
Forward Chaining in HALO:
An Implementation Strategy for History-based Logic Pointcuts

Charlotte Herzeela, Kris Gybelsa, Pascal Costanzaa,
Coen De Roovera, and Theo D’Hondta

aProgramming Technology Laboratory, Vrije Universiteit Brussel,
Pleinlaan 2, 1050 Brussels, Belgium

In aspect-oriented programming, pointcuts are formulated as conditions over the con-
text of dynamic events in the execution of a program. Hybrid pointcut languages also
allow this context to come from interactions between the pointcut language and the base
program. While some pointcut languages only allow conditions on the current execution
event, more recent proposals have demonstrated the need for expressing conditions over
a history of join points. Such pointcut languages require means to balance the expres-
siveness of the language with the additional memory and runtime overhead caused by
keeping a history of join point context data. In this paper, we introduce a logic-based
pointcut language that allows interaction with the base program as well as pointcuts over
a history of join points. We introduce forward chaining as an implementation model for
this language, and discuss possible optimization strategies for the additional overhead. 1

1. Introduction

A good modular design decomposes program concerns into separate modules, each im-
plementing a different concern. Some concerns are, however, inherently crosscutting,
which means that their implementation is scattered over different modules. Aspect-
oriented Programming (AOP) focuses on the modularisation of such crosscutting con-
cerns [18]. An AOP language provides a notion of join points which are events in the
execution of a program, a pointcut language to concisely describe multiple join points
and advice which affect the program behavior at the join points captured by a pointcut.

Research into pointcut languages has shown that these can be made more expressive
in several ways [19]. Two of them are: allowing pointcuts to be expressed over a history
of join points [1,21], and allowing pointcuts to interact with the base language through a
mechanism like hybrid pointcuts [9], which allows messages to be sent to objects. Several
pointcut languages are also based on logic programming. In that approach, join points are
represented as logic facts and pointcuts as logic queries over these facts. In this paper, we
focus on how logic-based pointcut languages [13,21,14,27] can be combined with history-
based and hybrid pointcuts. Most logic-based pointcut languages are based on Prolog,
which uses backward chaining to evaluate logic queries. In this paper, we demonstrate

1ACM, 2007. This is a minor revision of the work published in Proceedings of the 2007 International
Conference on Dynamic Languages (ESUG/ICDL 2007) http://doi.acm.org/10.1145/1352678.1352689

1

2 C. Herzeel et al.

- articles: Article*
Shop

+ price

- articleName: String
- price: int
- quantity-in-stock: int

Article

+ checkout(): void
+ login(Shop): void
+ buy(Article): void

- userName: String
- basket: Basket
- shop: Shop

User

+ addArticle(Article): void
+ computeTotalPrice():int
+ isCheapestArticle(Article): bool

- user: User
- articles: Article*

Basket
1

1

*

1

*

*

0..1

1

+ currentDiscountRateFor(Article)
Promotions

Figure 1. A small e-shop application.

why this chaining strategy fails for a combination of history-based and hybrid pointcuts,
and introduce forward chaining as an alternative. The contributions of this paper are:

• We introduce a novel logic-based pointcut language, HALO, which allows both
pointcuts over a history of join points as well as a mechanism to interact with
the base language.

• We introduce forward chaining, in particular the Rete algorithm, as an implemen-
tation strategy for such a language, including our extension to Rete to support
expressing temporal relations between join points in the history.

• We discuss how the predicates for expressing temporal relations in HALO enable
space optimization of the join point history.

In the next section, we introduce a small running example demonstrating the need for
a pointcut that is both history-based and interacts with the base program. In Section 3,
we introduce a logic-based pointcut language that supports both features. In Section 4,
we contrast backward and forward chaining, and more extensively discuss the Rete-based
implementation of HALO. The final sections of the paper contrast HALO with related
work, and discuss future work and our conclusions.

2. Running example

We use a simple e-commerce application as a running example to illustrate HALO. A
UML diagram for this example is given in Figure 1. Users have an account and have to
log in before they can add articles to their shopping basket of which the total price is
calculated when they check out.

To attract customers, the shop occasionally engages in promotional marketing cam-
paigns. The application therefore has a singleton class Promotions which gives the cur-
rent rate of discount for each article. Several variations of this class are possible. It can be
implemented as a simple table that stores the current discount rate for each article. The
computation can, however, be more complex, for example based on the current amount
of stock for the article.

Forward Chaining in HALO 3

In this example, one possible effect of the promotions is that banners pop up to advertise
promotions. Another possible effect of the promotions is that customers get a discount
on articles when they check out. Giving discounts is based on the past discount rate for
an article. The idea is that if a promotion for an article was advertised, the user should
still get the discount when she checks out, even if the promotion is no longer active. The
latter can be implemented as a “discount” aspect. Depending on the shop’s strategy, the
aspect can give the rate from when the user logged in or from when she added the article
to her basket.

This is a small example, but it is sufficient to motivate a pointcut language with two
features: (1) the ability to interact with the base language to invoke the promotion object’s
method for determining the current discount rate, and (2) the ability to refer to past join
points. While the aspect can be expressed in a pointcut language lacking either feature,
it requires some effort to do so. Notably, the programmer has to provide the necessary
mechanism for manually accessing and recording the past discount rate by writing two
pieces of advice: The first one defines a pointcut to capture when the user logs in, and
the advice body records the current discount rates of the articles. The second piece of
advice defines a pointcut to capture when the checkout happens, and determines the
right discount rate for an article from the recorded rates. That approach becomes more
complicated the more pointcuts involve additional past join points or past data. In the
next section, we introduce a logic-based pointcut language that supports both features,
which allows the pointcut to be expressed more concisely. A detailed comparison of the
implementation of the e-shop application solelely relying on Common Lisp and a version
implemented using HALO was reported on in previous work [15]. The focus of this paper
is the definition and implementation details of the HALO language.

3. The HALO Language

HALO (“History-based Aspects using LOgic”) is a novel logic-based pointcut language
for the Common Lisp Object System (CLOS) [5] that allows pointcuts to be expressed
over a history of join points, as well as allowing interactions with the base language. In
contrast with earlier work on logic-based pointcut languages that offer a history of join
points [21], HALO imposes a fixed set of temporal predicates for expressing pointcuts
over the history, drawn from temporal logic. In the next section, we discuss how imposing
a fixed set of built-in predicates allows a runtime space optimization of the join point
history based on the semantics of the predicates. The related work section contrasts this
approach with the static analysis of the open set of predicates of earlier work. In this
section, we first discuss the background on logic-based pointcut languages, and briefly
give an overview of temporal logic programming. We then explain the HALO language
in more detail.

3.1. Logic Pointcuts over Join Point Histories

Background on logic-based pointcut languages

Previous work on CARMA [13] and other logic-based pointcut languages [21,14,27]
has demonstrated the suitability of logic programming [20] as the basis for a pointcut

4 C. Herzeel et al.

language. The core idea behind these languages is to represent join points as logic facts
and write pointcuts as logic queries over these facts. In particular, variations of the logic
programming language Prolog [8] are often used as query languages.

Temporal logic

To deal with temporal relations between join points in the join point history, HALO is in
particular based on temporal logic programming. Between any two join points generated
during the execution of a program there exists a temporal relation. This relation can
henceforth be used to concisely describe sequences of join points in a pointcut. HALO
offers a set of higher-order predicates to describe temporal relations between pointcuts.
Higher-order temporal predicates are important for expressing hybrid pointcuts, as they
indicate at what time the interaction with the base language should occur. In addition,
as explained in Section 4.4, a predefined set of temporal predicates makes it possible to
optimize the memory usage of a history-based pointcut language.

There are different variants of temporal logic programming [12]. These variants pri-
marily differ in the way time is modeled (i.e. discrete or continuous, finite or infinite,
etc.). A discrete time model is most suited for a pointcut language, as join points are
discrete events occurring during the execution of a program. The predicates available
for expressing temporal relations constitute another important difference. Most of these
predicates express an ordering relation and can either be past- or future-oriented, while
in some logics both are provided. For example, J-LO [6] uses linear temporal logic which
provides future-oriented predicates. HALO, on the other hand, uses a past-oriented subset
of metric temporal logic programming (MTL) [7].

3.2. HALO Advice Language
As the focus of research involving HALO is the pointcut language itself, HALO adopts

the advice mechanism used in most other general-purpose aspect languages. The advice
body is written in the base program language, in this case Common Lisp. Unlike other
advice languages, there is no construct to distinguish between “before” and “after” advice.
Instead, the join point model includes distinct “entry” and “return” join points on which
the application of a piece of advice has the same effect as “before” or “after” advice in
other languages.

An example to illustrate the form in which pieces of advice are written:

(at ((gf-call ’buy ?arguments))

(print "Buy was invoked with arguments: " ?arguments))

This is an example of a straightforward logging aspect. Its pointcut comprises one con-
dition using the predicate gf-call. The predicate gf-call is short for “generic function
call”. In CLOS, methods are not associated with single classes and do not have a hidden
“receiver” argument as in other object-oriented programming languages. Instead, method
dispatch occurs on the dynamic type of all arguments. Methods are grouped into generic
functions, which perform the dynamic dispatch when called. The concept of sending a
message with name n to an object comes down to invoking the generic function named n
with that object as one of the arguments. In the pointcut, the predicate gf-call is used
for matching calls to the generic-function named “buy”. The arguments of this call will
be bound to the logic variable ?arguments.

Forward Chaining in HALO 5

pointcut :: (< primitive pointcut >< escape > ∗ < tpointcut >)
pointcut :: (< primitive pointcut >< escape > ∗(since < tpointcut >< tpointcut >))
tpointcut :: ({< temporal >| not} < pointcut >)
primitive pointcut :: < gf call >|< gf return >|< get >|< set >|< create >

| < m return >|< m call >
escape :: (escape ?variable < lisp-form >)
gf call :: (gf -call ?gfName ?arguments)

Generic function call join point
m call :: (method-call ?methodName ?arguments ?specializers)

Method call join point
gf return :: (gf -return ?gfName ?arguments ?rvalue)

Generic function return join point
m return :: (method-return ?methodName ?arguments ?specializers ?rvalue)

Method return join point
get :: (slot-get ?obj ?slotName ?value)

Slot get join point
set :: (slot-set ?obj ?slotName ?oldV alue ?newV alue)

Slot set join point
create :: (create ?className ?instance)

Instance creation join point
temporal :: most-recent | all-past | cflow

Temporal relations

Figure 2. Grammar for HALO pointcut language. For conciseness we have depicted the
arguments of the different predicates as logic variables preceded by a “?”.

The advice body consists of a call to the Common Lisp function print. The example
shows that it is possible to pass logic variables from the pointcut to the advice body.
Logic queries, and thus pointcuts, can have multiple solutions with different values for
the variables. The advice body is executed for every solution of the query.

3.3. HALO Pointcut Language
In a logic pointcut language, pointcuts are expressed as queries using logic predicates.

The built-in predicates of HALO fall into two classes: the primitive predicates that distin-
guish between types of join points, and higher-order temporal predicates for dealing with
temporal relationships between join points. The predicates are summarized in Figure 2.

Note that as HALO is a pointcut language for Common Lisp, Lisp-style list syntax
is used for logic pointcut queries. Variables are written with a question mark, as in
?var. For example, the expression (gf-call ’buy ?args) would be written in Prolog
as gf-call(buy, Args), where variables are written with initial capital letters.

6 C. Herzeel et al.

3.3.1. Join Point Type Predicates
HALO’s join point model, as with most other pointcut languages, consists of the key

events in the execution of an object-oriented program. In the case of Common Lisp, there
are seven types of join points: the instantiation of a class, the invocation of and return
from a generic function, the execution of and return from a method, and the access or
change of a slot (instance variable).

Figure 2 lists HALO’s join point predicates. They each have a number of arguments
exposing data of the join point. The gf-call and method-call predicates respectively
capture invocations of generic functions and executions of specific methods of generic
functions. They each expose the arguments the function is invoked with, i.e. the actual
runtime objects. The name of the function is exposed as a symbol. The method-call

predicate has an additional parameter that exposes the specializers of the method, i.e.
the argument types specified in the method signature, which are used to select a specific
method of a generic function. The corresponding gf-return and method-return predi-
cates select return join points for generic functions and methods respectively. They have
a similar parameter list as the gf-call and method-call predicates, but additionally
expose the return value. The slot-get and slot-set predicates respectively capture
slot access and change join points. They expose the object whose slot is referenced, the
name of the slot, its current value, and its new value in the case of slot-set. The create
predicate captures class instantiation join points and exposes the class’s name and the
new instance.

3.3.2. Temporal Predicates

Temporal predicates overview

The temporal predicates in HALO allow for pointcuts that express a temporal relation
between past join points. This is not limited to join points which are in a control flow
relationship. Rather, a history of past join points is kept which can be referred to using
the temporal predicates. The temporal predicates are higher-order predicates that take
pointcuts as arguments. To establish some terminology, consider the following pointcut:

((gf-call ’checkout ?argsC)

(most-recent (gf-call ’buy ?argsB)))

The first condition is referred to as the outer pointcut, and the single condition used as
argument to the temporal predicate most-recent is referred to as the inner pointcut.

The temporal higher-order predicates share the same basic semantics. An inner pointcut
is evaluated against a subset of join points relative to the join points matching the outer
pointcut. The actual subset, of course, depends on the particular temporal predicate. In
the above example, the inner pointcut (gf-call ’buy ?argsB) is thus evaluated against
join points in the past of the join points matching the outer pointcut (gf-call ’checkout

?argsC).
In total, HALO has four temporal predicates built-in: most-recent, all-past, since

and cflow. The all-past and most-recent predicates match the inner pointcut against
all past join points relative to the join point matched by the outer pointcut. The predicates
differ in that the all-past has solutions for all past join points that match, while the

Forward Chaining in HALO 7

most-recent predicate only has a solution for the most recent join point that matches.
The cflow predicate is a variation of the most-recent predicate which additionally checks
that no corresponding return join point has occurred for the join point captured by the
inner pointcut (it is therefore similar to the cflow construct in AspectJ [17]).

The since temporal predicate is the more difficult one of the four predicates as it has
two inner pointcuts. The first inner pointcut is evaluated against the past join points
relative to the join points captured by the outer pointcut. The second inner pointcut is
evaluated against the join points in-between the two other join points. Examples for the
use of since are given in Section 3.4.

Variable sharing

Variables can be shared between the inner and outer pointcuts. As the semantics of
the temporal predicates is that the inner pointcut is evaluated against the past of the
join point captured by the outer pointcut, variables are bound by the outer pointcut. For
example, the following pointcut captures invocations of the buy function for a user buying
an article, and yields all users that previously also bought the same article:

((gf-call ’buy (?user1 ?article))

(all-past (gf-call ’buy (?user2 ?article))))

In this example, the outer pointcut captures a buy call and exposes the arguments of
the call in the ?user1 and ?article variables. The inner pointcut then matches on all
previous calls to buy with the same article object as argument.

3.3.3. Hybrid Pointcuts
The escape predicate can be used to include Lisp code referring to logic variables

in a pointcut definition. The example below shows a pointcut capturing invocations of
a generic function named buy, where the escape predicate is used to ask the price of
an article (second argument) and to bind the result to a logic variable ?price (first
argument). Whenever such a pointcut is evaluated, the piece of Lisp code is executed
using the bindings available for the logic variables, resulting in a new variable binding
which in return is used in the evaluation of the rest of the pointcut. However, if the
return value of the Lisp code is nil, the condition has no solution.2 In the example, the
constraint (greater-than ?price 10) is checked for a value ?price computed at the
Lisp level – or in other words, the binding for ?price is not logically derived.

((gf-call ’buy (?user ?article))

(escape ?price (price ?article))

(greater-than ?price 10))

The escape predicate can be in a temporal predicate, but a restriction on the variables
that can be used in its condition applies: Only variables that are used in non-escape
conditions in the same inner pointcut can be used. This is because the Lisp code of the
escape conditions inside the most-recent is evaluated when user2 buys an article. The
following piece of advice is triggered to print the price of an article bought by a user, and
its price when previously bought by another user:

2The value nil also denotes false in Lisp.

8 C. Herzeel et al.

1 (gf-call ’login <kris> <shop>)

2 (gf-call ’buy <kris> <dvd>) where the current discount rate for <dvd> is 0.05
3 (gf-call ’checkout <kris>)

4 (gf-call ’login <kris> <shop>)

5 (gf-call ’buy <kris> <game>) where the current discount rate for <game> is 0.05
6 (gf-call ’buy <kris> <book>) where the current discount rate for <book> is 0.10
7 (gf-call ’buy <kris> <cd>) where the current discount rate for <cd> is nil
8 (gf-call ’checkout <kris>)

Figure 3. A sample history of join points (to simplify the example, only generic function
calls are considered).

(at

((gf-call ’buy (?user1 ?article))

(most-recent

(gf-call ’buy (?user2 ?article))

(escape ?price2 (price ?article))

(escape ?name2 (user-name ?user2))))

(print "Article previously bought by " ?name2 " for " ?price2 " EUR"))

So the variable ?price2 will refer to the past price of the article, which is possibly different
from the price of the article when the second buyer purchases the article.

3.4. Further Examples
To clarify the way the temporal predicates are matched, we give a few further examples

based on the sample execution trace shown in Figure 3: Note that we use the notation
<name > to denote object identifiers (e.g. <cd> represents an object, obviously intended
to be an instance of Article). For more complex examples, we refer the reader to the
implementation of a realistic web shop application using HALO [15].

Given the sample execution history depicted in the figure, the following pointcut matches
on join point 8 with one solution:

((gf-call ’checkout ?user)

(most-recent (gf-call ’buy (?user ?article))

(escape ?rate (current-discount-rate-for (singleton-instance ’promotions) ?article))))

For the match with join point 8, the solution gives the article the user <kris> last bought,
and the discount rate at the time the article was bought. Given the execution history
in Figure 3, this means the exposed discount rate is 0.10 for the article <book>. This
pointcut captures join point 8 because it matches the outer pointcut (gf-call ’buy

?user ?article) and because of the presence of join point nr. 6 that matches the inner
pointcut. Join point 7 does not match the inner pointcut, as the Lisp form in the escape

condition evaluates to nil.
The following pointcut has multiple solutions for join point 8, one for each article the

user checking out ever bought and for which there was a promotion (the articles <book>

and <game> and <dvd> bought by user <kris>):

((gf-call ’checkout ?user)

(all-past (gf-call ’buy (?user ?article))

(escape ?rate (current-discount-rate-for (singleton-instance ’promotions) ?article))))

Forward Chaining in HALO 9

Our last example is a variation of the above one. Again, it has multiple solutions for
the match with join point 8, but only those articles bought since the last login (only the
articles <book> and <game> purchased by <kris>):

((gf-call ’checkout ?user)

(since

(most-recent (gf-call ’login (?user ?shop)))

(all-past (gf-call ’buy (?user ?article))

(escape ?rate (current-discount-rate-for (singleton-instance ’promotions) ?article)))))

In more detail, this pointcut is matched at join point 8, because it matches the outer
pointcut (gf-call ’login (?user ?shop)), and exposes the discount rate of all buy
join points (namely 5 and 6) that match the second argument of the since predicate,
because the last login join point that matched the first argument of the since predicate
(join point 4). Note that the buy join points and the login join point are again matched
in the past of the checkout join point.

3.5. Defining Rules
Programmers can define rules for new predicates using the defrule construct. As in

other logic-based pointcut languages [13,21], this mechanism can be used to define new
join point predicates. This is simply a matter of using an existing join point predicate in
the definition of the rule. For example, the rule definition below extends HALO with a
new pointcut predicate that captures invocations of a generic function called checkout:

(defrule (checkout-gf-call ?args)

(gf-call ’checkout ?args))

Note that rules do not have to define predicates about join points. Only rules based on
other join point predicates define a new join point predicate. This is unlike the named
pointcut mechanism in AspectJ, for example, in which the conditions of a named pointcut
always have to include a primitive or user-defined pointcut.

4. HALO Implementation

In this section we present the implementation strategy for evaluating HALO pointcuts.
We present the overall architecture of the weaving process which involves a runtime weaver
for intercepting join points and a query engine for checking pointcuts for matches. We
contrast the use of backward and forward chaining query engines for supporting HALO
to compare with related work on logic-based pointcut languages and to demonstrate why
forward chaining is necessary. This is followed by an extensive discussion of the Rete
forward chaining algorithm and the necessary extensions for supporting HALO’s temporal
predicates and escape mechanism. Finally, we discuss how the semantics of the predicates
is exploited to optimize the join point history, so that join points are removed from the
history when they are no longer relevant for matching pointcuts.

4.1. HALO Weaver Architecture
A schema of the dynamic weaving process, responsible for combining HALO code and

base code, is depicted in Figure 4. Note that in this schema, we assume a sequential
execution of the base program – a version of HALO for concurrent programming is left

10 C. Herzeel et al.

fact generator

query engine

TN:(gf-call 'checkout (<kris>))
TN-1: (gf-call 'buy (<kris> <cd>))

jp facts

(defclass user () ((name)))
(defmethod login ((u user) (s shop)) ...)
(defmethod buy ((u user) (a article)) ...)
(defmethod checkout ((u user)) ...)

base

(at
 ((gf-call 'checkout (?user))
 (most-recent (buy ?user)))
(log "user ~s made buy") ?user)

aspect

(defrule (buy ?user)
 (gf-call 'user (?user ?article)))

rules

most-recent, all-past, since,
cflow

 temporal relations

runtime weaver

memory gbc

Figure 4. HALO weaver schema.

for future work. The weaver is responsible for mapping the key events in the execution of
a Common Lisp program to logic facts and storing them in a fact base. In our concrete
implementation, this is achieved by wrapping the generic function call, instance creation
and slot access protocols in Common Lisp through the CLOS Metaobject Protocol [16]
to attach code for generating the facts. Secondly, the weaver is responsible for weaving in
the proper advice code at each event. The proper advice code is computed by trying to
resolve the pointcuts given the fact base. The latter is done by a query engine, which is
basically an execution engine for our logic language HALO. In the following sections, we
outline the decisions made for implementing the HALO query engine. Another issue we
examine in the follow-up text involves optimization strategies for memory management
of the fact base, a common problem in history-based logic pointcut languages.

4.2. Implementing the Query Engine
We provide a more detailed discussion of the differences between forward and back-

ward chaining [22] to compare with related work on logic-based pointcut languages (see
Section 5). Most current logic-based pointcut languages are based on Prolog, which is in
turn based on backward chaining. We contrast these two approaches for evaluating logic
queries and discuss why forward chaining is necessary to support a combination of hybrid
pointcuts and reasoning over a history of join points as in HALO.

The two approaches to chaining can best be contrasted by representing a logic query
graphically, as in Figure 5 depicting the following piece of advice. When a user checks
out, he gets a discount on the total amount purchased, and that discount is based on a
rate that was promoted when the user logged into the shop:

(at

((gf-call ’checkout (?user))

(most-recent (gf-call ’login (?user ?shop))

(escape ?rate (current-rate ?shop))))

Forward Chaining in HALO 11

(gf-call checkout ?user)

(gf-call login ?user ?shop)
Rule Base

(escape ?rate (current-rate ?shop))

most-recent
Fact base

1 (gf-call ’login <kris> <shop>)
2 (gf-call ’buy <kris> <dvd>)
3 (gf-call ’checkout <kris>)

query enginefact generator

(login kris shop)
(buy kris dvd)
(checkout kris)

and
join pointsT

advice

Figure 5. Execution of a program represented as facts. HALO pointcut represented as a
tree.

(discount ?user ?rate))

The left upper corner of Figure 5 depicts a sample program run. As explained in the
previous section, the weaver records facts for each join point. The resulting fact base is
also depicted in Figure 5.

When using a weaver with a backward-chained query engine, a problem arises with
evaluating escape conditions at the right time: At every join point, the weaver produces
logic facts for describing that join point and then invokes the query engine to check if
any pointcuts match. In the example, when using a backward chainer, the weaver would
launch the pointcut as a query at every join point. In backward chaining, a logic query
or pointcut is evaluated by finding rules to evaluate the conditions in the pointcut, and
recursively finding rules for the conditions in those rules. In other words, using the
graphical representation, the query is evaluated from the bottom to the top. The process
stops when it can find logic facts for all of the conditions, meaning the query or pointcut
follows logically from the facts. Resolving this query using backward chaining results in a
bottom-up traversal of the tree depicted in rule base of Figure 5. In order to resolve the
query, a most-recent relation must hold between the result of resolving the left-input
and the right-input of the node labelled most-recent. This requires searching the fact
base for a fact that matches the pattern (gf-call ’checkout (?user)), another fact
that matches the pattern (gf-call ’login (?user ?shop)) and, given those bindings,
resolving the escape condition by executing its piece of Lisp code. Escape conditions make
it possible to expose context from the base program (see Section 3.3.3). When combined
with temporal operators, escape conditions expose past program context. Coming back
to our example, this means the escape condition should be evaluated in relation to the
program state when the login join point occurred. In other words, the promotional rate
exposed via ?rate through the escape predicate needs to be bound to the discount rate
active at login time. However, backward chaining does not support such semantics. At
any time between the login join point and resolving the pointcut, the state of the object
<shop> might have changed.

12 C. Herzeel et al.

Supporting the evaluation of escape conditions at the right time fits better in the
model of forward chaining, particularly the Rete forward chaining algorithm. When using
a forward-chained query engine, the relationship between weaver and query engine is
reversed. Rather than the weaver invoking the query engine to check if a pointcut matches,
the query engine responds to changes in the fact base and informs the weaver if there are
any new matches for pointcuts. In the Rete forward chaining algorithm, a representation
for pointcuts similar to the one in Figure 5 is used. This representation is extended
with memory. The memory serves to remember partial matches for pointcuts. Overall,
the algorithm works as follows: When a fact is inserted in the fact data base, find all
rules for which the fact matches a condition and try to resolve the rule given the fact
base at that time. In addition, the algorithm records all conclusions found in-between in
the fact base. So in the example depicted in Figure 5, when the fact (gf-call ’login

<kris>) is inserted in the fact base, the escape condition of the rule depicted in the
same figure is evaluated and asserted in the fact base. At a later time, when the fact (gf-
call ’checkout <kris>) is asserted, it is combined with the solution memorized for
the match to the partial pointcut ((gf-call ’login (?user ?shop)) (escape ?rate

(current-rate ?shop))). Note that the escape condition is thus evaluated at the time
the join point happens that matches this part of the pointcut, thus implementing the
HALO semantics. In the next section, we discuss how the Rete algorithm is further
extended to support HALO’s temporal operators and discuss how its apparent drawback
on memory usage can be optimized in HALO.

4.3. Temporal Extensions to Rete
In this section, we discuss how the Rete algorithm can be extended to support HALO’s

temporal predicates and its escape mechanism. We begin by briefly discussing the stan-
dard Rete algorithm.3

Basic Rete

Rete represents rules – or pointcuts in HALO – as a network of nodes with memory
tables. For each condition in a rule, the network contains a “filter” node. For each logical
“and” between conditions in rules, it contains a “conjunctive” join node. When new
facts are added, they are inserted in the filter nodes. A filter node checks whether the
fact unifies with its condition, and if so, memorizes it in its memory table and notifies
the join node that it is linked to. For example, the filter node for the condition (gf-

call ’checkout ?x) will memorize a fact (gf-call ’checkout <pascal>) but not a
fact (gf-call ’login <pascal>). Conjunctive join nodes have an incoming link from
one filter node and another join node or filter node. When a conjunctive join node is
notified that a new fact was memorized, it checks whether this fact matches with the
facts memorized by the other incoming node. Specifically, it checks whether they have
the same values for common variables. If this is the case, this combination is memorized
and the next join node is notified.

As an example, consider the query given below. The Rete network for the query is
shown in Figure 6. The figure shows the state of the memory tables after adding the fact

3We discuss the original Rete algorithm. Improved versions, like Rete II and Rete III exist, but unlike
the original Rete, are proprietary algorithms that have not been published.

Forward Chaining in HALO 13

shown on the left of the figure. Note that the notation <name > is again used for an object
identifier (a reference in the actual implementation).

((gf-call ?operation (?arg1 ?arg2))

(gf-call ’browse (?arg1 ?arg2))

(gf-call ?operation (1 ?arg2)))

As the rule has three conditions, the Rete network contains three filter nodes (the circles).
These filter nodes are connected to one another by means of conjunctive join nodes (the
squares). The bottom node (the triangle) is a query conclusion node. When it is notified
of new facts, it means a solution for the query was derived. This is the case in this
example, where the bottom node is triggered for the match where ?operation has the
value browse, ?arg1 the value 1 and ?arg2 the value <lotte>.

1 2 3

4

5

6

<lotte>
?arg2gf-call

1'browse
?arg1?operation browse

1
?arg1

<lotte>
?arg2gf-call

<lotte>
?arg2?operation

'browse
1gf-call

<lotte>
?arg2

1'browse
?arg1?operation

<lotte>
?arg2

1
?arg1

'browse
?operation

fact & rule base

(gf-call 'browse 1 <lotte>)

added facts

Figure 6. A standard Rete network.

Temporal frames in memory tables

In standard logic, any fact is unambiguously “true.” In temporal logic however, facts
are true in a temporal frame, a certain moment in time.4 To support this, memory tables
are extended to record in which temporal frame their entries are considered true. In
Figure 7, this is the gray column in the left of memory tables.

Temporal join nodes

Supporting the temporal operators in Rete is done by introducing new types of join
nodes. One new type of join node is added for each of the temporal operators most-

recent, all-past, since and cflow. When temporal join nodes are notified of new
incoming facts, they combine the new facts with those in the memory table of its other
incoming node, similar to conjunctive join nodes in regular Rete. The join nodes in the

4The term “temporal context” is used in literature, but we use “temporal frame” to avoid confusion with
“context” in the sense of join point context data.

14 C. Herzeel et al.

extended Rete are restricted to combining entries that meet constraints on the temporal
frames. Figure 8 displays the different temporal constraints for the different types of join
nodes: Tleft and Tright refer to the temporal frames associated with the outer and inner
pointcut respectively (which are always depicted as respectively the left and right inputs
of the temporal join node). In the case of the since operator, Tleft refers to the outer
pointcut, Tright points to the second argument of since and Tmiddle points to the first
argument. The behavior of the most-recent and all-past join nodes further differs in
that an all-past passes all matches to its output node, while a most-recent join node
only passes one match. Specifically, when a new entry is made in its left input node, it
tries to match it with the entries in its right memory table, starting from the most recent
entry, and only passes the first successful match.

For example, Figure 7 shows the network for the following pointcut:

((gf-call ’checkout (?user))

(most-recent (gf-call ’buy (?user ?article))))

The network consists of one temporal join node for the most-recent condition, its left
input is a filter node for the one condition in the outer pointcut (gf-call ’checkout

(?user)), and its right input is a filter node for the one condition in the inner pointcut
(gf-call ’buy (?user ?article)).

1 2

mr
<lotte>5

gf-call
<lotte>2
?user'checkoutT1

<dvd>4 <lotte>
<kris> <book>3

gf-call ?article
<cd><lotte>1

?user'buyT2

<lotte>5 <dvd>

?user
<lotte> <cd>2

?articleT3

...

Figure 7. Rete containing a square-shaped temporal join node.

Figure 7 also shows the state of the memory tables after processing the following series
of fact insertions. At time 1, a fact (gf-call ’buy <lotte> <cd>) is inserted and
memorized which matches only the right filter node. The join node is notified, but as the
memory table of its left input is empty, it does not do anything. At time 2, a fact (gf-call
’checkout <lotte>) is inserted and memorized which matches only the left filter node.
As the join node is notified, it combines the new entry of its left input with the most recent
matching entry in the memory table of the right input node. The entries match if they
have the same values for the common variables and the constraint Tright < Tleft between
the temporal frames of the entries is met. The entry that was made at time 1 in the right
filter node matches, as it also has the object <lotte> as value for the variable ?user.
Thus, this combination is memorized in the join node’s memory table. At time 3, the

Forward Chaining in HALO 15

• and: Tleft = Tright

• most-recent Tright < Tleft

• all-past: Tright < Tleft

• since: Tright > Tmiddle and Tright < Tleft and Tmiddle < Tleft

Figure 8. Constraints in temporal join nodes.

fact (gf-call ’buy <kris> <book>), and at time 4, the fact (gf-call ’buy <lotte>

<dvd>) is inserted. At time 5, the fact (gf-call ’checkout <lotte>) is inserted. It
matches the left filter node, so the join node is notified. The join node combines the new
entry with the right filter node’s memory table. Two combinations are possible: one with
temporal frame 4 and one with temporal frame 1, because both have the object <lotte>
as value for ?user. However, due to the recent matching semantics of the most-recent

operator, only the combination with the entry of temporal frame 4 is made. A new entry
is thus made in the join node’s memory table which is true at temporal frame 5, with the
object <dvd> as value for the variable ?article. Conversely, were the operator most-

recent replaced by the operator all-past, all matching combinations would have been
memorized.

Control flow join nodes

Control flow join nodes operate slightly differently from most-recent join nodes. Fig-
ure 9 shows the Rete network for the following pointcut:

((gf-call ’update-line ?args1)

(cflow (gf-call ’update-figure ?args2)))

The memory table for a cflow join node’s right input node is extended to record the
time at which the return of the captured join point occurs. When a return join point is
encountered, the weaver notifies control flow join nodes of the time of the corresponding
invocation join point. The nodes that have an entry for that time in their right input
node’s memory table add the time at which the return occurred. The entry will no longer
be used to make combinations with entries coming from the left node.

Figure 9 reflects the Rete after the insertion of the following conclusions. At time 1, a
call to the generic function update-figure occurs and a fact (gf-call ’update-figure

<fig1>) is inserted in the network, making an entry in the memory table of the first
filter node. Immediately thereafter, the weaver detects the return of that same generic
function call and notifies the control flow join node: The return time, namely 2, is added
to the entry for the generic function call in the memory table of the temporal join node’s
right input node. If subsequently at time 3, a fact (gf-call ’update-line <line1>) is
added, this is memorized in the first filter node and the control flow join node is notified.
However, as the control flow join node cannot find an unfinished generic function call entry
in its right input node for which the constraint T2 < T1 succeeds, it cannot memorize a

16 C. Herzeel et al.

conclusion. Assume that next, at time 4, the fact (gf-call ’update-figure <fig2>)

and at time 5, the fact (gf-call ’update-line <line2>) are inserted in the network.
This time, when the temporal join node is notified, it is able to derive a conclusion as it
can combine the entry memorized at time 4 in its left input node with the entry memorized
at time 5 in its right input node. As such, the Rete network concludes that the invocation
of the generic function update-line with argument <line2> is in the control flow of the
call to the generic function update-figure with an argument <fig2>.

1 2

cflow

<line2>5

gf-call
<line1>3
?args'update-lineT1

2
Ended

<fig2>4

gf-call
<fig>1
?args2'update-figureT2

?args
<line2> <fig2>5

?args2T3

...

Figure 9. Rete containing a control flow join node.

Escape nodes extension

Another extension to the Rete algorithm is used to handle the escape conditions. Such
conditions are represented as nodes in the Rete network similar to join nodes, though
they only have one input. Figure 10 shows the Rete network for the following pointcut:

((gf-call ’checkout (?user))

(most-recent

(gf-call ’buy (?user ?article))

(escape ?rate (current-discount-rate (singleton-instance ’promotions) ?article))))

When an escape filter node is notified of a memorization in its input node, the Lisp form
is executed after all logic variables are replaced by the values from the received notification.
Subsequently, if the result of this evaluation is different from nil, it is memorized in the
escape filter node and the escape filter node’s output node is notified. For example,
if a fact (gf-call ’buy <kris> <book>) is inserted in the network from Figure 10,
the escape filter node is notified and evaluates the Lisp form (current-discount-rate

(singleton-instance ’promotions) <book>).

4.4. Memory Table Garbage Collection
It is not very economical to keep all the entries in the memory tables in the Rete network

during the entire run of the program. Due to the semantics of the temporal predicates,
certain entries in the memory tables can become irrelevant as they will never produce new
combinations. This information can be exploited to provide automatic garbage collection
of superfluous entries. However, removing join point facts from the history also implies

Forward Chaining in HALO 17

1 2

mr

gf-call ?user'checkoutT1

?article?rate ?userT4

...

3 <book>
?article?rate

0.05 <kris>1
?userT3

<book>
?article'buy

<kris>1
?userT2

Figure 10. Rete containing an diamond-shaped escape filter node.

that they cannot be used anymore to match pointcuts added dynamically. Nonetheless
the considerable improvements with regard to memory usage favor the use of our garbage
collection strategy.

Entries no longer most recent

Entries in the right input memory table of most-recent temporal join nodes can be
removed when new entries with the same values for the variables are added. In fact, only
the values for the variables that are in common with the left input memory table need to
be the same. This is because when an entry is added to the left input’s memory table, the
join node will combine it with the most recent matching entry in the right input node.
The match requires that the values for the variables that the two input nodes have in
common are the same. Thus, if there is an older entry in the right memory table that
also matches with the new entry in the left, it will still not produce a combination. Thus,
such entries can be removed.

Consider the example of Figure 7 discussed previously. At time 4, an entry is made in
the memory table of the join node’s right input node. The entry of time 1 can then be
removed because it has the same value for the variable ?user. Note that the values for
the variable ?article are different, but this variable is not used in the join node’s left
input node.

Figure 11 gives an example with nested most-recent predicates for the following piece
of advice:

(at ((gf-call ’checkout ?user1)

(most-recent (gf-call ’checkout ?user2)

(most-recent (gf-call ’buy ?user2 ?article2))))

(print ?user2 " just bought " ?article2))

A sample program run is depicted in the same figure. In addition, the figure displays
tables labelled LT (life time): The intervals stored by these tables indicate the begin and
end point for the interval during which entries in the memory tables are kept. Note
that though the entries in the third filter node are removed as new entries are made, the
derived conclusions are not also removed at the same time: At time 7, for example, when
the entry made for (gf-call ’buy <lotte> <dvd>) is removed, the derived conclusion

18 C. Herzeel et al.

for time 5 in the first most-recent join node is kept. This ensures that at time 8, it can
be used to match the pointcut. However, this does not mean the derived conclusion is
kept forever. The first most-recent join node is itself the input of another most-recent
join node. The input nodes of this second join node share no variables. So the entry for
time 5 in the output memory table of the first join node is removed when any other entry
is made, which in this example will happen the next time a user checks out if he bought
something (e.g. if the user lotte does another checkout).

mr

...

mr

7 <lotte> <book>
<lotte> <dvd>4

gf-call ?article2
<game><lotte>3

?user2'buyT2

[7,..]
[4,6]
[3, 3]

LT

?user2
<lotte> <dvd>5

?article2T3
[5, ...]

LT

?article2
<dvd>

?user1
<kris> <lotte>8

?user2T3
[8, ...]

LT

8 <kris>

gf-call
<lotte>5
?user2'checkoutT1

[8,8]
[5,5]
LT

<kris>8

gf-call
<lotte>5
?user1'checkoutT1

[8,8]
[5,5]
LT

(login <lotte> <shop>)
(login <kris> <shop>)
(buy <lotte> <game>)
(buy <lotte> <dvd>)
(checkout <lotte>)
(login <lotte> <shop>)
(buy <lotte> <book>)
(checkout <kris>)

join points

Figure 11. Garbage collection of nested temporal join nodes.

Combinations of since and most-recent

When the first argument pointcut of a since condition is a most-recent condition,
the memory tables for the second argument pointcut’s network can be garbage collected
whenever entries are removed from the most-recent node’s memory table. For example,
consider the Rete network shown in Figure 12 for the following piece of advice that makes
sure a discount is given for each article bought during a single shopping session:

(at ((gf-call ’checkout (?user))

(since (most-recent (gf-call ’login (?user ?shop)))

(all-past (gf-call ’buy (?user ?article)))))

(discount ?article (current-discount-rate (singleton-instance ’promotions) ?article)))

Intuitively, in this pointcut, the join points in the history for the buy calls of a user can
be removed once she logs in again. This is illustrated for the sample program depicted
in the figure, and the Rete network is shown after the execution of the entire program.
When the second call (login <lotte> <shop>) at time 5 happens, the entry labelled 1
is removed in the right input node of the most-recent join node (table T2). This also
implies that we can safely remove all entries memorized in the right input network of the
since join node, which have the same binding for the variable ?user, namely <lotte>,
which were made before time 5. This is because the temporal constraint of the since

Forward Chaining in HALO 19

temporal join node, which is T3 > T2 in Figure 12, will never be fulfilled for those entries
anymore.

mr ap

since

<lotte>6 <book>

?article

<dvd>
<cd>

<lotte>3

gf-call
<lotte>2
?user'buyT3

[6,..]
[3,4]
[2, 4]

LT

?shop
<shop>
<shop><lotte>5

gf-call
<lotte>1
?user'loginT2

[5,...]
[1, 4]

LT

7 <book><lotte>

<cd>
<dvd>

?article

<lotte>4

?user
<lotte>4

T5

[7,...]
[4,4]
[4,4]
LT

?shop
<shop>

<shop>
<shop>

7 <lotte> <book>

<cd>
<dvd>

?article

<lotte>4

?user
<lotte>4

T6

[7,...]
[4,4]
[4,4]
LT

<shop>
<shop>
?shop

<lotte>7

?user
<lotte>4

T4

[7,7]
[4,4]
LT

<lotte>7

gf-call
<lotte>4
?user'checkoutT1

[7,7]
[4,4]
LT

Figure 12. Rete network illustrating automatic garbage collection for since.

Nodes without memory

Not all nodes need to keep a memory table. The exceptions are: nodes that are the left
input of a temporal join node (thus not conjunctive join nodes), the last node that triggers
the advice code, and nodes that are the input of an escape node. Keeping a memory table
for the left input of a temporal join node is not necessary: new entries coming in from
the right conceptually need to be matched with entries from the left, but they can only
match if the left entries are in a temporal frame which is in the future of the right entry.
Due to the order in which facts are added by the weaver, such entries cannot exist yet.
An escape node never consults the memory of its input node, rather whenever new facts
come in through its input, it executes Lisp code and records the result in its own memory
table. Thus the input node of an escape does not actually need to keep a memory table.
The last node that triggers the advice code does not need to keep a memory table: these
are never joined to other nodes for deriving conclusions.

As an example, the Rete network of Figure 10 is depicted again in Figure 13, annotated
with the life time of facts. The two filter nodes no longer have a memory. The second
figure shows the network after a different series of insertions: the facts (gf-call ’buy

<lotte> <book>) at time 1 and (gf-call ’buy <lotte> <cd>) at time 2. When the
first fact is inserted, assuming the discount rate of the <book> is 0.05, this is memorized
in the escape node . Similarly, as the second conclusion is inserted and if the discount rate
of the <cd> object is 0.10, this is also memorized. In addition, the previous conclusion
of time 1 memorized in the escape node is deleted, as this conclusion will not be used
anymore to derive conclusions by the most-recent join node.

20 C. Herzeel et al.

1 2

mr
<cd>
<book>
?article

<lotte>2 0.10
0.051 <lotte>
?rate?userT2

[3,...]
LT

3

?article
<cd>0.10

?rate?user
<lotte>3

T3

[2,...]
[1,1]
LT

Figure 13. Rete network from Figure 10 annoted with life time of facts for garbage
collection.

Entries marked as no longer used

Obviously, in the case of a cflow join node, the entries that are marked as “no longer
used” can in fact simply be removed. Note that this means that older entries in the
memory table can become the most recent match again. This is why cflow nodes are an
exception to the first case for garbage collection described above.

4.5. Evaluation on E-Shop Example
Table 1 shows the results of an evaluation of the garbage collection of memory tables.

The evaluation was performed using an e-commerce application based on the running
example of this paper (Section 2). The application was reported on in our earlier work [15]
and is implemented in Lisp using the Hunchentoot web application framework [26]. The
aspects installed on the application include one for giving discounts, another for popping
up banner advertisements as a customer logs into the shop, and an additional aspect which
implements a recommendation system as found on sites such as Amazon (i.e. “other users
who bought this also bought ...”). The application was run with scripts simulating a series
of users logging in, buying articles and checking out.

Table 1 shows statistics on the number of memory table entries for three scripts. The
scripts differ in the number of operations done by the simulated users. The column
labeled JPF shows the total number of join point facts produced by the weaver during
the entire run of the application. The column labeled TFNE shows the total number of
filter node entries that were created during the run of the application. Note that there
is a large difference between the two numbers. Many join points were intercepted that
did not match any conditions of any pointcut at all, and hence were all rejected by the
filter nodes implementing these conditions. Hence no information about these join points
is stored at all. The large difference between the numbers stems from the fact that, as
further discussed in Section 4.6, our implementation of HALO does not currently employ
any static analysis techniques, such as shadow weaving, to limit the amount of intercepted
join points (see future work).

The column labeled TJNE shows the total number of entries made in the join nodes,
in other words, the number of partial derivations. This number is naturally much larger
than the number of filter node entries, as each entry from either input node of the join

Forward Chaining in HALO 21

JPF TFNE TJNE RFNE RJNE RTH (s) RT (s)
5948 294 9663 164 329 2.680 0.116

11799 378 17803 158 329 5.036 0.156
28853 731 49800 156 339 31.137 1.494

Table 1
Benchmarks for memory table garbage collection on a Lisp E-commerce application.

node can be combined with several other ones from the other input node.
The columns RFNE and RJNE show the number of remaining entries at the end of

the application run in respectively the filter nodes and join nodes. All other entries have
been already removed at some point. The remaining entries are those that could still be
needed for matching pointcuts if the application continued to run. As shown, many of
the filter node entries, and particularly very many of the join node entries, are removed.
The entries that remain at the end of the run remain fairly constant and consist mostly
of entries that, because of the pointcuts used in this application, need to be remembered
for the entire run of the application anyway.

Finally, the columns RTH and RT show an average runtime of the application for each
script, respectively with aspects installed (RTH), and without any aspects installed and
HALO fully deactivated (RT). This shows that our current implementation of HALO
causes a large runtime overhead. This is in part because of the prototypical nature of
the implementation. Our implementation of the Rete algorithm is currently designed for
extensibility rather than efficiency. For example, it does not employ any compilation to
machine form as described in Forgy’s original work [11]. Also, as explained above, many
join points are generated and then matched against all filter nodes. We expect a static
analysis technique using shadow weaving to improve this, as explained in the next section.

To summarize, we can learn the following from Table 1: Our current implementation
generates a high number of join point facts that are not recognized by any filter nodes.
This number can potentially be reduced by employing static analysis techniques, such as
shadow weaving. This should also reduce the runtime overhead, as discussed below.

On the other hand, there is also a relatively high number of entries in join nodes created
during runtime, which are conceptually necessary and cannot be reduced by further opti-
mization techniques – the possible combinations of input nodes simply induces this level of
complexity. However, as the distinctive feature of our approach, many filter node entries
are effectively removed at runtime when they become obsolete, keeping the total number
of entries to a reasonably low size.

4.6. Further Optimization Strategies
The memory table garbage collection optimization strategy outlined in the previous

sections is orthogonal to the shadow weaving optimization strategy performed in other
logic-based pointcut languages [13,21]. In that optimization, which is based on abstract
interpretation and partial evaluation, the pointcuts are statically analyzed to determine
which join points never affect the matching of a pointcut so that the weaver does not
need to intercept these join points. That optimization can be adapted to HALO as well:

22 C. Herzeel et al.

For each shadow point one can record which filter nodes the join points from that shadow
potentially match against. In many cases, this will actually be zero filter nodes, and thus
no join point fact needs to be generated at all. In other cases, only a small subset of the
filter nodes will have to be checked. In any case, we note that the shadow weaving opti-
mization strategy is orthogonal to optimizing the join point history dynamically. Shadow
weaving optimizes the join point history so that join points that are never relevant are
not intercepted. The technique discussed in this paper optimizes the join point history
so that join points that are relevant are removed when they are no longer relevant. This
is further explained in the related work section in comparison with Alpha.

5. Related Work

OReA & Hybrid Pointcuts

We have simplified the “hybrid pointcuts” mechanism [9] in this paper to an explicit
escape. In the work of D’Hondt on OReA [9], the goal of “hybrid aspects” is to be
transparent: A condition in a logic pointcut can be re-defined as a method, and vice
versa. The pointcut language and base language are redefined so that when no rule is
defined for a logic condition, the condition will be evaluated by sending a message instead.
This can be easily achieved in HALO as well: If no rule exists for a logic condition, it is
translated to an escape condition. However, we have not demonstrated this in this paper
in order to focus on the issue of supporting “hybrid pointcuts” in a language like HALO
that supports pointcuts over a history of join points. OReA also supports interaction
from the base and advice languages with the rule language, which we have not considered
in HALO so far. OReA is actually a family of logic pointcut languages, which includes a
variant based on forward chaining. However, that variant of OReA is not based on the
Rete network and lacks the necessary support for memorizing past evaluations of hybrid
pointcuts. While OReA supports hybrid pointcuts in both directions in a transparent
manner, it does not support pointcuts over a history of join points.

Alpha

A closely related approach to our work is Alpha [21], a logic-based pointcut language
for expressing pointcuts over a history of join points. Alpha includes information about
the state of objects and the static structure of the program in the fact base. Full Prolog
can be used to write pointcuts as logic queries over the historic fact base. A pre-defined
set of logic rules for expressing temporal relations is provided, but this can be extended
by the programmer. While Alpha also has a mechanism for letting the pointcut language
interact with the base program, as discussed in Section 4.2, the use of standard Prolog
only allows interaction with the base program at the current join point. So (as discussed
in Section 2), this means the “past rate discounting” aspect must be expressed as two
pointcuts and pieces of advice. Thus, while Alpha is more expressive than HALO in
terms of providing a richer join point model and the use of full Prolog to reason about
the past history of join points, it is also less expressive with regard to the extent to which
hybrid pointcuts can interact with the base program. Because of the open set of temporal
predicates, partial evaluation of pointcuts is used to optimize the memory required to
keep the historic fact base. The analysis is done statically and determines which join

Forward Chaining in HALO 23

points may possibly affect pointcuts. For these, the shadow weaving technique well-
known in aspect weaver construction is applied so that only those join points are actually
intercepted. A similar technique can be used in HALO, though this is an area of future
work. In Alpha, the join points that are intercepted are kept in the fact base indefinitely,
except if the static analysis can determine that they are only used in matching pointcuts
as the current join point and not as past join points. Thus, if a pointcut expresses the
equivalent of HALO’s most-recent predicate, information about all join points matching
the most-recent condition is kept indefinitely. In contrast, in HALO, the set of temporal
predicates is fixed, which means the implementation knows about the semantics of the
predicates, which is exploited to perform a dynamic analysis of the fact base so that
matches are removed from memory tables if they are no longer relevant.

Context-Aware Aspects in Reflex

Reflex is a kernel for multi-language aspect-oriented programming, implemented as an
object-oriented framework. In earlier work, the framework was extended with the neces-
sary support for context-aware aspects, which also allows embedding base code in point-
cuts, as well as referring to past join points [24]. In that framework, context definitions
can be implemented as objects with a method that indicates whether the context is active.
The proposed pointcut language does not allow pointcuts over past join points. Rather,
the framework provides support for defining “context restrictors” that can be used in a
pointcut to restrict it not just based on the current join point but also on past activations
of a context, for example, depending on whether a context was active during the creation
of the object in which the current join point occurs. Internally, these restrictors add ad-
ditional pointcuts and advice to the program to capture the state of the context objects
for later reference. In HALO, this splitting of pointcuts into parts that are evaluated at
different times, and keeping the past state exposed by contexts automatically, arises from
the Rete network.

EAOP, J-Lo & Tracematches

In several other approaches that allow expressing pointcuts over a history of join points,
including EAOP [10], Tracematches [1] and J-LO [6], implementation strategies based on
state machines are investigated. The state machines are used to evaluate temporal rela-
tions between pointcuts, which in the Tracematches and J-LO approaches are expressed
in AspectJ. The state machine formalism inherently does not support a memory, thus
when variable sharing is allowed between the non-temporal AspectJ pointcuts, this re-
quires an additional form of memory. On the other hand, the logic chaining formalism we
have started from in this paper inherently uses such a memory. As for interaction with
the base language, current versions of Tracematches extend AspectJ with a let pointcut
similar to the escape discussed in this paper [23], but this mechanism is not covered
in [1] and [2], and only examples for accessing the current join point reflection object are
discussed in [3]. Furthermore, a let pointcut condition is limited to using variables from
its enclosing symbol, i.e. only variables defined at the current join point, in contrast with
HALO’s escape predicate which also allows use of variables defined at past join points.

24 C. Herzeel et al.

Rete

Work by Teodosiu and Pollak [25], and more recent work by Berstel [4], propose ex-
tensions of the Rete algorithm for temporal event management. No foundation based
on temporal logic is considered, i.e. temporal constraints are expressed only over explicit
timestamps, and no higher-order predicates for expressing temporal relations are provided.
Furthermore, the temporal constraints always involve a fixed interval of past events, which
is motivated by the need to garbage collect memory table entries. In contrast, we have
shown how an appropriate most recent join point matching semantics for the temporal
predicates still allows for garbage collection.

6. Conclusions and Future Work

As stated in the introduction, the contributions of this paper are three-fold. Firstly,
we introduced a novel temporal logic-based pointcut language which has features for
expressing pointcuts over a history of join points and allowing interaction with the base
language. The language is dubbed “HALO”.

Secondly, we introduced forward chaining as an implementation mechanism for such
a language. Earlier work on similar logic-based languages, such as Alpha and OReA,
support either feature but not a combination of both. As we have shown, the backward
chaining evaluation strategies used in those approaches are insufficient for supporting
the combination. We demonstrated the Rete algorithm as a particular forward chaining
algorithm that can support a language that combines both features. We showed how
Rete can be extended with support for verifying temporal relations between facts and
interacting with the base language.

Thirdly, we demonstrated how the Rete network can be further optimized such that
keeping a full history of join point facts is not necessary. Only nodes that are the right
input of a temporal node actually need a memory table. Furthermore, because the set
of temporal predicates is built-in in the language (rather than an open set), the known
semantics of these predicates can be exploited to perform a dynamic analysis of the
memory tables. Certain nodes can perform a garbage collection of their previous entries
in the memory table when new entries are made.

As future work, we consider extending HALO with predicates that offer a static model
of the base application, as in other logic-based pointcut languages [13,21]. Predicates for
such a model could be easily added, and would exist in the temporal Rete network as facts
that are eternally true. HALO does not currently support recursive rules, which have so
far not been proven useful in our examples, and the restriction allows rules to simply be
inlined. In previous work, recursive rules have been proven useful for writing pattern-based
pointcuts that detect recursive patterns in the static model of the base application [13].
Rete can support recursive rules, but the impact of our additions, especially the escape

predicate, needs to be further investigated. Furthermore, while the temporal relations
expressed by the current set of built-in higher-order temporal operators are similar to
the pre-defined time stamp comparison predicates used in Alpha [21], the use of full
Prolog in the latter potentially allows additional temporal relations to be expressed. We
are currently investigating additional temporal predicates for expressing more interesting
temporal relations.

Forward Chaining in HALO 25

Acknowledgements

This work was supported in part by the AOSD-Europe Network of Excellence, European
Union grant no. FP6-2003-IST-2-004349. Charlotte Herzeel and Coen De Roover are
funded by a doctoral scholarship of the Institute for the Promotion of Innovation through
Science and Technology in Flanders (IWT-Vlaanderen), Belgium. Pascal Costanza is
funded by the Institute for the Promotion of Innovation through Science and Technology
in Flanders (IWT-Vlaanderen).

REFERENCES

1. Chris Allan, Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha
Kuzins, Ondřej Lhoták, Oege de Moor, Damien Sereni, Ganesh Sittampalam, and
Julian Tibble. Adding trace matching with free variables to aspectj. In OOPSLA
’05: Proceedings of the 20th annual ACM SIGPLAN conference on Object oriented
programming, systems, languages, and applications, pages 345–364, New York, NY,
USA, 2005. ACM Press.

2. Pavel Avgustinov, Eric Bodden, Elnar Hajiyev, Laurie Hendren, Ondrej Lhotak, Oege
de Moor, Neil Ongkingco, Damien Sereni, Ganesh Sittampalam, Julian Tibble, and
Mathieu Verbaere. Aspects for trace monitoring. In Invited paper at FATES/RV
2006, 2006.

3. Pavel Avgustinov, Julian Tibble, Eric Bodden, Ondrej Lhotak, Laurie Hendren, Oege
de Moor, Neil Ongkingco, and Ganesh Sittampalam. Efficient trace monitoring. Tech-
nical Report abc-2006-1, ABC Group, 2006.

4. Bruno Berstel. Extending the rete algorithm for event management. In Proceedings
of the Ninth International Symposium on Temporal Representation and Reasoning,
page 49, Washington, DC, USA, 2002. IEEE Computer Society.

5. Daniel Bobrow, Linda DeMichiel, Richard Gabriel, Sonya Keene, Gregor Kiczales,
and David Moon. Common lisp object system specification. Lisp and Symbolic Com-
putation, 1(3-4):245–394, January 1989.

6. Eric Bodden. J-LO - A tool for runtime-checking temporal assertions. Master’s thesis,
RWTH Aachen university, 2005.

7. Christoph Brzoska. Temporal logic programming with bounded universal modality
goals. In Proceedings of the Workshop on Executable Modal and Temporal Logics,
pages 21–39, London, UK, 1993. Springer Verlag.

8. Jacques Cohen. Describing prolog by its interpretation and compilation. Commun.
ACM, 28(12):1311–1324, 1985.

9. Maja D’Hondt and Viviane Jonckers. Hybrid aspects for weaving object-oriented
functionality and rule-based knowledge. In Proceedings of the Fourth International
Conference on Aspect-Oriented Software Development, pages 132–140, New York, NY,
USA, 2004. ACM.

10. Rémi Douence, Olivier Motelet, and Mario Südholt. A formal definition of crosscuts.
In REFLECTION ’01: Proceedings of the Third International Conference on Met-
alevel Architectures and Separation of Crosscutting Concerns, pages 170–186, London,
UK, 2001. Springer-Verlag.

26 C. Herzeel et al.

11. Charles L. Forgy. Rete: A fast algorithm for the many pattern/many object pattern
match problem. Artificial Intelligence, 19(1):17 – 37, September 1982.

12. Manolis Gergatsoulis. Temporal and modal logic programming languages. In A. Kent
and J. G. Williams, editors, Encyclopedia of Microcomputers, volume 27, pages 393–
408, New York, 2001. Marcel Dekker, Inc.

13. Kris Gybels and Johan Brichau. Arranging language features for more robust pattern-
based crosscuts. In Proceedings of the Second International Conference on Aspect-
Oriented Software Development, pages 60–69, New York, NY, USA, 2003. ACM.

14. Wilke Havinga, Istvan Nagy, Lodewijk Bergmans, and Mehmet Aksit. Detecting
and resolving ambiguities caused by inter-dependent introductions. In Proceedings of
5th International Conference on Aspect-Oriented Software Development, AOSD2006,
pages 214 – 225, New York, NY, USA, 2006. ACM.

15. Charlotte Herzeel, Kris Gybels, and Pascal Costanza. Modularizing crosscuts in an
e-commerce application in Lisp using HALO. In Proceedings of the International Lisp
Conference 2007, 2007.

16. Gregor Kiczales, Jim des Rivières, and Daniel G. Bobrow. The Art of the Metaobject
Protocol. MIT Press, 1991.

17. Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and
William G. Griswold. An overview of aspectj. In ECOOP ’01: Proceedings of the
15th European Conference on Object-Oriented Programming, pages 327–353, London,
UK, 2001. Springer-Verlag.

18. Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. In
Mehmet Akşit and Satoshi Matsuoka, editors, Proceedings of the European conference
on Object-Oriented Programming, volume 1241, pages 220–242, Berlin, Heidelberg,
and New York, jun 1997. Springer-Verlag.

19. Gregor Kiczales and Mira Mezini. Separation of concerns with procedures, annota-
tions, advice and pointcuts. In European Conference on Object-Oriented Program-
ming, ECOOP 2005, pages 195 – 213. Springer-Verlag, 2005.

20. Robert Kowalski. Predicate logic as programming language. In IFIP Congress, pages
569–574, 1974. Reprinted in Computers for Artificial Intelligence Applications, (eds.
Wah, B. and Li, G.-J.), IEEE Computer Society Press, Los Angeles, 1986, pp. 68–73.

21. Klaus Ostermann, Mira Mezini, and Christoph Bockisch. Expressive pointcuts for in-
creased modularity. In European Conference on Object-Oriented Programming, pages
214–240, 2005.

22. Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Prentice-Hall, Englewood Cliffs, NJ, 2nd edition edition, 2003.

23. Ganesh Sittampalam. Abc version 1.1.1 release announcement.
http://abc.comlab.ox.ac.uk/archives/announce/2006-Mar/0000.html.

24. Éric Tanter, Kris Gybels, Marcus Denker, and Alexandre Bergel. Context-aware
aspects. Lecture Notes in Computer Science, Proceedings of the 5th International
Symposium on Software Composition (SC 2006), 4089:227–242, 2006.

25. Dan Teodosiu and Gunter Pollak. Discarding unused temporal information in a pro-
duction system. In Int. Conf. on Information and Knowledge Management, Baltimore,
1992.

Forward Chaining in HALO 27

26. Edi Weitz. Hunchentoot - the common lisp web server formerly known as tbnl.
http://weitz.de/hunchentoot/.

27. Tobias Windeln. Logicaj - eine erweiterung von aspectj um logische meta-
programmierung. Diploma thesis, CS Dept. III, University of Bonn, Germany, Aug
2003.

