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Abstract 

Resource co-allocation is one of the crucial problems affecting the utility of the grid. 
Because the numbers of the application tasks and amounts of required resources are enormous 
and quick responses to the requirements of users are necessary in the real grid environment, 
real-time resource co-allocation may be large-scale. A parallel resource co-allocation algorithm 
based on the framework for mapping with resource co-allocation is proposed in this paper. 
Through the result of experiments, it is concluded that the parallel method reduces the execution 
time of the resource co-allocation algorithm significantly, and makes the overall response time 
to the end-users small. 
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1. Introduction 

Grid computing [1] has strong potential for large-scale computation and mass data 
processing. In a grid, a large number of users and resources are connected. Through it, the 
proper resources are allocated to users. In other words, an important role of the grid is to match 
the abilities of resources to the requirements of users. Hence the problem of resource 
co-allocation in the grid needs to be addressed. Resource co-allocation is necessary since an 
application submitted to the grid environment often requires several types of resources. The 
principal goal of resource co-allocation is to utilize effectively the power of various 
geographically distributed resources, by simultaneously allocating the requested multiple 
resources to the submitted applications to meet specific performance requirements. 

The problem has been discussed recently, such as in the Globus project [2] and the Legion 
project [3]. However, their focus is on the implementation of resource location and resource 
co-allocation issues while algorithms for resource co-allocation are not considered. In fact, the 
general problem of resource co-allocation has been studied extensively and a number of 
heuristics algorithms proposed for heterogeneous computing systems. These algorithms include 
dynamic algorithms [4,5,6,7] and static algorithms [8, 9, 10]. However, most of these algorithms 
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concentrate on allocating computing resources only, and do not address the co-allocation of 
multiple types of resources in grids. Multiple types of resources are considered and a parallel 
task-scheduling algorithm based on a list algorithm was proposed in [11]. A framework for 
heterogeneous computing systems was proposed in [12], in which multiple kinds of resources 
are taken into account and a Directed Acyclic Graph (DAG) model is used to represent 
applications. A static heuristic algorithm was developed for the framework. In [13] a 
benefit-function resource mapping heuristic for computational grid environments was proposed 
to map a set of independent meta-tasks to various resources.  

The algorithms mentioned above focus on minimizing the overall execution time of all 
tasks and do not consider the execution time of the allocation algorithms. When the numbers of 
applications and resources are small, the scheduling time is negligible when compared with the 
task execution time. But in the real grid environment, the amounts of the application tasks and 
resources are enormous and quick responses to users are needed. Resource co-allocation may be 
large-scale and should be real-time. These characteristics cannot be satisfied by the existing 
approaches since they do not consider the running time of their algorithms, which, therefore, do 
not scale well. Motivated by these concerns, a parallel resource co-allocation algorithm based 
on the mapping resource framework is proposed in this paper. The Parallel Virtual Machine 
(PVM) [14,15], which is a popular system for parallel programming, is used to design the 
parallel algorithm and to develop a software simulator to evaluate its performance on a cluster 
system. Through comparison of the execution time of the parallel algorithm with that of a serial 
one, it is concluded that the parallel computing algorithm is a very efficient method for greatly 
reducing the execution time of the resource co-allocation algorithm, and that this parallel 
algorithm makes great strides towards satisfying the large-scale and real-time requirements of 
grid resource co-allocation. 

The rest of the paper is organized as follows. Section 2 describes models for grid resources 
and applications. Section 3 reviews the resources mapping framework based on a graph-theory 
formulation. Section 4 presents our parallel resource co-allocation algorithm. Section 5 gives 
the analysis of the simulation results. Finally, Section 6 concludes the paper. 

 
2 System Model 

2.1 Resource Model 
 In the computational grid, there are different types of resources to be shared. In [12], 
resources are divided into two groups from the perspective of computation: computing 
resources, such as networks of workstations, personal computers, etc.; and, non-computing 
resources, such as distributed parallel storage server (DPSS), redundant arrays of inexpensive 
disks (RAID), data depositories, science instruments, I/O devices, etc. Moreover, it is assumed 
that only one task can use a resource at any given time. The assumption is not reasonable in the 
computational grid. In this case, some non-computing resources can be shared by different 
computational grid users [11], such as DPSS and RAID, while others cannot be shared and can 
only be used by a single user at any given time, such as measurement instrumentation and I/O 
devices. In the work presented here, non-computing resources are further divided into two 
groups: sharable and non-sharable. It is the non-sharable resources that cause conflicts in use. 
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Three sets are used to denote the resources: n computing resources are represented as 

1 2{ , ,..., }nC c c c= ; m sharable non-computing resources are represented as 1 2{ , ,..., }mSR sr sr sr= ; 

and, h non-sharable non-computing resources are represented as },...,,{ 21 hnrnrnrNR = . Each 

resource has two attributes: type and capability. The type attribute denotes the type of the 
resource and the capability attribute denotes the available capability provided by the resource. 
Communication costs between resources are given by three matrixes, CC, CSR and CNR. CC is 

an n × n matrix, where ijCC ( 0ijCC ≥ ), is the communication cost for transferring a byte 

between computing resources ic  and jc . CSR is an n × m matrix, where ijCSR ( 0ijCSR ≥ ), is 

the communication cost for transferring a byte between the computing resource ic  and the 

non-computing resource jsr . CNR is an n × h matrix, where ijCNR ( 0ijCNR ≥ ), is the 

communication cost for transferring a byte between the computing resource ic  and the 

non-computing resource jnr . 

 
2.2 Application Model 

 Let A be a set of N applications, { }1 2, , , NA A A A=  , which is collected in a certain time 

period. When the application is processed in the grid, it should be decomposed into tasks 
such that every task is executed on a single computing resource. So each task is executed 
on a computing resource, and it may need multiple non-computing resources, which is similar to 
[12]. Each application consists of a set of tasks with precedence constraints and resource sharing 
constraints [12] among the application’s tasks. Precedence constraints capture the 
order-of-execution requirements of tasks and data dependencies among tasks. Resource sharing 
constraints arise from the fact that tasks, which may belong to the same or different applications, 
may require use of the same non-sharable non-computing resources. Tasks with resource sharing 
constraints are called “incompatible”. They cannot be executed concurrently even if there is no 
precedence constraint among them. Two graphs are used to represent the applications. One of 

them is the DAG, ( ),G V E= , in which nodes represent both tasks and their resource 

requirements, directed edges represent both precedence and communication requirements, and 
the weight of an edge denotes the amount of data communication needed. Tasks of an 
application are called Start nodes, if and only if they are executed first and have no predecessors. 

Let 
it

P  denote the predecessor set of a task ti. The other is the compatibility graph, 
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( ),CG V E= , in which nodes denote tasks, and an edge denotes a resource sharing constraint 

between the two tasks linked by it. In the compatibility graph, the concept of an independent set 
[16] is used to determine tasks that are not precluded from being executed simultaneously. An 
independent set is a set of vertices of CG such that no two vertices of the set are adjacent. An 
independent set is called a maximal independent set if there is no other independent set of CG 
that contains it. A maximal independent set of CG represents a maximal set of tasks that can be 
executed concurrently, if there are no precedence constraints between them. 
 
3. Review of the Mapping Framework 

In [12], a static co-allocation algorithm is developed, and the purpose of the algorithm is to 
minimize the overall scheduling length for a given set of applications. First, all the DAGs of 
submitted applications are united into a single one through a hypothetical zero-cost node, which 
connects all the Start nodes of these DAGs with zero-weight edges. Then the single DAG is 
partitioned into levels in terms of the order of execution determined by precedence. There are 
corresponding orders of precedence between these levels; although each level may contain 
independent tasks without precedence constraints. Tasks within a level cannot necessarily be 
executed simultaneously since resource sharing constraints may exist among them. Finally, for 
each level, the maximal independent sets are selected and tasks in each maximal independent set 
are allocated their required resources.   
 Resource allocation for each level is independent, and moreover, the same method of the 
resource allocation is taken in each level, so resource allocation processes of all levels can be 
executed concurrently. In the next section, a parallel algorithm is developed based on this 
framework. 
 
4. Parallel Resource Co-allocation Algorithm 

4.1 Parameters Definition 

 Let it  denote a task of the submitted application. It is considered that the static 

applications, including the set of the applications and the execution time of each task on a 
computing resource, are known in advance. It is assumed that the resource allocation for each 
task is an atomic transaction [2], and a task cannot run until it gets all the required resources. 
Before the parallel algorithm is described, some parameters used are defined as follows. 

 
icCERT : The earliest available time of a computing resource, ic . 

 
inrRERT : The earliest available time of a non-sharable non-computing resource inr . 

 
j

i

c
tEET : The estimated execution time of a task it  on a computing resource jc . If the task 

it  cannot be executed on the computing resource, the value of j

i

c
tEET  is defined as 

infinity.  
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 
j

i

c
tS : The earliest start time of a task it  on a computing resource jc . j

i

c
tS  is defined as 

j

i

c
tS ={

icCERT , j

i

c
tDP }, where j

i

c
tDP  is the time when a task ti receives all the needed data 

from all tasks in its predecessor set, 
it

P , if it is mapped onto a computing resource jc . 

 
j

i

c
tF : The earliest completion time of a task it  on a computing resource jc , which is 

defined as  
j j j

i i i

c c c
t t tF S EET= + .                            (1) 

 
4.2 Parallel resource co-allocation algorithm 
 PVM is applied to develop the parallel resource co-allocation algorithm. The parallel 
algorithm consists of a master program and a slave program. The master program is responsible 
for constructing the whole DAG for all the submitted applications and distributing tasks to the 
slaves. The slave program is the real resource allocator and each slave program allocates the 
required resources for tasks in a level of the whole DAG.  
 In the master program, all the DAGs of the submitted applications are combined into a 
single DAG, SDAG, through a hypothetical zero-cost Entry node. The master program divides 
SDAG into l levels and creates l slave programs. Each level, except for level zero, is assigned to 
a corresponding slave program. Their relationships are shown schematically in Figure 1.  
 
Insert figure 1                                                                   
 
The task node information is then sent to corresponding slave programs. The pseudo-code for 
the master program is shown in Figure 2. 
 
Insert figure 2                                                                   
 
 Slave programs allocate required resources to tasks in each level. There are four main steps 
in the slave program. First, the compatibility graph CG is constructed for tasks in level j of 
SDAG, which is used to find the maximal independent sets of tasks. Second, a maximal 
independent set S is selected from CG. Third, the required resources are allocated to tasks in S. 
Fourth, a new maximal independent set is determined from tasks still awaiting resource 
allocation. The third step and the forth step are then repeated, until all tasks in level j are 
allocated the required resources. The algorithm of the slave program is shown in Figure 3. Some 
set variables are defined here: WorkList is the set of tasks still awaiting resource allocation; and, 
AllocList is the set of tasks with resources already allocated. 
 
Insert figure 3                                                                   
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 The functions in the slave program are now introduced. The function of SelectInSet is to 
select a maximal independent set from the task set WorkList. Note that the function of 
SelectNextInSet is also to select a maximal independent set from the task set WorkList, but it is a 
little different from the function of SelectInSet, because it needs to consider the allocated task 
set AllocList. We will introduce the function SelectNextInSet in the latter part of this subsection. 
Because the problem of the maximal independent set is NP-complete [17], a heuristic approach 
[12] is used. The key idea is to select a critical vertex v and add it to the maximal independent 
set S that is initially empty. The node with the highest out-degree in the compatibility graph is 
chosen as v so that many tasks can be ready for mapping after the highest out-degree task 
execution. CG is then traversed to enlarge S. In the course of traversing CG, a node is added to S 
if it is an outlier, that is, it has no neighbors in CG, or is not adjacent to any node in S. The 
function of SelectInSet is shown in Figure 4. 
 
Insert figure 4                                                                   
 
 The function of Allocate is to allocate resources to tasks. In order to minimize the 
completion time of tasks, the maximum-finish-time-first strategy is taken to determine the 
scheduling order for tasks in S. We calculate the best completion time of each task, i.e. the 
earliest finish time of each task on some computing resource, which is earlier than that on any 
other computing resource, and then place all tasks in a list by the order of the non-increasing 
best completion times. Each task is allocated to the required resources by this order, and then 
the parameters of resources are updated. The function of Allocate is shown in Figure 5. 
 
Insert figure 5                                                                   
 
 The function of SelectNextInSet is to select the next maximal independent set from tasks 
remained in the WorkList. The function is shown in Figure 6. 
 
Insert figure 6                                                                   
 
 At the end of this section, some constraints of the parallelization need to be pointed out. In 
the parallel computing, the master program executes two main tasks: starting the parallel slave 
process, and sending and receiving data to and from slave nodes. The former requires a little 
computation, which hardly has influence on the parallel computing. If the amount of data 
transmitted is very large, the latter may become a bottleneck of the parallel computing, 
especially when there is data communication between slave nodes. However, in our algorithm, 
applications that need to be allocated resources are collected in a certain time period. Thus if the 
certain time period is chosen appropriately, the application tasks data is not very large. In 
addition, our parallel algorithm is asynchronous such that data transmission from slave nodes to 
master node can be overlapped and there is no communication between slave nodes. So as the 
number of the tasks increases, data transmission can affect the efficiency and scalability of our 
algorithm at a slight degree. 
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5. Simulation Results 

 In order to evaluate the performance of the parallel algorithm discussed in Section 4, a 
software simulator is developed on a cluster system. The PVM system consists of 8 Pentium Ⅳ 
1.7G PCs connected by 10Mbits/sec Ethernet. We choose ten minutes as the certain time period 
to collect applications. The parameters of resources and applications are given to the simulator 
as inputs, such as the communication cost between resources, the start times and the completion 
times of tasks, the topology among tasks, the resources requirements of tasks, etc. In order to 
compare this parallel algorithm with the serial algorithm, the algorithm in the framework [12], 
which is serial and proceeds level-by-level, is also implemented. In the experiment, the number 
of tasks ranges from 100 to 500 with increments of 100. Owing to the limit on the number of the 
PCs, the numbers of task levels are selected to be 4 and 8, corresponding to 4 and 8 PCs, 
respectively. The execution times of the two algorithms are shown in Figures 7 and 8, in which 
PRCA denotes the parallel resource co-allocation algorithm and SRCA denotes the serial 
resource co-allocation algorithm. From the simulation results, it can be observed that the 
execution time of PRCA algorithm is reduced significantly, which represents a quicker grid 
response to requirements of users. In addition, the degree of reduction of the execution time is 
proportional to the number of task levels. In Figure 7, the scheduling time of the serial 
algorithm is about three times longer than that of the parallel algorithm while, in Figure 8, the 
scheduling time of serial algorithm is over six times longer than that of the parallel algorithm. 
The more task levels, the more execution time reduction. 
 
Insert figure 7                                                                   
 
Insert figure 8                                                                   
 
6. Conclusions 

 Parallel computing is an efficient method for resource co-allocation in computational grids 
since it involves a huge amount of resources and applications and needs to quickly process 
user’s requirements. A parallel resource co-allocation algorithm is proposed in this paper. The 
simulation results show that the execution time is reduced significantly in the parallel algorithm 
when compared with a serial one. This adaptation to the large-scale and real-time requirements 
of resource co-allocation is of great benefit to grid performance. Similarly to the serial 
algorithm, only static resources and applications are considered in this parallel algorithm. In 
future work, the parallel algorithm will be developed to adapt to the dynamic nature of the grid 
environment, and to make modifications to the allocation policy in terms of the dynamic 
information of changes of resources and applications. We will further investigate the influence 
of the bottleneck due to the existence of the master program, and take some measures to reduce 
the influence. In addition, it is necessary to consider other QOS constraints, such as the deadline 
of tasks, the cost of resources usage, so that the parallel algorithm is practical and applications 
can get a high QOS of grid.  
 Finally, we want to point out the few restrictions of the proposed parallel algorithm for grid 
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resource co-allocation. If the co-allocation and scheduling times are a small overhead in a grid 
environment of large computation and I/O times, then the impact of resource co-allocation on 
the system performance is unimportant. It is unnecessary to take the parallel computing in the 
resource co-allocation algorithm. Therefore, we explicitly do not propose our parallel algorithm 
for general use, but only for the scenario where the co-allocation and scheduling times are a 
great overhead for grid performance. For reasons of effectiveness, we sternly advise to consider 
the impact of the resource allocation on the system performance, when choosing the grid 
resource co-allocation algorithm.  
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Figure 1. The corresponding relationship between slave programs and levels in the SDAG 
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Algorithm of the master program 

Inputs: DAGs of all submitted applications, the resource requirement of each task, the cost of 

computation and communication 

Outputs: the scheduling order of tasks (SOrder), the schedule length (SLength) 

{ 

 Combine all submitted applications DAGs into SDAG; 

 Do level partitioning of SDAG; 

 Broadcast the slave program to each child node; 

 For each child j do{ 

  Send information for tasks in level j to child node j;} 

 For each child j do{ 

  Receive results from child node j;} 

 Output SOrder and SLength of all tasks; 

 Exit PVM; 

} 

Figure 2. The algorithm of the master program 
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Algorithm of the slave program at node j 

{ 

 Receive level j task information from master; 

 Initialize WorkList to contain all tasks in level j; 

 Initialize AllocList φ= ; 

 Let SOrder φ=  and 0SLength = ; 

 Construct the compatibility graph CG for all tasks in level j; 

 ( ),S SelectInSet WorkList CG= ;    /* Find a maximal independent set of tasks S from  

WorkList */ 

 While (WorkList φ≠ ) { 

( ), ,Allocate S SOrder SLength ;  /* Allocate all required resources to each task 

                             in S */ 

  Add all tasks in S to AllocList and remove them from WorkList; 

  ( ), ,S SelectNextInSet AllocList WorkList CG= ;  

          /* Select the next maximal independent set of tasks */ 

} /* end while */ 

Send SOrder and SLength to master; 

 Exit PVM; 

} 
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Figure 3. The algorithm of the slave program 

 

 

 

 

 

 

 

Function of SelectInSet 

Inputs: tasks (WorkList), compatibility graph (CG) 

Outputs: the maximal independent set of tasks (S) 

{ 

Select the highest out-degree node v in CG; 

Add v to S; 

 For each task node u in WorkList do{ 

  If (u is an outlier in CG or u is not adjacent to any task node in S){ 

  /* In CG, we only consider the compatibility of the node in the WorkList */ 

   Add u to S; } 

 } 

} 

Figure 4. The function of SelectInSet 
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Function of Allocate 

Inputs: the maximal independent set (S), the schedule length (SLength) 

Onputs: the scheduling order of tasks (SOrder) 

{ 

 For each task u in S do{ 

  Compute the best completion time ubt  of u;} 

 Sort tasks in S by the non-increasing ubt  and save the order in SOrder;  

 For each task u in S do {         /* by the scheduling order in SOrder */ 

  For each ci ∈C do { Compute ic
uF  of task u;} 

  jc
uF = min{ ic

uF | i =1, 2, …, n};  /* This means that task u will be completed earliest  

on computing resource cj */ 

  Allocate computing resource ci to u; 

  Allocate all the non-computing resources set ( )R u  to u; 

  j

j

c
c uCEAT F= ;       /* Update the available time of jc  */ 

  For any ( )kr R u∈  and kr  is non-sharable do  { j

j

c
c uREAT F= ; } 

  If ( ( ), jComp u c SLength> ) then ( ), jSLength Comp u c= ; 

 } 
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} 

Figure 5. The function of Allocate 

 

 

 

 

 

 

Function of SelectNextInSet 

Inputs: allocated tasks (AllocList), tasks (WorkList), compatibility graph (CG) 

Outputs: the maximal independent set of tasks (S) 

{ 

Select the allocated task v with the earliest completion time in AllocList;   

Remove v from AllocList; 

Let Ca WorkList= ;  /* Ca is the set of candidate tasks that can be allocated next */ 

 Remove all tasks from Ca that are incompatible with any allocated task in AllocList; 

 If ( Ca φ≠ ) then S = ( ),SelectInSet Ca CG ; 

 Else  S = ( ), ,SelectNextInSet Alloclist Worklist CG ; 

} 

Figure 6. The function of SelectNextInSet 
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Figure 7. The comparison of execution times for a 4-level task graph 
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Figure 8. The comparison of execution times for an 8-level task graph 




