UNIVERSITY

of
GLASGOW

Cockshott, W.P. and Michaelson, G.J. (2006) Orthogonal parallel
processing in vector pascal. Computer Languages, Systems and
Structures. 32(1):pp. 2-41.

http://eprints.gla.ac.uk/3451/

Orthogonal Parallel Processing in Vector
Pascal

Paul Cockshott ™ Greg Michaelson”
& Imaging Faraday Partnership, Department of Computing Science, University of
Glasgow, Scotland, +44 141 330 3125

b School of Mathematical and Computer Sciences, Heriot Watt University,
Edinburgh, Scotland +44 131 451 3422

Abstract

Despite the widespread adoption of parallel operations in contemporary CPU de-
signs, their use has been restricted by a lack of appropriate programming language
abstractions and development environments. To fully exploit the SIMD model of
computation such operations offer, programmers depend on CPU specific machine
code or implementation dependent libraries.

Here we present Vector Pascal (VP), a language designed to enable the elegant
and efficient expression of SIMD algorithms. VP imports into Pascal abstraction
mechanisms derived from functional languages, in turn having their origins in APL.
In particular, it extends all operators to work on vectors of data. The type system
is also extended to handle pixels and dimensional analysis. Code generation is via
the ILCG system that allows retargeting to multiple different SIMD instruction sets
based on formalised descriptions of the instruction set semantics.

Key words: Pascal, Parallelism, SIMD, Image Processing, Vector Processing, Data
Parallel

1 Introduction

The subject of the principles and laws of notation is so important that it
15 desirable, before it is too late, that the scientific academies of the world
should each contribute the results of their own examination and conclusions,
and that some congress should assemble to discuss them. Perhaps it might

* Corresponding Author
Email addresses: wpc@dcs.gla.ac.uk (Paul Cockshott), greg@macs.hw.ac.uk
(Greg Michaelson).

Preprint submitted to Computer Languages Systems and Structures30 June 2004

be better still if each academy would draw up its own views, illustrated by
examples, and have a sufficient number printed to send to all other aca-
demics. Charles Babbage, Passages from the Life of a Philosopher, 1864, in
P. Morrison and E. Morrison (Eds), Charles Babbage and his Calculating
Engines, Dover, 1961, p72.

There has long been a tension between programming language and processor
design. Languages may offer constructs that seem hard to realise in the ma-
chine code supported by processors. In turn, processors, and related hardware
may offer functionality whose exploitation in languages appears non-trivial.

For example, where early languages allowed the expression of decimal fraction
and floating point arithmetic, early processors only offered integer arithmetic
based on sequential decimal or parallel binary operations. For many years,
floating point units were relatively expensive add ons, only becoming integral
parts of microprocessors in the 1980’s.

Similarly, heap storage with garbage collection first came to prominence for
list processing in LISP in the late 1950’s. BASIC, a widely used language
on 70’s and 80’s mini- and micro-computers, had implicit heap management
for strings. Ada from the 80’s and Java from the 90’s bother offered implicit
generalised heap storage management. Nonetheless, contemporary CPUs still
do not support automatic heaps.

This disjunction is most stark when type abstractions are considered. Pro-
gramming languages have been evolving with increasingly rich type systems
since Algol 68, supporting sequence and discriminated union structures with
varying degrees of polymorphism over control as well as data. However, de-
spite experiments in supporting more complex types in processors, typically
through tag-data architectures such as the various LISP machines and the
object oriented Rekursiv[l], CPUs remain stubbornly rooted in untyped, flat,
binary representations.

In contrast, all contemporary personal computers contain graphics cards but
no significant language provides graphics abstractions. Instead, graphics op-
erations are still supported by low level calls to driver routines or through
implementation dependent libraries.

Most recently, single instruction/multiple data (SIMD) extensions have been
added to common CPU instruction sets [2-5]. These are popularly termed
multi-media extensions (MMX) as they were provided to support, and are
widely used for, real-time interactive games. MMX instructions are based on
standard digital signal processing (DSP) repertoires, supporting parallel multi-
word ! arithmetic and logic. Where the instruction operand width is the same

1 Here we regard a word, measured in bits, as the basic unit of processing within

as, or a small multiple of, the CPU/memory bus width, such MMX extensions
offer close to linear speedup over the equivalent single word operations.

The attraction of MMX instructions for computer games is that pixel repre-
sentations tend to be small multiples of eight bit bytes and so several pixels
can fit into a single MMX operand. In principle, however, such instructions
could be used wherever logical and arithmetic operations are performed over
base types represented as multiple bytes.

However, the wider exploitation of MMX instructions has been held back
by two factors. First of all, few commercial compilers make effective use of
these instruction sets in a machine independent manner, despite considerable
research [6-9]. Secondly, most popular programming languages were designed
on the word at a time model of the classic von Neuman computer rather than
on the SIMD model.

We have been exploring the design and implementation of an efficient and ele-
gant notation for exploiting SIMD operations on enhanced CPUs. We are using
the word elegant in the information theoretic sense introduced by Chaiten[10],
implying maximal conciseness. Elegance is a goal that one approaches asym-
totically; approaching but never attaining. However, an inevitable consequence
of elegance is a loss of redundancy which reduces human intelligability.

We have borrowed concepts for expressing data parallelism that have a long
history, dating back to Iverson’s work on APL in the early '60s[11]. APL pro-
grams are as concise, or even more concise, than conventional mathematical
notation[12] and use a special character set. However, this makes them hard
for the uninitiated to understand. Iverson’s J[13] attempts to remedy this by
restricting itself to the ASCII character set, but still looks dauntingly unfa-
miliar to programmers brought up on more conventional languages. Thus, a
central aim in developing our new language Vector Pascal[14,15], has been to
provide the conceptual gains of Iverson’s notation within a framework familiar
to imperative programmers.

Subsequent sections discuss abstractions for data parallelism and their expres-
sion in other languages. Vector Pascal’s treatment of SIMD operations is then
introduced, and shown to be considerably more concise and efficient than Pas-
cal without these orthogonal extensions. Finally, the architecture independent
expression and architecture dependent realisation in the ILCG compiler for
Vector Pascal are considered.

a CPU. Thus we refer to a 16/32/64 bit word processor, rather than a 2/4/8 byte
Processor.

2 Array mechanisms for data parallelism

Data parallel programming can be built up from certain underlying abstrac-
tions[16]:

operations on whole arrays
array slicing

conditional operations
reduction operations

data reorganisation

We will next consider these in more detail and look at their support in other
languages, in particular J, Fortran 90[16] and NESL[17].

In the following, we will denote a vector of n elements x; as:

{.Tl, T2, .In}

and an m by n array of elements a;; as:

{{an,am, ---aln}a
{CL21;CL22; ---a'2n}a

{amla A2, amn}}
2.1 Operations on whole arrays

The basic conceptual mechanism for whole array operations is the map, which
takes an operator and one or more source arrays, and produces a result array by
mapping the source(s) under the operator. Let us denote the type of an array of
elements of type T" as T'[]. Then if we have a binary operator w : (TQ®T) — T,
we automatically have an operator w : (T[] ® T[]) — T[] . Thus if z,y are
arrays of integers £k = x + y is the array of integers where k; = x; + y;, for
example:

{1,2,3,5} +{1,2,4,8} — {2,4,7,13}

Similarly if we have a unary operator p:(T—T) then we automatically have an
operator u:(T[]—T[]). Thus z =sqr(z) is the array where z; = zZ, for example:

sqr({1,2,4,8}) — {1,4, 16,64}

Map replaces the bounded iteration or for loop abstraction of classical impera-
tive languages. The map concept is simple, and maps over lists are widely used

in functional programming. For array based languages there are complications
to do with the semantics of operations between arrays of different lengths and
different dimensions. Iverson[11] provided a consistent treatment of these. Re-
cent languages built round this model are J, an interpretive language[18,19,13],
High Performance Fortran[16], F[20] a modern Fortran subset and NESL an
applicative data parallel language. In principle any language with array types
can be extended in a similar way.

The map approach to data parallelism is machine independent. Depending
on the target machine, a compiler can output sequential, SIMD, or MIMD
code for it. In particular, map may be exploited through implementation in-
dependent algorithmic skeletons [21] based on parallel templates for process
farms which are instantiated with appropriate sequential arguments from the
original source program|22].

Recent implementations of Fortran, such as Fortran 90, F, and High Perfor-
mance Fortran provide direct support for whole array operations. Given that
A,B are arrays with the same rank and same extents, the statements:

1. REAL,DIMENSION(64) ::A,B
2. A=3.0
3. B=B+SQRT(A)*0.5

would be legal, and would operate in a pointwise fashion on the whole arrays.
Thus, line 1 initialises every element of array A to 3.0 and line 2 sets each
element of array B to 0.5 times the corresponding element of A.

Intrinsic functions, such as SQRT, are defined to operate either on scalars or
arrays, but are part of the language rather than part of a subroutine library.
User defined functions over scalars do not automatically extend to array ar-
guments.

J? similarly allows direct implementation of array operations, though here
the array dimensions are deduced at run time:

.>a=. 1235
.>a

.1 235
.>b=.12438
. > atb
.247 13

OOl W N~

2 We will give examples from J rather than APL here for ease of representation in
ASCIL.

The pair =. is the assignment operator in J so line 1 initialises a new array
a of length 4 and line 4 initialises a new array b of length 4. Line 2 displays
the value of a and line 5 calculates and displays the array formed by summing
corresponding elements of a and b.

Unlike Fortran, J automatically overloads user defined functions over arrays:

7. > sqr=."&2
8.>c¢=.12438

9. > c+(sqr a)*0.5
10. 1.5 4 8.5 20.5

Here, line 7 defines a new monadic function sqr by partially applying the
binary power function ~ to the exponent 2. Line 8 then initialises array ¢ and
line 3 calculates and displays the array formed by adding each element of ¢ to
half the square of the corresponding element of a.

The functional language NESL provides similar generality. The first J example
above could be expressed as:

1. {a+b: a in [1,2,3,5]; b in [1,2,4,8]};
2.= [2, 4, 7, 13] : [int]

and the second example as:

3. {b+sqr(a)*0.5: a in [1,2,3,5]; b in [1,2,4,81};
4. = [1.5, 4, 8.5, 20.5] : [float]

The expressions in { } brackets termed Apply-to-Each constructs, also known
as comprehensions, are descended from the ZF notations used in SETL[23]
and MIRANDA[24]. Thus line 1 finds the sum of the successive elements of
the sequences [1,2,3,5] bound to a and [1,2,4,8] bound to b. Similarly,
line 3 finds the sum of successive elements of b and half the square of the
successive elements of a.

Again user defined functions can be applied element wise to sequences.

2.2 Array slicing

It is advantageous for many applications to be able to specify sections of arrays
as values in expression. The sections may be rows or columns in a matrix, or
a rectangular sub-range of the elements of an array, as shown in figure 1. In
image processing such rectangular sub regions of pixel arrays are called regions
of interest. It may also be desirable to provide matrix diagonals[25].

1111 1 1 1 1 1 1 11 1
11214 8 1 2 4 8 1 24 8
11214 16 1 2 4 16 1124 | 16
1128 512 1 2 8 512 1 2 8 512

Fig. 1. column, row and sub-array slices

The notion of array slicing was introduced to imperative languages by ALGOL
68[26]. In ALcoL 68 if x has been declared as [1:10]INT x, then x[2:6]
would be a slice consisting of the second through the sixth elements inclusive
that could be used on the right of an assignment or as an actual parameter.

Fortran 90 extends this notion to allow what it calls triplet subscripts, giving
the start position end position and step at which elements are to be taken
from arrays. For example:

REAL ,DIMENSION(10,10)::A,B
A(2:9,1:8:2)=B(3:10,2:9:2)

would be equivalent to the nested loop:

DO 1,J=1,8,2

DO 2, J=2,9
A(I,J)=B(I+1,J+1)
2 CONTINUE
1 CONTINUE

J allows a similar operation to select subsequences. For example:

1.> a=. 2%i.10

2.> a

3. 0246810 12 14 16 18
4.> 3{a

5. 6

Here, i.n is a function which produces a list of the first n elements of an
array starting with element 0. Line 1 constructs an array where each element
is double its subscript. ”{” is the sequence subscription operator so line 4
selects the element at index 3.

Selection of a subsequence is performed by forming a sequence of indices. For
example:

6. > (2+i.3){a
7. 46 8

In line 6, the expression 2+i .3 forms the sequence 2 3 4 which then subscripts
the array a.

NESL does not offer a direct equivalent to slicing.

2.8 Conditional operations

Much data parallel programming is based on the application of some oper-
ation to a subset of the data selected through a mask. This can be thought
of as providing a finer grain of selection than subslicing, allowing arbitrary
combinations of array elements to be acted on. For example one might want
to replace all elements of an array A less than the corresponding element in
array B with that element of B:

A {1,2,4,8}
B {2,3,4,5}
A<B {1,1,0,0}
{2,3,4,8}

Fortran 90 provides the WHERE statement to selectively update a section of an
array under a logical mask:

REAL, DIMENSION(64)::A
REAL, DIMENSION(64)::B
WHERE (A>=B)

A=A

ELSE WHERE

A=B

END WHERE

The WHERE statement is analogous to ALGOL 68 and C conditional expressions,
but extended to operate on arrays. It can be performed in parallel on all
elements of an array and lends itself to evaluation under a mask on SIMD
architectures.

NESL provides a generalised form of Apply-to-Each in which a sieve can be
applied to the arguments. For example:

1.{a+b : a in [1,2,3]; b in [4,3,2] | a<b}
2. = [5,5] : [int]

In line 1, a and b are constrained by the requirement that each element of a
must be less than the corresponding element of b.

Notice that in NESL, as in J, values are allocated dynamically from a heap so
that the length of the sequence returned from a sieved Apply-to-Each can be
less than that of the argument sequences in its expression part. In Fortran 90,
the WHERE statement applies to an array whose size is known on entry to the
statement.

2.4 Reduction operations

In a reduction operation, a dyadic operator is injected between the elements
of a vector or the rows or columns of a matrix to produce a result of lower
rank. Examples include forming the sum or finding the maximum or minimum
of a table. For example, + would reduce {1,2,4,8} to 1 +2+4+ 8 = 15.

The first systematic treatment of reduction operations in programming lan-
guages is due to Iverson[11]. His reduction functional takes a dyadic operator
and, by currying, generates a tailored reduction function. In APL and J the
reduction functional is denoted by /. Thus +/ is the function which forms the
sum of an array:

> a
1235

> +/a
11

s

In line 3 the reduction +/a expands to (1+ (2 + (3 + (4 +0)))).

The interpretation of reduction for non commutative operators is slightly less
obvious. Consider:

5. > -/a
6. 3

In line 6, _3 is the J notation for -3, derived from the expansion of (1 — (2 —
(3 —4(—0)))) from -/a in line 5. In J as in APL reduction applies uniformly
to all binary operators.

Fortran 90, despite its debt to APL, is less general, providing a limited set
of built in reduction operators on commutative operators: SUM, PRODUCT,
MAXVAL, MINVAL. NESL likewise provides a limited set of reduction functions
sum, minval, maxval, any, all. any and all are boolean reductions: any
returns true if at least one element of a sequence is true i.e. disjunctive re-

duction; all returns true if they are all true i.e. conjunctive reduction.

2.5 Data reorganisation

In both linear algebra and image processing applications, it is often desire-
able to be able to perform bulk reorganisation of data arrays, for example to
transpose a vector or matrix or to shift the elements of a vector. For example:

{{1,2,4}, {8, 16, 32}}

transposes to:

{{1,8},{2,16}, {4, 32}}

For example, one can express the convolution of a vector with a three element
kernel in terms of multiplications, shifts and adds. Let a = {1,2,4,8} be
a vector to be convolved with the kernel £ = {0.25,0.5,0.25}. This can be
expressed by defining two temporary vectors:

b =0.25a = {0.25,0.5,1,2}
c=0.5a={0.5,1,2,4}
The result is then defined as the sum under shifts of b, ¢:

{1,2,4, 8}convolve({0.25,0.5,0.25}) —
{0.5,1,2,2} + {0.5,1,2,4} + {0.25,0.25,0.5,1} —
{1.25,2.25,4.5, 7}

This example replicates the trailing value when shifting. In other circum-
stances, for example when dealing with cellular automata, it is convenient to
be able to define circular shifts on data arrays.

Fortran 90 provides a rich set of functions to reshape, transpose and circularly
shift arrays. For example, given a 9 element vector v we can reshape it as a 3
by 3 matrix:

V= (/ 1,2,3,4,536,7,8,9 /)
M=RESHAPE(V, (/3,3/))

to give the array:

~N o e
c O N
© o w

10

We can then cyclically shift this along a dimension

M2=CSHIFT(M,SHIFT=2,DIM=2)

to give

3 1 2
6 4 5
9 7 8

NEsL provides similar operations on sequences to those provided on arrays by
Fortran 90. For example, if:

v=1_[1,2,3,4,5,6,7,8,9]
s = [3,3,3]

then:

partition(v,s) = [[1,2,3],[4,5,6],[7,8,9]]
rotate(v,3)
= [7,8,9,1,2,3,4,5,6]

is equivalenet to the Fortran above.

3 Data parallelism in Vector Pascal

3.1 Language Decisions

In seeking to exploit new programming concepts one may either design a new
language or adapt an existing language. Designing a new language is high risk
in terms of the effort to be expended in developing new tools and promoting
a core community before any wider take up is likely.

Occam[27] represents a salutary object lesson. This language was intended for
a novel architecture, the transputer, and had its own formal logic, CSP. How-
ever, occam was never made adequately available on non-transputer archic-
tectures, and the transputer was overpriced and complex compared with the
Intel/Motorola hegemony. Now only CSP survives, having found a niche as as
a language- and architecture-independent formal notation.

For data parallelism, APL and J represented radical breaks from their con-
temporaries, introducing novel notations. We think that this was an important
factor in limiting their wider use. Overall, experience suggests that new con-

11

cepts gain provenence if they are presented in a familiar guise and if their use
involves low additional cost for the benefits it brings.

An existing language may be adapted through the introduction of new no-
tation or through the overloading of existing notation. Both approaches in-
volve modifications to existing language processors or the development of new
ones. Furthermore, both approaches may lose backwards compatibility with
the original. Finding a principled basis for adding a new notation to an extant
language is problematic.

For example, the late 80’s and 90’s saw a variety of attempts to extend C and
C++ with parallel programming concepts. Johnston[28] lists:

CC++ with par and parfor constructs;

C** with aggregate classes and concurrent element nomination;
Mentat with aggregate classes and explicit parallel methods;
pC++ with concepts from High Performance Fortran.

In the same period. Lattice Logic Limited (3L) developed their Parallel C
based on occam-like constructs[29]. All of these represent well thought through
extensions but none of these languages has gained widespread acceptance. We
speculate that, in part, this was because the extensions did not build naturally
on existing constructs.

NESL was strongly grounded in the functional language tradition. For exam-
ple, it’s sequences and APPLY-TO-EACH are effectively overloadings of lists
and list comprehensions. NESL has influenced recent research into extending
Standard ML for data parallelism. However, because overall the functional
paradigm is far less familar than the imperative paradigm, functional lan-
guages in general have still to gain wider currency beyond their academic
constituencies.

High Performance Fortran (HPF) is based on a combination of overloading
standard Fortran notation for arrays and operators, and the introduction of
new notation, for example for conditional operations and slicing. HPF provides
a relatively transparent extension to the widely used Fortran and represents
the most successfull data parallel language to date, enjoying wide use in the
scientific and technical communities.

Our Vector Pascal extends the array type mechanism of Pascal to provide
support for data parallel programming in general, and SIMD processing in
particular. Wherever possible,rather than introducing new constructs, we have
sought to increase orthogonality in Strachey’s sense[30] by overloading extant
notation. As most MMX extensions support arithmetic and logical operations
over byte sequences, a central concern in choosing a host language was the
degree to which the corresponding operators were already overloaded.

12

Pascal[31] was chosen as a base language over the alternatives of C and Java.
C overloads arithmetic operators to include address manipulation, often with
implicit type coercions. Thus, these operators could not also be used to express
data parallelism over structures. For example, Java overloads + both for string
concatenation and to coerce other base types to string when they are +ed with
strings. This precludes the use of + as a data parallel operation for combining,
as opposed to joining, arrays.

Pascal has other advantages in providing additional notations which can be
overloaded consistently for data parallelism. For example, the sub-range no-
tation is a natural basis for slicing.

3.2 Assignment maps

Standard Pascal allows assignment of whole arrays. Vector Pascal extends this
to allow consistent use of mixed rank expressions on the right hand side of an
assignment. For example, given:

ri:array[0..7] of real;
r2:array[0..7,0..7] of real

then we can write:

.rl1:=1/2;
. 1r2:=11%3;
.rl:=rdu + r2;
.rl:=ri1+r2[1];

=~ N =

Line 1 assign 0.5 to each element of r1. Line 2 assign 1.5 to every element of
r2. Line 3 uses the reduce operator rdu to set each element of r1 to the totals
along the coresponding row of r2. Line 4 increments each element of r1 with
the corresponding elements of row 1 of r2.

These may be translated directly to standard Pascal through iteration:

13

1’. for i:=0 to 7 do ri[il:=1/2;
2’. for i:=0 to 7 do for j:=0 to 7 do r2[i,j]l:=r1[jl1*3;
3. for i:=0 to 7 do
begin
t:=0;
for j:=7 downto 0 do t:=r2[i,jl+t;
rif[i]:

t;
end;

4’. for i:=0 to 7 do ri[i]:=ri[i]+r2[1,i];

The compiler has to generate an implicit loop over the elements of the array
being assigned to and over the elements of the array acting as the data-source.
In the above i,j,t are assumed to be temporary variables not refered to
anywhere else in the program. The loop variables are called implicit indices
and may be accessed using the operator ndx.

The variable on the left hand side of an assignment defines an array context
within which expressions on the right hand side are evaluated. Each array
context has a rank given by the number of dimensions of the array on the left
hand side. A scalar variable has rank 0. Variables occuring in expressions with
an array context of rank r must have r or fewer dimensions. The n bounds of
any n dimensional array variable, with n < r occuring within an expression
evaluated in an array context of rank r, must match with the rightmost n
bounds of the array on the left hand side of the assignment statement.

Where a variable is of lower rank than its array context, the variable is repli-
cated to fill the array context. This is shown in examples 1 and 2 above.
Because the rank of any assignment is constrained by the variable on the
left hand side, no temporary arrays, other than machine registers, need be
allocated to store the intermediate array results of expressions.

Maps are implicitly and promiscously defined on both monadic operators and
unary functions. If £ is a function or unary operator mapping from type r to
type t, and x is an array of r, then a:=f(x) assigns an array of ¢ such that

ali]=f(x[i]).

Functions can return any data type whose size is known at compile time,
including arrays and records. A consistent copying semantics is used.

14

3.8 Slice operations

Vector Pascal extends the array abstraction to define sub-ranges of arrays. A
sub-range is denoted by the array variable followed by a range expression in
brackets.

The expressions within the range expression must conform to the index type
of the array variable. The type of a range expression al[i..j] where a:
array[p..ql of tisarray[0..j-i] of t.

For example:

dataset[i..i+2]:=blank;
twoDdatal[2..3,5..6] :=twoDdata[4..5,11..12]1%0.5;

Subranges may be passed in as actual parameters to procedures whose corre-
sponding formal parameters are declared as variables of a schematic type. For
example:

type image(miny,maxy,minx,maxx:integer) =
array[miny. .maxy,minx..maxx] of pixel;
procedure invert(var im:image)
begin im:= - im; end;
var screen:array[0..319,0..199] of pixel;
. invert(screen[40..60,20..30]1);

inverts all of screens pixels in the subarray from (40,60) to (20,30).

A particular form of slicing is to select out the diagonal of a matrix. The
syntactic form diag expression selects the diagonal of the matrix to which it
applies. A precise definition of this is given in section 3.6.

3.4 Conditional update operations

In Vector Pascal the sort of conditional updates handled by the Fortran WHERE
statement, are programmed using conditional expressions. The Fortran code
shown above would translate to:

var a:array[0..63] of real;
. a:=if a>0 then a else -a;

The if expression can be compiled in two ways:

(1) Where the two arms of the if expression are parallelisable, the condition

15

and both arms are evaluated and then merged under a boolean mask.
Thus, the above assignment would be equivalent to:
a:= (a and (a>0))or(not (a>0) and -a);
were the above legal Pascal? .
(2) If the code is not paralleliseable it is translated as equivalent to a standard
if statement. Thus, the previous example would be equivalent to:
for i:=0 to 63 do if a[i]l>O0 then al[il]:=al[i] else alil:=-alil;
Expressions are non parallelisable if they include function calls.

The dual compilation strategy allows the same linguistic construct to be used
in recursive function definitions and parallel data selection.

3.5 Operator Reduction

Maps take operators and arrays and deliver array results. The reduction ab-
straction takes a dyadic operator and an array, and returns a scalar result. It
is denoted by the functional form rdu. Thus if a is an array, rdu + a denotes
the sum over the array. More generally rdu®z for some dyadic operator &
means £o®(z1P..(z,Pt)) where ¢ is the identity element for the operator and
the type. Thus we can write rdu+ for Y, rdux for [] etc?.

The dot product of two vectors can thus be written as:
x:= rdu +(y*z);
instead of:

x:=0;
for i:=0 to n do x:= x+ y[il*z[i];

A reduction operation takes an argument of rank r and returns an argument
of rank r-1 except in the case where its argument is of rank 0, in which case
it acts as the identity operation. Reduction is always performed along the last
array dimension of its argument.

Semantically, reduction by an operator say ® is defined such that:

var a:array[low..high] of t;x:t; x:=rdu®a;

3 This compilation strategy requires that true is equivalent to -1 and false to 0.
This is typically the representation of booleans returned by vector comparison in-
structions on SIMD instruction sets. In Vector Pascal this representation is used
generally and in consequence, true<false.

* For those who prefer a more APL style, rdu can also be written \ as in \+a to
sum the elements of an array

16

is equivalent to:

var temp:t;
i:1low. .high;
temp:= identity(t,®);
for i:= high downto low do temp:=a[i] ©temp;
x:=temp;

Here identity(t,®) is a function returning the identity element under the oper-
ator ® for the type t. The identity element is defined to be the value such that
x = z@identity(t,®). Identity elements for operators and types are shown in
table 1.

3.6 Array reorganisation

Array reorganisation involves conservative operations which preserve the num-
ber of elements in the orignal array. If the shape of the array is also conserved
we have an element permutation operation. If the shape of the array is not
conserved but it’s rank and extents are, we have a permutation of the array
dimensions. If the rank is not conserved we have a flattening or reshaping of
the array.

Vector Pascal provides syntactic forms to access and manipulate the implicit
indices used in maps and reductions. These forms allow the concise expression
of many conservative array reorganisations.

The form ndx 7 returns the ith current implicit index. Thus, the sequence:

vi:array[1..3] of integer;
v2:array[0..4] of integer;

vi:

= ndx O;
v2:= ndx 0 * 2;
would set:
vi=123
v2=0246 8

In contrast, given the sequence:
ml:array[1..3,0..4] of integer;

m2:array[0..4,1..3]of integer;
m2:= ndx 0 + 2 * ndx 1;

17

would set m2 to:

m2 =

o O WN
0 N O O
© 00 N O

10

The argument to ndx must be an integer known at compile time within the
range of implicit indices in the current context.

A generalised permutation of the implicit indices is performed using the syntatic
form:

perm[indez-sell ,index-sell * 1expression

The indez-sels are integers known at compile time which specify a permutation
on the implicit indices. Thus in e evaluated in context perm[z, j, k]e, then:

ndx 0 = ndx ¢, ndx 1= ndx j, ndx 2= ndx k

This is particularly useful in converting between different image formats. Hard-
ware frame buffers typically represent images with the pixels in the red, green,
blue, and alpha channels adjacent in memory. For image processing it is con-
venient to hold them in distinct planes. The perm operator provides a concise
notation for translation between these formats:

type rowindex=0..479;
colindex=0..639;
var channel=red..alpha;
screen:array[rowindex,colindex,channel] of pixel;
img:array[channel,colindex,rowindex] of pixel;

screen:=perm[2,0,1]img;

trans and diag provide shorthand notions for expressions in terms of perm.
Thus in an assignment context of rank 2, trans = perm[1,0] and diag =
perm[0,0].

The form trans z transposes a vector, matrix, or tensor. 5 It achieves this by
cyclic rotation of the implicit indices. Thus if trans e, for some expression e
is evaluated in a context with implicit indices:

ndx 0 .. ndx n

5 Note that trans is not strictly speaking an operator, as there exists no Pascal
type corresponding to a column vector.

18

then the expression e is evaluated in a context with implicit indices:

ndx’0 .. ndx’n
where:
ndx’z = ndx ((z+1) mod n+1)

It should be noted that transposition is generalised to arrays of rank greater
than 2.

For example, given the defintions used above, the program fragment:

ml:=(trans v1)*v2;
m2:= trans mi;

will set m1 and m2:

468

8 12 16
12 18 24
0

6

12

12 18

16 24

ml

0 B OO BN

0 O PN O O OO

3.6.1 Array shifts
The shifts and rotations of arrays in Fortran 90 and NESL are not supported
by any explicit Vector Pascal operator, though one can use a combination of
other features to achieve them. For example, given:

var a,b:array[0..n-1] of integer;
a left rotation can achieved as:

a:=b[(1+ ndx 0)mod n];

and a reversal by:

a:=b[n-1 - ndx 0];

19

3.6.2 Element permutation

Permutations are widely used in APL and J programming, an example being
sorting an array a into descending order using the J expression \:af{a. This
uses the operator \: to produce a permutation of the indices of a in descend-
ing order, and then uses { to index a with this permutation vector. The use
of analogous constructs requires the ability to index one array by another. If
x:array[t0] of tlandy:arrayl[ti] of t2, then in Vector Pascal, y[x] de-
notes the virtual array of type array[t0] of t2 such that y[x] [il=y[x[i]].

For example, given the sequence:

const perm:array[0..3] of integer=(3,1,2,0);
var ma,m0:array[0..3] of integer;

mO:= (ndx 0)+1;
ma: =m0 [perm] ;

would set the variables such that

4
0

m0 =
perm
ma =

[[
N W
w =
= N W

3.7 Efficiency considerations

Expressions involving transposed vectors, matrix diagonals, and permuted vec-
tors, or indexing by expressions involving modular arithmetic on ndx, do not
parallelise well on SIMD architectures like the MMX. These depend upon the
fetching of blocks of adjacent elements into the vector registers which requires
that element addresses be adjacent and monotonically increasing. Assignments
involving re-mapped vectors are usually handled by scalar registers.

4 Extensions to the Pascal Type System

4.1 Pigels

Standard Pascal is a strongly typed language, with a comparatively rich col-
lection of type abstractions : enumeration, set formation, sub-ranging, array

20

formation, cartesian product® and unioning”. However for image processing
it lacks support for pixels and images. Given the vintage of the language this
is not surprising and can be readily overcome using existing language features.
Thus pixels may be defined as a subrange 0..255 of the integers, and images
may be modeled as two dimensional arrays.

However, such an approach throws onto the programmer the whole burden of
handling the complexities of limited precision arithmetic. Among the problems
are:

(1) When doing image processing it is frequently necessary to subtract one
image from another, or to create negatives of an image. Subtraction and
negation implies that pixels should be able to take on negative values.

(2) When adding pixels using limited precision arithmetic, addition is non-
montonic due to wrap-round. Pixel values of 100 4+ 200 = 300, is in 8
bit precision truncated to 44, a value darker than either of the start-
ing values. A similar problem can arise with subtraction, for instance
100 — 200 = 156 in 8 bit unsigned arithmetic.

(3) When multiplying 8 bit numbers, for example in executing a convolution
kernel, it is necessary to enlarge the representation and shift down by an
appropriate amount to stay within range.

These and similar problems make the coding of image filters a skilled task. The
difficulty arises through the use of an inappropriate conceptual representation
of pixels.

The conceptual model of pixels in Vector Pascal is that they are real numbers
in the range —1.0..1.0. This representation overcomes the above difficulties. As
a signed representation it lends itself to subtraction. As an unbiased represen-
tation, it makes the adjustment of contrast easier. For example, one can reduce
contrast 50% simply by multiplying an image by 0.5 8. Assignment to pixel
variables in Vector Pascal is defined to be saturating - real numbers outside
the range —1..1 are clipped to it. The multiplications involved in convolution
operations fall naturally into place.

The tmplementation model of pixels used in Vector Pascal is of 8 bit signed
integers treated as fixed point binary fractions. All the conversions necessary
to preserve the monotonicity of addition, the range of multiplication etc, are
delegated to the code generator which, where possible, will implement the
semantics using efficient, saturated multi-media arithmetic instructions.

6 The record construct.

7 The case construct in records.

8 When pixels are represented as integers in the range 0..255, a 50% contrast re-
duction has to be expressed as ((p — 128) + 2) + 128.

21

4.2 Dimensioned Types

Dimensional analysis is familiar to scientists and engineers and provides a rou-
tine check on the sanity of mathematical expressions. Dimensions cannot be
expressed in the otherwise rigorous type system of standard Pascal, but they
are a useful protection against the sort of programming confusion between im-
perial and metric units that caused the demise of a recent Mars probe. In par-
ticular, they provide a means by which floating point types can be specialised
to represent dimensioned numbers as is required in physics calculations. For
example:

kms = (mass,distance,time);

meter = real of distance;

kilo = real of mass;

second = real of time;

newton = real of mass * distance * time POW -2;
meterpersecond = real of distance * time POW -1;

The type identifier must be a member of a Pascal scalar type, and that scalar
type is then refered to as the basis space of the dimensioned type. The identi-
fiers of the basis space are refered to as the dimensions of the dimensioned type.
Associated with each dimension of a dimensioned type is an integer number
refered to as the power of that dimension. This is either introduced explicitly
at type declaration time, or determined implicitly for the dimensional type of
expressions.

A value of a dimensioned type is a dimensioned value. Let log, ¢ of a dimen-
sioned type t be the power to which the dimension d of type t is raised. Thus
for t =newton in the example above, and d =time, log,t = —2

If + and y are values of dimensioned types t;and ¢ respectively, then the
following operators are only permissible if ¢, = t,: +, - ,<, >, =, <=, >=
For + and - the dimensional type of the result is the same as that of the
arguments. The operations * and / are permited if the types ¢;and ¢, share
the same basis space, or if the basis space of one of the types is a subrange of
the basis space of the other.

The operation POW is permited between dimensioned types and integers.

The rules for deducing dimensions are:

(1) fx =yxzforx:t1,y: te, z : t3 with basis space B then Vyeplog,t; =
log, to + log, ts.

(2) If x = y/z for @ : t1,y : ta, 2 : t3 with basis space B then V4eplog,t; =
log,te — logy, ts.

22

(3) If x =y POW z for x : t1,y : to, 2 : integer with basis space for to, B then
Vieplog,t1 = log,ta X 2.

5 Operators and Overloading
5.1 Dyadic Operations

Dyadic operators supported are +:, -:, -, %, /, div, mod , **, pow,

<, >, >=, <=, =, <>, shr, shl, and, or, in, min, max. All of these are
consistently extended to operate over arrays. The operators **, pow denote

exponentiation and raising to an integer power as in ISO Extended Pascal.

The operators +: and -: exist to support saturated arithmetic on bytes as
supported by most multi-media instruction-sets.

5.1.1 Inner Product of Vectors

Given the v, w are one dimensional arrays then v.w is the scalar product of
the two vectors.

If Mis a two dimensional array and v a vector, M.v produces the vector trans-
formed by the matrix M. This has obvious applications in graphics. If a,b
are two dimensional arrays then a.b applies the standard equation for matrix
multiplication:

p
Cik = z aisbsk (1)
s=1

where A is of order (m x p)and B is of order (p x n) to give a resulting matrix
C of order (m x n). Vector and matrix multiplication are implemented with
in-line code allowing context specific optimisations to be used and extend to
any types for which addition and multiplication operators are defined.

5.2 Unary operators

The unary operators supported are =, *, /, max, min, div, not, round,
sqrt, sin, cos, tan, abs, 1ln, ord, chr, succ, pred and Q.
In standard Pascal some of these operators are treated as functions. Syntac-

tically this means that their arguments must be enclosed in brackets, as in

23

Table 1
Identity element

type operators identity elem
number +,- 0

set + empty set

set - X fullset
number | *,/ ,div,mod 1
boolean and true
boolean or false

sin(theta). This usage remains syntactically correct in Vector Pascal.

The dyadic operators are extended to unary context by the insertion of an
identity element under the operation. This is a generalisation of the monadic
use of + and - in standard Pascal where +a=0+a and -a = 0-a with 0 being
the additive identity, so too the divide operator can be used monadicaly, for
example /2 meaning 1/2 with 1 as the multiplicative identity element. Simi-
larly, for sets the notation -s means the complement of the set s. The identity
elements inserted are given in table 1.

5.8 Operator overloading

The dyadic operators can be extended to operate on new types by operator
overloading. Figure 9 shows how arithmetic on the type complex required by
Extended Pascal [32] is defined in Vector Pascal. Each operator is associated
with a semantic function and an identity element. The operator symbols must
be drawn from the set of predefined Vector Pascal operators, and when expres-
sions involving them are parsed, priorities are inherited from the predefined
operators. The type signature of the operator is deduced from the type of the
function ® . When parsing expressions, the compiler first tries to resolve opera-
tions in terms of the predefined operators of the language, taking into account
the standard mechanisms allowing operators to work on arrays. Only if these
fail does it search for an overloaded operator whose type signature matches
the context.

In the example in figure 9, complex numbers are defined to be records contain-
ing an array of reals, rather than simply as an array of reals. Had they been so
defined, the operators +,*,-,/ on reals would have masked the corresponding

9 Vector Pascal allows function results to be of any non-procedural type.

24

type complex = record data: array[0..1] of real;end;
var complexzero,complexone:complex;

{ headers for functions onto the complex numbers }
function cmplx(realpart,imag:real):complex;
function complex_add(A,B:complex):complex;
function complex_conjugate(A:complex):complex;
function complex_subtract(A,B:complex):complex;
function complex_multiply(A,B:complex):complex;
function complex_divide(A,B:complex):complex;
function im(c:complex) :real;

function re(c:complex):real;

{ Standard operators on complex numbers 1}

operator + = complex_add,complexzero;

operator / = complex_divide,complexone;

operator * complex_multiply,complexone;

operator - complex_subtract,complexzero;

Note that only the function headers are given here as this code comes from the

interface part of the system unit. The function bodies and the initialisation of the
variables complexone and complexzero are handled in the implementation part of
the unit.

Fig. 2. Defining operations on complex numbers

operators on complex numbers.

The provision of an identity element for complex addition and subtraction
ensures that unary minus, as in —x for x :complex, is well defined, and cor-
respondingly that unary / denotes complex reciprocal. Overloaded operators
can be used in array maps and array reductions.

6 Example: image filtering

As an example of Vector Pascal we will consider an image filtering algorithm.
In particular we will look at applying a separable 3 element convolution kernel
to an image. We shall initially present the algorithm in standard Pascal and
then look at how one might re-express it in Vector Pascal.

Convolution of an image by a matrix of real numbers can be used to smooth
or sharpen an image, depending on the matrix used. If A is an output image,
K a convolution matrix, then if B is the convolved image

By,z = Z Z Ay+i,$+jKi,j
i

25

A separable convolution kernel is a vector of real numbers that can be applied
independently to the rows and columns of an image to provide filtering. It is
a specialisation of the more general convolution matrix, but is algorithmically
more efficient to implement. If k£ is a convolution vector, then the correspond-
ing matrix K is such that K;; = k;k;.

Given a starting image A as a two dimensional array of pixels, and a three
element kernel cy, co, c3, the algorithm first forms a temporary array 7" whose
whose elements are the weighted sum of adjacent rows T, , = ciAy_1, +
coAyz + c3Ayt1,5- Then in a second phase it sets the original image to be the
weighted sum of the columns of the temporary array: A, , = 1Ty ; 1+coTy o+
3Ty o1

The outer edges of the image are a special case, since the convolution is defined
over the neighbours of the pixel, and the pixels along the boundaries are
missing one neighbour. A number of solutions are available for this, but for
simplicity we will perform only vertical convolutions on the left and right edges
and horizontal convolutions on the top and bottom lines of the image.

Figure 6 shows conv an implementation of the convolution in Standard Pascal.
The pixel data type has to be explicitly introduced as the subrange -128..127.
Explicit checks have to be inplace to prvent range errors, since the result of
a convolution may, depending on the kernel used, be outside the bounds of
valid pixels. Arithmetic is done in floating point and then rounded.

Image processing algorithms lend themselves particularly well to data-parallel
expression, working as they do on arrays of data subject to uniform operations.
Figure 4 shows a data-parallel version of the algorithm, pconv, implemented
in Vector Pascal. Note that all explicit loops disappear in this version, being
replaced by assignments of array slices. The first line of the algorithm ini-
tialises three vectors p1, p2, p3 of pixels to hold the replicated copies of the
kernel coefficients c1, c2, c¢3 in fixed point format. These vectors are then
used to multiply rows of the image to build up the convolution. The notation
theim[] [1. .maxpix-1] denotes columns 1..maxpix-1 of all rows of the im-
age. Because the built in pixel data type is used, all range checking is handled
by the compiler. Since fixed point arithmetic is used throughout, there will
be slight rounding errors not encountered with the previous algorithm, but
these are acceptable in most image processing applications. Fixed point pixel
arithmetic has the advantage that it can be efficently implemented in parallel
using multi-media instructions.

The data-parallel implementation is considerably more concise than the se-
quential one; 12 lines with 505 characters compared to 26 lines with 952 char-
acters. It also runs considerably faster, as shown in table 2. This expresses the
performance of different implementations in millions of effective arithmetic op-

26

type
pixel = -128..127;
tplain = array[0..maxpix ,0..maxpix] of pixel;

procedure conv(var theim:tplain;cl,c2,c3:real);
var tim:array[0..maxpix,0..maxpix]of pizxel;

temp:real;
i,j:integer;
begin

for i:=1 to maxpix-1 do
for j:= 0 to maxpix do begin
temp:= theim[i-1] [jl*cl+theim[i] [jI*c2+theim[i+1] [j]*c3;
if temp>127 then temp :=127 else
if temp<-128 then temp:=-128;
tim[i] [j] :=round (temp) ;
end;
for j:= 0 to maxpix do begin
tim[0] [j]:=theim[0] [j]; tim[maxpix][j]:=theim[maxpix][j];
end;
for i:=0 to maxpix do begin
for j:= 1 to maxpix-1 do begin
temp:= tim[i] [j-1]*cl+tim[i] [j+1]*c3+tim[i] [j]*c2;
if temp>127 then temp :=127 else
if temp<-128 then temp:=-128;
tim[i] [j] :=round(temp) ;
end;
theim[i] [0] :=tim[i] [0]; theim[i] [maxpix]:=tim[i] [maxpix];
end;
end;

Fig. 3. Standard Pascal implementation of the convolution

procedure pconv(var theim:tplain;cl,c2,c3:real);
var tim:array[0..maxpix,0..maxpix]of pixel;
pl,p2,p3:array[0. .maxpix]of pixel;
begin
pl:=cl; p2:=c2; p3:=c3;
tim [1..maxpix-1] :=
theim[0. .maxpix-2]*pl +theim[1..maxpix-1]*p2+theim[2..maxpix]*p3;
tim[0] :=theim[0]; tim[maxpix]:=theim[maxpix];
theim[] [1. .maxpix-1]:=
tim[] [0. .maxpix-2]*pl+tim[] [2. .maxpix]*p3+tim[] [1. .maxpix-1]*p2;
theim[] [0] :=tim[] [0]; theim[] [maxpix]:=tim[] [maxpix];
end;

Fig. 4. Vector Pascal implementation of the convolution

27

Algorithm Implementation Target Processor = Million Ops Per Second

conv Vector Pascal Pentium + MMX 61
Borland Pascal 286 + 287 5.5
Delphi 4 486 86
DevPascal 486 62
pconv Vector Pascal 486 80
Vector Pascal Pentium + MMX 817

Table 2

Comparative Performance on Convolution

erations per second on a 1GHz Athlon. It is assumed that the basic algorithm
requires 6 multiplications and 6 adds per pixel processed. The data parallel
algorithm runs 12 times faster than the serial one when both are compiled us-
ing Vector Pascal and targeted at the MMX instruction set. pconv also runs
a third faster than conv when it is targeted at the 486 instruction set, which
in effect, serialises the code.

For comparison conv was run on other Pascal Compilers!®, DevPascal 1.9,
Borland Pascal and its successor Delphi!l. These are extended implementa-
tions, but with no support for vector arithmetic. Delphi is a state of the art
commercial compiler, as Borland Pascal was when released in 1992. DevPas is
a recent free compiler. In all cases range checking was enabled for consistency
with Vector Pascal. The only other change was to define the type pixel as
equivalent to the system type shortint to force implementation as a signed
byte. Delphi runs conv 40% faster than Vector Pascal does, whereas Borland
Pascal runs it at only 7% of the speed, and DevPascal is roughly comparable
to Vector Pascal.

Further performance comparisons are given in table 3. Here:

e DevP - Dev Pascal version 1.9

e TMT - TMT Pascal version 3

e BP 286 - Borland Pascal compiler with 287 instructions enabled range checks
off.

e DP 486 - Delphi version 4

e VP 486 - Vector Pascal targeted at a 486

e VP K6 - Vector Pascal targeted at an AMD K6

All figures are in millions of operations per second on a 1 Ghz Athlon.

10 Tn addition to those shown the tests were perfomed on PascalX, which failed either
to compile or to run the benchmarks. TMT Pascal failed to run the convolution test.
1 version 4

28

DevP TMT BP 286 DP 486 VP 486 VP K6 test

71 80 46 166 333 2329 unsigned byte additions
55 57 38 110 225 2329 saturated unsigned byte
additions

85 59 47 285 349 635 32 bit integer additions

66 74 39 124 367 1165 16 bit integer additions

47 10 33 250 367 582 real additions

49 46 23 98 188 2330 pixel additions

67 14 39 99 158 998 pixel multiplications

47 10 32 161 164 665 real dot product

79 58 33 440 517 465 integer dot product
Table 3

Performance on vector kernels

The tests here involve vector arithmetic on vectors of length 640 and take the
general form v; = vy¢vs for some operator ¢ and some vectors vy, vy, v3. The
exception is the dot product operation coded as

r:=rdu + r2*r3
in Vector Pascal, and using conventional loops for the other compilers.

When targeted on a 486 the performance of the Vector Pascal compiler for
vector arithmetic is consistently better than that of other compilers. The ex-
ception to this is dot product operations on which Delphi performs particularly
well. When the target machine is a K6 which incorporates both the MMX and
the 3DNow SIMD instruction sets, the acceleration is broadly in line with the
degree of parallelism offered by the architecture: 8 fold for byte operands, 4
fold for 16 bit ones, and 2 fold for integers and reals. The speedup is best for
the 8 bit operands, a sevenfold acceleration on byte additions for example. For
larger operands it falls off to 60% for 32 bit integers and 33% for 32 bit reals.

For data types where saturated arithmetic is used, the accleration is most
marked, a 12 fold acceleration being achieved for saturated byte additions
and a 16 fold acceleration on pixel additions. These additional gains come
from the removal of bounds checking code that would otherwise be required.

For an indicator of the performance of Vector Pascal on other instruction
mixes, the Dhrystone Pascal benchmark was used, shown in Table 4. Due to
timing quantization all figures are accurate to only about 4%. These tests
indicate that Vector Pascal on such instruction mixes is comparable to other
Pascal compilers. The two outliers are Pascal X and Delphi. The Pascal X

29

Compiler Dhrystones per sec

Pascal X 4317
Turbo Pascal 4 142373
TMT Pascal 159461
Borland Pascal 183144
Vector Pascal 190246
DevPascal 201612
Delphi 357142

Table 4
Dhrystone performance. All measurements were performed on a 266 Mhz Intel Pen-
tium.

Find L the minimum of the lengths of x and y.
Allocate a new array R of length L.

For i = 0 to L-1 set R;= primeval(z;,y;,w)
Return R

Fig. 5. Interpretive array expression evaluation

system is a p-code interpreter, and as such is slower. The Delphi compiler is
faster than the others, possibly due its use of registers rather than the stack
for parameter passing in procedure calls.

7 Integrating Array Optimisations

An implementation of array valued expressions poses significant design choices.
These will affect the efficiency of the compiled code. In order to bring out
some of the issues involved in compiling such expressions let us first consider
how an interpretive language might handle them. Initially consider evaluating
rwy where w is a primitive operator like addition or multiplication. If the
interpreter is written in C then the array expression can be evaluated by a
generalised function of the form:

arrayt eval(arrayt x, arrayt y, char omega)

where arrayt is a type representing a pointer to an array descriptor on the
heap. When the function eval returns it will have allocated a new array on
the heap into which it will have written the result of applying the operation
omega to corresponding elements of x and y. If we abstract from the problem
of handling arrays of different rank, and consider intially the case where x and
y are vectors then this can be done with the algorithm in Figure 5.

30

Here primeuval is a function that evaluates the scalar expression awb, for scalars
a,b. We chose an interpretation of zwy that returns an array whose length is
the minimum of the lengths of x, y for simplicity of explanation.

This is clearly a very naive interpretive algorithm since it costs a function call
for each primitive evaluation. Efficiency can be greatly improved by using a
case statement to branch on w prior to for loops:

switch(omega){

case (’+’):for(i=0;i<L;i++)R[i]=x[i]+y[i]; break;

case (’-’):for(i=0;i<L;i++)R[i]=x[i]-y[i]; break;
.}

In this case, the efficiency of the interpretive code can be quite high, indeed it
appears to tends to the limiting efficiency of compiled code as L — oo. This
sort, of optimisation explains why the performance of good interpretive array
languages can be comparable with compiled code.

However the final run time performance of a program though crucially depen-
dent on the number of arithmetic instructions in inner loops, the optimisation
addressed above, also depends upon other factors. Among these are the effi-
cient use of the storage hierarchy and the ability to exploit vector instructions.

Suppose we evaluate the assignment statement z<—x+y. Prior to the execution
of the statement we have 3 buffers in memory corresponding to the arrays
referenced by the three variables. We disregard the case where z has no initial
value. The operation results in the discarding of the original buffer for z which
becomes garbage. In a long running algorithm this will have to be recovered.
This is storage overhead becomes more significant when we consider more
complex array expressions like

z < ax(b-c)

In this case a temporary array will be created for the result of b-c prior to the
array multiply. The first order cost of recovering the space will depend on the
sort of storage management algorithm used, and in particular on whether the
algorithm always clears any buffer that it allocates. If it is not cleared, then
the allocation and recovery will be independent of the buffer size. If the buffer
is cleared, then this imposes an overhead of at least one memory store for each
pair of primitive operands evaluated in an array expression. By itself, this is a
relatively small overhead which can be avoided if there is a non-initialising call
to the buffer allocation API. But it becomes more significant once we consider
the interaction of buffer allocation with the memory hierarchy.

The levels to consider are registers, cache and main memory and in very
large applications virtual memory. The interpretive implementation makes no

31

til=memalloc(b_min_c);
for(i=0;i<b_min_c;i++)t1[il=b[i]l-c[i];
t2=memalloc(t1_min_a);
for(i=0;i<t1_min_a;i++)t2[il=alil*t1[i];
dispose(z);

z=t2;

Fig. 6. Naive compiled algorithm.

for(i=0;i<zlen;i++)

z[i]=alil*(b[i]-c[il);

Fig. 7. Optimal version.

attempt to exploit registers and makes very inefficient use of the cache. Since
the result of each primitive binary operation is written to memory, and since
the memory block is always newly allocated, it will tend not to be present in
cache. When it is written to for the first time, and in this approach buffers
tend to be written to only once, the result will be stored in cache. By the time
the multiplication in a*(b-c)is done, the result of the subtraction is in cache,
so the multiplication proceeds relatively fast. But a cost of storing the result
of subtraction in cache is that an equivalent number of bytes of other data
must be purged from the cache. If the arrays are sufficiently large relative to
cache sizes, then the result of the subtraction could flush the array a out of
the cache. Given that access to main memory can be 20 times slower than
cache access such cache flushing could seriously affect performance.

A naive array expression compiler would generate code whose dynamic exe-
cution would model the dynamic execution of an interpreter. We will model
the compilation process by producing equivalent C code. Clearly one route
to compilation is to translate the array code into C and leave the machine
dependent part of the compilation to the code generator. We will see later
that this is not always optimal. The statement z < a*(b-c) would map to
the code shown in Figure 7.

For simplicity we assume that the sizes of the result arrays b_min_c etc, have
been precomputed either at compile time or in an earlier code fragment. This
C code, whilst it has removed the interpretive overheads still retains the same
cache penalties as the interpretive code and memory allocation penalties as
the original interpretive version.

An alternative approach would be to decompose the array operations so that
the whole expression was evaluated as a single loop equivalent to the C code
shown in Figure 7. This approach, termed pull-through, has a number of ad-
vantages. In this example we have actually carried out two transformations,
we have removed the redundant creation of temporary vectors, and also re-
organised the code so that the final result is written into the original buffer z,

32

vector length 210 212 24 916 918 920

naive us 0.063 0.047 0.056 0.082 0.088 0.105
optimal us 0.036 0.032 0.037 0.048 0.057 0.071

naive/optimal 148 148 149 1.70 1.53 1.48
Table 5
Crusoe performance on x:=a*(b-c) implemented in registers versus naively.

vector length ~ 2'0 212 214 216 218 220

naive us 0.016 0.02 0.021 0.029 0.029 0.03
optimal s 0.009 0.012 0.0019 0.013 0.014 0.015

naive/optimal 1.66 1.61 1.11 2.2 213 2.03
Table 6
P4 performance on x:=a*(b-c) implemented in registers versus naively.

rather than a newly created buffer z. This optimisation is possible so long as z
already references a buffer of the appropriate size, something that a compiler
can usually determine.

The expression a[il*(b[i]-c[i]) is a scalar one, and as such can be effec-
tively computed within registers. This gives us two advantages:

(1) Since the temporary result of b[i]-c[i] isin a register, it can be accessed
without any store accesses when needed for the subsequent multiply.

(2) Since no cache writes occur for the vector result of b-c, the elements of
the array a are more likely to be in cache when needed.

Table 5 shows the Crusoe performance on x:=a*(b-c) implemented in regis-
ters compared with the naive implementation. Code was generated using 16
bit numbers with MMX vectorisation enabled. The total number of integer
operations were held constant as the vector length varies by altering the num-
ber of times the operation is repeated. The table shows times in microseconds
to perform the arithmetic to produce each 16 bit result averaged over a large
number of runs on a 750MHz Crusoe processor with a 64KB primary cache.
The program was compiled using the Vector Pascal compiler. The naive version
was emulated by splitting the statement into two parts thus f:=b-c;x:=ax*f;
Table 6 shows P4 performance on x:=a*(b-c) implemented in registers com-
pared with the naive implementation. Vectorisation was enabled. Again, the
table shows times in microseconds to perform the arithmetic to produce each
16 bit result. A 1300MHz P4 processor with a 8KB primary cache and 256k
secondary cache was used. Compilation was as described in Table 5.

The broad features to note are :

e As vector lengths rise, the time taken to produce each byte of the result

33

rises, this is due to generally poorer locality of access and thus generally
poorer cache utilisation for larger vectors.

e In all cases the optimal code which evaluates temporary results in registers
performs better than the naive code which allocates temporaries to memory
buffers. In some cases it performs twice as well.

e The degree of advantage of the optimal code varies non-linearly with vector
length as a result of interaction of the vector block sizes with the levels
of the cache hierarchy. With certain combinations of sizes of vector and
cache, the temporaries produced by the initial subtraction do not interfere
with the source data. In these cases the performance penalty for the naive
implementation is less.

We have argued against evaluating each binary array operator to produce a
new array value, because it is more efficient to combine all subexpressions
within a loop operating on a scalar expression. So long as one is dealing with
vector or matrix expressions of the form M <+ Aw;Bw;C where wy,w, are
pairwise scalar operators, such as + or -, which are mapped over the matri-
ces, no problems arise. The semantics of both implementation approaches are
the same. When we allow other operators such a matrix transpose or matrix
multiply, problems can arise.

1
Suppose we transpose the matrix using the assignment A < BT, then A
34

13
ends up with , and if we evaluated B + B” we would expect B to also
24

3
equal . However if we have translated X « Y7 for 2 by 2 matrices X, Y,
24

as:

for(i=0;i<2;i++)
for(j=0;j<2;j++)
X[i,jl=Y[j,1l]

using this approach B < B would result in the corruption of B as the

transpose was being evaluated giving . A similar corruption would occur
24
with the evaluation of some matrix products by simple nested loops: A <+ B.C
would be safe but A < B.Awould not. It is to obviate these dangers that
Fortran 90 defines the semantics of array assignments as having to evaluate the
entire array valued expression on the right hand side of the assignment prior to
performing the assignment itself. Vector Pascal takes the opposite approach,
specifying that the semantics of array expressions is defined in terms of the

34

equivalent loop construct with the compiler signaling an error if it encounters
a data flow hazard in an array expression. Since, in the presence of parameter
aliasing, it is not always possible to detect such data-flow hazards at compile
time, one can argue that the Fortran 90 approach is safer. The additional cost
incurred by the Fortran 90 semantics can be avoided in those cases where
data-flow analysis can prove that no hazard exists - for instance where the
arrays are not function parameters.

It is highly desirable that an array language have some system of array bounds
checking to detect errors. The simplest way to do this is to plant explicit tests
on array bounds whenever an array is indexed. Using C as an algorithmic
notation this would take the general form:

if (i<1lwb_a) “boundsfault () ;
if (i>upb_a)boundsfault () ;
b=a{[}i{1};

This is clearly expensive and would dominate the cost of actual array access.
But this can be done with as little as one extra instruction on an Intel processor
using the:

BOUND r,pair

instruction where r is a register and pair is reference to a two element vector
in memory. This checks whether a register r is between the values pair[0],
and pair[1] generating an interrupt if it fails. Since a modern processor will
be able to fetch 64 bits at time from memory, both bounds can be accessed
in a single memory fetch, but the extra instruction and extra memory fetch
can still represent an overhead of 50% or more on the original cost of array
access. It is thus desirable to try and minimise the number of array bounds
checks that are done.

Suppose we start with a loop with naive bounds checking:

for(i=x;i<=y;i++){
if (i<lwb_a) boundsfault();
if (i>upb_a) boundsfault();
total+=alil;

}

Then it is clear that z < ¢ < y throughout the loop. Thus if an array bounds
fault is to occur, either x <lwb_a or y >upb_a. We can safely move the bounds
check to before the start of the loop:

if (x<1lwb_a) boundsfault();
if (y>upb_a) boundsfault();

35

code us ratio
optimal array bounds vector 0.03
naive array bounds vector 0.036
naive/optimal vector 1.2
optimal array bounds scalar 0.076
naive array bounds scalar (.18

naive/optimal scalar 2.36
Table 7
Crusoe performance on x:=a*(b-c) in registers with no intermediate buffer assign-
ment comparing naive with optimised array bounds checking.

for(i=x;i<=y;i++)
total+=al[il;

So long as = < y this formulation will have a lower overhead. Indeed in many
cases it allows the bounds check to be totally eliminated. If the array bounds
and loop bounds are known at compile time, then the tests can be evaluated
during compilation. If they pass, the compiler can elide the bounds checking
code, if they fail, it can signal a type error at compile time.

In an array language, most of the for loops that the compiler deals with
are automatically generated ones arising from array assignments. These lend
themselves very well to the optimisations described above. For statically sized
arrays, which are the predominant ones in classical Fortran or Pascal pro-
gramming, most array bounds checks can be performed at compile time. For
dynamically sized arrays most bounds checks can precede the loop. An excep-
tion comes in scatter-gather statements such as: b:=a[c|, where c is an array.
In this case we must plant code to check that each c¢[i] is within the bounds
of a.

Table 7 shows Crusoe performance on x:=a*(b-c) in registers with no in-
termediate buffer assignment comparing naive with optimised array bounds
checking. The same test conditions apply as in Table 5. The vector lengths
are 1024.

The propagation of array bounds checking outside of loops can make modest
but very worthwhile improvement to performance for vectorised code, but
makes a very big difference to performance on non-vectorised code. For the
vectorised code, array bounds are checked for only 25% of the entries anyway,
reducing the advantage of optimising the checks.

Other obvious optimisations applied by the compiler are loop unrolling and
vectorisation. If we now consider the combined effects of all of the optimisa-

36

improvement cumulative

contribution improvement

registers versus temporary array results 1.48 1.48

vectorisation 4.74 7.01

optimal array bound checks 1.2 8.41

Loop unrolling 1.55 13.0
Table 8

The cumulative effects on performance of all the array optimisations.

tions we can see that they speed array expressions up more than 10 times
(table 8). The gains from each optimisation combine multiplicatively. The ex-
act figures given for each of the optimisations will depend on the machine it is
being run on, the vector lengths and the efficiency of other aspects of the com-
pilation process. In our examples we have used 16 bit arithmetic because this
vectorises on any common-denominator Pentium compatible machine. The
vectorisation gains for floating point code can be less.

8 Implementation

At the heart of the Vector Pascal implementation is the machine indepen-
dent Intermediate Language for Code Generation (ILCG)[33]. Its purpose is
to act as an input to an automatically constructed code generator, working on
the syntax matching principles described in [34]. Simple rules link high-level
register transfer descriptions with the equivalent low-level assembly represen-
tations. ILCG may be used as a machine-oriented semantics of a high-level
program or of a CPU. It may also be used as an intermediate language for
program transformation.

ILCG is strongly typed, supporting the base types common in most program-
ming languages along with type constructors for vectors, stacks and refer-
ences. Of particular relevance to Vector Pascal, operators may be implicitly
overloaded for multi-word operations.

8.1 Analogous work

There has been sustained research within the parallel programming commu-
nity into the exploitation of SIMD parallelism on multi-processor architec-
tures. Most work in this field has been driven by the needs of high-performance
scientific processing, from finite element analysis to meteorology. In partic-

37

ular, there has been considerable interest in exploiting data parallelism in
FORTRAN array processing, culminating in High Performance Fortran and
F.

Typically such exploitation involves two approaches. First of all, operators are
overloaded to allow array-valued expressions, as discussed above. Secondly,
loops are analysed to establish where it is possible to unroll loop bodies for
parallel evaluation. Compilers embodying these techniques tend to be archi-
tecture specific to maximise performance and they have been aimed primarily
at specialised super-computer architectures, even though contemporary gen-
eral purpose microprocessors provide similar features, albeit on a far smaller
scale.

There has been recent interest in the application of vectorisation techniques to
instruction level parallelism. Cheong and Lam [6] discuss the use of the Stan-
ford University SUIF parallelising compiler to exploit the SUN VIS extensions
for the UltraSparc from C programs. They report speedups of around 4 on
byte integer parallel addition. Krall and Lelait’s compiler [8] also exploits the
VIS extensions on the Sun UltraSPARC processor from C using the CoSy com-
piler framework. They compare classic vectorisation techniques to unrolling,
concluding that both are equally effective, and report speedups of 2.7 to 4.7.
Sreraman and Govindarajan [9] exploit Intel MMX parallelism from C with
SUIF, using a variety of vectorisation techniques to generate inline assembly
language, achieving speedups from 2 to 6.5. All of these groups target spe-
cific architectures. Larsen [35] and Amarasinghe report also using SUIF to
detect general parallelism in C code using the Motorola Alti-vec intructions.
Finally, Leupers [7] has reported a C compiler that uses vectorising optimisa-
tion techniques for compiling code for the multimedia instruction sets of some
signal processors, but this is not generalised to the types of processors used in
desktop computers.

There has been extensive research, initiated by Graham and Glanville, into
the automatic production of code generators but predominantly for conven-
tional rather than parallel instruction sets. There has also been research in the
hardware/software co-design community into compilation techniques for non-
standard architectures. Leupers’ [36] MIMOLA language allows the expression
of both programs and structural hardware descriptions, driving the micro-code
compiler MSSQ. Hadjiyiannis’ [37] Instruction Set Description Language and
Ramsey and Davidson’s [38] Specification Language for Encoding and De-
coding are also aimed at embedded systems, based on low level architecture
descriptions.It is not clear whether MIMOLA, ISDL or SLED could readily
be used for describing data parallelism through operator overloading as found
in MMX extensions. Furthermore, ISDL and SLED’s type systems will not
readily express the vector types required for MMX.

38

To exploit MMX and other extended instruction sets, we thought it desirable
to develop compiler technology based on a richer meta-language, which can
express non-standard instruction sets in a succinct but architecture indepen-
dent manner. Such a meta-language should support a rich set of types and
associated operators, and be amenable to formal manipulation. It should also
support a relatively high level of abstraction from different manufacturers’
register level implementations of what are conceptually very similar MMX
operations.

8.2 Intermediate Language for Code Generation

Our Intermediate Language for Code Generation (ILCG) is at the heart of
a code-generator-generator system, driven by specifications of both machines
and languages.

ILCG exists both as a textual notation that can be used to describe the
semantics of machine instructions, and as tree language, defined as a set of
Java classes.

A machine description typically consists of a set of register declarations fol-
lowed by a set of instruction formats and a set of operations. This approach
works well only with machines that have an orthogonal instruction set, ie,
those that allow addressing modes and operators to be combined in an inde-
pendent manner.

8.2.1 Registers

When entering machine descriptions in ilcg registers can be declared along
with their type hence:

register word EBX assembles[’ebx’] ;
reserved register word ESP assembles[’esp’];

would declare EBX to be of type ref word.

8.2.2 Aliasing

A register can be declared to be a sub-field of another register, hence we could
write:

EAX(0:7) assembles[’al’];
EBX(0:7) assembles[’bl’];

alias register octet AL
alias register octet BL

39

to indicate that BL occupies the bottom 8 bits of register EBX. In this notation
bit zero is taken to be the least significant bit of a value. There are assumed
to be two pregiven registers FP, GP that are used by compilers to point to
areas of memory. These can be aliased to a particular real register:

register word EBP assembles[’ebp’] ;
alias register word FP = EBP(0:31) assembles [’ebp’];

Additional registers may be reserved, indicating that the code generator must
not use them to hold temporary values:

reserved register word ESP assembles[’esp’];

8.2.8 Register sets

A set of registers that are used in the same way by the instruction set can be
defined:

pattern reg means [$ EBP| EBX|ESI|EDI|ECX |EAX|EDX|ESP$] ;
pattern breg means[$ AL|AH|BL|BH|CL|CH|DL|DH$];

All registers in an register set should be of the same length.

8.2.4 Register Stacks

Whilst some machines have registers organised as an array, another class of
machines, those oriented around postfix instruction sets, have register stacks.

The ILCG syntax allows register stacks to be declared:
register stack (8)ieee64 FP assembles[’ ’] ;
Two access operations are supported on stacks:

e PUSH is a void dyadic operator taking a stack of type ref ¢ as first argument
and a value of type ¢ as the second argument. Thus we might have:
PUSH(FP, Tmem(20))
e POP is a monadic operator returning ¢ on stacks of type ¢. So we might have:
mem (20) :=P0OP (FP)

40

8.3 Instruction formats

An instruction format is an abstraction over a class of concrete instructions.
It abstracts over particular operations and types thereof whilst specifying how
arguments can be combined:

instruction pattern

RR(operator op, anyreg rl, anyreg r2, int t)
means[r1:=(t) op(t((ref t) rl),ft((ref t) r2))]
assembles[op ’ ’> rl ’,’ r2];

In the above example, we specify a register to register instruction format that
uses the first register as a source and a destination whilst the second register
is only a destination. The result is returned in register rl.

We might however wish to have a more powerful abstraction, which was ca-
pable of taking more abstract specifications for its arguments. For example,
many machines allow arguments to instructions to be addressing modes that
can be either registers or memory references. For us to be able to specify this
in an instruction format we need to be able to provide grammer non-terminals
as arguments to the instruction formats.

For example we might want to be able to say

instruction pattern

RRM(operator op, reg rl, addrmode rm, int t)
means [r1:=(t) op(1((ref t)rl),T((ref t) rm))]
assemblesfop > > rl ’,” rm] ;

This implies that addrmode and reg must be non terminals. Since the non
terminals required by different machines will vary, there is a means of declaring
such non-terminals in ILCG.

An example would be:
pattern regindirf(reg r)
means [1(r)]

assembles[r 1;

pattern baseplusoffsetf(reg r, signed s)
means[+(1(r) ,const s)]
assembles[r ’+’ s];

pattern addrform means[baseplusoffsetf| regindirf];

41

pattern maddrmode (addrform f)
means [mem(f)] assembles[’[’ f ’]’];

This gives us a way of including non terminals as parameters to patterns.
Instruction patterns can also specify vector operations as in:

instruction pattern PADDD(mreg m, mrmaddrmode ma)
means [(ref int32 vector(2)m:=

(int32 vector(2))+

((int32 vector(2))T(m), (int32 vector(2))1(ma)))]
assembles [’paddd ’m ’,’ mal;

Here vector casts are used to specify that the result register will hold the type
int32 vector(2), and to constrain the types of the arguments and results of
the + operator.

8.4 Instruction Sets

At the end of an ILCG machine description file, the instruction set is defined.
This is given as an ordered list of instruction patterns. When generating code
the patterns are applied in the order in which they are specified until a com-
plete match of a statement has been achieved. If a partial match fails the code
generator backtracks and attempts the next instruction. Care has to be taken
to place the most general and powerfull instructions first. Figure 12 illustrates
this showing the effect of matching the parallelised loop shown in figure 11
against the Pentium instruction set. Note that incrementing the loop counter
is performed using load effective address (lea) since this, being more general,
occurs before add in the instruction list.

This pattern matching with backtracking can potentially be slow, so the code
generator operates in learning mode. For each subtree that it has sucessfully
matched, it stores a string representation of the tree in a hash table along with
the instruction that matched it. When a tree has to be matched, it checks the
hash table to see if an equivalent tree has already been recognised. In this way
common idioms only have to be fully analysed the first time that they are
encountered.

42

see end of document

Fig. 8. System Architecture

8.4.1 Instruction set deficiencies

The SIMD instruction-sets show signs of having been designed from the stand-
point of assembler programmers. Deficiencies become apparent when they are
treated as targets for more general array languages. Our experience in writ-
ing formal descriptions of the SIMD instruction sets provided by Intel and
AMD leads to the conclusion that there are serious non-orthogonalities in the
instructions. These non-orthogonalities cause problems for the efficient paral-
lelisation of code.

By far the most serious of these is the lack of scalar to vector instructions. The
processors have reasonably efficient means of operating on scalar quantities
and on vector quantities, but there is no means by which scalars can be added
to vectors, vectors multiplied by scalars etc. In the absence of built in scalar to
vector operations, the code generator has to replicate scalar quantities at run
time before operationg on a vector with them. Since no means of addressing
the individual words of a vector register are provided, the replication has to
be done in memory with consequent store access costs.

Another lack of orthogonality is the requirement in the PIII that the operands
of a floating point vector instruction be aligned on 16 byte boundaries. This
can not in general be guaranteed in a language that supports array slicing,
which in turn forces the use of register to register instructions and relatively
slower un-aligned load and store instructions.

8.5 Vector Pascal Compilation

A Vector Pascal program is translated into an ILCG abstract semantic tree
implemented as a Java data structure. The tree is then passed to a machine
generated Java class corresponding to the code generator for the target ma-
chine. The code generator classes export from their interfaces details about
the degree of parallelism supported for each data-type. This is used by the
front end compiler to iterate over arrays longer than those supported by the
underlying machine. Where supported parallelism is unitary, it defaults to
iteration over the whole array.

The structure of the Vector Pascal system is shown in figure 8.5. It is complex.

Consider first the path followed from a source file, the phases that it goes
through are

43

i. The source file (1) is parsed by a java class PascalCompiler.class (2) a hand
written, recursive descent parser[39], and results in a Java data structure
(3), an ILCG tree, which is basically a semantic tree for the program.

ii. The resulting tree is transformed (4) from sequential to parallel form and
machine independent optimisations are performed.

Since ILCG trees are java objects, they can contain methods to self-
optimise. Each class contains for instance a method eval which attempts
to evaluate a tree at compile time. Another method simplify applies generic
machine independent transformations to the code. Thus the simplify method
of the class For can perform loop unrolling, removal of redundant loops etc.
Other methods allow tree walkers to apply context specific transformations.

iii. The resulting ilcg tree (7) is walked over by a class that encapsulates the
semantics of the target machine’s instruction set (10). Code generators,
automatically generated from machine specifications written in ILCG, follow
the pattern matching approach described in[40,41,34].

For example Pentium.class is produced from a file Pentium.ilc (8), in
ILCG, which gives a semantic description of the Pentium’s instruction set.
This is processed by a code-generator generator which builds the source
file Pentium.java. During code generation the tree is futher transformed, as
machine specific register optimisations are performed. The output of this
process is an assembler file (11).

iv. This is then fed through an appropriate assembler and linker, assumed to
be externally provided to generate an executable program.

Selection of target machines is by a compile time switch which causes the
appropriate code generator class to be dynamically loaded. Code generator
classes currently exist for the Intel 486, Pentium with MMX, and P3 and also
the AMD K6. Output assembler code is processed using the NASM assembler
and linked using the gcc loader.

8.6 Vectorisation

The parser initially generates serial code for all constructs. It then interogates
the current code generator class to determine the degree of parallelism possible
for the types of operations performed in a loop, and if these are greater than
one, it vectorises the code.

Given the declaration:
var v1,v2,v3:array[1..9] of integer;
then the statement

v1:=v2+v3;

44

var i;

for i=1 to 9 step 1 do {
vi[~i]l:= +("(v2[~i]),~ (v3["i]));
};

Fig. 9. Sequential form of array assignment

var i;

for i= 1 to 8 step 2 do {

(ref int32 vector (2))mem(+(@vi,*x(-("1i,1),4))):=
+("((ref int32 vector (2))mem(+(@v2,*x(-("1,1),4)))),

~“((ref int32 vector (2))mem(+(@v3,*(-("i,1),4)))));

};

for i= 9 to 9 step 1 do {

vi[~il:= +("(v2["i]),~(v3["i]));

};

Fig. 10. Parallelised loop

would first be translated to the ILCG sequence shown in figure 9.

In the example above variable names such as vl and i have been used for
clarity. In reality i would be an addressing expression like:

(ref int32)mem(+(~((ref int32)ebp), -1860))

which encodes both the type and the address of the variable. The code gener-
ator is queried as to the parallelism available on the type int32 and, since it
is a Pentium with MMX, returns 2. The loop is then split into two, a portion
that can be executed in parallel and a residual sequential component, resulting
in the ILCG shown in figure 10.

In the parallel part of the code, the array subscriptions have been replaced
by explictly cast memory addresses. This coerces the locations from their
original types to the type required by the vectorisation. Applying the simplify
method of the For class, the following generic transformations are performed:

(1) The second loop is replaced by a single statement.
(2) The parallel loop is unrolled twofold.
(3) The For class is replaced by a sequence of statements with explicit gotos.

The result is shown in figure 11. When the eval method is invoked, constant
folding causes the loop test condition to be evaluated to if >("i,8) then
goto leb4af11b47f.

45

var i:

i:=1;

lebdafi1b47e:

if >(2, 0) then

if >(°1,8) then goto leb4af11b47f

else null

fi

else

if <("i, 8) then goto leb4afl1b47f

else null

fi
fi;

(ref int32 vector (2))mem(+(@vl,*x(-("1,1),4))):=
+("((ref int32 vector (2))mem(+(@v2,*(-("1,1),4)))),
~((ref int32 vector (2))mem(+(@v3,*(-("i,1),4)))));

i:=+("1,2);

(ref int32 vector (2))mem(+(@vi,*x(-("1i,1),4))):=
+("((ref int32 vector (2))mem(+(@v2,*x(-("1,1),4)))),

~((ref int32 vector (2))mem(+(@v3,*(-("1,1),4)))));

i:=+("1,2);

goto leb4afl1lb4d7e;

leb4af11b47f:

i:=9;

vi[~i] := +(C"w2["i]),~(v3["i]));

Fig. 11. Application of simplify to the tree

9 Conclusions

Vector Pascal currently runs under Windows98 , Windows2000 and Linux.
Separate compilation using Turbo Pascal style units is supported. C calling
conventions allow use of existing libraries. It has its own IDE and literate
programming environment[14]. It has been ported to the vector instruction-
sets of the AMD Athlon, and Intel MMX, SSE and SSE2 processor models.
Ports are underway to the Opteron and Sony Play-station.

Vector Pascal provides an effective approach to providing a programming envi-
ronment for multi-media instruction sets. It borrows abstraction mechanisms
that have a long history of sucessfull use in interpretive programming lan-
guages, combining these with modern compiler techniques to target SIMD
instruction sets. It provides a uniform source language that can target mul-
tiple different processors without the programmer having to think about the
target machine. Use of Java as the implementation language aids portability
of the compiler accross operating systems.

46

mov DWORD ecx, 1

1eb4b08729615:

cmp DWORD ecx, 8

jg near 1eb4b08729616

lea edi,[ecx—(1)]; substituting in edi with 3 occurences
and score of 1

movqg MM1, [ebptedix 4+ -1620]

paddd MM1, [ebptedix 4+ -1640]

movq [ebpt+edix 4+ -1600] ,MM1

lea ecx,[ecx+ 2]

lea edi,[ecx—(1)]; substituting in edi with 3 occurences
and score of 1

movq MM1, [ebptedi* 4+ -1620]

paddd MM1, [ebptedix 4+ -1640]

movq [ebpt+edix 4+ -1600] ,MM1

lea ecx,[ecx+ 2]

jmp 1eb4b08729615

1eb4b08729616:

Fig. 12. Matching the parallelised loop against the Pentium instruction set

References

[1] Harland, D., ”Rekursiv: Object-Oriented Computer Architecture”, Ellis
Horwood, 1991,(ISBN: 0-7458-0396-2).

[2] Intel, Intel Architecture Software Developers Manual Volumes 1 and 2, 1999.
[3] Advanced Micro Devices, 3DNow! Technology Manual, 1999.

[4] Peleg, A., Wilke S., Weiser U., Intel MMX for Multimedia PCs, Comm. ACM,
vol 40, no. 1 1997.

[5] Intel, Willamette Processor Software Developer’s Guide, February, 2000.

[6] Cheong, G., and Lam, M., An Optimizer for Multimedia Instruction Sets, 2nd
SUIF Workshop, Stanford University, August 1997.

[7] Leupers, R., Compiler Optimization for Media Processors, EMMSEC
99/Sweden 1999.

[8] Krall, A., and Lelait, S., Compilation Techniques for Multimedia Processors,
International Journal of Parallel Programming, Vol. 28, No. 4, pp 347-361, 2000.

[9] Srereman, N., and Govindarajan, G., A Vectorizing Compiler for Multimedia
Extensions, International Journal of Parallel Programming, Vol. 28, No. 4, pp
363-400, 2000.

[10] Chaitin. G., Elegant Lisp Programs, in The Limits of Mathematics, pp. 29-56,
Springer, 1997.

47

[11] Iverson K. E., A Programming Language, John Wiley & Sons, Inc., New York
(1962), p. 16.

[12] Iverson, K. E. . Notation as a tool of thought. Communications of the ACM,
23(8), 444-465, 1980.

[13] Iverson, Kenneth E., J Introduction and Dictionary, Iverson Software Inc. (ISI),
Toronto, Ontario, 1995.

[14] Cockshott, P., Renfrew, K., SIMD Programming Manual for Linux, Springer
Verlag, 2004.

[15] Cockshott, P., Vector Pascal an Array Language for Multimedia Code, Proc.
APL 2002 Conf., pp 83-91.

[16] Ewing, A. K., Richardson, H., Simpson, A. D., Kulkarni, R., Writing
Data Parallel Programs with High Performance Fortran, Edinburgh Parallel
Computing Centre, Ver 1.3.1.

[17] Blelloch, G. E., NESL: A Nested Data-Parallel Language, Carnegie Mellon
University, CMU-CS-95-170, Sept 1995.

[18] Iverson K. E, A personal View of APL, IBM Systems Journal, Vol 30, No 4,
1991.

[19] Burke, Chris, J User Manual, ISI, 1995.
[20] Metcalf, M., and Reid, J., The F Programming Language, OUP, 1996.

[21] Cole, M., Algorithmic Skeletons: Structured Management of Parallel
Computation, Research Monographs in Parallel and Distributed Computing,
Pitman, 1989.

[22] Michaelson, G., Scaife, N., Bristow, P., and King, P., Nested algorithmic
skeletons from higher order functions, Parallel Algorithms and Applications
special issue on High Level Models and Languages for Parallel Processing, Vol.
16, pp 181-206, Aug 2001

[23] Schwartz, J.T., Dewar, R.B.K., Dubinsky, E., and Schonberg, E., Programming
with Sets: An Introduction to SETL (1986), Springer-Verlag, New York

[24] Turner, D., An overview of MIRANDA, SIGPLAN Notices, December 1986.

[25] van der Meulen, S. G.,ALGOL 68 Might Have Beens, SIGPLAN Notices Vol.
12, No. 6, 1977.

[26] Tannenbaum, A. S., A Tutorial on ALGOL 68, Computing Surveys, Vol. 8, No.
2, June 1976, p.155-190.

[27] Inmos Ltd, occam2 Reference Manual, prentice-Hall, 1988.

[28] Johnston, D., C++ Parallel Systems, ECH: Engineering Computing Newsletter,
No. 55, Daresbury Laboratory/Rutherford Appleton Laboratory, March
1995,pp 6-7.

48

[29] 3L Limited, Parallel C V2.2, Software Product Description, 1995.

[30] Strachey, C., Fundamental Concepts of Programming Languages, University of
Oxford, 1967.

[31] Jensen K., and Wirth N., Pascal User Manual and Report, Springer, 1978.
[32] ISO, Extended Pascal ISO 10206:1990, 1991.

[33] Cockshott, P, Direct Compilation of High Level Languages for Multi-media
Instruction-sets, TR2000-72, Department of Computer Science, University of
Glasgow, Nov 2000.

[34] Susan L. Graham, Table Driven Code Generation, IEEE Computer, Vol 13, No.
8, August 1980, pp 25..37.

[35] Larsen, S., Amarasinghe, S, Exploiting Superword Level Parallelism with
Multimedia Instruction Sets, ACM Conf., Programming Language Design and
Implementation, Vancouver, 2000, pp 145-156.

[36] Leupers, R., Niemmann, R. and Marwedel, P. Methods for Retargetable DSP
Code Generation, VLSI Signal Processing 94, IEEE.

[37] Hadjiyiannis, G., Hanono, S. and Devadas, S., ISDL: an Instruction Set
Description Language for Retargetability, DAC’97, ACM.

[38] Ramsey, N. and Fernandez, M., Specifying Representations of Machine
Instructions, ACM Transactions on Programming Languages and Systems, Vol.
19, No. 3, 1997, pp492-524.

[39] Watt, D. A., and Brown, D. F., Programming Language Processors in Java,
Prentice Hall, 2000.

[40] Aho, A.V., Ganapathi, M, TJiang S.W.K., Code Generation Using Tree
Matching and Dynamic Programming, ACM Trans, Programming Languages
and Systems 11, no.4, 1989, pp.491-516.

[41] Cattell R. G. G., Automatic derivation of code generators from machine
descriptions, ACM Transactions on Programming Languages and Systems, 2(2),
pp. 173-190, April 1980.

[42] Gagnon, E.,
SABLECC, AN OBJECT-ORIENTED COMPILER FRAMEWORK, School
of Computer Science, McGill University, Montreal, March 1998.-

Biographical Sketches

Dr Paul Cockshott is a Reader in Computing Science at the University of
Glasgow in Scotland. His research interests include the design and implemen-
tation of programming languages, 3D computer vision, data compression and
novel hardware.

49

Dr Greg Michaelson is a Senior Lecturer and Head of Computer Science at
Heriot-Watt University in Edinburgh, Scotland. His research interests include
formally motivated computing, functional programming, parallel computing,
and programming language design and implementation.

Drawings

1.HLL program

|

2.1LCG compliant
front end

In this case Pascal Compiler.class

Yy

3.ILCG program

A

< 5.ILCG semantics
4.transformations

l«——=6.0ptimisation rules

details of available

parglelism \

7 transformed ILCG program 8.ILCG for CPU
l (For example Pentium.ilc)

A

10.code generator

|

11.machine code for CPU

9.code generator-
generator

the above is figure 8.5

20

	citation_temp.pdf
	http://eprints.gla.ac.uk/3451/

