

 1

Computer Languages, Systems & Structures, Vol. 33, No. 1, 2007, pp. 1-10

Parallel Resource Co-Allocation for the Computational Grid

Hui-Xian Li a,b, Chun-Tian Cheng b *, K.W.Chau c

aSchool of Electronic and Information Engineering, Dalian Univ. of Tech., Dalian, 116024
bInstitute of Hydroinformatics, Dept. of Civil Engineering, Dalian Univ. of Tech.,Dalian,116024, P. R. China
cDept. of Civil and Structural Engineering, Hong Kong Polytechnic Univ., Hung Hom, Kowloon, Hong Kong

−−
Abstract

Resource co-allocation is one of the crucial problems affecting the utility of the grid.
Because the numbers of the application tasks and amounts of required resources are enormous
and quick responses to the requirements of users are necessary in the real grid environment,
real-time resource co-allocation may be large-scale. A parallel resource co-allocation algorithm
based on the framework for mapping with resource co-allocation is proposed in this paper.
Through the result of experiments, it is concluded that the parallel method reduces the execution
time of the resource co-allocation algorithm significantly, and makes the overall response time
to the end-users small.

Keywords: Computational grid; Resource co-allocation; Parallel computing; Execution time

−−

1. Introduction

Grid computing [1] has strong potential for large-scale computation and mass data
processing. In a grid, a large number of users and resources are connected. Through it, the
proper resources are allocated to users. In other words, an important role of the grid is to match
the abilities of resources to the requirements of users. Hence the problem of resource
co-allocation in the grid needs to be addressed. Resource co-allocation is necessary since an
application submitted to the grid environment often requires several types of resources. The
principal goal of resource co-allocation is to utilize effectively the power of various
geographically distributed resources, by simultaneously allocating the requested multiple
resources to the submitted applications to meet specific performance requirements.

The problem has been discussed recently, such as in the Globus project [2] and the Legion
project [3]. However, their focus is on the implementation of resource location and resource
co-allocation issues while algorithms for resource co-allocation are not considered. In fact, the
general problem of resource co-allocation has been studied extensively and a number of
heuristics algorithms proposed for heterogeneous computing systems. These algorithms include
dynamic algorithms [4,5,6,7] and static algorithms [8, 9, 10]. However, most of these algorithms

* Corresponding author. Tel: +86-411-8470-8768; Fax: +86-411-8467-4141.
 E-mail addresses: ctcheng@dlut.edu.cn (C.-T. Cheng), hxli@student.dlut.edu.cn (H.-X. Li).

This is the Pre-Published Version.

 2

concentrate on allocating computing resources only, and do not address the co-allocation of
multiple types of resources in grids. Multiple types of resources are considered and a parallel
task-scheduling algorithm based on a list algorithm was proposed in [11]. A framework for
heterogeneous computing systems was proposed in [12], in which multiple kinds of resources
are taken into account and a Directed Acyclic Graph (DAG) model is used to represent
applications. A static heuristic algorithm was developed for the framework. In [13] a
benefit-function resource mapping heuristic for computational grid environments was proposed
to map a set of independent meta-tasks to various resources.

The algorithms mentioned above focus on minimizing the overall execution time of all
tasks and do not consider the execution time of the allocation algorithms. When the numbers of
applications and resources are small, the scheduling time is negligible when compared with the
task execution time. But in the real grid environment, the amounts of the application tasks and
resources are enormous and quick responses to users are needed. Resource co-allocation may be
large-scale and should be real-time. These characteristics cannot be satisfied by the existing
approaches since they do not consider the running time of their algorithms, which, therefore, do
not scale well. Motivated by these concerns, a parallel resource co-allocation algorithm based
on the mapping resource framework is proposed in this paper. The Parallel Virtual Machine
(PVM) [14,15], which is a popular system for parallel programming, is used to design the
parallel algorithm and to develop a software simulator to evaluate its performance on a cluster
system. Through comparison of the execution time of the parallel algorithm with that of a serial
one, it is concluded that the parallel computing algorithm is a very efficient method for greatly
reducing the execution time of the resource co-allocation algorithm, and that this parallel
algorithm makes great strides towards satisfying the large-scale and real-time requirements of
grid resource co-allocation.

The rest of the paper is organized as follows. Section 2 describes models for grid resources
and applications. Section 3 reviews the resources mapping framework based on a graph-theory
formulation. Section 4 presents our parallel resource co-allocation algorithm. Section 5 gives
the analysis of the simulation results. Finally, Section 6 concludes the paper.

2 System Model

2.1 Resource Model
 In the computational grid, there are different types of resources to be shared. In [12],
resources are divided into two groups from the perspective of computation: computing
resources, such as networks of workstations, personal computers, etc.; and, non-computing
resources, such as distributed parallel storage server (DPSS), redundant arrays of inexpensive
disks (RAID), data depositories, science instruments, I/O devices, etc. Moreover, it is assumed
that only one task can use a resource at any given time. The assumption is not reasonable in the
computational grid. In this case, some non-computing resources can be shared by different
computational grid users [11], such as DPSS and RAID, while others cannot be shared and can
only be used by a single user at any given time, such as measurement instrumentation and I/O
devices. In the work presented here, non-computing resources are further divided into two
groups: sharable and non-sharable. It is the non-sharable resources that cause conflicts in use.

 3

Three sets are used to denote the resources: n computing resources are represented as

1 2{ , ,..., }nC c c c= ; m sharable non-computing resources are represented as 1 2{ , ,..., }mSR sr sr sr= ;

and, h non-sharable non-computing resources are represented as },...,,{ 21 hnrnrnrNR = . Each

resource has two attributes: type and capability. The type attribute denotes the type of the
resource and the capability attribute denotes the available capability provided by the resource.
Communication costs between resources are given by three matrixes, CC, CSR and CNR. CC is

an n × n matrix, where ijCC (0ijCC ≥), is the communication cost for transferring a byte

between computing resources ic and jc . CSR is an n × m matrix, where ijCSR (0ijCSR ≥), is

the communication cost for transferring a byte between the computing resource ic and the

non-computing resource jsr . CNR is an n × h matrix, where ijCNR (0ijCNR ≥), is the

communication cost for transferring a byte between the computing resource ic and the

non-computing resource jnr .

2.2 Application Model

 Let A be a set of N applications, { }1 2, , , NA A A A=  , which is collected in a certain time

period. When the application is processed in the grid, it should be decomposed into tasks
such that every task is executed on a single computing resource. So each task is executed
on a computing resource, and it may need multiple non-computing resources, which is similar to
[12]. Each application consists of a set of tasks with precedence constraints and resource sharing
constraints [12] among the application’s tasks. Precedence constraints capture the
order-of-execution requirements of tasks and data dependencies among tasks. Resource sharing
constraints arise from the fact that tasks, which may belong to the same or different applications,
may require use of the same non-sharable non-computing resources. Tasks with resource sharing
constraints are called “incompatible”. They cannot be executed concurrently even if there is no
precedence constraint among them. Two graphs are used to represent the applications. One of

them is the DAG, (),G V E= , in which nodes represent both tasks and their resource

requirements, directed edges represent both precedence and communication requirements, and
the weight of an edge denotes the amount of data communication needed. Tasks of an
application are called Start nodes, if and only if they are executed first and have no predecessors.

Let
it

P denote the predecessor set of a task ti. The other is the compatibility graph,

 4

(),CG V E= , in which nodes denote tasks, and an edge denotes a resource sharing constraint

between the two tasks linked by it. In the compatibility graph, the concept of an independent set
[16] is used to determine tasks that are not precluded from being executed simultaneously. An
independent set is a set of vertices of CG such that no two vertices of the set are adjacent. An
independent set is called a maximal independent set if there is no other independent set of CG
that contains it. A maximal independent set of CG represents a maximal set of tasks that can be
executed concurrently, if there are no precedence constraints between them.

3. Review of the Mapping Framework

In [12], a static co-allocation algorithm is developed, and the purpose of the algorithm is to
minimize the overall scheduling length for a given set of applications. First, all the DAGs of
submitted applications are united into a single one through a hypothetical zero-cost node, which
connects all the Start nodes of these DAGs with zero-weight edges. Then the single DAG is
partitioned into levels in terms of the order of execution determined by precedence. There are
corresponding orders of precedence between these levels; although each level may contain
independent tasks without precedence constraints. Tasks within a level cannot necessarily be
executed simultaneously since resource sharing constraints may exist among them. Finally, for
each level, the maximal independent sets are selected and tasks in each maximal independent set
are allocated their required resources.
 Resource allocation for each level is independent, and moreover, the same method of the
resource allocation is taken in each level, so resource allocation processes of all levels can be
executed concurrently. In the next section, a parallel algorithm is developed based on this
framework.

4. Parallel Resource Co-allocation Algorithm

4.1 Parameters Definition

 Let it denote a task of the submitted application. It is considered that the static

applications, including the set of the applications and the execution time of each task on a
computing resource, are known in advance. It is assumed that the resource allocation for each
task is an atomic transaction [2], and a task cannot run until it gets all the required resources.
Before the parallel algorithm is described, some parameters used are defined as follows.


icCERT : The earliest available time of a computing resource, ic .


inrRERT : The earliest available time of a non-sharable non-computing resource inr .


j

i

c
tEET : The estimated execution time of a task it on a computing resource jc . If the task

it cannot be executed on the computing resource, the value of j

i

c
tEET is defined as

infinity.

 5


j

i

c
tS : The earliest start time of a task it on a computing resource jc . j

i

c
tS is defined as

j

i

c
tS ={

icCERT , j

i

c
tDP }, where j

i

c
tDP is the time when a task ti receives all the needed data

from all tasks in its predecessor set,
it

P , if it is mapped onto a computing resource jc .


j

i

c
tF : The earliest completion time of a task it on a computing resource jc , which is

defined as
j j j

i i i

c c c
t t tF S EET= + . (1)

4.2 Parallel resource co-allocation algorithm
 PVM is applied to develop the parallel resource co-allocation algorithm. The parallel
algorithm consists of a master program and a slave program. The master program is responsible
for constructing the whole DAG for all the submitted applications and distributing tasks to the
slaves. The slave program is the real resource allocator and each slave program allocates the
required resources for tasks in a level of the whole DAG.
 In the master program, all the DAGs of the submitted applications are combined into a
single DAG, SDAG, through a hypothetical zero-cost Entry node. The master program divides
SDAG into l levels and creates l slave programs. Each level, except for level zero, is assigned to
a corresponding slave program. Their relationships are shown schematically in Figure 1.

Insert figure 1

The task node information is then sent to corresponding slave programs. The pseudo-code for
the master program is shown in Figure 2.

Insert figure 2

 Slave programs allocate required resources to tasks in each level. There are four main steps
in the slave program. First, the compatibility graph CG is constructed for tasks in level j of
SDAG, which is used to find the maximal independent sets of tasks. Second, a maximal
independent set S is selected from CG. Third, the required resources are allocated to tasks in S.
Fourth, a new maximal independent set is determined from tasks still awaiting resource
allocation. The third step and the forth step are then repeated, until all tasks in level j are
allocated the required resources. The algorithm of the slave program is shown in Figure 3. Some
set variables are defined here: WorkList is the set of tasks still awaiting resource allocation; and,
AllocList is the set of tasks with resources already allocated.

Insert figure 3

 6

 The functions in the slave program are now introduced. The function of SelectInSet is to
select a maximal independent set from the task set WorkList. Note that the function of
SelectNextInSet is also to select a maximal independent set from the task set WorkList, but it is a
little different from the function of SelectInSet, because it needs to consider the allocated task
set AllocList. We will introduce the function SelectNextInSet in the latter part of this subsection.
Because the problem of the maximal independent set is NP-complete [17], a heuristic approach
[12] is used. The key idea is to select a critical vertex v and add it to the maximal independent
set S that is initially empty. The node with the highest out-degree in the compatibility graph is
chosen as v so that many tasks can be ready for mapping after the highest out-degree task
execution. CG is then traversed to enlarge S. In the course of traversing CG, a node is added to S
if it is an outlier, that is, it has no neighbors in CG, or is not adjacent to any node in S. The
function of SelectInSet is shown in Figure 4.

Insert figure 4

 The function of Allocate is to allocate resources to tasks. In order to minimize the
completion time of tasks, the maximum-finish-time-first strategy is taken to determine the
scheduling order for tasks in S. We calculate the best completion time of each task, i.e. the
earliest finish time of each task on some computing resource, which is earlier than that on any
other computing resource, and then place all tasks in a list by the order of the non-increasing
best completion times. Each task is allocated to the required resources by this order, and then
the parameters of resources are updated. The function of Allocate is shown in Figure 5.

Insert figure 5

 The function of SelectNextInSet is to select the next maximal independent set from tasks
remained in the WorkList. The function is shown in Figure 6.

Insert figure 6

 At the end of this section, some constraints of the parallelization need to be pointed out. In
the parallel computing, the master program executes two main tasks: starting the parallel slave
process, and sending and receiving data to and from slave nodes. The former requires a little
computation, which hardly has influence on the parallel computing. If the amount of data
transmitted is very large, the latter may become a bottleneck of the parallel computing,
especially when there is data communication between slave nodes. However, in our algorithm,
applications that need to be allocated resources are collected in a certain time period. Thus if the
certain time period is chosen appropriately, the application tasks data is not very large. In
addition, our parallel algorithm is asynchronous such that data transmission from slave nodes to
master node can be overlapped and there is no communication between slave nodes. So as the
number of the tasks increases, data transmission can affect the efficiency and scalability of our
algorithm at a slight degree.

 7

5. Simulation Results

 In order to evaluate the performance of the parallel algorithm discussed in Section 4, a
software simulator is developed on a cluster system. The PVM system consists of 8 Pentium Ⅳ
1.7G PCs connected by 10Mbits/sec Ethernet. We choose ten minutes as the certain time period
to collect applications. The parameters of resources and applications are given to the simulator
as inputs, such as the communication cost between resources, the start times and the completion
times of tasks, the topology among tasks, the resources requirements of tasks, etc. In order to
compare this parallel algorithm with the serial algorithm, the algorithm in the framework [12],
which is serial and proceeds level-by-level, is also implemented. In the experiment, the number
of tasks ranges from 100 to 500 with increments of 100. Owing to the limit on the number of the
PCs, the numbers of task levels are selected to be 4 and 8, corresponding to 4 and 8 PCs,
respectively. The execution times of the two algorithms are shown in Figures 7 and 8, in which
PRCA denotes the parallel resource co-allocation algorithm and SRCA denotes the serial
resource co-allocation algorithm. From the simulation results, it can be observed that the
execution time of PRCA algorithm is reduced significantly, which represents a quicker grid
response to requirements of users. In addition, the degree of reduction of the execution time is
proportional to the number of task levels. In Figure 7, the scheduling time of the serial
algorithm is about three times longer than that of the parallel algorithm while, in Figure 8, the
scheduling time of serial algorithm is over six times longer than that of the parallel algorithm.
The more task levels, the more execution time reduction.

Insert figure 7

Insert figure 8

6. Conclusions

 Parallel computing is an efficient method for resource co-allocation in computational grids
since it involves a huge amount of resources and applications and needs to quickly process
user’s requirements. A parallel resource co-allocation algorithm is proposed in this paper. The
simulation results show that the execution time is reduced significantly in the parallel algorithm
when compared with a serial one. This adaptation to the large-scale and real-time requirements
of resource co-allocation is of great benefit to grid performance. Similarly to the serial
algorithm, only static resources and applications are considered in this parallel algorithm. In
future work, the parallel algorithm will be developed to adapt to the dynamic nature of the grid
environment, and to make modifications to the allocation policy in terms of the dynamic
information of changes of resources and applications. We will further investigate the influence
of the bottleneck due to the existence of the master program, and take some measures to reduce
the influence. In addition, it is necessary to consider other QOS constraints, such as the deadline
of tasks, the cost of resources usage, so that the parallel algorithm is practical and applications
can get a high QOS of grid.
 Finally, we want to point out the few restrictions of the proposed parallel algorithm for grid

 8

resource co-allocation. If the co-allocation and scheduling times are a small overhead in a grid
environment of large computation and I/O times, then the impact of resource co-allocation on
the system performance is unimportant. It is unnecessary to take the parallel computing in the
resource co-allocation algorithm. Therefore, we explicitly do not propose our parallel algorithm
for general use, but only for the scenario where the co-allocation and scheduling times are a
great overhead for grid performance. For reasons of effectiveness, we sternly advise to consider
the impact of the resource allocation on the system performance, when choosing the grid
resource co-allocation algorithm.

Acknowledgments

This research was supported by the National Natural Science Fund of China (No.
50479055), the Natural Science Foundation of Liaoning Province, China (No. 20032113), and
the Central Research Grant of Hong Kong Polytechnic University (G-T592).

References

[1] Foster I, Kesselman C, Tuecke S. The anatomy of the grid: enabling scalable virtual organizations. International

Journal of High Performance Computing Applications 2001; 15(3): 200−222.

[2] Czajkowski K, Foster I, Kesselman C. Resource co-Allocation in computational grids. In: Proc. of the 8-th IEEE

Int'l Symp. on High Performance Distributed Computing, Redondo Beach, CA, USA, 1999. p. 219−228.

[3] Legion Web Page. Http://legion.virginia.edu

[4] Leangsuksun C, Potter J, Scott S. Dynamic task mapping algorithms for a distributed heterogeneous computing

environment. In: Proc. of the 4th Heterogeneous Computing Workshop (HCW- 95), San Juan, Puerto Rico, 1995.

p. 30−34.

[5] Maheswaran M, Siegel H J. A Dynamic matching and scheduling algorithm for heterogeneous computing systems.

In: Proc. of the 7th IEEE Heterogeneous Computing Workshop (HCW’98), 1998. p. 57−69.

[6] Freund R, Carter B, Watson D, Keith E, Mirabile F. Generational scheduling for heterogeneous computing

systems. In: Proc. of Int’l Conf. Parallel and Distributed Processing Techniques and Applications (PD PTA ’96),

1996. p. 769−778.

[7] Iverson M, Ozguner F. Dynamic, competitive scheduling of multiple DAGs in a distributed heterogeneous

environment. In: Proc of 7th Heterogeneous Computing Workshop (HCW ‘98), 1998. p. 70−78.

[8] Sih G C, Lee E A. A Compile-time scheduling heuristic for interconnection-constrained heterogeneous processor

architectures. IEEE Trans. On Parallel and Distributed Systems 1993; 4(2): 175−187.

[9] Shroff P, Watson D W, Flann N S, Freund R F. Genetic simulated annealing for scheduling data-dependent tasks

in heterogeneous environment. In: Proc. of 5th Heterogeneous Computing Workshop (HCW ‘96), 1996. p.

98−117.

[10] Wang L, Siegel H J, Roychowdhury V, Maciejewski A. Task matching and scheduling in heterogeneous

computing environments using a genetic-algorithm-based approach. Journal of Parallel and Distributed

Computing 1997; 47(1): 8−22.

[11] Wang L Z, Cai W T, Lee B S, See S, Jie W. Resource co-allocation for parallel tasks in computational grids. In:

Proceedings of the International Workshop on Challenges of Large Applications in Distributed Environments,

2003. p. 88−95.

 9

[12] Alhusaini A H, Prasanna V K, Raghavendra C S. A framework for mapping with resource co-allocation in

heterogeneous computing systems. In: 9th Proceedings Heterogeneous Computing Workshop (HCW 2000), 2000;

p. 273−286.

[13] Ding Q, Chen G –L. A benefit function mapping heuristic for a class of meta-tasks in grid environments. In: Proc.

of First IEEE/ACM International Symposium on Cluster Computing and the Grid, 2001; p. 654 –659.

[14] Geist G A Sunderam V S. The PVM system: supercomputer level concurrent computation on a heterogeneous

network of workstations. In: Proceeding of Distributed Memory Computing Conference, 1991; p. 258–261.

[15] Geist G A, Sunderam V S. The evolution of the PVM concurrent computing system. Compcon Spring '93, Digest

of Papers. , 1993; p. 549–557.

[16] Christofides N. Graph theory: an algorithmic approach. New York: Academic Press, 1975.

[17] Garey M R, Johnson D S. Computers and intractability: a guide to the theory of NP-Completeness. San

Francisco: W H Freeman and Co., 1979.

Hui-Xian Li received her MS degree in Computer Software and Theory form Xi Dian University, Xi’an, China, in

2003. Currently she is a Ph.D. candidate in the Institute of Hydroinformatics, Dalian University of Technology,

Dalian, China. Her main research interests focus on the fields of parallel computation and grid computation.

Chun-tian Cheng received his MS and Ph.D. degree in hydro from Dalian University of Technology, Dalian, China

in 1989 and 1994. Currently he is a professor in the Institute of Hydroinformatics, Dalian University of Technology,

Dalian, China. His research interests include knowledge management system, decision support system and intelligent

algorithm, model technology for space information and grid computation. He has been a member of International

Association of Hydrological Sciences since 1999. He also serves as paper reviewer of 13 SCI Journals such as

Information Sciences, Decision Support Systems, Pattern Recognition Letters, Journal of the American Water

Resources Association, Journal of Hydrology, Environmental Modelling & Software, and so on.

K.W.Chau is currently an Associate Professor in Department of Civil and Structural Engineering of The Hong Kong

Polytechnic University. He is very active in undertaking research works and the scope of his research interest is very

broad, covering artificial intelligence, knowledge-based system development, knowledge management, numerical

flow modeling, water quality modeling, hydrological modeling and computer-aided design.

 10

EntryLevel 0

Level 1
Slave 1

Level 2
Slave 2

Level 3
Slave 3

Level 4
Slave 4

Application 1
Application 2
Application 3

Start Start Start Start

Figure 1. The corresponding relationship between slave programs and levels in the SDAG

 11

Algorithm of the master program

Inputs: DAGs of all submitted applications, the resource requirement of each task, the cost of

computation and communication

Outputs: the scheduling order of tasks (SOrder), the schedule length (SLength)

{

 Combine all submitted applications DAGs into SDAG;

 Do level partitioning of SDAG;

 Broadcast the slave program to each child node;

 For each child j do{

 Send information for tasks in level j to child node j;}

 For each child j do{

 Receive results from child node j;}

 Output SOrder and SLength of all tasks;

 Exit PVM;

}

Figure 2. The algorithm of the master program

 12

Algorithm of the slave program at node j

{

 Receive level j task information from master;

 Initialize WorkList to contain all tasks in level j;

 Initialize AllocList φ= ;

 Let SOrder φ= and 0SLength = ;

 Construct the compatibility graph CG for all tasks in level j;

 (),S SelectInSet WorkList CG= ; /* Find a maximal independent set of tasks S from

WorkList */

 While (WorkList φ≠) {

(), ,Allocate S SOrder SLength ; /* Allocate all required resources to each task

 in S */

 Add all tasks in S to AllocList and remove them from WorkList;

 (), ,S SelectNextInSet AllocList WorkList CG= ;

 /* Select the next maximal independent set of tasks */

} /* end while */

Send SOrder and SLength to master;

 Exit PVM;

}

 13

Figure 3. The algorithm of the slave program

Function of SelectInSet

Inputs: tasks (WorkList), compatibility graph (CG)

Outputs: the maximal independent set of tasks (S)

{

Select the highest out-degree node v in CG;

Add v to S;

 For each task node u in WorkList do{

 If (u is an outlier in CG or u is not adjacent to any task node in S){

 /* In CG, we only consider the compatibility of the node in the WorkList */

 Add u to S; }

 }

}

Figure 4. The function of SelectInSet

 14

Function of Allocate

Inputs: the maximal independent set (S), the schedule length (SLength)

Onputs: the scheduling order of tasks (SOrder)

{

 For each task u in S do{

 Compute the best completion time ubt of u;}

 Sort tasks in S by the non-increasing ubt and save the order in SOrder;

 For each task u in S do { /* by the scheduling order in SOrder */

 For each ci ∈C do { Compute ic
uF of task u;}

 jc
uF = min{ ic

uF | i =1, 2, …, n}; /* This means that task u will be completed earliest

on computing resource cj */

 Allocate computing resource ci to u;

 Allocate all the non-computing resources set ()R u to u;

 j

j

c
c uCEAT F= ; /* Update the available time of jc */

 For any ()kr R u∈ and kr is non-sharable do { j

j

c
c uREAT F= ; }

 If ((), jComp u c SLength>) then (), jSLength Comp u c= ;

 }

 15

}

Figure 5. The function of Allocate

Function of SelectNextInSet

Inputs: allocated tasks (AllocList), tasks (WorkList), compatibility graph (CG)

Outputs: the maximal independent set of tasks (S)

{

Select the allocated task v with the earliest completion time in AllocList;

Remove v from AllocList;

Let Ca WorkList= ; /* Ca is the set of candidate tasks that can be allocated next */

 Remove all tasks from Ca that are incompatible with any allocated task in AllocList;

 If (Ca φ≠) then S = (),SelectInSet Ca CG ;

 Else S = (), ,SelectNextInSet Alloclist Worklist CG ;

}

Figure 6. The function of SelectNextInSet

 16

0

10

20

30

40

50

60

70

Ex
ec

ut
io

n
ti

me
s

(s
)

100 200 300 400 500

Number of tasks

PRCA

SRCA

Figure 7. The comparison of execution times for a 4-level task graph

 17

0

10

20

30

40

Ex
ec
ut
io

n
ti
me
s

(s
)

100 200 300 400 500

Number of tasks

PRCA

SRCA

Figure 8. The comparison of execution times for an 8-level task graph

