
Security Types Preserving Compilation∗

Gilles Barthe, Tamara.Rezk, Amitabh Basu†

INRIA Sophia-Antipolis, France

{Gilles.Barthe,Tamara.Rezk}@sophia.inria.fr

Stony Brook University, USA abasu@cs.sunysb.edu

November 14, 2005

Abstract

Starting from the seminal work of Volpano and Smith, there has been growing evidence

that type systems may be used to enforce confidentiality of programs through non-interference.

However, most type systems operate on high-level languages and calculi, and “low-level lan-

guages have not received much attention in studies of secure information flow” (Sabelfeld and

Myers, [1]). Therefore, we introduce an information flow type system for a low-level language

featuring jumps and calls, and show that the type system enforces termination-insensitive non-

interference.

Furthermore, information flow type systems for low-level languages should appropriately

relate to their counterparts for high-level languages. Therefore, we introduce a compiler from

a high-level imperative programming language to our low-level language, and show that the

compiler preserves information flow types.

Key Words: Security, Non-interference, Program Analysis, Low-level Languages

∗Partially supported by the ACI Sécurité SPOPS, by the RNTL project CASTLES and by the IST project IN-

SPIRED.
†This work was performed during an INRIA International Internship during Summer 2003, while the author was

studying at IIT Delhi, India.

1

1 Introduction

Type systems are popular artefacts to enforce safety properties in programming languages. They are

also increasingly being used in the context of mobile code to enforce security policies. For example,

it is natural to assign to program variables a security level that stipulates its confidentiality status

(such as secret or public), and to guarantee that programs do not leak secret information through

execution. The absence of information leakage can be made precise with non-interference, as defined

in the work of Goguen and Meseguer [2], and can be enforced via information flow type systems [3].

Such information flow type systems have been thoroughly studied in the literature, see e.g. [1] for a

survey. However, most works focus on high-level calculi, including λ-calculus, see e.g. [4], π-calculus,

see e.g. [5], and ς-calculus [6], or high-level programming languages, including Java [7, 8] and ML [9].

In contrast, relatively little is known about non-interference for low-level languages, in particular

because their lack of structure renders control flow more intricate; in fact many existing works,

among which [10, 11], use model-checking and abstract interpretation techniques to detect illegal

information flows, but do not provide proofs of non-interference for programs that are accepted by

their analysis.

The first part of this paper is devoted to the definition of an information flow type system for

a low-level language with jumps and procedure calls, and to a proof that the type system enforces

termination-insensitive non-interference. Informally, the security policy is expressed as a mapping

Γ : X → S that assigns to each register a security level taken from {H, L}. As usual H denotes

confidential data and L denotes public data, so registers x ∈ X such that Γ(x) = L correspond to

the registers that are observable by the attacker. Then non-interference is expressed as:

ρ ∼ ρ′ and P, ρ ⇓ µ and P, ρ′ ⇓ µ′ imply µ ∼ µ′

where P, ρ ⇓ µ denotes that executing program P with initial memory ρ yields the final memory µ,

and ρ ∼ ρ′ denotes that ρ and ρ′ coincide on all variables x ∈ X such that Γ(x) = L.

In order to enforce non-interference of programs, we follow the principles of Java bytecode ver-

2

ification, see e.g. [12], namely to provide an abstract transition relation between typed states, and

to compute types through a dataflow analysis based on the abstract transition relation. The proof

of soundness of the type system relies on a general method. Informally, we define a notion ∼ of

L-equivalence between states; the idea is that two states are L-equivalent if they cannot be distin-

guished from one another by an attacker. Then, writing s ; u to denote that performing one-step

execution from state s results in a new state u, we show that:

• if s ; s′, and u ; u′, and s ∼ s′, and the program counters of s and u coincide, then u ∼ u′;

furthermore, the program counters of s′ and u′ coincide, or the program counters of s′ and

u′ belong to the control dependence region of a branching instruction that performs a test on

confidential data;

• if the program counter of s belongs to the control dependence region of a branching instruction

that performs a test on confidential data, and s ; u, then s ∼ u, and either the program

counter of u remains in the control dependence region to which s belongs, or the program

counter of u is the “exit” of this region.

By appealing to properties of control dependence regions, and by combining the two results in an

adequate way, and appealing to transitivity of L-equivalence, one shows that typable programs are

non-interfering.

The second part of this paper is devoted to proving that information flow types can be preserved

by compilation. As suggested by Abadi [13], information flow type systems for low-level languages

should appropriately relate to their counterparts for high-level languages, and one would expect that

compilation preserves information flow typing. Indeed, we show for a high-level language and an

information flow type system that closely resemble those of [3] that compilation function preserves

typing. The proof that compilation preserves typing proceeds by induction on the structure of

derivations, and can be viewed as a procedure to compute, from a certificate of well-typing at the

source program, another certificate of well-typing for the compiled program. It is thus very close in

spirit to a certifying compiler [14].

3

Contents

The remaining of the paper is organized as follows. Section 2 motivates the issue with non-

interference in an assembly language. In Section 3 we define an assembly language that shall serve

as the compiler target, endow it with an information flow type system, and prove that the type sys-

tem is decidable and enforces termination-insensitive non-interference. In Section 5, we introduce

a high-level imperative language with procedures and its associated type system. Furthermore, we

introduce a compiler that we show to preserve information flow typing; we also show how type-

preserving compilation can be used to lift non-interference to the high-level language. We conclude

in Section 6, with related work and directions for further research.

2 Motivating examples

Any sound information flow type system for an assembly language must prevent information leakages

through direct flows, as illustrated in Example 1 below, and through indirect flows, as illustrated in

Examples 2-5 below.

Example 1 (Direct flows) Consider the following program, where xL is a low variable and yH is

a high variable:

load yH

store xL

return

The first instruction pushes the value held in yH on top of the operand stack, while the second

instruction stores the top of the operand stack in xL. Thus this program fragment stores in the

variable xL the value held in the variable yH , and thus leaks information.

We avoid such information leakages by assigning a security level to each value in the operand stack,

via a so-called stack type, and by rejecting programs that attempt storing a value in a low variable

when the top of the stack type is high. By forcing the top of the stack type to high after executing

the load instruction, the program is thus rejected.

4

Example 2 (Indirect flows via assignments) As is well-known for high-level languages, assign-

ments within branching instructions may lead to information leakages. The following example

demonstrates how information may be leaked through assignments within the scope of a branching

instruction. Consider the following program, where xL is a low variable and yH is a high variable:1

1 load yH

2 if 6

3 prim 0

4 store xL

5 goto 8

6 prim 1

7 store xL

8 return

The program yields an implicit flow, as the final value of xL depends on the initial value of yH .

Indeed, the final value of xL is 0 if the initial value of yH is 0, and 1 otherwise. The problem is

caused by an assignment to xL in the scope of an if instruction.

We avoid such information leakages by defining the scope of a branching instruction, and by requiring

that no assignment to a low variable is performed within its scope if the control flow is influenced by

a high variable. Technically, this is achieved by tracking for each program point the security level

under which they execute, via a so-called security environment.

Example 3 (Indirect flows via abrupt termination) Abrupt termination in the scope of branch-

ing instructions may also cause information leakage. Consider the following program, where xL is a

1The if n bytecode branches to n if the top of the operand stack is 0, and to the next instruction after if n otherwise.

5

low variable and yH is a high variable:

1 prim 0

2 store xL

3 load yH

4 if 6

5 return

6 prim 1

7 store xL

8 return

The program yields an implicit flow, as the final value of xL depends on the initial value of yH .

Indeed, the final value of xL is 1 if the initial value of yH is 0, and 0 otherwise. The problem is

caused by a return instruction in the scope of an if instruction.

We avoid such information leakages by constraining the use of return instructions in the scope of

branching statements.

Furthermore, branching instructions may cause information leakage, even if there are no assign-

ments to low variables or return instructions within their scope.

Example 4 (Indirect flows via operand stack) Consider the following program, where xL is a

low variable and yH is a high variable:

1 prim 3

2 prim 4

3 load yH

4 if 6

5 store yH

6 store xL

7 return

6

The program yields an implicit flow, as the final value of xL depends on the initial value of yH .

Indeed, the final value of xL is 3 if the initial value of yH is 0, and 4 otherwise. The problem is

caused by an instruction that manipulates the operand stack in the scope of an if instruction (we use

a store yH instruction but a pop instruction would have a similar effect).

We avoid such information leakages by lifting all elements of the stack type to high upon entering

a branching instruction whose control flow is influenced by a high variable. Then the assignment to

xL is not allowed, since the values 3 and 4 are tagged as H by the stack type.

Example 5 (Indirect flows via operand stack) Consider the following program, where xL is a

low variable and yH is a high variable:

1 prim 3

2 load yH

3 if 6

4 prim 1

5 prim +

6 store xL

7 return

The program yields an implicit flow, as the final value of xL depends on the initial value of yH .

Indeed, the final value of xL is 3 if the initial value of yH is 0, and 4 otherwise. The problem

is caused by an arithmetic instruction that manipulates the operand stack in the scope of an if

instruction.

We avoid such information leakages as in the previous example, i.e. through lifting the operand

stack.

7

instr ::= prim op primitive value/operation
| load x load value of x on stack
| store x store top of stack in x

| if j conditional jump
| goto j unconditional jump
| call f procedure call
| return return

Figure 1: Instruction set

3 Assembly Language

In this section we introduce a simple assembly language with jumps and procedures that is used in

Section 5 as a target of our compiler.

3.1 Syntax of programs

Program are defined as a set of procedures, each of which consists of an array of instructions. Instruc-

tions are either branching instructions (both conditional and unconditional), arithmetic instructions,

instructions to manipulate registers, or instructions to call and return from a procedure.

Formally, we assume given a finite set X of registers, and a finite set F of procedure names, with

a distinguished procedure main ∈ F . In addition, we define the set V of values to be Z, and assume

given a set AO ⊆ Z×Z → Z of arithmetic operations, and a set BO ⊆ Z×Z → {0, 1} of comparison

operators. Then, we define the set Instr of instructions in Figure 1, where op ∈ V∪AO∪BO; f ranges

over F , x ranges over X , and j ranges over N. Finally, we define a program P as an F-indexed set

of procedures, with each procedure defined as an array of instructions. We let Pf be the procedure

associated to f , and Pf [i] be the i-th instruction in Pf .

3.2 Semantics

Program semantics are defined in terms of a small-step operational semantics which describes one

step execution of programs. Formally, the operational semantics of programs is given as a transition

8

relation between states. A state consists of a call string, which captures the current sequence of

procedure calls, an operand stack, and a register map. In order to guarantee decidability of type-

checking, we impose an upper bound both on the size of call strings, and on the size of operand

stacks.

Definition 6 (Operational semantics) Let P be a program.

1. The set PP of programs points is the set of pairs 〈f, i〉 with f ∈ F , and i ∈ dom(Pf).

2. The set CS of call strings is the set of PP-stacks of length less than max.

3. The set RM of register maps is defined as X → V.

4. The set OS of operand stacks is defined as the set of V-stacks of length less than MAX.

5. The set state of states is defined as CS ×RM×OS.

6. The operational semantics of the assembly language is given by the rules of Figure 2; we write

ρ⊕{x 7→ v} to denote the unique function ρ′ s.t. ρ′(y) = ρ(y) if y 6= x and ρ′(x) = v. We

let ;
? denote the reflexive-transitive closure of the relation ;. Note that all rules implicitly

enforce the size requirements on call strings and operand stacks.

7. We write P, ρ ⇓ µ if 〈〈main, 1〉 :: ε, ρ, ε〉 ;
? 〈ε, µ, ε〉, where ε denotes the empty stack.

Observe that procedure calls do not activate a new frame with its own local variables and operand

stacks, as e.g. in the JVM; in fact, procedures are closer to JVM subroutines than they are to JVM

method invocations.

Note that the operational semantics yields a successor relation 7→⊆ CS × CS, which is defined

by the clauses:

• if Pf [i] = return then 〈f, i〉 :: 〈f ′, j〉 :: cs′ 7→ 〈f ′, j + 1〉 :: cs′ and furthermore 〈f, i〉 :: ε 7→ ε;

• if Pf [i] = call f ′ then 〈f, i〉 :: cs 7→ 〈f ′, 1〉 :: 〈f, i〉 :: cs;

• if Pf [i] = goto j then 〈f, i〉 :: cs 7→ 〈f, j〉 :: cs;

9

Pf [i] = prim n n ∈ Z

〈〈f, i〉 :: cs, ρ, s〉 ; 〈〈f, i + 1〉 :: cs, ρ, n :: s〉

Pf [i] = if j v 6= 0

〈〈f, i〉 :: cs, ρ, v :: s〉 ; 〈〈f, j〉 :: cs, ρ, s〉

Pf [i] = prim op op ∈ AO ∪ BO op(n1, n2) = n

〈〈f, i〉 :: cs, ρ, n2 :: n1 :: s〉 ; 〈〈f, i + 1〉 :: cs, ρ, n :: s〉

Pf [i] = if j v = 0

〈〈f, i〉 :: cs, ρ, v :: s〉 ; 〈〈f, i + 1〉 :: cs, ρ, s〉

Pf [i] = load x

〈〈f, i〉 :: cs, ρ, s〉 ; 〈〈f, i + 1〉 :: cs, ρ, ρ(x) :: s〉

Pf [i] = goto j

〈〈f, i〉 :: cs, ρ, s〉 ; 〈〈f, j〉 :: cs, ρ, s〉

Pf [i] = store x

〈〈f, i〉 :: cs, ρ, v :: s〉 ; 〈〈f, i + 1〉 :: cs, ρ⊕{x 7→ v}, s〉

Pf ′ [i] = call f

〈〈f ′, i〉 :: cs, ρ, s〉 ; 〈〈f, 1〉 :: 〈f ′, i〉 :: cs, ρ, s〉

Pf [i] = return

〈〈f, i〉 :: 〈f ′, i′〉 :: cs, ρ, s〉 ; 〈〈f ′, i′ + 1〉 :: cs, ρ, s〉

Pf [i] = return

〈〈f, i〉 :: ε, ρ, s〉 ; 〈ε, ρ, s〉

Figure 2: Operational Semantics of Assembly Language

10

• if Pf [i] = if j then 〈f, i〉 :: cs 7→ 〈f, k〉 :: cs for k ∈ {i + 1, j};

• otherwise, 〈f, i〉 :: cs 7→ 〈f, i + 1〉 :: cs.

It is easy to see that cs 7→ cs′ for every states 〈cs, ρ, s〉 and 〈cs′, ρ′, s′〉 such that 〈cs, ρ, s〉 ;

〈cs′, ρ′, s′〉.

3.3 Control dependence regions

In order to prevent indirect flows, we must identify for every if instruction program points that

execute under its control condition.

3.3.1 Definitions and properties

For the purpose of this paper, control dependence regions are treated axiomatically. That is, we

define for every program P its set of conditional program points:

PP if = {〈f, i〉 ∈ PP | Pf [i] = if j}

and assume given two functions:

reg : PP if → ℘ (PP)

jun : PP if ⇀ PP

that respectively compute the control dependence region of an if, and the junction point of the two

branches of the if. While there exist algorithms to compute such regions in unstructured languages,

see e.g. [15], the soundness of the type system does not hinge on the exact computation of such

control dependence regions. That is, the soundness of the type system does not rely on control

dependence regions to be minimal in the sense that they only contain program points that indeed

belong to the branch of the if. On the other hand, the minimality of control dependence regions

and junction points (on compiled programs) is required to establish that compilation preserves

11

typing, as in Theorem 16. Concretely, we establish soundness of the type system from the following

assumptions:

Region inclusion property RIP: for every 〈f, i〉, 〈f ′, i′〉 ∈ PP if , such that 〈f ′, i′〉 ∈ reg(f, i) we

have reg(f ′, i′) ⊆ reg(f, i);

Safe over approximation property SOAP: for every 〈f, i〉 ∈ PP if and execution path

〈〈f, i〉 :: cs, ρ, s〉 ; 〈cs1, ρ1, s1〉 ; . . . ; 〈csn, ρn, sn〉

one of the following holds:

• csn = 〈fs, is〉 :: . . . : 〈f1, i1〉 :: cs with 〈fk, ik〉 ∈ reg(f, i) for 1 ≤ k ≤ s;

• there exists 1 ≤ l ≤ n such that csl = jun(f, i) :: cs;

• there exists 1 ≤ l ≤ n such that csl = 〈f, j〉 :: cs and pf [j] = return.

We shall use the function reg in the type system, and the assumption about execution paths and

jun in the proof of non-interference.

Remark The assumptions can be simplified to a great extent if we omit procedure calls. On

the contrary, defining regions becomes more complex if JVM subroutines are adopted instead of

procedure calls. See e.g. [16] for a brief discussion on these points.

3.3.2 Implementation and example

We have implemented (in Haskell) a simple algorithm to compute control dependence regions for our

assembly language. The algorithm is based on the notion of dominators, classical in the literature

(see e.g. [17][p.379]). Roughly, a program point cs dominates another program point cs′ if everypath

from (main, 1) to cs′ must go through cs. The algorithm to compute the region of a program point

cs first calculates the set Dcs of all the program points that are dominated by cs. Then, it proceeds

as follows: let Succs be the set of all successors of cs, and cs′ ∈ Succs,

12

• If cs′ dominates all its own successors that are in Dcs, then discard cs′ from Succs and iterate.

• If cs′ does not dominate all its own successors that are in Dcs, then add cs′ to the region of

cs and add all successors of cs′ that are in Dcs to Succs \ {cs′}, then iterate.

The program terminates when there are no more elements in Succs. The program always termi-

nates since the set of program points of every program is finite, and the same element is not added

twice to the set of Succs.

This algorithm for regions satisfies the SOAP property, but does not provide any guarantee

w.r.t. the RIP property since it computes regions one by one. Given the set R of all the regions

of a program P calculated by the algorithm above, it is possible to apply an algorithm to obtain

regions for P s.t. its regions satisfy the RIP property. Such an algorithm should check that any two

regions r1(p1) and r2(p2) in R are related by inclusion, whenever their intersection is not empty. If

their intersection is not empty and one is not included in the other, then take the union of r1(p1)

and r2(p2) and make the union the new region for program points p1 and p2. However, we do not

detail such an algorithm that enforces RIP since the algorithm given above is already sufficient for

programs that are compiled with the compiler described in Section 5.2 (i.e. it enforces RIP for such

programs).

Consider the following program:

main = f =

1 prim 0 1 push 2

2 if 5 2 return

3 call f

4 goto 6

5 prim 3

6 return

Using the algorithm to compute regions described above, the region for instruction 2 of procedure

main is: (main, 3), (main, 4), (main, 5), (f, 1) :: (main, 3), (f, 2) :: (main, 3).

13

Consider the following program with a cycle:

main =

1 load x

2 if 4

3 goto 1

4 return

This program can be thought as a while in a high level language. The region for instruction at

2 is: (main, 2), (main, 3), (main, 1).

Consider the following program:

main =

1 if 6

2 load x

3 if 1

4 push v

5 goto 7

6 push v

7 return

Notice that in this program not only there are two branches depending of instruction 1 (as

in a standard if in a high level language) but there is also a cycle produced by instruction 3, so

instructions 4 and 5 depend on both instructions 1 and 3.

The region for instruction at 1 includes all program point of the form (main, i) where 2 ≤ i ≤ 6.

Instruction 3 does not dominate 1, therefore the region for 3 only includes program points (main, 4)

and (main, 5). Thus this program satisfies the RIP property.

14

4 Non-interference for the assembly language

The purpose of this section is to define an information flow type system that enforces non-interference

for programs of the assembly language. Although different notions of non-interference are applicable

to our setting, we focus on so-called termination insensitive non-interference, which guarantees that

two terminating program executions that start from initial states that are equivalent from the point

of view of an attacker will terminate with final states that are also equivalent from the point of view

of an attacker.

4.1 Defining non-interference

Non-interference is defined relative to a security policy Γ : X → S that assigns to each register a

security level from the set S = {H, L}. As usual, we assume that L ≤ H . Note that we assume that

the security level of a register is fixed throughout execution.

Definition 7 (Non-interfering program)

1. Let k ∈ S. Two values v and v′ are k-equivalent, written v ∼k v′, iff k = H or v = v′.

2. Two register maps ρ and ρ′ are L-equivalent, written ρ ∼ ρ′, if (ρ x) ∼(Γ x) (ρ′ x) for every

x ∈ X .

3. A program P is non-interfering, written NIΓ(P), if for every register maps ρ, ρ′, µ, µ′ : X → V,

ρ ∼Γ ρ′ and P, ρ ⇓ µ and P, ρ′ ⇓ µ′ imply µ ∼Γ µ′

There are at least two obvious directions in which the security policy could be generalized: first, by

considering a lattice of security levels instead of the two-point set S, and second, by letting secu-

rity levels of registers vary throughout execution. The first generalization would add technicalities

without adding insight, whereas the second generalization is considered in [18].

Note that the programs given in the introduction can easily been shown to be interfering.

15

cs = 〈f, i〉 :: cs′ Pf [i] = load x

Γ, cs ` st, se ⇒ (Γ(x) t se(f, i)) :: st, se

cs = 〈f, i〉 :: cs′ Pf [i] = store x k t se(f, i) ≤ Γ(x)

Γ, cs ` k :: st, se ⇒ st, se

cs = 〈f, i〉 :: cs′ Pf [i] = prim n

Γ, cs ` st, se ⇒ se(f, i) :: st, se

cs = 〈f, i〉 :: cs′ Pf [i] = prim op

Γ, cs ` k1 :: k2 :: st, se ⇒ (k1 t k2 t se(f, i)) :: st, se

cs = 〈f, i〉 :: cs′ Pf [i] = if j

Γ, cs ` k :: st, se ⇒ liftk(st), liftk(se, reg(f, i))

cs = 〈f, i〉 :: cs′ Pf [i] = return se(f, i) = L ∨ f 6= main

Γ, cs ` st, se ⇒ st, se

cs = 〈f, i〉 :: cs′ Pf [i] ∈ {goto j, call f ′}

Γ, cs ` st, se ⇒ st, se

where

• t denotes the lub of two security levels;

• liftk(st), where k ∈ S, denotes the pointwise extension to the stack type st of the function
λl. k t l;

• liftk(se, R), where k ∈ S, denotes the pointwise extension for all program points in R of the
function λl. k t l.

Figure 3: Transfer rules for instructions

4.2 Abstract transition system

The abstract transition system is given by transfer rules of the

cs = 〈f, i〉 :: cs0 Pf [i] = instruction

Γ, cs ` st, se ⇒ st′, se′

where Γ is the security policy, st, st′ are stack types, i.e. stacks of security levels, and se, se′ are

security environments, i.e. maps that assign a security level to each program point. The transfer

rules impose some typing constraints on cs and its successors: more precisely, st, se determine typing

16

constraints for cs, and st′, se′ determine typing constraints for the successors of cs.

Definition 8 (Typed states)

1. The set ST of stack types is defined as the set of S-stacks of length less than max.

2. The set SE of security environments is defined as PP → S.

3. The set tstate of typed states is defined as ST × SE.

As mentioned above, the abstract transition system involves statements of the form Γ, cs ` st, se ⇒

st′, se′, where cs is a call string, and st, se and st′, se′ are typed states.

Definition 9 (Typing transfer rules)

1. The abstract transition system is defined by the typing transfer rules in Figure 3.

2. The relation Γ ` cs, st, se ⇒ cs′, st′, se′ is defined as Γ, cs ` st, se ⇒ st′, se′ and cs 7→ cs′. We

let Γ ` ·, ·, · ⇒? ·, ·, · be defined as the transitive closure of Γ ` ·, ·, · ⇒ ·, ·, ·.

As with the operational semantics, all rules implicitly enforce the size requirements on call strings

and operand stacks.

We conclude this section by observing that the transfer function rules define a partial function,

i.e. Γ, cs ` st, se ⇒ st1, se1 and Γ, cs ` st, se ⇒ st2, se2 implies st1 = st2 and se1 = se2.

4.3 Typing programs

Following the type systems for polyvariant subroutines in the JVM, see e.g. [19, 20, 12], our type

system assigns sets of typed states to each program point.

Definition 10 (Typable programs)

1. A security type is a map S : CS → ℘(tstate). Given a security type S and a call string cs we

let Scs denote S(cs).

2. A typing judgment is a triple of the form Γ, S ` P , where Γ is the security policy under which

the program P must be typed, and S is a security type.

17

3. The program P has type S (w.r.t. Γ), written Γ, S ` P , if Γ, S ` P can be derived from the

typing rule:

∀cs, cs′ ∈ CS. ∀st, se ∈ Scs. cs 7→ cs′ implies

∃st′, se′ ∈ Scs′ . Γ, cs ` st, se ⇒ st′, se′

Γ, S ` P

4. The program P is typable (w.r.t. Γ), written Γ ` P , if Γ, S ` P for some security type S.

It is possible to compute the type of a program, by using a dataflow analysis that explores abstract

execution paths. The algorithm computes S as follows:

• initially, the call string 〈main, 1〉 : ε is mapped to the typed state 〈ε, λp.L〉;

• next, the algorithm repeatedly performs the iterative step, i.e. selects one call string cs, and

one typed state st, se ∈ Scs, then performs its abstract execution, i.e. computes the typed

state st′, se′ such that Γ, cs ` st, se ⇒ st′, se′, and adds st′, se′ to all sets Scs′ where cs 7→ cs′.

In case the typed state st′, se′ does not exist, the algorithm returns an error;

• finally, the algorithm terminates when for every call string cs, and typed state st, se ∈ Scs and

typed state st′, se′ such that Γ, cs ` st, se ⇒ st′, se′, we have st′, se′ ∈ Scs′ for every cs ∈ CS

such that cs 7→ cs′.

The algorithm terminates because the sets tstate and CS are finite, and because an auxiliary bitmap

indicates on which call strings the algorithm must perform the iterative step. Furthermore, the

algorithm returns an error, or computes a type for the program P .

Proposition 11 It is decidable whether a program P is typable.

Note that there are a number of variants and optimizations for computing the typing of programs,

see e.g. [12].

4.4 Examples

Before proving the soundness of the type system, we consider some examples of typable programs,

and of non-typable programs. We start with the non-typable programs of Section 2:

18

• The first example (direct flow) is rejected by our type system. Indeed, the transition of an

instruction store xL is restricted to the case where the type in the top of the stack type is low,

whereas the instruction load yH pushes H on the stack type.

• The second and third examples (indirect flow) are rejected by our type system. Indeed, the

transition of an instruction if l sets to H the security level of all program points in its control

dependence region, whenever the type on the top of the stack type is H , which is the case

after executing the load yH instruction. Then, the type system rejects low assignments that

are performed at program points which are high w.r.t. the security environments, and return

instructions occurring in the main procedure and moreover at program points which are high

w.r.t. the security environments.

• The fourth and fifth examples (indirect flow via operand stack) are rejected by our type system.

Indeed, the transition of an instruction if l sets to H the security level of all elements in the

stack, whenever the type on the top of the stack type is H , which is the case after executing the

load yH instruction. Then, the type system rejects assignments of high values to low registers.

On the positive side, we shall show in Section 5.2 that all high-level programs that are typable w.r.t.

some information flow type system at source code level are compiled into programs that are typable

w.r.t. our type system.

We conclude this section with an example of a program that is non-interfering, but that is not

accepted by our type system. Consider the following program, where xL is a low variable and yH is

a high variable:

1 load yH

2 if 5

3 prim 1

4 store xL

5 prim 1

6 store xL

19

Instruction 4 necessarily belongs to the region of 2. The transfer rule for if lifts to H all instructions

in its region, thus the security environment at program point 4 is H . Hence the store to a low

variable at 4 is disallowed by the type system. However, this program terminates with xL = 1 for

all initial values of yH , and hence is non-interfering.

4.5 Soundness

Typable programs are non-interfering.

Theorem 12 If Γ ` P then NIΓ(P).

The idea of the proof is as follows: first, we prove in Lemma 14 that L-equivalence is preserved

under one step of execution, if the program is typable. Second, we prove in Lemma 15 that one step

execution in a high-level environment yields a result state that is L-equivalent to the original one.

By combining these results together, we conclude.

4.5.1 Defining L-equivalence between states

The statements of the main lemmas towards Theorem 12 rely on a notion of L-equivalence between

states. This notion is defined in terms of L-equivalence between register maps, as defined in Def-

inition 7, and of L-equivalence between operand stacks. In order for the proofs to go through in

the case of high-level environments, the definition of L-equivalence between stacks requires a slight

generalization of the pointwise order on stacks. The intuition is that we require operand stacks to

be L-equivalent pointwise on some common top part, and then to be high in the bottom part on

which they may not coincide.

Definition 13 (Operand stack and state L-equivalence)

1. Let st be a stack type. We write high st if st has length n and st[i] = H for every 1 ≤ i ≤ n.

2. Let s be an operand stack and st be a stack type; we write high (s, st) if s and st have the same

length n and st[i] = H for every 1 ≤ i ≤ n.

20

3. Let s, s′ be operand stacks and st, st′ ∈ ST . Then s ∼st,st′ s′ is defined inductively as follows:

high (s, st) high (s′, st′)

s ∼st,st′ s′

s ∼st,st′ s′ v ∼k v′

v :: s ∼k::st,k::st′ v′ :: s′

4. Let σ = 〈cs, ρ, s〉 and σ′ = 〈cs′, ρ′, s′〉 be states. Then state L-equivalence between σ and σ′

w.r.t. register type Γ and stack types st and st′, written σ ∼Γ,st,st′ σ′, is defined as s ∼st,st′

s′ ∧ ρ ∼Γ ρ′.

4.5.2 Soundness proof

In the sequel, we use s · cs to denote the call string of a state s.

The first lemma establishes that L-equivalence is preserved under one-step execution. Informally,

if s ∼ s′, and s ; u, and s′ ; u′, then u ∼ u′.

Lemma 14 (One-step non-interference in low-level environments) Suppose Γ, S ` P . Let

s1, s2, s
′
1, s

′
2 be states such that s1·cs = s2·cs and s1 ; s′1, and s2 ; s′2. Further let (st1, se), (st2, se) ∈

Ss1·cs be security types s.t. s1 ∼Γ,st1,st2 s2.

Then there exist (st′1, se
′) ∈ Ss′

1
·cs and (st′2, se

′) ∈ Ss′

2
·cs s.t. s′1 ∼Γ,st′

1
,st′

2
s′2. Furthermore, one

of the following holds:

• s′1 · cs = s′2 · cs;

• s1 · cs = 〈f, i〉 :: cs and s′1 · cs = 〈f ′, i′〉 :: cs and s′2 · cs = 〈f ′′, i′′〉 :: cs and (f, i) ∈ PP if

with (f ′, i′), (f ′′, i′′) ∈ reg(f, i), and se(f1, i1) = H for all (f1, i1) ∈ reg(f, i), and high st1 and

high st2.

Proof By a case analysis on the instruction that is executed.

The second lemma establishes that, in high-level environments, the execution relation is included in

the L-equivalence relation. Informally, if s ; u, then s ∼ u.

Lemma 15 (One-Step non-interference in high-level environments) Suppose Γ, S ` P . Let

s, s′ be states such that s ; s′ and assume s · cs = 〈f, i〉 :: cs0. Let (st, se) ∈ Ss·cs be a security type

21

s.t. high st. Let (f0, i0) ∈ PP if s.t. (f, i) ∈ reg(f0, i0) and se(f1, i1) = H for all (f1, i1) ∈ reg(f0, i0).

Then there exists (st′, se) ∈ Ss′·cs s.t. high st′, and s ∼Γ,st,st′ s′, and Γ, s · cs ` (st, se) ⇒ (st′, se).

Furthermore, one of the following holds:

• s′ · cs = 〈f ′, i′〉 :: cs′0 with (f ′, i′) ∈ reg(f0, i0);

• s′ · cs = jun(f0, i0) :: cs0.

Proof By a case analysis on the instruction that is executed.

Proof [of Theorem 12] Consider the two execution paths

s0 ; s1 ; . . . ; sn1

s′0 ; s′1 ; . . . ; s′n2

where s0 = 〈〈main, 1〉 :: ε, ρ, ε〉, and s′0 = 〈〈main, 1〉 :: ε, ρ′, ε〉, and sn1
· cs = sn2

· cs = ε.

By invoking Lemma 14 as long as it applies, we conclude for some maximal q that sq ·cs = s′q ·cs,

and that there exists (stq , se), (st
′
q, se) ∈ Ssq ·cs such that s′q ∼Γ,stq ,st′q

s′q . Now there are two cases

to treat: if sq · cs = ε then n1 = n2 = q and we are done; otherwise, the last instruction executed is

an if high.

By the typing rule of the if instruction, we have high stq and high st′q. We now invoke Lemma 15

repeatedly to conclude that there exists sq1
and s′q2

and (stq1
, se1) ∈ Ssq1

·cs and (st′q2
, se′2) ∈ Ss′

q2
·cs

such that sq ∼Γ,stq,stq1
sq1

and s′q ∼Γ,st′q ,st′q2
s′q2

. By transitivity, we conclude sq1
∼Γ,stq1

,st′q2
s′q2

.

Further, we can choose q1 and q2 to be the minimal indexes such that sq1
· cs = jun(f, i) :: cs′ and

sq2
·cs = jun(f, i) :: cs′ respectively. As Γ ` sq ·cs, stq, se ⇒? sq1

·cs, stq1
, se1 and Γ ` sq ·cs, st

′
q, se

′ ⇒?

s′q2
· cs, st′q2

, se′2 and only if statements may modify the security environment, and we assume RIP,

we can further conclude that se1 = se2.

Thus we can apply Lemma 14 again, and repeat the process until reaching the final states of the

reduction sequences.

22

5 Security type preserving compilation

In this section, we define a high-level imperative language, equippe it with a security type system,

and introduce a compiler from the source language to the assembly language. Then we show that

the compiler preserves security types, and derive as a corollary that the security type system for the

source language enforces non-interference.

5.1 Source language

The source language is a simple imperative language with procedures. A procedure is a declaration

of the form proc f(~x) = c; return where f is a procedure name and c is a command. As with the

assembly language, we assume that a program is a list of procedures with a distinguished, main,

procedure without parameters. Formally, the set Expr of expressions, Comm of commands, and Prog

of programs are given by the following syntaxes:

e ::= x | n | e op e

c ::= x := e | f(~e) | c; c | while e do c | if e then c else c

P ::= [proc f(~x) = c; return]?

The operational, big-step semantics of programs is based on judgments of the form 〈c, µ〉 ⇓ µ′, where

c ∈ Comm and µ, µ′ : X → V . Rules are standard, see e.g. [21, 3], and omitted. We write P, µ ⇓ µ′

iff 〈cmain, µ〉 ⇓ µ′, where cmain is the body of the main procedure.

The security type system is based on judgments of the form Γ ` e : τ and Γ ` c : τ cmd. A

program P is typable, written Γ ` P , if Γ ` cmain : τ cmd for some τ . The typing rules are inspired

from [21, 3], and are given in Figure 4; in the last rule, we assume that the procedure f is defined

by proc f(~x) = P ; return.

Note that the typing rules exclude mutual and self-recursion; however it is possible to overcome

this limitation at the price of further technicalities.

23

5.2 Compilation

The compilation function Cp is defined in the usual way from a compilation function on expressions

Ce : Expr → Instr?, and a compilation function on commands Cc : Comm → Instr?. Their formal

definitions are given in Figure 5. In order to enhance readability, we use :: both for concatenating an

element to a list and concatenating two lists, and #l to denote the length of the list l. Furthermore

we omit details of calculating pc in the clauses for while and if expressions.

5.3 Preservation of security types

In this section, we assume that regions used by the type system of the assembly language are

minimal in the sense that the region of the compilation of an if instruction compiled from a command

if e then c1 else c2, includes exactly those program points belonging to the compilation of c1 and c2.

Similarly, the region of the compilation of an if instruction compiled from a command while e do c

includes exactly those program points belonging to the compilation of c. We need these minimal

regions to show that compilation preserves typing.

Theorem 16 If Γ ` P then Γ ` Cp(P).

The proof proceeds in two steps. First, we show how to compute from an expression in the source

language and its type, the type of the corresponding compiled code produced by the function Ce.

By abuse of notation, we write se = τ if se(f, j) = τ for every 〈f, j〉 ∈ PP .

Lemma 17 Assume e is an expression in P and Γ ` e : τ , and Cp(P)f [i . . . j] = Ce(e). For every

cs0 ∈ CS and st, se ∈ ST s.t. se = τ , there exists Se
cs0,st,se : {〈f, k〉 :: cs0 | i ≤ k ≤ j +1} → ST —by

abuse of notation, we often write Se—s.t.:

1. for every cs, cs′ ∈ dom(Se), if cs 7→ cs′ then Γ, cs ` Se(cs) ⇒ Se(cs′);

2. Se(〈f, j + 1〉 :: cs0) = τ :: st, se.

Proof By structural induction on instructions.

Second, we extend the result to commands.

24

Lemma 18 Assume c is a command in P , and Γ ` c : τ cmd, and Cp(P)f [i . . . j] = Cc(c). For

every cs0 ∈ CS and st0, se0 ∈ ST s.t. se0 = τ , there exists Sc
cs0,st0,se0

: CS ⇀ ℘(ST)—by abuse of

notation, we often write Sc—s.t.:

1. for every cs, cs′ ∈ dom(Sc) and st, se ∈ Sc(cs) s.t. cs 7→ cs′, there exists st′, se′ ∈ Sc(cs′) s.t.

Γ, cs ` st, se ⇒ st′, se′;

2. there exists st′ s.t. st′ = st0 or st′ = liftH st0, and for every cs ∈ dom(Sc), cs′ 6∈ dom(Sc)

and st, se ∈ Sc(cs) s.t. cs 7→ cs′, Γ, cs ` st, se ⇒ st′, se′ for se′ = liftH(se0, reg(f, i)) for some

f, i or se′ = se0.

Proof By structural induction on instructions.

Proof [of Theorem 16] Set se0 = L. By construction, the function Scmain

〈main,1〉:ε,ε,se0

is defined for all

cs s.t. 〈main, 1〉 : ε 7→? cs. It is then immediate to conclude.

5.4 Recovering non-interference for the source language

One can also prove that compilation preserves operational semantics.

Proposition 19 (Preservation of semantics) For every program P and memories ρ, µ, if P, ρ ⇓

µ then Cp(P), ρ ⇓ µ.

Proof Routine and omitted.

By combining Proposition 19 and Theorem 16 we are able to recover the non-interference result for

typable source programs.

Corollary 20 (Non-interference for source language) Let P be a program, let Γ : X → S and

assume that Γ ` P . Then P is non-interfering w.r.t. Γ in the sense that for every ρ, ρ′, µ, µ′ : X → V

such that ρ ∼Γ ρ′ and P, ρ ⇓ µ, and P, ρ′ ⇓ µ′, we have µ ∼Γ µ′.

Proof By Proposition 19, Cp(P), ρ ⇓ µ and Cp(P), ρ′ ⇓ µ′. Furthermore Γ ` Cp(P) by Theorem

16. Hence Cp(P) is non-interfering w.r.t. Γ by Theorem 12, and thus µ ∼Γ µ′ by definition of

non-interference.

25

Example 21 In this example the typing is done at source code for a program P level using the type

system in Figure 4.

The compilation using Cp in Figure 5 is shown, as well as computation of its type, using the

typing transfer rules of Figure 3 and the typing rule of Definition 10.

The source code is [proc main = c; return] where c is

if yH = 0 then yH := xL else yH := 1 ; xL := 3;

In order to type this program, we need to define the environment Γ, classifying variables in the

program as low (L) or high (H). Let Γ(xL) = L and Γ(yH) = H. The type for program P is L cmd

(i.e. Γ `S main : L cmd), meaning that low variables are possibly modified in this program. In fact,

variable xL is modified. The derivation tree for c is:

Γ(yH) = H

Γ ` yH : H Γ ` 0 : H

Γ ` yH = 0 : H

Γ(xL) = L

Γ ` xL : L

Γ ` xL : H Γ(yH) = H

Γ ` yH := xL : H cmd

Γ ` 1 : H Γ(yH) = H

Γ ` yH := 1 : H cmd

Γ ` if yH = 0 then yH = xL else yH := 1 : H cmd

Γ ` if yH = 0 then yH = xL else yH := 1 : L cmd

Γ ` 3 : L Γ(xL) = L

Γ ` xL := 3 : L cmd

Γ ` if yH = 0 then yH := xL else yH := 1 ; xL := 3 : L cmd

The compilation Cp(P) is [main := c′] where c′ is the code shown below, together with the security

type according to the typing rule in Definition 10.

26

c′ State Types for c′

1 load yH {ε, seL}

2 prim 0 {H · ε, seL}

3 prim = {L · H, seL}

4 if 8 {H · ε, seL}

5 load xL {ε, seL ⊕ {main, 5 7→ H, main, 6 7→ H, main, 7 7→ H, main, 8 7→ H, main, 9 7→ H}}

6 store yH {H · ε, seL ⊕ {main, 5 7→ H, main, 6 7→ H, main, 7 7→ H, main, 8 7→ H, main, 9 7→ H}}

7 goto 10 {ε, seL ⊕ {main, 5 7→ H, main, 6 7→ H, main, 7 7→ H, main, 8 7→ H, main, 9 7→ H}}

8 prim 1 {ε, seL ⊕ {main, 5 7→ H, main, 6 7→ H, main, 7 7→ H, main, 8 7→ H, main, 9 7→ H}}

9 store yH {H · ε, seL ⊕ {main, 5 7→ H, main, 6 7→ H, main, 7 7→ H, main, 8 7→ H, main, 9 7→ H}}

10 prim 3 {ε, seL ⊕ {main, 5 7→ H, main, 6 7→ H, main, 7 7→ H, main, 8 7→ H, main, 9 7→ H}}

11 store xL {L · ε, seL ⊕ {main, 5 7→ H, main, 6 7→ H, main, 7 7→ H, main, 8 7→ H, main, 9 7→ H}}

12 return {ε, seL ⊕ {main, 5 7→ H, main, 6 7→ H, main, 7 7→ H, main, 8 7→ H, main, 9 7→ H}}

It is left to the reader to check that the type obtained by using the type system for the assembly

language is the same type obtained using the implicit algorithm in the proof of Theorem 16.

6 Conclusion

We have shown how type systems can be used to enforce non-interference in a low-level language

with procedures, and that one can define a security types preserving compiler from a high-level

imperative language to such a low-level language.

6.1 Related work

As emphasized in the introduction, static enforcement of non-interference through type systems is

a well-researched topic, see e.g. [1] for a survey. We only comment on some of the most relevant

literature.

Low-level languages Lanet et al., see e.g. [11], develop a method to detect illicit flows for a

sequential fragment of the JVM. In a nutshell, they proceed by specifying in the SMV model checker

27

a symbolic transition semantics of the JVM that manipulates security levels, and by verifying that

an invariant that captures the absence of illicit flows is maintained throughout the (abstract) pro-

gram execution. Their analysis is more flexible than ours, in that it accepts programs such as

yL := xH ; yL := 0. However, they do not provide a proof of non-interference. The approach of

Lanet et al. has been refined by Bernardeschi and De Francesco, see e.g. [10], for a subset of the

JVM that includes jumps, subroutines but no exceptions. More recently, Bonelli, Compagnoni and

Mendel [22] have considered non-interference for a simple assembly language, using linear continu-

ations for computing control dependence regions. Their proof technique is similar to ours. Using

abstract interpretation techniques, Genaim and Spoto [23] have also developed a sound information

flow analysis for a fragment of Java bytecode. Finally, the first and third author [16] have developed

a sound information flow type system for a large fragment of the JVM.

Type preserving compilation Type preserving compilation has been thoroughly studied in the

context of typed intermediate languages, most notably for ML and Java, see e.g. [24]. Informa-

tion flow types preserving compilation has been studied by Zwandewic and Myers in the context of

λ-calculus and CPS translation [25]. Also, Honda and Yoshida [5] consider type-preserving interpre-

tations of higher-order imperative calculi with security types to π-calculus with security types.

Proof Carrying Code and Typed Assembly Languages Recent work on Proof Carrying

Code [14, 26] advocates the use of certifying compilation, which is closely related to type preserving

compilation in the sense that a certifying compiler aims at producing, from a certificate (i.e. a proof

object) that a source program adheres to a property, a certificate that the compiled program adheres

to a corresponding property.

Recent work on typed assembly languages [27] aims at endowing assembly languages with a

typing system which guarantees such properties as memory safety of programs.

28

6.2 Future work

Our work constitutes a preliminary investigation in the realm of certifying compilation for security

properties, and may be extended in several directions.

• Language expressiveness: we would like to extend the results of this paper to more powerful

languages that include objects and/or higher-order functions. We are particularly interested

in scaling up our results to the sequential fragment of Java and of the JVM, building up on [7]

for the former and on [16] for the latter.

• Integrity: it should be possible, and of practical interest, to adapt our results to integrity.

Indeed, weak forms of integrity guarantee that high variables may not be modified by a low

writer, and are dual to confidentiality.

• Machine-checked proofs: we would like to machine-check the proof of soundness of the in-

formation flow type system of Section 4 and of [16]. Using earlier work on verified bytecode

verifiers [28] in Coq [29] (see [30] for similar earlier work in Isabelle [31]), it should be possible to

derive a certified bytecode verifier that guarantees secure information flow for a representative

(sequential) fragment of the JVM.

Acknowledgments

We are grateful to Florian Kammueller, David Naumann, and to the referees for their comments on

the paper.

This work is partially supported by the ACI Sécurité SPOPS, by the RNTL project CASTLES

and by the IST project INSPIRED.

References

[1] A. Sabelfeld and A. Myers. Language-Based Information-Flow Security. IEEE Journal on

Selected Areas in Comunications, 21:5–19, January 2003.

29

[2] J. Goguen and J. Meseguer. Security policies and security models. In Proceedings of SOSP’82,

pages 11–22. IEEE Computer Society Press, 1982.

[3] D. Volpano, G. Smith, and C. Irvine. A Sound Type System for Secure Flow Analysis. Journal

of Computer Security, pages 167–187, December 1996.

[4] N. Heintze and J. Riecke. The SLam calculus: programming with secrecy and integrity. In

Proceedings of POPL’98, pages 365–377. ACM Press, 1998.

[5] K. Honda and N. Yoshida. A Uniform Type Structure for Secure Information Flow. In Pro-

ceedings of POPL’02, pages 81–92. ACM Press, 2002.

[6] G. Barthe and B. Serpette. Partial evaluation and non-interference for object calculi. In

A. Middeldorp and T. Sato, editors, Proceedings of FLOPS’99, volume 1722 of Lecture Notes

in Computer Science, pages 53–67. Springer-Verlag, 1999.

[7] A. Banerjee and D. A. Naumann. Secure Information Flow and Pointer Confinement in a

Java-like Language. In Proceedings of CSFW’02. IEEE Computer Society Press, 2002.

[8] A.C. Myers. Jflow: Practical mostly-static information flow control. In Proceedings of POPL’99,

pages 228–241. ACM Press, 1999.

[9] F. Pottier and V. Simonet. Information flow inference for ML. ACM Transactions on Program-

ming Languages and Systems, 25(1):117–158, January 2003.

[10] C. Bernardeschi and N. De Francesco. Combining Abstract Interpretation and Model Check-

ing for analysing Security Properties of Java Bytecode. In A. Cortesi, editor, Proceedings of

VMCAI’02, volume 2294 of Lecture Notes in Computer Science, pages 1–15, 2002.

[11] P. Bieber, J. Cazin, V.Wiels, G. Zanon, P. Girard, and J.-L. Lanet. Checking Secure Interactions

of Smart Card Applets: Extended version. Journal of Computer Security, 10:369–398, 2002.

[12] X. Leroy. Java bytecode verification: algorithms and formalizations. Journal of Automated

Reasoning, 30(3-4):235–269, December 2003.

30

[13] M. Abadi. Secrecy by typing in security protocols. Journal of the ACM, 46(5):749–786, Septem-

ber 1999.

[14] G.C. Necula. Proof-Carrying Code. In Proceedings of POPL’97, pages 106–119. ACM Press,

1997.

[15] T. Ball. What’s in a region? Or computing control dependence regions in near-linear time

for reducible control flow. ACM Letters on Programming Languages and Systems, 2(1–4):1–16,

March–December 1993.

[16] G. Barthe and T. Rezk. Non-interference for a JVM-like language. In M. Fähndrich, editor,

Proceedings of TLDI’05. ACM Press, 2005.

[17] with J. Palsberg A.W. Appel. Modern Compiler Implementation in Java. Cambridge University

Press, 2002. 2nd Edition.

[18] B. Jacobs, W. Pieters, and M. Warnier. Statically checking confidentiality via dynamic labels.

To appear, 2005.

[19] A. Coglio. Simple verification technique for complex Java bytecode subroutines. Concurrency

and Computation: Practice and Experience, 16(7):647–670, 2004.

[20] L. Henrio and B. Serpette. A parameterized polyvariant bytecode verifier. In J.-C. Filliatre,

editor, Proceedings of JFLA’03, 2003.

[21] D. Volpano and G. Smith. A Type-Based Approach to Program Security. In M. Bidoit and

M. Dauchet, editors, Proceedings of TAPSOFT’97, volume 1214 of Lecture Notes in Computer

Science, pages 607–621. Springer-Verlag, 1997.

[22] E. Bonelli, A. Compagnoni, and R. Medel. SIFTAL: A Typed Assembly Language for Secure

Information Flow Analysis, 2004. Manuscript.

31

[23] S. Genaim and F. Spoto. Information Flow Analysis for Java Bytecode. In R. Cousot, editor,

Proceedings of VMCAI’05, volume 3xxx of Lecture Notes in Computer Science. Springer-Verlag,

2005.

[24] C. League, Z. Shao, and V. Trifonov. Precision in Practice: A Type-Preserving Java Compiler.

In G. Hedin, editor, Proceddings of CC’03, volume 2622 of Lecture Notes in Computer Science,

pages 106–120. Springer-Verlag, 2003.

[25] S. Zdancewic and A. Myers. Secure information flow and CPS. In D. Sands, editor, Proceedings

of ESOP’01, volume 2028 of Lecture Notes in Computer Science, pages 46–61. Springer-Verlag,

2001.

[26] G.C. Necula and P. Lee. The Design and Implementation of a Certifying Compiler. In Proceed-

ings of PLDI’98, pages 333–344, 1998.

[27] G. Morrisett, D. Walker, K. Crary, and N. Glew. From system F to typed assembly language.

In Proceedings of POPL’98, pages 85–97. ACM Press, 1998.

[28] G. Barthe and G. Dufay. A Tool-Assisted Framework for Certified Bytecode Verification. In

Proceedings of FASE’04, volume 2984 of Lecture Notes in Computer Science, pages 99–113.

Springer-Verlag, 2004.

[29] Coq Development Team. The Coq Proof Assistant User’s Guide. Version 8.0, January 2004.

[30] G. Klein and T. Nipkow. Verified bytecode verifiers. Theoretical Computer Science, 298(3):583–

626, April 2002.

[31] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: A Proof Assistant for Higher-Order

Logic, volume 2283 of Lecture Notes in Computer Science. Springer-Verlag, 2002.

32

A Proof of Lemmas 14 and 15

In the sequel, we use hd and tl to denote the head and tail functions.

Proof [of Lemma 14] By a case analysis on the instruction that is executed. We assume that

s1 = 〈cs, ρ1, os1〉 and s2 = 〈cs, ρ2, os2〉. Further we always choose st′1, se
′
1 and st′2, se

′
2 such that

Γ, s · cs ` st1, se1 ⇒ st′1, se
′
1 and such that Γ, s · cs ` st2, se2 ⇒ st′2, se

′
2.

Case: Pf [i] = load x. By the typing transfer rule,

st′1 = (Γ(x) t se(f, i)) · st1

st′2 = (Γ(x) t se(f, i)) · st2

By the operational semantics,

s′1 = 〈〈f, i + 1〉 :: cs1, ρ1, ρ1(x) :: os1〉

s′2 = 〈〈f, i + 1〉 :: cs2, ρ2, ρ2(x) :: os2〉

To see s′1 ∼Γ,st′
1
,st′

2
s′2, we have to check that ρ1(x) ∼Γ(x)tse(f,i) ρ2(x). There are two cases to

treat:

• if se(f, i) ≤ Γ(x) then Γ(x) t se(f, i) = Γ(x) and we are done by hypothesis.

• if se(f, i) > Γ(x) then Γ(x) t se(f, i) = H and ρ1(x) ∼H ρ2(x) holds by definition.

Case: Pf [i] = store x. By the typing transfer rule,

st′1 = tl st1

st′2 = tl st2

By the operational semantics,

s′1 = 〈〈f, i + 1〉 :: cs, ρ1 ⊕ {x 7→ hd os1}, tl os1〉

s′2 = 〈〈f, i + 1〉 :: cs, ρ2 ⊕ {x 7→ hd os2}, tl os2〉

33

We must prove:

• tl os1 ∼st′
1
,st′

2
tl os2, which follows directly from os1 ∼st1,st2 os2 and the definition of ∼;

• hd os1 ∼Γ(x) hd os2: if Γ(x) = H then we are done by definition so assume that Γ(x) = L.

From the typing transfer rule, we know that Γ(x) ≥ hd st1 and Γ(x) ≥ hd st2, hence

hd st1 = hd st2 = L. As s1 ∼st1,st2 s2, it follows that hd os1 = hd os2, and we are done.

Case: Pf [i] = if j. By the typing transfer rule,

st′1 = lift(hd st1)(tl st1)

st′2 = lift(hd st2)(tl st2)

By the operational semantics,

s′1 = 〈〈f, j1〉 :: cs, ρ1, tl os1〉

s′2 = 〈〈f, j2〉 :: cs, ρ2, tl os2〉

We must prove:

• tl os1 ∼st′
1
,st′

2
tl os2, which follows from the fact that for every values v, v′ and security

levels l, l′ s.t. l ≤ l′, v ∼l v′ implies v ∼l′ v′;

• se = se′1 = se′2 and j1 = j2, or hd st1 = hd st2 = H . Assume that the second disjunct

does not holds, i.e. hd st1 6= H or hd st2 6= H . Necessarily hd st1 = hd st2 = L, by

definition of ∼, and because hd os1 = hd os2. The result follows.

Cases for prim op and prim n are similar to the case of load and do not present further difficulties.

Cases for goto j, call f and return are straightforward since states do not change.

Proof [of Lemma 15]

Case: Pf [i] = load x. Assume s = 〈〈f, i〉 :: cs, ρ, os〉. By the typing transfer rule, the operational

34

semantics and the hypothesis se(f, i) = H ,

st′ = H :: st

s′ = 〈〈f, i + 1〉 :: cs, ρ, ρ(x) :: os〉

Since high st holds, it follows that high st′ and os ∼Γ,st,st′ ρ(x) :: os. The register map remains

unchanged, hence s ∼Γ,st,st′ s′.

Case: Pf [i] = store x. Assume s = 〈〈f, i〉 :: cs, ρ, v · os〉. By the typing transfer rule and the

operational semantics

Γ(x) = H

st′ = tl st

s′ = 〈〈f, i + 1〉 :: cs, ρ⊕{x 7→ v}, os〉

Since high st holds, it follows that high st′ and v :: os ∼st,st′ os. Furthermore, ρ ∼Γ ρ⊕{x 7→ v}

since Γ(x) = H , hence we are done.

Case: Pf [i] = if j. Assume s = 〈〈f, i〉 : cs, ρ, os〉. By the typing transfer rule and the operational

semantics

st = k :: st0

st′ = liftk(st0)

se′ = liftk(se, reg(f, i))

s′ = 〈〈f, l〉 :: cs, ρ, os〉

where l ∈ {i + 1, j}. Clearly s ∼Γ,st,st′ s′ and high st′, as we assume that either high st or

k = H .

The remaining instructions are similar or straightforward.

B Proof of Theorem 16

Throughout this section, we assume given a fixed program P ∈ P and a fixed register type Γ : X → S.

35

Proof [of Lemma 17] By structural induction on instructions.

Case: e ≡ x. By definition, we have that Ce(e) = load x and i = j. Define Se such that Se(〈f, i〉 ::

cs0) = st, se and such that Se(〈f, i + 1〉 :: cs0) is equal to (Γ(x) t se(f, i)) :: st, se. Properties

1 and 2 hold by the transfer rule of load, and because Γ(x) t se(f, i) = τ as se(f, i) = τ and

Γ(x) ≤ τ as Γ ` e : τ .

Case: e ≡ n. By definition, Ce(e) = prim n and i = j. Define Se such that, Se(〈f, i〉 :: cs0) = st, se

and Se(〈f, i + 1〉 :: cs0) = se(f, i) :: st, se. Properties 1 and 2 hold by the rule of prim, and

because se(f, i) = τ .

Case: e ≡ e1 op e2. By definition, Ce(e) = Ce(e1) :: Ce(e2) :: prim op. Now assume that Pf [i . . . i1] =

Ce(e1) and assume that Pf [i1 + 1 . . . i2] = Ce(e2) and Pf [i2 + 1] = prim op. By induction

hypothesis we can construct Se1 for the security type st, se and Se2 for the security type

τ · st, se. Define

Se(〈f, k〉 :: cs0) =























Se1(〈f, k〉 :: cs0) if i ≤ k ≤ i1

Se2(〈f, k〉 :: cs0) if i1 + 1 ≤ k ≤ i2

τ t se(f, i2) :: st, se if k = i2 + 1

Properties 1 and 2 are derived from the induction hypothesis on Se1 and Se2 .

In the sequel, we use ∪ to denote the union of two partial maps that coincide on the intersection of

their domains. By abuse of notation, we write Se
cs0,st,se for the function λx ∈ dom(Se

cs0,st,se). {S
e
cs0,st,se(x)}.

Proof [of Lemma 18] We write φc
cs0,st0,se0

for st′ and πc
cs0,st0,se0

for se′. Let J be the smallest tran-

sitive relation containing the subterm relation and the relation J0 defined by the clause

[proc f ~x := c; return] is a declaration in P

c J0 f ~e

The relation is well-founded, as the type system excludes mutual or self-recursion, so we proceed by

36

well-founded induction on J.

Case: c ≡ x := e. By definition, Cc(c) = Ce(e) · store x. Set Sc = Se
cs0,st0,se0

, where Se
cs0,st0,se0

is

defined using Lemma 17 (which can be applied because the command in the source language

is typable). As Se
cs0,st0,se0

satisfies both properties 1 and 2 of Lemma 17, we can conclude.

Case: c ≡ c1; c2. By definition, Cc(c) = Cc(c1) :: Cc(c2). Set Sc
cs0,st0,se0

= Sc1

cs0,st0,se0
∪ Sc2

cs0,st′
0
,se0

,

where Sc1 and Sc2 are defined by induction hypothesis, and st′0 = φc1

cs0,st0,se0
. The properties

follow by induction hypothesis (and by elementary reasoning on the successors in a compiled

program).

Case: c ≡ if e then c1 else c2. By definition,

Cc(c) = Ce(e) :: if (i′ + 2) :: Cc(c1) :: goto (j + 1) :: Cc(c2)

Pf [i . . . j′] = Ce(e)

Pf [j′ + 2 . . . i′] = Cc(c1)

Pf [i′ + 2 . . . j] = Cc(c2)

Set

Sc
cs0,st0,se0

=

Se
cs0,st0,se0

∪ Sc1

cs0,liftτ (st0),se0
∪ Sc2

cs0,liftτ (st0),se0
∪ {〈f, i′ + 1〉 :: cs0 ⇀ liftτ (st0), se0}

The only subtlety is to prove that Sc1 and Sc2 coincide on 〈f, j + 1〉 :: cs0, which follows by

induction hypothesis.

Case: c ≡ while e do c1. By definition,

Cc(c) = goto (i′ + 1) :: Cc(c1) :: Ce(e) :: if (i + 1)

Pf [i + 1 . . . i′] = Cc(c1)

Pf [i′ + 1 . . . j′] = Ce(e)

Set Sc
cs0,st0,se0

= Se
cs0,st0,se0

∪ Sc1

cs0,liftτ (st0),se0
∪ {〈f, i〉 :: cs0 ⇀ st0, se0}. The properties follow

37

by induction hypothesis.

Case: c ≡ f ′ (e) (for simplicity, we assume that f ′ only has one parameter). By definition Cc(c) =

Ce(e) :: call f ′ with Pf [i . . . j] = Ce(e). Further assume that f ′ is defined in P by proc f ′(x) =

c′; return. Set

Sc
cs0,st0,se0

= Se
cs0,st0,se0

∪ Sc′

〈f,j+1〉::cs,τ ::st0,se0

The only subtlety is to notice that Sc
cs0,st0,se0

(〈f, j + 1〉 :: cs0) is equal to {τ :: st0, se0}, which

follows from Lemma 17.

38

(Sub)e

Γ ` e : τ τ ≤ τ ′

Γ ` e : τ ′

(Sub)c

Γ ` P : τ cmd τ ′ ≤ τ

Γ ` P : τ ′ cmd

(Var)
Γ(x) = τ

Γ ` x : τ

(Val) Γ ` n : τ

(Op)
Γ ` e : τ Γ ` e′ : τ

Γ ` e op e′ : τ

(Assign)
Γ ` e : τ Γ(x) = τ

Γ ` x := e : τ cmd

(Seq)
Γ ` P : τ cmd Γ ` Q : τ cmd

Γ ` P ; Q : τ cmd

(While)
Γ ` e : τ Γ ` P : τ cmd

Γ ` while e do P : τ cmd

(Cond)
Γ ` e : τ Γ ` P : τ cmd Γ ` Q : τ cmd

Γ ` if e then P else Q : τ cmd

(App)
Γ ` P : τ cmd Γ ` ~e : τ Γ(~x) = τ

Γ ` f(~e) : τ cmd

Figure 4: Typing rules for high-level language

39

Ce(x) = load x

Ce(n) = prim n

Ce(e op e′) = Ce(e) :: Ce(e
′) :: prim op

Cc(x := e) = Ce(e) :: store x

Cc(f ~e) = Ce(~e) :: call f

Cc(c1; c2) = Ce(c1) :: Ce(c2)

Cc(while e do c) =
let l1 = Ce(e); l2 = Cc(c); x = #l2; y = #l1 in

goto (pc + x + 1) :: l2 :: l1 :: if (pc − x − y)

Cc(if e then c1 else c2) =
let le = Ce(e); lc1 = Cc(c1); lc2 = Cc(c2);

x = #lc2; y = #lc1 in

le :: if (pc + x + 2) :: lc2 :: goto (pc + y + 1) :: lc1

Cp([proc f(~x) := c; return]?) = [f := (store ~x :: Cc(c) :: return)]?

Figure 5: Compilation of expressions and commands

40

