL. Constraints for in and out-capabilities have three universal quanti:cations ranging
over Laba(P).

Since Laba(P) ⊆ Lab(P), we have that the greatest number of ground Horn clauses is generated by
the algorithm when all the capabilities are open ones. Namely, the number of generated clauses is
O(Nt · N 2

a · NL). Moreover, they require O((Nt · N 2
a · NL)logNL) bits to be represented.

The next step of NS1 is to apply the algorithm presented in [11] (which represents a set of ground
Horn clauses as a graph, and solves a pebbling problem on that graph) to this set, in order to :nd
the least solution. As such algorithm uses O(n) steps and O(n log n) space, where n is the size of
the set of ground Horn clauses, we obtain the following (considering that the parsing of the process
has already been done).

Proposition 3.1. The complexity of NS1 is O(Nt · N 2
a · NL) steps and O((Nt · N 2

a · NL) logNL) bits.
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Example 3.2. Let P3 be the process n‘
a
1 <m‘a2 < open‘t1 n : 0 = =. The constraint for the open-capability is

∀‘a; ‘at ∈ Laba(P); ∀‘′ ∈ Lab(P) :

((‘a; ‘t) ∈ Î ∧ (‘a; ‘a
′
) ∈ Î ∧ (‘a

′
; n) ∈ Ĥ ∧ (‘a

′
; ‘′) ∈ Î) ⇒ (‘a; ‘′) ∈ Î :

In order to generate the Horn clauses, ‘a and ‘a
′

have to be instantiated in all the possible ways
in the set Laba(P) = {‘a1; ‘a2}, whose cardinality is Na = 2, and ‘′ ranges over Lab(P) = {‘a1; ‘a2; ‘t1},
whose cardinality is NL = 3. This introduces N 2

a ·NL = 12 ground Horn clauses. For instance, one of
them is the one obtained by instantiating ‘a to ‘a1, ‘a

′
to ‘a2 and ‘′ to ‘t1, i.e.,

((‘a1; ‘
t
1) ∈ Î ∧ (‘a1; ‘

a
2) ∈ Î ∧ (‘a2; n) ∈ Ĥ ∧ (‘a2; ‘

t
1) ∈ Î) ⇒ (‘a1; ‘

t
1) ∈ Î :

In P there are no other capabilities; hence, we obtain only these 12 ground Horn clauses. Therefore,
in this case Nt · N 2

a · NL = 12.

Observe that, even in the best case (i.e., no open capabilities) at least Nt ·N 3
a steps are performed

to generate all the ground clauses. We then obtain the following.

Corollary 3.3. Algorithm NS1 performs at least Nt ·N 3
a steps and uses at least Nt ·N 3

a logNL bits.

3.2. The second algorithm of Nielson and Seidl—NS2

We now consider NS2, the cubic-time algorithm presented in [10]. It is based on an optimization
of the analysis depicted in Fig. 6 which we report in Fig. 7. 2 The equivalence between the analysis
of Figs. 6 and 7 follows from [10]. The main idea behind the optimized analysis is to reduce the
number of universal quanti:cations in each analysis constraint. This is achieved by adding some
new components that keep further information on the nestings, and that may be globally computed.

As an example, consider the in constraint of Fig. 6. It requires to :nd three labels ‘a, ‘a
′
,

‘a
′′ ∈ Laba(P) such that (‘a; ‘t) ∈ I ∧ (‘a

′′
; ‘a) ∈ Î ∧ (‘a

′′
; ‘a

′
) ∈ Î . Notice that ‘a

′′
is only used to

check if ‘a and ‘a
′

are siblings. Thus, having a set Ŝ ∈˝(Laba(P) × Laba(P)) containing all the
pairs of labels corresponding to sibling ambients, allows to limit the quanti:cation on two labels
only. In particular, it is suGcient to :nd two labels ‘a; ‘a

′
; such that (‘a; ‘t) ∈ Î ∧ (‘a; ‘a

′
) ∈ Ŝ. In

order to calculate set Ŝ, a new global constraint is now required (global, in Fig. 7): ((‘a
′′
; ‘a) ∈ Î)∧

(‘a
′′
; ‘a

′
) ∈ I ⇒ (‘a; ‘a

′
) ∈ Ŝ. Similar optimizations are applied to the other constraints, by introducing

the components Ô; P̂ ∈˝(Laba(P) × Laba(P)), where (‘a
′
; ‘a) ∈ Ô represents the fact that ‘a may

move out of ‘a
′
, and (‘a; ‘a

′
) ∈ P̂ indicates that ‘a

′
may be opened inside ‘a. Note that the rule

(global) is applied only once during the analysis.
As for NS1, the NS2 algorithm is based on a translation of constraints into a set of ground Horn

clauses, on which the algorithm in [11] is applied to compute the least solution. To estimate the size
of the set of ground Horn clauses obtained by instantiating the variables in all the possible ways,
notice that:

• there are Nt capabilities and all their constraints involve two universal quanti:cations over Laba(P),
whose size is Na;

2 In [10] the optimized analysis is presented using a slightly di4erent formalism.
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Fig. 7. The optimized CFA.

• the :rst two constraints in the (global) rule involve three universal quanti:cations over Laba(P);
• the third constraint in the (global) rule involves two universal quanti:cations over Laba(P), and

one over Lab(P), whose cardinality is NL.

We obtain that the number of ground clauses is

Nt · N 2
a + N 3

a + N 2
a · NL = (Nt + Na)N 2

a + N 2
a · NL = 2 · N 2

a · NL:

Proposition 3.4. The complexity of the NS2 algorithm is O(N 2
a · NL) steps and O((N 2

a · NL)logNL)
bits.

By following the same reasoning as above, it is also easy to see that:

Corollary 3.5. Algorithm NS2 performs at least 2 ·N 2
a ·NL steps and uses at least 2 ·(N 2

a ·NL)logNL

bits.

4. The new algorithms

In this section, we present our new algorithms for nesting analysis of Figs. 6 and 7, and we
compare them with NS1 and NS2 algorithms.
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As highlighted in Section 3, the main idea behind NS1 and NS2 is to instantiate the analysis
constraints with respect to all the possible labels in order to obtain a set of ground Horn clauses.
Unfortunately, instantiating all the constraints causes that much space to be used and, even in the
best case, Nt ·N 3

a and 2 ·NL ·N 2
a steps are performed by NS1 and NS2, respectively (see Corollaries

3.3 and 3.5).
In order to avoid these problems, our algorithms only consider the constraints that are e4ectively

necessary for the computation of the analysis. The algorithms take a more direct approach, in a sense
that they do neither translate constraints into Horn clauses, nor apply the algorithm of [11]. The
algorithms start with an empty analysis Î and with a bu4er containing all the pairs corresponding
to the initial process representation. 3 Recall that, for the correctness of the analysis, these pairs
should be contained in the :nal Î . At each round, one pair is extracted from the bu4er and it is
added to the solution Î . Only the constraints that are potentially “activated” by the extracted pair
are then considered, i.e., only the constraints that have such an element in the premise. All the pairs
required by such constraints are then inserted into the bu4er, so that they will be eventually added
to the solution. This is repeated until a :x-point is reached, i.e., until all the elements required by
the constraints are in the solution. The most important ingredient in this on-the-3y generation is the
use of a bu4er together with a matrix which allows to use each pair of labels in the bu4er exactly
once to generate new pairs.

We show that our :rst algorithm has a space complexity of O((Na · NL)logNL) bits and a time
complexity of O(Sa

I · Nt · NL + St
I · Na · NL) steps, where Sa

I (St
I) is the number of pairs of the form

(‘a; ‘a
′
) ((‘a; ‘t), respectively) in the least solution. First, note that O((Na · NL)logNL) bits highly

decreases the O((Nt · N 2
a · NL)logNL) space complexity of NS1. Note also that the maximum size

of the solution is Sa
I = N 2

a and St
I = Na · Nt . Thus, only in the worst-case, our algorithm has a time

complexity equal to the one of NS1. The best case arises instead when the solution is linear with
respect to the process dimension, i.e., Sa

I =Na, St
I =Nt , thus reducing time-complexity to c ·Na ·Nt ·NL,

where c is a suitable constant. 4 The solution cannot be less than linear as it immediately follows
from the de:nition of the representation function.

Our second algorithm, decreases with respect to NS2, space complexity to O((Na ·NL)logNL) bits
and time complexity to O(Sa

I · NL + St
I · Na + SS · Nt + SP · NL + SO · Na) steps, where Sa

I and St
I are

de:ned as above, and SS , SO, SP are the :nal dimensions of Ŝ, Ô, P̂, respectively. First, note that
our space complexity O((Na · NL)logNL) greatly improves the O((N 2

a · NL)logNL) space complexity
of NS2. Moreover, the maximum size of the solution is Sa

I = SS = SO = SP = N 2
a and St

I = Na · Nt;
thus, in the worst case, time complexity becomes equal to the one of NS2. The best case is instead
when the solution is linear with respect to the process dimension, thus reducing time-complexity to
c · Na · NL for a constant c6 5 (see Corollary 4.4) which is strictly better than 2 · N 2

a · NL, i.e., the
best case of NS2.

Note that the cases in which the solutions are maximal, i.e., when our algorithms have the same
time complexity of NS1 and NS2, correspond to analysis solutions that contain all the possible

3 Indeed, our second algorithm uses a set of bu4ers, but this does not change the underlying ideas of the algorithm.
4 By exploiting the same argument we used for calculating the best case of NS1, we could lower this complexity down

to c · N 2
a · Nt , for a constant c, which is strongly better (up to multiplicative constants) than Nt · N 3

a , i.e., the best case
for NS1.
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nestings. Such cases are either related to quite rare processes showing all possible nestings at
run-time, or to excessive approximations of more common processes.

We now present the two algorithms in detail.

4.1. Improving space: Algorithm 1

Our :rst algorithm, called Algorithm 1, is depicted in Fig. 8. We assume that the parsing of the
process has already been done, producing an array cap of length Nt containing all the capabilities
of the input process. For instance, cap[i] may contain “in‘

t
n”, representing an in capability labeled

with ‘t and with n as target. 5 During the parsing, the representation �CF
env(P) is computed giving

two initial sets Î 0 and Ĥ 0 that are stored into an Na × NL bit matrix BÎ , and into an Na × Na bit
matrix MĤ , respectively. By parsing P twice, we can build BÎ in such a way that columns from 1 to
Na are indexed by ambient labels, while all the other columns by capability ones. All the pairs in Î 0

are also stored in a stack bufÎ , on which the usual operations pushÎ (l; l
′) and popÎ () apply. Matrix

BÎ is used to eGciently check whether an element has ever been inserted into bufÎ , thus ensuring
that a pair is inserted in bufÎ at most once. In particular, the new command push cÎ (l; l

′) applies if
BÎ [l; l

′] = false, and it both executes pushÎ (l; l
′) and sets BÎ [l; l

′] to true. Finally, we initialize to
false another bit matrix MÎ of size Na × NL that will contain the :nal result of the analysis. Also
in MÎ the columns from 1 to Na are indexed by ambient labels and the ones from Na + 1 to NL

by capability labels. This initialization phase requires only O(N ) steps, since two parsings of P are
suGcient.

Example 4.1. Let P be the :rewall access process of [1,2], where an agent crosses a :rewall by
means of previously arranged passwords k, k ′ and k ′′. Fig. 9 shows the execution of P: by only
knowing the three passwords it is possible to enter the :rewall w (see [9] for a detailed analysis of
the security issues related to this example):

P = (	w)wa1< ka2< outt1 w : int2 k ′ : int3 w : 0 =| opent4 k ′ : opent5 k ′′ : 0 =|
k ′a3 < opent6 k : k ′′a4< 0 ==:

The least solution of P, as computed using the speci:cation of the CFA depicted in Fig. 6, is the
pair (Î ; Ĥ), where

Î = {(env; a1); (env; a2); (env; a3); (a1; a1); (a1; a2); (a1; a3); (a1; a4);

(a1; t1); (a1; t2); (a1; t3); (a1; t4); (a1; t5); (a1; t6); (a2; t1); (a2; t2); (a2; t3);

(a3; a1); (a3; a2); (a3; a3); (a3; a4); (a3; t1); (a3; t2); (a3; t3); (a3; t6)};

Ĥ = {(a1; w); (a2; k); (a3; k ′); (a4; k ′′)}:
Let us see how Algorithm 1 applies to process P. In this case, Na = 5 and Nt = 6, thus BÎ and
MÎ are 5 × 11 bit matrices, MĤ is a 5 × 5 bit matrix, and cap array of length 6, initialized as

5 n here represents an integer 16 n6Na corresponding to the nth ambient name. The correspondence between names
and integers is kept in the symbol table produced at the parsing time.
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Fig. 8. Algorithm 1.

〈outt1 w; int2 k ′; int3 w; opent4 k ′; opent5 k ′′; opent6 k〉. After the initial parsing, the only pairs in MĤ
which are set to true are {(a1; w); (a2; k); (a3; k ′); (a4; k ′′)}, while bufÎ and BÎ contain the pairs
〈(env; a1); (env; a3); (a1; a2); (a3; a4); (a1; t4); (a1; t5); (a2; t1); (a2; t2); (a2; t3); (a3; t6)〉.

Let the pair (env; a1) be the top element of bufÎ . The :rst six rounds of the while-loop just
move pairs from bufÎ to MÎ (no push is performed). Then, at round 7:

• bufÎ = 〈(a2; t1); (a2; t2); (a2; t3); (a3; t6)〉,
• MÎ = 〈(env; a1); (env; a3); (a1; a2); (a3; a4); (a1; t4); (a1; t5)〉,
• BÎ = 〈(env; a1); (env; a3); (a1; a2); (a3; a4); (a1; t4); (a1; t5); (a2; t1); (a2; t2); (a2; t3); (a3; t6)〉.
We extract the top element (a2; t1) of bufÎ , thus l := a2, and l′ := t1. We show the :rst iteration,
i = 1, where cap[l] is “outt1 w”. Thus, we have l′ = ‘t and n=w. Since l′ ∈ Labt(P) and l′ = ‘t , we
are in the “then” branch. The only case that makes true the if condition is when j = a1 and k = env.
Since (a1; w) ∈ MĤ and both (a1; a2) and (env; a1) are in MÎ , the pair (env; a2) is pushed in bufÎ
(note that it is not already in BÎ). The algorithm ends after the 24th round, when bufÎ is empty.

We can prove the following result.
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Fig. 9. The :rewall example: the process that initially is inside ambient k ′′ (in this example 0), at the end is executed
inside the :rewall w.
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Theorem 4.2. Algorithm 1 is correct. It has a time complexity of O(Sa
I ·Nt ·NL + St

I ·Na ·NL) steps
where

Sa
I = |{(‘a; ‘a

′
) | ‘a; ‘a′ ∈ Laba(P); (‘a; ‘a

′
) ∈ Î at the end of the computation}|;

St
I = |{(‘a; ‘t) | ‘a ∈ Laba(P); ‘t ∈ Labt(P); (‘a; ‘t) ∈ Î at the end of the computation}|:

It also has a space complexity of O((Na · NL)logNL) bits.

Proof. The proof follows mainly two steps: :rst, we show an invariant on the outermost while-loop
of Algorithm 1, and we use such a condition to derive minimality of the solution; then, we prove
its time and space complexities. Notice that, by construction, BÎ contains the information of bufÎ
and MÎ . Initially, BÎ contains exactly the same information of bufÎ while MÎ is empty (contains all
false). Moreover, all the elements inserted in bufÎ are also set to true in BÎ and, when an element
of bufÎ is moved to MÎ it remains included in BÎ . The algorithm ends when bufÎ is empty, therefore
when BÎ = MÎ .
Correctness: We have to show that the algorithm veri:es the speci:cation of the CFA depicted

in Fig. 6, and that it computes the least solution. First, we prove the following condition:
Let a round be one iteration of the outermost while-loop. At a generic round k: if we apply the

CFA by considering the set Î corresponding to matrix MÎ , then the set of pairs (l; l′) for which the
analysis fails (i.e., such that MÎ [l; l′] = false and (l; l′) is in the rightmost part of an applicable
capability rule) are in BÎ .

We prove it by induction on k. At step k = 0, MÎ contains all false, therefore the hypotheses of
all constraints are false and we are done, since the analysis is always satis:ed. Let us now assume,
by induction, that the property above holds up to step i. At step i + 1, we have a new matrix M′

Î
that is equal to matrix MÎ computed at step i, plus MÎ [l; l

′] := true, i.e., the pair (l; l′) is processed.
Moreover, BÎ is increased to B′

Î
. We have to prove that, if we apply the CFA to matrix M′

Î
, then the

set of pairs (l; l′) for which the analysis fails are in B′
Î
. Let us now assume, by contradiction, that

there exists a constraint in the analysis that requires a new pair (x; y) that does not belong to B′
Î
.

Since B′
Î

⊇ BÎ , we also have that (x; y) does not belong to BÎ . By induction hypothesis, we know
that the constraint above requiring (x; y) was not applicable to matrix MÎ (otherwise the pair (x; y)
would necessarily be in BÎ). This means that such a constraint has in the hypothesis the fact that
(l; l′) belongs to Î , and so that MÎ [l; l

′] = true. Now, it is suGcient to observe that one round of the
algorithm exactly adds to BÎ and bufÎ every pair that is required by all the constraints containing
“(l; l′) ∈ Î” in the hypothesis (this may be veri:ed by considering all the instances of the constraints
in which (l; l′) is placed in every possible position of the hypothesis). Thus (x; y) is in B′

Î
, leading

to a contradiction.
When the algorithm terminates, we have BÎ = MÎ . This proves that MÎ is a solution of the analysis.

In fact, the property above states that all the pairs required by MÎ are at least in BÎ . Since BÎ = MÎ ,
we obtain that MÎ satis:es all the analysis constraints. Note also that bufÎ initially contains the
representation of the process �CF

env(P), thus proving that MÎ is indeed a correct solution for P. Since
the procedure is incremental, it is trivial to prove that the analysis is the least one.
Complexity: To prove the time complexity of Algorithm 1, we :rst recall that we are assuming all

capability labels are distinct. Notice that at the beginning bufÎ contains only pairs of the form (l; l′)
with l ∈ Laba(P) and l′ ∈ Lab(P). Moreover, all the elements which are added to bufÎ are of such a
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form. Each pair which is inserted in bufÎ is also in the :nal solution and it is extracted from bufÎ
only once, since an initial check is made on matrix BÎ before inserting new elements in bufÎ . Now
we compute the cost of each extraction of a pair from bufÎ distinguishing the case of a pair of the
form (l; l′) ∈ Laba(P) × Laba(P) from that of a pair of form (l; l′) ∈ Laba(P) × Labt(P). When a pair
of the form (l; l′) ∈ Laba(P) × Laba(P) is extracted, the external for-cycle is executed Nt times and
each time the else-branch is chosen. Hence, in the worst-case (for the open-capabilities) during each
iteration at most NL steps are required. Therefore, for each pair of the form (l; l′) ∈ Laba(P)×Laba(P)
at most Nt ·NL steps are performed. When a pair of the form (l; l′) ∈ Laba(P)×Labt(P) is extracted the
external for-cycle is executed Nt times but only one of the if-cases may apply. In the worst-case
(for the open-capabilities) this execution costs Na · NL + Nt steps, i.e., O(Na · NL) steps. We can
conclude that globally the steps performed are O(Sa

I · Nt · NL + St
I · Na · NL), and each step involves

only constant time operations.
Space complexity is computed as follows: the data structures used are two Na × NL bit matrices

(BÎ and MÎ), one Na × Na bit matrix (MĤ ), and one bu4er cap which contains at most Nt elements
of at most O(logNL) bits. Finally, bufÎ may contain at most Na ·NL pairs of at most logNL bits for
a total of at most (Na · NL) logNL bits, in the worst-case.

Note that the worst-case time complexity of Algorithm 1 is O(Nt ·N 2
a ·NL), since in the worst-case

Sa
I = N 2

a and SI
t = Na · Nt .

4.2. Improving time: Algorithm 2

Time complexity of Algorithm 1 can be reduced by applying bu4ering techniques also to the
optimized analysis of Fig. 7. This leads to our second algorithm, called Algorithm 2 and depicted in
Fig. 10. Also in this case, we assume that the parsing of the process has already been done twice. As
a result, the same data structures as in Algorithm 1 (i.e., cap, bufÎ , BÎ , MÎ and MĤ ), are initialized.
In addition, we consider the additional bu4ers bufŜ , bufÔ and bufP̂, and three Na ×Na bit matrices
BŜ , BÔ, and BP̂ set to false. These matrices have the same rôle of matrix BÎ , i.e., they avoid that
a pair is put twice in one of the bu4ers bufŜ , bufÔ, and bufP̂. We also initialize to false the
Na × Na bit matrices MŜ , MÔ, and MP̂ that will contain the :nal result of the analysis concerning the
sets Ŝ, Ô, and P̂, respectively. As for Algorithm 1, we assume that in BÎ and in MÎ columns from
1 to Na are assigned to ambient labels and the ones from Na + 1 to NL to capability labels.

The main di4erence between Algorithms 1 and 2 is the use of the data structures related to Ŝ, Ô,
and P̂, thus merging the ideas of NS2 with our on-the-3y approach. Observe that the last block of
if-statements in Algorithm 2 corresponds to the global constraints in Fig. 7.

We can now prove the following theorem.

Theorem 4.3. Algorithm 2 is correct. It has a time complexity of O(Sa
I · NL + St

I · Na + SS · Nt +
SO · Na + SP · NL) steps, where

Sa
I = |{(‘a; ‘a

′
) | ‘a; ‘a′ ∈ Laba(P); (‘a; ‘a

′
) ∈ Î at the end of the computation}|;

St
I = |{(‘a; ‘t) | ‘a ∈ Laba(P); ‘t ∈ Labt(P); (‘a; ‘t) ∈ Î at the end of the computation}|
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Fig. 10. Algorithm 2.

and SS , SO, SP are the cardinality of Ŝ, Ô, P̂, respectively, at the end of the execution. It also has
a worst-case space complexity of O((Na · NL)logNL) bits.

Proof. To prove the correctness of Algorithm 2, we have to show that it veri:es the speci:cation
of the optimized CFA depicted in Fig. 7, and that it computes a least solution. The rest of the proof
follows the lines of the proof of Theorem 4.2.

Similarly to what we have done in the case of Algorithm 1, we :rst prove that B∗ contains the
information of buf∗ and M∗, with ∗ ∈ {Î ; Ŝ ; Ô; P̂}. For all ∗ ∈ {Î ; Ŝ ; Ô; P̂}, B∗ initially contains the
same information of buf∗, while M∗ is empty (contains all false). Moreover, all the elements inserted
in buf∗ are also inserted in B∗, and when an element of buf∗ is moved to M∗, it is still included in
B∗. Hence, as the algorithm terminates when buf∗ is empty for all ∗ ∈ {Î ; Ŝ ; Ô; P̂}, we have that at
the end of the execution B∗ = M∗ for all ∗ ∈ {Î ; Ŝ ; Ô; P̂} holds.
Correctness: In order to prove that Algorithm 2 really :nds the least solution to the analysis, we

:rst prove the following result:
Let a round be one iteration of the outermost while-loop. At a generic round k: If we apply

the CFA by considering the set ∗ corresponding to matrix M∗, for all ∗ ∈ {Î ; Ŝ ; Ô; P̂}, then all the
pairs (l; l′) such that (l; l′) is required to be in ∗ and (l; l′) is not in M∗, are in B∗.
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The proof proceeds by induction on k. At step k = 0 the matrices M∗, with ∗ ∈ {Î ; Ŝ ; Ô; P̂}, are
empty, hence we immediately have the thesis. At step i+1 we have that an element has been added
to MÎ or to MŜ or to MÔ or to MP̂. For the sake of simplicity, we prove the thesis in the :rst of the
four cases, since the other ones are similar. Consider a new matrix M′

Î
that is equal to matrix MÎ

computed at step i, plus MÎ [l; l
′] := true; i.e., the pair (l; l′) is processed. Moreover, BÎ is increased

to B′
Î
. We have to prove that, if we apply the CFA to the matrices M′

Î
, MŜ , MÔ, and MP̂ then the set of

pairs (l; l′) for which the analysis fails are in B′
Î
, B′

Ŝ
, B′

Ô
, and B′

P̂
, respectively. Let us now assume,

by contradiction, that there exists a constraint in the analysis that requires a new pair (x; y) that
does not belong to B′

Ŝ
. Since B′

Ŝ
⊇ BŜ , we also have that (x; y) does not belong to BŜ . By induction

hypothesis, we know that the constraint above requiring (x; y) was not applicable to matrices MÎ , MŜ ,
MÔ, MP̂ (otherwise the pair (x; y) would necessarily be in BŜ). This means that such a constraint has
in the hypothesis the fact that (l; l′) belongs to Î and so that MÎ [l; l

′] = true. Now, it is suGcient to
observe that one round of the algorithm exactly adds to BÎ , BŜ , BÔ, BP̂, and bufÎ , bufŜ , bufÔ, bufP̂
every pair that is required by all the constraints containing “(l; l′) ∈ Î ; : : :” in the hypothesis (this
may be veri:ed by considering all the instances of the constraints in which (l; l′) is placed in every
possible position of the hypothesis). Thus, (x; y) must necessarily be in B′

Ŝ
, giving a contradiction.

Similarly we would obtain a contradiction by assuming that there the analysis requires a new pair
(x; y) that does not belong to B′

Î
(or to B′

Ô
, or to B′

P̂
).

When the algorithm terminates, BÎ =MÎ , BŜ =MŜ , BÔ =MÔ, and BP̂ =MP̂, and the sets MÎ , MŜ , MÔ, and
MP̂ constitute a solution of the analysis. Since the procedure is incremental, the analysis produces
the least solution.
Complexity: We :rst recall that all the capability labels are distinct. The external while-cycle is

executed Sa
I + St

I + SS + SO + SP times, since from the de:nition of the operations push cÎ , push cŜ ,
push cÔ, and push cP̂ we have that it is never the case that a pair is inserted twice in one of the
bufÎ , bufŜ , bufÔ, and bufP̂. Consider all the possible cases of extraction of a pair from bufÎ , bufŜ ,
bufÔ, and bufP̂. Recall that the pairs in bufÎ are either of the form (l; l′) ∈ Laba(P) × Laba(P) or
of the form (l; l′) ∈ Laba(P) × Labt(P).

If an element is taken out from bufÎ , and it is of the form (l; l′) ∈ Laba(P) × Laba(P) then in
the :rst if-condition the for-loop is executed exactly Nt times and each of these iterations has a
constant cost. The third if-condition requires Na steps of constant cost. Hence for each pair of the
form (l; l′) ∈ Laba(P) × Laba(P) extracted from bufÎ we have a cost of Nt +Na =NL constant steps,
i.e., globally O(Sa

I · NL) steps.
If an element is taken out from bufÎ , and it is of the form (l; l′) ∈ Laba(P) × Labt(P) (second

if-condition), then the unique applicable case is repeated Na times with constant cost. Hence the
complexity is O(St

I · Na) steps. 6

If an element is taken out from bufŜ , then in the :rst if-condition each iteration of the for-loop
requires a constant number of steps. Hence, for each pair Nt steps are performed, i.e., globally
O(SS · Nt).

If an element is taken out from bufÔ, then only the fourth external if-condition is satis:ed and
it requires Na steps of constant cost, i.e., globally O(SO · Na).

6 Notice that we are implicitly assuming that the cap[i] array is indexed by the ‘t labels. This can be trivially achieved
since such labels are all di4erent.
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If an element is taken out from bufP̂, then only the :fth external if-condition is satis:ed and it
requires NL steps of constant cost, i.e., globally O(SP · NL).

From the above considerations, we obtain the desired time complexity result.
Space complexity is computed as follows: the data structures used are two Na × NL bit matrices

(BÎ , MÎ), seven NL × NL bit matrices (MĤ , BŜ , BÔ, BP̂, MŜ , MÔ, and MP̂), one bu4er cap containing
at most Nt elements of at most O(logNL) bits. Finally, bufÎ , may contain at most Na · NL pairs of
logNL bits, while bufŜ , bufÔ, bufP̂ may contain at most 3N 2

a pairs of logNL bits for a total of
O((Na · NL)logNL) bits.

Corollary 4.4. Algorithm 2 has time complexity smaller than 5 ·N 2
a ·Nt +3 ·N 3

a steps and it requires
Na · NL logNL + 2 · Na · NL + 3 · N 2

a logNL + 7 · N 2
a bits for space complexity.

Proof. As far as the time complexity is concerned, it is suGcient to count exactly the number of ex-
ecutions of the loops in the worst case. While the constants in the space complexity follow from the
fact that we have one bu4er (bufÎ) and two matrices (BÎ and MÎ) of dimension Na ·NL, three bu4ers
(bufŜ ; bufÔ, and bufP̂), and seven matrices (BŜ ; BÔ; BP̂ ; MŜ ; MÔ; MP̂ ; MĤ ) of dimension N 2

a .

Observe that these space and time complexities may boil down to quadratic and even linear size
in the practice, e.g., when few nestings are actually present in the process, or when capabilities
belong to few ambients.

The worst-case time complexity of Algorithm 2 is O(N 2
a · NL), since St

I 6Na · Nt , while Sa
I , SS ,

SO, SP6N 2
a , and NL = Na + Nt .

5. The Banana tool: experimental results

The CFA algorithms described in the previous sections have been implemented in the Banana
tool, a Java applet available at http://www.dsi.unive.it/∼focardi/BANANA/.

The main components of Banana can be summarized as follows:

• A textual and graphical editor for mobile ambients, to specify and modify the process by setting
ambient nesting capabilities and security attributes in a very user-friendly fashion.

• A parser which checks for syntax errors and builds the syntax tree out of the mobile ambient
process.

• An analyzer which computes an over approximation of all possible nestings occurring at run-time.
The tool supports three di4erent control 3ow analyses, namely the one of Nielson et al. in [3], the
one by Braghin et al. in [5] (called Focardi Cortesi Braghin in the tool), and the one by Braghin
et al. in [7] (FCB Boundary Inference). Five di4erent implementations of the analysis described
in [3] are available in the tool. They correspond to:

◦ a :x-point computation of the least solution of the constraints in Fig. 6 (called Nielson in
the tool); 7

7 This implementation does not use the algorithm in [11] and it has a O(N 5) worst-case time complexity.

http://www.dsi.unive.it/~focardi/BANANA/
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Fig. 11. Overview of the Banana tool.

◦ a :x-point computation of the least solution of the constraints in Fig. 7 (Nielson Optimized);
◦ Algorithm 1 of Fig. 8 (Buffered Boundary Analysis, B.B.A., v1);
◦ Algorithm 2 of Fig. 10 (B.B.A. v2);
◦ Algorithm 2 of Fig. 10 with some code optimizations (B.B.A. v2 Optimized).

• A post-processing module, that interprets the results of the analysis in terms of the boundary-
based information-3ow model proposed in [5], where information 3ows correspond to leakages of
high-level (i.e., secret) ambients out of protective (i.e., boundary) ambients, toward the low-level
(i.e., untrusted) environment.

• A detailed output window reporting both the analysis and the security results obtained by the
post-processing module, and some statistics about the computational costs of the performed anal-
ysis.

Fig. 11 gives an overview of the architecture of the tool. Banana is implemented in Java and strongly
exploits the modularity of object-oriented technology, thus allowing scalability to other analyses and
extensions of the target language (e.g., [14]). Moreover, Banana is conceived as an applet based on
AWT and thus compatible with the majority of current web browsers supporting Java.

A screen-shot of the Banana tool is shown in Fig. 12. A user can edit the process to be analyzed
by using either the Textual or the Graphical Editor. The security labelling (i.e., the labels denoting
untrusted, con:dential, and boundary ambients) can be inserted directly by the user, or automatically
derived by the tool during the parsing phase. In the latter case, ambients starting with letter “b” are
labelled boundaries, while ambients starting with “h” are labelled high. By selecting an item in the
Project Explorer window, the user can check/modify the properties of the ambient/capability. The
syntax correctness of the process can be veri:ed by selecting the Parsing button.

The user can then choose to launch one of the algorithms which implements the analysis described
in [3,5,7]. Once the analysis has started, the tool parses the process, builds a syntax tree, and
computes the algorithm yielding to an over-approximation of all possible ambient nestings. The
result of the analysis is reported in the Output Console as a list of pairs of labels.

By post-processing the analysis results, Banana reports in the :led Protective the sure absence of
information leakages.

The Banana tool has been tested using a suite of use cases consisting of processes di4ering in the
size and number of capabilities. In Table 1, we show some preliminary results obtained by testing
the tool on a PII, 300 MHz PC, 192 Mb RAM, OS Windows 98 SE, web browser Microsoft Internet
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Fig. 12. Screen-shot of the Banana tool.

Table 1
Time and space results for the new algorithms

Process Time Space in bytes

B.B.A. v1 B.B.A. v2 B.B.A. v2 Opt B.B.A. v1 B.B.A. v2

Par. prot. 08 s 070 ms 01 s 160 ms 01 s 100 ms 173.085 382.588
Par. unprot. 06 s 150 ms 00 s 930 ms 00 s 880 ms 149.970 331.417
Nested in 12 s 200 ms 00 s 390 ms 00 s 330 ms 1771.059 3542.122

Table 2
Time results for the :x-point implementations

Process Time Space in bytes

Nielson Nielson Opt Nielson Nielson Opt

Par. prot. 02 m 43 ms 020 ms 04 s 560 ms 85.212 174.999
Par. unprot. 01 m 54 s 630 ms 03 s 570 ms 74.170 151.933
Nested in 26 s 970 ms 01 m 44 s 030 ms 1021.751 1780.778

Explorer, Java 1.4.1. As far as the space complexity is concerned, in Table 1 we omit B.B.A. v2
Opt since it uses exactly the same space as B.B.A. v2. In Table 2, we also report the time and space
complexity of Nielson and Nielson Opt algorithms corresponding to direct :x-point implementations
of the CFA of Figs. 6 and 7, respectively. Notice that these do not correspond to the algorithms
presented in [10] that have not been implemented (yet) in Banana. Notice also that the space used
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by these direct :x-point implementations is less than the space used by B.B.A., by a constant factor.
This is due to the simpler data structures needed by the two algorithms.

The processes used in the tests are also available in the tool (enabling the reader to exercise them
on other machines and operating systems). Let us brie3y describe them:

• The process Par. prot. is the parallel composition of 40 processes of the form

bsite1< bmsg< hcc< 0 = | out bsite1 : in bsite2 : 0 = = | bsite2< open bmsg : 0 =
without labels. The tool automatically assigns a di4erent label to each ambient. We have that
bmsg is opened inside bside2, which is boundary since its name starts with b. Hence, the process
is secure.

• The process Par. unprot. is the parallel composition of 40 processes of the form

site1bai <msgbbi < ccnhci < 0 = | outtai site1 : intbi site2 : 0 = = |
site2bdi < opentci msg : 0 =

for i = 0; : : : ; 39, and one process of the form

site1ba<msgbb< ccnhc< 0 = | outta site1 : intb site2 : 0 = = |
site2low< opentc msg 0 =:

The process evolves exactly as Par. prot., but since msg is opened also inside site2low, which is
not boundary (its label does not start with b), the process is not secure.

• The process Nested in is of the form

amb< in amb0 : in amb1 : in amb2 : : : in amb500 : 0 = |
amb0< amb1< amb2< : : : amb498< amb499< amb500< 0 = = = : : : = = =:

Hence, amb enters in all the ambi, for i = 0; : : : ; 500.

As expected, Algorithm 2 dramatically improves time complexity with respect to Algorithm 1, though
a price has to be paid for such an improvement in terms of memory resources.

6. Related works and conclusions

Complexity of static analysis is an issue that has attracted many researchers, since seminal
papers like [15]. Decidability of analysis has been considered in [16], while the question why certain
data3ow analysis problems can be solved eGciently, but not others, is treated in [17]. Focusing on
3ow-sensitive analyses, the last paper shows that analysis that requires the use of relational attributes
for precision must be PSPACE-hard in general, and as soon as the language constructs are slightly
strengthened to allow a computation to maintain a very limited summary of what happens along an
execution path, inter-procedural analysis becomes EXPTIME-hard. On di4erent perspectives, [18] in-
vestigates bottom-up logic programming as a formalism for expressing and analyzing static analysis,
while [19,20] investigate the complexity of model checking Mobile Ambients.
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As we mentioned in the introduction, [10] is the :rst contribution facing the issue of estimating the
complexity of CFA for mobile ambients [1,2], by combining a new optimization technique (sharing
and tiling) with previous results on Horn clauses [11]. In [21], Nielson et al. [10] improve by using
a sparsity analysis that results in O(N · s3) time complexity, where s depends on the solution size.
But no improvement in space complexity is achieved. Observe that in our approach, there is no need
to translate the problem into Horn clauses, neither of performing asymptotic sparsity analysis. The
simplicity of our direct approach allowed us to develop very easy and eGcient implementations of
the algorithm, now included in Banana.

We are currently investigating how the method scales up to a class of CFA with particular rule
formats. Our claim is that, in this case, the complexity depends both on the size of the solution and
on the number of nested quanti:ers. This generalization of the method would allow us to obtain
algorithms for CFA in di4erent settings and for re:nements of the analyses presented in this paper.
In particular, it would be interesting to study how the complexity is a4ected when communication
primitives are taken into account and when the analysis is made more precise.
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