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Abstract

In a modern programming languagegoping rulesdetermine the visibility of names in
various regions of a program [15]. In this work, we examine the idedafang an application
developer to customize the scoping rules of its underlying language. Wendénaie that such
an ability can serve as the cornerstone of a security architecture farrdgally extensible
systems.

A run-time module systemslbM oD, is proposed for the Java platform to facilitate soft-
ware isolation. A core application may create namespaces dynamically anceimuisary
name visibility policies (i.e., scoping rules) to control whether a name is visible htmwit
is visible, and in what way it can be accessed. Becags®lbD exercises name visibility
control at load time, loaded code runs at full speed. FurthermoreubedsoM oD access
control policies are maintained separately, they evolve independently dooenapplication
code. In addition, thedoM oD policy language provides a declarative means for expressing a
very general form of visibility constraints. Not only can theoM oD policy language simu-
late a sizable subset of permissions in the Java 2 security architecturesisdaevith policies
that are robust to changes in software configurations. BlMIoD policy language is also
expressive enough to completely encode a capability type system kndwisastionary Ca-
pability Confinement. In spite of its expressiveness, @M oD policy language admits an
efficient implementation strategy. Name visibility control in the stylessM oD is therefore
a lightweight access control mechanism for Java-style language eméras.

Keywords: Access control, name visibility control, scoping rulesigaage-based security, Java.

1 Introduction

In a modern programming languagegoping rulesdetermine the visibility of names in various
regions of a program [15]. In this work, we examine the ideallaiwing an application developer



to customize the scoping rules of its underlying language ddmonstrate that such an ability can
serve as the cornerstone of a security architecture forrdigadly extensible systems.

In modern day computing, a successful software system nmtisi@ate the evolution of soft-
ware requirements. This gives rise to a family of softwastays known adynamically extensible
systemsin which the functionality of a core application can be aegted dynamically by load-
ing, linking, and invoking program code units that were nagioally part of the core application.
Dynamically extensible systems find their uses in mobileecoldtforms, scriptable applications,
and systems with plug-in architectures. In each casegtimtd untrusted code units are loaded
and executed in the same run-time environment. The chalefgecure cooperatiors to protect
these mutually suspicious code units from one another whég are executing within the same
run-time environment.

An established paradigm for addressing the challenge ofs@ooperation is language-based
security [30]. Specifically, untrusted code units are eecobit a safe language, and subsequently
executed in a secure run-time environment, the protectiechanisms of which are implemented
by programming language technologies such as type sysfogram rewriting and execution
monitoring.

Most existing language-based approaches to access cargrblased on the classical notion
of interposition[1, 32, 33, 35]. A direct implementation of this idea is toargose monitoring
code at the entry points of security relevant system sesvidé run time, authorization decisions
are made by examining invocation arguments or executiaoryisIn the Java Virtual Machine
(JVM) [22] and the Common Language Infrastructure (CLI) [9figect implementation of this
approach is found. Specificallgtack inspectiofi33], the main access control mechanism of the
JVM and the CLI, is essentially a form of interposition. Diretterposition, however, is difficult to
maintain. Security checks are scattered over the entireslgegem. Fixing a vulnerability requires
the availability of host system source code. Worst stillsesurity checks are hard-coded into the
host system, evolution in security requirements or sofwamfiguration is not easily addressed
without reprogramming the host system itself.

A second language-based approach to implement interposstbyload-time binary rewriting
[10, 32, 33, 35] Specifically, monitoring codevigavednto untrusted code at load time. Although
this so callednlined Reference Monitor (IRMgpproach [32] is equal in expressive power to di-
rect interposition [17], the former has clear software aegring advantages over the latter. In
particular, the late binding of security checks allows sigguwode to evolve separately from the
rest of the system, thereby addressing the software engigeeoncerns raised in the previous
paragraph. Unfortunately, independent reports have coedirthat the injected code incurs sig-
nificant run-time overhead [32, 33]. For example, in [32],ta 0% slow down was observed if
domain-specific optimization was not introduced.

There is an obvious engineering dilemma in the design ofpetgtion-based access control
mechanisms. By embedding security checks in the host sydissut interposition fails to support
the evolution of security requirements and software conditjons in a graceful manner. Maintain-
ing the security policy offline, IRM has the advantage of ap#ting software evolution, but it
incurs significant runtime overhead.

The research question investigated by this work is as faldsvinterposition (direct or IRM-
based) always necessary for access control in the contextnardically extensible systemg?
terposition is motivated by the need for execution momi@{R9], in which the dynamic state and
the execution history of a system are examined when autitmizdecisions are made. In many
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cases, one simply wants to completely turn off a system@eryThis is evident in the large num-
ber of target-les8asi cPer ni ssi ons defined in the Java 2 security architecture [16].) In other
cases, the safety property [29] to be enforced is memosy-Bewd the avoidance of the confused
deputy problem [18] is not a significant concern. In such ets, execution monitoring can be re-
placed by a lighter-weight enforcement mechanism that doeexhibit the engineering dilemma
presented by interposition.

This work examines a seldom studied point in the design spBlemguage-based access con-
trol, specifically,name visibility contral The intuition is that, if the name of the entry point for a
system service is not visible to an untrusted code unit, therservice is essentially inaccessible
to the code unit. Therefore, access control can be achieysgddxifying what names are visible,
to whom they are visible, and to what extent they are visidleese aspects of name visibility
are specified by thecoping rulesof a programming language. Such rules are usually fixed for
modern block-structured programming languages. In oralerse name visibility control as an
access control mechanism, two ingredients are necessBrya golicy language for specifying
custom scoping rules that constrain the visibility of napsex (2) a protection mechanism that
allows an application to impose custom scoping rules ovecal Inamespace in which untrusted
code resides. In the programming language literature, ityabat is responsible for managing
the visibility of names across namespaces [19] is callembdule system

The goal of this research is to investigate the degree tolwiae visibility control can serve
the purpose of access control when full-fledged executionitmng is not necessary. To this
end, a module systemsdM oD, is proposed as a practical security architecture for dyoaliy
extensible Java applications (Section 2). BecagsMloD exercises name visibility control only
at load time, and does not inject any monitoring code int@sflees, loaded code runs at full
speed. Furthermore, becaus®MOD access control policies are maintained separately, they
evolve independently from core application code.

An intriguing finding of this study is tha rich family of access control policies can be ex-
pressed as name visibility constraini@he IsoM oD policy language provides a declarative means
for expressing a very general form of visibility constraif®ection 3). Not only can thedbM oD
policy language simulate a sizable subset of permissiotieidava 2 security architecture (Section
4.1), it can do so with policies that are robust to changesfitware configurations (Section 4.2).
The IsoM oD policy language is also expressive enough to completelpdmea capability type
system known as Discretionary Capability Confinement [12,($8Ftion 4.3). In spite of its ex-
pressiveness, thes®M oD policy language admits an efficient implementation stna{@gctions
5 and 6).

In short, soM oD avoids the technical difficulties of interposition by tragioff an acceptable
level of expressiveness. Therefore, name visibility aantr the style of EOM oD is a lightweight
alternative to interposition for language-based access@o

2 The IsoM oD Security Architecture

IsoMoD employsname visibility controlas the sole mechanism for access control. We begin
our discussion with a review of the Java class loading mashafrom the perspective of name
visibility control.
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Figure 1: Hierarchical Namespaces as®M oD

2.1 Delegation-style Class Loading

In programming language terminology, a Java class loadéeisirror [5] of a run-time names-
pace. An instance of thel assLoader class is employed by the JVM to load the object code of
classes, and to define the classes in the namespace mirsoteed® assLoader instance. The
object code of a class is transported through a network cedita a file system in an intermediate
representation known asctassfile Class definitiorf22, Section 5.3.5] is the process by which a
classfile is converted into@ ass object in the JVM. Programmers may define a custom subclass
of thed assLoader class, thereby overriding the procedure by which the JVNtes classfiles
(e.g., loading classfiles from the World Wide Web), or introithg a classfile preprocessing step
prior to class definition (e.g., injecting instrumentatemde). Once a clags is defined by a class
loaderL, L is said to be thelefining class loadej21] of C.

Hierarchical organization of namespaces is enabled by ¢hegdtion model of class loading
[21], in which the names visible in a parent namespace is iteadomplicitly into a child names-
pace (Figure 1). Specifically, the set of class names vigidenamespace is the union of (1) the
set of class names visible in the parent.gblus (2) the set of class names that are defined locally
by L. How is this effect achieved algorithmically? Associatethvevery class loadef is another
class loader, called thaelegation parentf L. The class loaders thus forndalegation hierarchy
at the root of which is thdootstrap class loaderTo look up thed ass object of a given class
name in a class loader, the delegation parent df is first consulted. If & ass object of the
specified name is defined by the delegation parent, therCtheats is returned. Otherwise, the
delegation parent of that delegation parent is consulted,sa on. When none of the delegation
ancestors of. defines & ass of the given name, theh will load and define that class (if it has
not already done so). This class is then returned as the tdsalass look up.

A class may refer to external entities such as other clagséme fields and methods. These
external references are resolved in the same namespaceimtivé referring class is defined (i.e.,
via the defining class loader of the referring class). Inay, static scoping is enforced.



2.2 An Architecture for Name Visibility Control

In a dynamically extensible software system, the trustqaiegtion core is defined in a parent
namespace, while child namespaces are created for defintngsted software extensions (Fig-
ure 1). Core application services are exposed to the extensite by implicitly importing names
from the core application namespace to the extension naesfpoM oD is a run-time module
system designed for isolating untrusted software extessiti does so by controlling the visibil-
ity of names in the namespaces in which untrusted softwalensions reside. Specifically, an
IsoM oD namespace enforces two kinds of control: (1) restrictirguisibility of names that are
imported from the parent namespace, and (2) restricting/iibility of locally defined names.
When a name is placed under visibility control, @oMoD namespace may (a) control which
locally defined class can “see” the name, and (b) presentt@amative, restricted view of the en-
tity to which the name is bound. Everg®M oD name space is endowed with a custoame
visibility policy, which specifies visibility restrictions to be imposed oe timmes visible in the
namespace. When appropriately constructed saMloD policy may be used to selectively hide
core application services from untrusted extensions {@edt1 and 4.2), or impose collaboration
protocols among classes defined in the extension namespact#on 4.3). A major contribution of
this work is the design of a policy language that can expreshdamily of access control policies
as fine-grained visibility constraints.

An IsoM oD namespace is an instance of a user-defined class loaderAtaksoM oD class
loader performs extra checks on a classfile before conggeittinto ad ass object. Specifically,
class definition is only authorized when no external aceesséhe classfile are denied by the
policy. Thislate enforcemen(i.e., load time) of visibility control distinguishesdbMoD from
traditional module systems, in which visibility controlesforced only at compile time. It is this
feature that makes the®M oD module system into a viable protection mechanism.

An IsOM oD namespace may be constructed at run-time by an applicatienflom an 50-
MobD policy. Thislate bindingof access control policy to code not only supports the sépara
maintenance of code and policy, but also supports the piagssmof different views of the same
application core to different extensions.

3 The IsoM oD policy language

The IsoMoD policy language provides a declarative and expressive snaspecify the access
control policy of an sOM 0D name space. Aaccesss composed of three elements: (19ubject
(2) anobject and (3) amaccess right An object is also called targetto avoid confusion in the
context of object-oriented programmingsdM oD controls access to three kinds of targets: (a)
declared types, (b) fields, and (c) methodsdéclared typas either a class or an interface. For
brevity, the word “class” is used as a synonym of “declarquely Every target is identified by
a name visible in thedoM oD namespace. A target can be accessed by exercising a fixetl set o
access rights as outlined in Figure 2. A subject is eithea @clared type whose name is defined
in the IsoM oD namespace, or (b) a method declared in such a class.

An IsoMoD policy is made up of a finite number pblicy clausegor access control rulgs
each of which has the following general syntax:

O (allows|denieg {ri,...,rr} [to S][ (whenlunlesg c]
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Access Right| Description

Declared type targe€’ / Declared type subjedd
extend D extends”
implement D implements”

Declared type targef’ / Method subjectv

catch N handles exception typ@
cast N casts a reference @
instanceof N checks if a reference 8
new N creates an instance 6f
reflect N gets thed ass object ofC

new-array N creates an array @
Similarly, cast-array, instanceof-array, reflect-array.
Field targetF' / Method subjectv

get N readsF'

put N writes F
Method targetM / Method subjectv

invoke N invokesM

override N overridesM

Figure 2: Access Rights

Unary Predicates
final(C) abstrac{C') interface C)
public(C') package-private’)
Binary Predicates
subclaséC, D) | superinterfacéC, D) | assignabléC, D)
extendsC, D) implement&’, D)

Figure 3: Built-in Predicates on Declared Types

In general, a policy clause tells whether or not a targejrants (resp. denies) access rights
ri,...,T t0 @ subjectS. When the optionalo-phrase is omitted, the rights are granted (resp. de-
nied) categorically. An optional condition may also be supplied to specify when the policy
clause is applicable (not applicable). The conditias a first-order predicate i andS. The
IsoMoD policy language predefines a number of built-in connectipesdicates and functions
for expressing complex applicability conditionssdM oD also provides a simple mechanism for
policy programmers to define application-specific predsatnd functions. A sample of built-in
predicates is given in Figure 3. A sample of built-in funosas given in Figure 4.

Prior to the definition of a declared type [22, Section 5.8, dlassfile is examined by the
IsoMobD class loader for conformance to the corresponds@M oD policy. To this end, the set
of all accesses in which the classfile (or one of its declarethous) is a subject is first collected.
Each access is then checked according to the authorizdgontam outlined in Figure 5: the
policy clauses are examined in the order they appear in theypand the authorization decision of
the first applicable policy clause is then adopted. (A defmuthorization decision can be specified
by the user of stoM oD to handle the case when no policy clause applies.) In thisgsg if any
access is denied by the policy, the definition of the declayed will not be authorized.



formal-parameter§\/) | a list containing the formal parameters of methdd
return-type M) the return type of methodi/

field-typ& F') the field type of fieldF’

packageC') the package to which declared tygebelong
equalgO;, O9) equality test

Figure 4. Built-in Functions on Declared Types, Methods, Bisdids

To decide if acces§S, O, r) is granted by policyP:
for each ruleR in policy P do
if Risrelevantto(S, O, r) then
if cis truethen
if Ris awhenrulethen
if Ris anallow-rulethen
return grant,
else/l R is adenyrule
return deny
else// cis false
if Ris anunlessrulethen
if R is anallow-rulethen
return grant,
else// R is adenyrule
return deny
return user-specified default;

Figure 5: Operational Semantics for Authorization

Simple as it is, thedoM oD policy language is capable of expressing a rich family ofeasc
control policies, a topic to which we will now turn.

4 Sample Applications

The goal of this section is to demonstrate the utility of tls®@M oD policy language through
examples. The first example demonstrates how to selectivgé/system services (Section 4.1).
The second example illustrates how to systematically obtive acquisition of references, and
to do so in a way that accommodates evolving software cordiguns (Section 4.2). Finally, the
IsoM oD policy language is employed to completely encode a capabptilicy language, thereby
demonstrating the expressiveness of the policy languagsi¢® 4.3).

4.1 Selective Hiding of System Services

IsoM oD can be used to enforce many of tBasi cPer ni ssi ons defined in the Java 2 platform
[16]. For example, thget Cl assLoader permission controls whether untrusted code may acquire



aC assLoader reference from the platform library. The effects of denyih permission can
be simulated by thesloM oD policy below:

policy getClassLoader
default allow
method d assLoader . get Par ent
denies{ invoke }
method Cl assLoader . get Syst enCl assLoader
denies{ invoke }
method d ass. get O assLoader
denies{ invoke }
methodCl ass d ass. for Nane( Stri ng, bool ean, Cl assLoader)
denies{ invoke }

The policy begins with a header that identifies the policy eand asserts that the default autho-
rization decision is to allow access (i.e., when no policguske applies). Next come the policy
clauses, which disallow invocation of all methods declandtie Java platform library that returns
a Cl assLoader . Notice that one may either specify a method target solelyjtbypame (e.g.,
get G assLoader ), or by both its name and its type signature (e.gr,Nane?l).

The relatedcr eat ed assLoader permission controls whether untrusted code may create
new instances of thél assLoader class. In the Java 2 platform, security checks are embedded
in the constructors afl assLoader , Secur eCl assLoader andURLCl assLoader for ensuring
that the caller possesses the said permission. Denying e eCl assLoader permission can
be simulated with the following policy clause:

method C. M
denies{ invoke }
when constructof M) and subclassC, O assLoader )

Notice that this policy clause is more general than the of@emmentioned: it is applicable to any
constructorM of a classC that is eitheiCl assLoader or one of its subclasses (i.e., the predicate
constructortests if a method is a constructor, and the binary relasiobclassis the reflexive
transitive closure of thextendselation). Specifically, constructor invocation is denig&tis rules
out all means of creating assLoader instances.

The following is an alternative policy clause that achietressame effect.

classC'
denies{ new}
when subclassC, C assLoader )

Rather than controlling the invocation 6f assLoader constructors, this policy clause directly
disallows the creation of ne@ assLoader instances.

Most Basi cPer mi ssi ons defined in the Java 2 platform can be expressed declayabyel
IsoMobD. There is, however, a clear software engineering advaritagiee IsoMoD approach.
Consider what is required in implementing and maintainingna 2Basi cPer i ssi on. One

1Thef or Name method is denied because untrusted code may passuin a0 assLoader reference to access the
bootstrapd assLoader .



has to inspect the entire Java 2 platform library to idengfypoints of attack, and then inter-
pose monitoring code at each point. When a vulnerability ishé library source code has to be
modified. In the §OM oD example above, an exhaustive audit of the platform librastill neces-
sary, yet the maintenance path is far superior: the poliexpgessed declaratively and maintained
independently: e.g., in a policy file separate from the hpisource code.

The IsoMoD approach provides a way to enforce fine-grained accessot@alicies not ex-
pressible by the Java 2 permission system. Suppose we arevienp untrusted code from using
theReflection APto invoke methods, access fields and arrays, and create negt mistances, but
we want to permit the examination of class interfaces. Thstieg permissions defined in Java
2 are not sufficient for expressing this highly selectiveigpolthe entire Reflection API must be
turned on or off as a whole. However, there is no problem cooshg IsoMoD policy clauses
to selectively hide the following reflection services: (A¢thod invocationMet hod. i nvoke; (2)
field accesstheFi el d. get /set family of methods; (3array accesstheArray. get /set fam-
ily of methods; (4)object instantiation G ass. newl nst ance, Const r uct or . new nst ance,
Array. new nst ance, Proxy. newPr oxyl nst ance; (5) subtyping Pr oxy. get Proxyd ass.

4.2 Systematic Control of Reference Acquisition

In the cr eat ed assLoader example discussed in Section 4.1, we could have formuldted t
following rule to deny the instantiation of neMRLCl assLoader instances:

method URLCl assLoader . newl nst ance
denies{ invoke }

We did not impose this policy clause because such a resetricsi not part of the semantics of
thecr eat eC assLoader permission. Yet, this observation reveals a general amgdleén policy
formulation. Suppose we want to eliminate all means by whistrusted code may acquire a
C assLoader instance (that is, either by retrieving an existing inséanc by creating a new
one). An exhaustive audit of the platform library must bedueted to ensure all means of leaking
C assLoader references are accounted for. Not only is this an errorgmpproach, it does
not account for many useful configuration management pestiWhat if non-standard platform
extension libraries are installed? What #dM oD is used for isolating dynamically downloaded
plug-ins of an extensible application? Platform extensiand application classes may expose
additional means of leakin@ assLoader references. To ensure that the access control policy is
bullet proof, even a minor perturbation of the software qunfation will necessitate a re-audit of
the software infrastructures. Such a practice is too ctesthe feasible.

A major contribution of sEOM oD is that it offers an expressive and declarative policy |aggu
that addresses the aforementioned configuration managerhalienge in access control. We
demonstrate this feature by producing @@V oD policy that systematically restricts the acquisi-
tion of A assLoader references. To this end, we begin by exhaustively enunmgrati means,
excluding those involving array types, by which a refereateeclared typed may acquirea
reference of typ€”:

1. A declared typed generates reference of typ€' when one of the following occurs: (&)
creates an instance of; (b) A casts a reference to tyge; (c) an exception handler iA
with catch typeC' catches an exception.
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2. A declared typeB sharesa reference of typ&' with declared typeA when one of the
following occurs: (a)A invokes a method declared i with return typeC’; (b) A reads a
field declared inB with field typeC; (c) B writes a reference into a field declaredArwith
field typeC.

3. Adeclared typds grantsa reference of typé€' to declared typel whenB invokes a method
declared inA, passing an argument via a formal parameter (including skeego-parameter
t hi s) of typeC.

Based on the analysis abdyave formulate the following policy clauses to prevent usted
code from acquiring & assLoader reference:

policy acquireClassLoader
default allow
classC
denies{ new, cast, catch
when subclassC, G assLoader )
field C.F’
denies{ get, put}
when subclassfield-typé /'), O assLoader )
method C. M
denies{ invoke }
when subclasgreturn-typé A7), d assLoader )
method C. M
denies{ invoke }
when existsA in parameter-typgs\/) : subclasgéA, O assLoader )

The first policy clause eliminates all meansgaieratingCl assLoader references. The second
and third policy clauses eliminate all meanssbhringd assLoader references. The last policy
clause eliminates all meansgfantingCl assLoader references. Built-in functions such fsld-
type return-typeand parameter-typesre employed to specify fine-grained accessibility crateri
The use of existential quantificatioaxisty is also demonstrated.

The policy above systematically restricts the acquisitbal assLoader instances. Neither
policy reformulation nor source code auditing is necessagn if the configuration of the under-
lying system has evolved.

4.3 Discretionary Capability Confinement

This section demonstrates ho@dM oD can be used for enforcing a general-purpose capability
type systemDiscretionary Capability Confinement (DC{)2, 13]. A lightweight, statically en-
forceable type system, DCC supports the use of abstragibetpbject references as capabilities
in a Java-like object-oriented programming languageapability[8] is an object reference qual-
ified by a set of access rights, where, the latter specify iatways the underlying object can
be accessed through the reference. Capabilities can be edaded language-based environment
through acapability type systenmn which every object reference is statically assigned@ability

2For brevity, the analysis does not account for array typeasssiich an extension is straightforward.
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(DCC1) UnlessB > A, A shall not invoke a static method declareddn

(DCC2) (i) A can generate a reference of typenly if C'> A; (i) B may share a reference of typewith
Aonlyif (C>A)V (A B).

(DCC3) If A.minvokesB.n, andC is the type of a formal parameterofthen(C'>B)V (A< B) V (B>
mAC>m).

(DCC4) A methodm may invoke another methodonly if n > m.
(DCC5) If Ais asubtype o3, thenB > A.
)

(DCC6) SupposeB.n is overridden byB’.n’. Then (i)n' > n; (ii) if the method return type i€, then
(C>B)V (B> B); (iii)if Cisthe type of a formal parameter, thefi> B') vV (B x B’).

DCCT7) If Ais asubtype o3, thenB :> A.

HMS2) If D:» &, thenD » £.
HMS3) If (D:»E)A (D' » &), then(Dw» D)V (D' » D).

Figure 6: DCC Type Constraints

typethat restricts access to the underlying object. In a sensapability type presents a restricted
view of the object it types. In a Java-like object-orientedgszamming language, an object ref-
erence with a static interface type (or abstract class tgae)oe seen as a capability, because the
typed reference only exposes a restricted view of the uyiderbbject. This approach to model-
ing capabilities suffers from two problems: capabilitykege and capability theft [31]. DCC is a
minimal perturbation to Java for controlling capabilityopagation. In the following, the expres-
siveness of$oM oD is demonstrated through a complete encoding of the DCC tygtersyin the
policy language. The focus here sdM oD and not DCC. Interested readers may consult [13] for
more details of DCC.

In DCC, the space of declared types (i.e., class and interfapa)titioned into a finite number
of confinement domainso that every declared type belongs to exactly one confinedwnain.
We writel(C') = D when declared typé€' is assigned to confinement domdm The confinement
domains are partially ordered bylaminance relatiom. We say that domai® dominateslomain
£ when& » D. Together, domain membership and dominance induce a haterardering of
declared types: if(B) = £, |(A) = D, and€ » D, then we writeB > A, and say thaB3 trusts A.
The intuition behind these definitions is that(iftrusts A, then A may freely acquire a reference
of static typeC'. Otherwise (' is said to be aapabilityfor A. Capability acquisition is carefully
restricted in DCC. We also writd < B whenA> B and B> A hold simultaneously. We postulate
that there is @aoot domainT which is dominated by every domain.

To control capability granting, associated with every roeth. is a domain label(m), called
the capability granting policyof m. Intuitively, the capability granting policl(m) dictates what
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capabilities may be granted ly, and to which declared types may grant a capability. (We write
m>n, m> AandA>m for the obvious meaning.)

A second partial ordering> on domains is postulated. We say thiastrongly dominateg
when& :» D. As we shall see, strong dominance controls whether suigyigiallowed across
domain boundaries. This helps to establish mutually ek@u®les. As before, we writ® > A
whenl(B) = &,1(A) = D, and€ :» D.

Figure 6 enumerates the type constraints of DCC as specifigiB]n The complete set of
DCC type constraints has been successfully encoded asawdb policy, which is displayed
in Appendix A. Behind the policy of Appendix A is a number of asgptions. As in [13], we
assume that domain membership and capability grantingipslare embedded in Java classfiles
via the JDK 1.5 metadata facility. Domains are represenyesplecially annotated interfaces, and
the dominance and strongly dominance relations are encoeggectively, by the subinterfacing
relation and JDK 1.5 annotations. Domain-specific funciand predicates have been defined to
examine these annotations. In the following we will exanaspects of this encoding that illustrate
further features of$oM oD.

Consider the following type constraint from Figure 6:

(DCC2) (i) A can generate a reference of typeonly if C' > A; (i) B may share a reference of
typeC with Aonlyif C> AV A B.

In this constraint, the first clause denies the generati@apébilities, and the second clause denies
the sharing of capabilities with reference types belonging different confinement domain. This
constraint can be encoded as the followis@W oD policy clauses:

classC'
denies{ catch, cast, ney to method A. M
unlesstrustgC, A)
method B.N
denies{ invoke } to method A.M
unlesstrustgreturn-typé N), A) or (trust§ A, B) and trustg B, A))
field B.F'
denies{ get} to method A. M
unlesstrustgfield-typé F'), A) or (trustg A, B) and trusty B, A))
field B.F
denies{ put } to method A.M
unlesstrustg A, field-typé€F')) or (trustg§ A, B) and trusty B, A))

Two additional features oSloM oD are demonstrated in the above policy clauses. FirstiyiMop
provides a syntax (i.etp) for qualifying to which subject a policy clause applies. @epability
acquisition is permitted for some subjects but not othéiis,discrimination enables fine-grained
access control. Secondlys®M oD supports user-defined predicates and functions for maglelin
domain-specific relations. For exampleystsis a user-defined predicate for representing the bi-
nary trust relation between declared types.

Let us consider another type constraint from Figure 6:

(HMS3) If (D:» E)AN (D' » &), then(Dw» D)V (D' » D).
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This constraint is the soul of a property knowrhaseditary mutual suspicioi 3], which enforces
a strong form of separation of duty [6, 20], so that colludi@tween mutually exclusive roles is
severely restricted. The constraint mandates that, givearbitrary domain, some form of
dominance relation must exist between a donfaistrongly dominated by and a domairD’
dominated by¢. An IsoMobD encoding of it is given below:

classC
denies{ extend} to class&
unless
domain(&) implies
for D in strongly-dominate(®) :
for D' in dominatedf) :
dominatesD, D’) or dominate§D’, D)

Our goal is to checkHMS3) exactly once for every domaifi. To this end, we observe that, at
the bytecode level, every declared type extends exacthgoperclass, withava. | ang. Qbj ect
being the only, uninteresting exception. We therefore ésktte” the verification of HMS3)
to occur whenf extends some dummy claés The same technique is used in the encoding of
(HMS1) and(HMS2) (see Appendix A).

Besides DCC, we have also completely encoded the class-baseskaontrol mechanism of
Java [22, Section 5.4.4] (i.e., public, protected, private) as an $0MoD policy (Section 6).
These examples demonstrate the expressiveness andlirgrsktine ISoM oD policy language.

5 Implementation Experience

IsoM oD has been fully implemented in approximately 10,000 linepwt Java code. This sec-
tion reports the implementation experience. The techoitallenges encountered and the solutions
adopted to address these challenges are discussed. Eretagh df the s5oM oD load-time ver-
ification mechanism are given so that its design can be rendeture work involving load-time
type checking.

5.1 Design Rationales
We begin by identifying the technical challenges our imp@atation strategy attempts to address.

1. Efficiency. Class loading and policy evaluation incur a significant limke overhead, slow
down application start-up, and should thus be minimized.

2. Early enforcement. Class definition [22, Section 5.3.5] is irrevocable. Poliojoecement
must be complete before a classfile is converted irtbass object.

3. Circularity. Circular dependency between type interfaces may arise foymafd refer-
ences. Policy evaluation must handle circularity gradgful

4. Attribution correctness. Policy violation should be attributed to the offending slédss
(i.e., subjects) rather than the offended classfiles aegets). Only the definition of the
subjects should be denied.
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Initially we considered three possible designs, and ewalytadopted one that adequately ad-
dresses all of the aforementioned technical challenges.diiference between the three designs
lies in when external dependencies are resolved. Spebjfibafore a class is defined, its corre-
sponding classfile ipreloadedand screened for policy violation. Policy checking may imecahe
examination of external classes, as the following examplef from Section 4.2) illustrates:

method C. M
denies{ invoke }
when subclaséeturn-typd M), C assLoader )

Checking whether a declared tydeconforms to this policy clause involves examining bétland
return-typé M ). These latter declared types may not have been preloadedlyethree designs
differ in how this situation is handled.

Design #1: Eager preloading. PreloadC' andreturn-type(\/) right away. While this design is
easy to implement, the resulting class loading overheddikely be prohibitive.

Design #2: Constraint maintenance. Lazy preloading can be achieved by constraint mainte-
nance. That is, the definition of is authorized right away, but the policy clause is recorded a
proof obligation, the discharging of which is deferred Ldtiandreturn-typé M) are preloaded

at a later time. This design eschews eager preloading, uhplementation is complex. This
design has been adopted by Sun’s implementation of the JVfimrcing Temporal Namespace
Consistency [21]. The most serious problem with this apgraais inability to correctly attribute
policy violation to the offender. When the checking of thegdrobligation fails at the tim&' or
return-typé M) is preloaded, the only thing a system could do is to deny tli@itden of C' and
return-typé M), an incorrect attribution of policy violation.

Design #3: Three-stage, lightweight preloading. Preloading is divided into three stages (Fig-
ure 7), which incrementally constructs and maintains aigight representation of the classfile
being preloaded. In the first stage, references to the dissupertypes are resolved, and all “ex-
tend” and “implement” accesses are checked. In the secagd,diype references appearing in the
type interface of a classfile are resolved, and then all ‘ridet accesses are checked. In the third
stage, type references appearing in the remaining extaotalsses are resolved, and then those
accesses are checked. This design performs shallow piedpaagerly, but maintains lightweight
type mirrors to anticipate deep preloading. This designlements a lazy preloading strategy,
carefully breaks circularity, and correctly attributedipp violations to the offending classfiles.
The preloading algorithm is detailed in Figure 7. This desginformed by previous work in
modular bytecode verification in the presence of lazy, dyindimking [14, 11].

The rest of this section provides details concerning DesRnwhich was adopted in the im-
plementation of $OMOD.

5.2 Type Mirrors

This section describes the lightweight representatiorecfated types created bgdMoD. This
lightweight representation is callednairror in the programming language literature [5]. More
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Stage-| Preloading of Declared Type”

1. Retrieve the classfile @f.

2. Perform stage-I preloading on the supertypeS o€ircular subtyping is detected.

3. Check the “extend” and “implement” accesseg of

4. Cache a lightweight representation©@f recording its type interface and the re-
maining external accesses.

Stage-Il Preloading of Declared TypeC'

1. Perform stage-I preloading @n

2. Perform stage-Il preloading on the supertype§'of

3. Perform stage-l preloading on the return types and paeantgpes of methods
declared inC', and the field types of fields declareddh

4. Check the “override” accesses©f

Stage-Ill Preloading of Declared TypeC'

1. Perform stage-Il preloading @

2. Perform stage-lll preloading on the supertype€’of

3. Perform stage-Il preloading on those type referencesapp in the targets of the
remaining external accesses associated @/ith

4. Check the remaining external accesses' of

5. Authorize the definition of declared typgé

Figure 7: Preloading Algorithm

specifically, BoM oD maintains a mirror object for each declared type, metholdi, faand external
access. The following presents the layout of these datatstes and the incremental process by
which they are constructed.

5.2.1 Structure of Mirrors

A classfileis a file format used by Java to represent object code in a fdesy Each classfile
describes a declared type (i.e., a class or an interfaagidimg its methods, fields, and bytecode
instructions. In order to perform verification, the prelmapprocess converts a classfile into its
respective mirror object, called declared type mirror or simply type mirror, the structure of
which is described below. Notice that the following desesilbhe data structures as they are fully
constructed. The intermediate steps are left to Sectio2.5.2

Type mirror. A type mirror records the type interface of a declared type.

Class name:The name of this declared type
Super class The type mirror representing the direct super class of thedatted type
Interfaces: The type mirrors of the interfaces directly implementedtog tleclared type

Declared methods The method mirrors of the methods (including constructdes)lared
in this declared type

Declared fields. The field mirrors of the fields declared in this declared type
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External accessés The access mirrors corresponding to the external accessds oy this
declared type (e.g., as reflected in the bytecode instngjtio

Method mirror. A method mirror describes the signature of a method.

Method name:Name of this method

Return typé&‘: The type mirror representing the return type of this method
Parameter types: The type mirrors representing the parameter types of thikode
Defining class: The type mirror of the declared type in which this method islaed

Field mirror. A field mirror describes the signature of a field.

Field name: Name of this field
Field type™: The type mirror representing the type of this field
Defining class. The type mirror of the declared type in which this field is deet

Access mirror. An access mirror represents an external access, which ig madf a triple
(subjectobject right). Such a data structure is recorded to facilitate lazy vetific.

Subject: The subject of this external access, which can be eithereadymethod mirror

Object**: The object (i.e., target) of this external access, whichosaeither a type, method
or field mirror

Right: A particular right exercised by this access (Figure 2)

5.2.2 Staged Construction of Mirrors

This subsection describes the incremental process by vihéechforementioned mirrors are con-
structed. The mirror objects contain references to otheromobjects. These references are indi-
cated by one or more asterisks*(, or ***) in Section 5.2.1. For example, a type mirror contains a
reference to the mirror of its direct super class; an acc@#ssmaontains a reference to the mirror
object representing the target of the external access.nBtine preloading process, some of the
references are not fully resolved, because the targetseakfierences have not been constructed
(or preloaded) yet. In these cases, a symbolic referenge éestring) is recorded in place of the
actual mirrors. The following explains when mirrors are stoacted and how symbolic references
are resolved.

Stage |. This stage initiates the construction of mirror objects dogiven classfile. Another
goal is to incrementally constructtgpe mirror hierarchyto facilitatesubtyping queriesWhen a
declared type is preloaded in Stage-I, mirrors of methodkaded in that declared type are created.
At this point, the bytecode of the method body is scannedadireXternal accesses are recorded as
access mirrors. If the same access occurs multiple timégimethod body, only a single instance
is recorded. The newly created method mirror is linked tdype mirror, and vice versa. Similarly,

a field declared in the declared type has its respective figldbntonstructed and properly linked.
The direct supertypes (super class and super interfacesesaolved into their respective type
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mirrors through recursive Stage-I Preloading (Figure agstl, Step 2). In short, all the mirror
references annotated with a single asterigki( Section 5.2.1 are resolved in this stage. By the
end of Stage-I, the basic structure of the type mirror iskistaed, its external accesses recorded,
and the part of the type mirror hierarchy above this type onifully constructed.

Stage Il. This stage is responsible for resolving the symbolic refees appearing in method
and field mirrors: i.e., the ones annotated with double &&teI(*) in Section 5.2.1. The goal
of this stage is to make the type interface of a given typeanifully usable. Specifically, the
method and field mirrors of the type mirror are examined. Sylinlveferences corresponding to
the return type and parameter types of a method mirror acdvess through Stage-I Preloading.
The method mirror is updated, by linking the respective congmts to their mirror counterparts.
The field types of field mirrors are updated in a similar faghiblotice that Stage-Il Preloading
is performed on the mirrors of supertypes before it is pené on a given type mirror (Figure 7,
Stage Il, Step 2). This means, not only are the mirrors of pusland fields declared in the type
mirror fully constructed in Stage I, the mirrors of thosethwls and fieldsnherited by the type
mirror are also fully constructed by then. By the end of StHgtie type interface of the type
mirror is fully constructed to facilitateype interface queries

Stage Ill. This stage is responsible for resolving the targets of esleaccesses: i.e., those
marked by triple asterisks*() in Section 5.2.1. The goal is to resolve the symbolic refees
embedded in access mirrors, so that the external accessks aathorized prior to class definition
[22, Section 5.3.5]. To this end, the collection of accessors associated with a given type mirror
are scanned. For every access mirror, each of its targetansieed. If the target is a type reference
(e.g., asin the case of a “new” access), the reference ivegsloy Stage-Il Preloading. If the target
is a method (resp. field) reference (e.g., as in the case ohaoke” access), then such a reference
will be of the formc.m (resp.c.f), wherec is a symbolic reference to a declared type, and
(resp.f) is a method signature (resp. field signature) consistirggraéthod name plus return type
and parameter types (resp. field name plus field type). The tgference: is resolved into a
type mirrorC' by Stage-ll Preloading, after which the proper method migresp. field mirror) is
located in eitheC”’ or one ofC’s supertype mirrors. This resolution process closely Ipgsathat

of [22, Section 5.4.3]. This final step concludes the stagedictuction process for a type mirror.

5.3 Staged Verification

Not all external accesses are verified at once (Figure 7)."@ktend” and “implement” accesses
are discharged in Stage I, “override” in Stage Il, and théireStage Ill. Why is the verification
process divided into three stages? And why is a given chdwdsded to occur in a specific stage?
These are the questions the present section attempts t@r@n&w/ we shall see, the three-stage
design facilitates lazy preloading and gracefully handlesularity.

Stage |. Recall that this stage gathers subtyping information forvermyideclared type. Such
subtyping information must be verified before it can be ceebri Firstly, circular subtyping is
detected by checking if a type mirror argument re-appeatkencall chain of recursive Stage-
| Preloading. Secondly, access mirrors corresponding xtetel” and “implement” rights are
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verified in this stage against the current policy. The comuieof this stage ensures that subtyping
gueries are supported by properly verified subtyping ingdrom.

Notice as well that circular Stage-I Preloading is preveiiecause circular subtyping is ruled
out.

Stage Il. Recall that by the end of Stage I, the type interface of a typeomis fully constructed

to support type interface queries. The type interface ofcaded type extends the type interfaces
of its supertypes through inheritance and method ovegidifo ensure type extension is proper,
the “override” accesses are checked in this stage for policgpliance. This ensures that type
interface queries are supported by a properly verified typerface.

Two kinds of recursive preloading are performed in this stdgirstly, Stage-Il Preloading is
performed on the type mirrors of the supertypes. This doekead to circular preloading because
circular subtyping has already been ruled out in Stage loisd#lyg, Stage-I Preloading is invoked
on type references embedded in method and field mirrors.dbi@s not lead to circular preloading
because Stage-I Preloading never invokes Stage Il Prelgadi

Stage lll. Recall that the third and final stage is responsible for résglthe symbolic references
embedded in the targets of access mirrors, so that the tztebe discharged. Resolution is
achieved by Stage-Il Preloading. As a result, the followgngries are supported:

e Type interface queries can be applied to the targets of acogsors.

e Subtyping queries can be applied to the type mirrors emlzkoidthe type interface of the
above access targets.

Observe that these are the very queries that sieMloD policy language is designed to support.
The remaining access mirrors are therefore ready for vatidic.

Again, two kinds of recursive preloading is performed irstbiage. Firstly, Stage-Ill Preload-
ing is performed on the type mirrors of the supertypes. Tbissdchot lead to circular preloading
because of the absence of circular subtyping. SecondigeSt#reloading is invoked on type ref-
erences embedded in the targets of access mirrors. Thig, dgas not lead to circular preloading
because Stage-Il Preloading never initiates Stage-l|bRding.

Efficiency. Observe from the above discussion that access mirrors &eclbacked when it is
absolutely necessary to do so. To check an access mirra,ityprface queries will be made
against the target, and thus it undergoes Stage-IlI Prelgadimilarly, subtyping queries will be
made against the type references embedded in the typeaiteteof the access target, so Stage-
Il Preloading guarantees that such references are reswviae8tage-lI Preloading. In this way,
preloading is minimized to improve preloading efficiency.

Circularity. The staged preloading and verification process gracefahdles the two possi-
ble types of circularity. Subtyping circularity is managedStage | by ensuring that no circular
subtyping occurs. Circularity arising from forward refecgmy is handled by stratification of the
preloading process: Stage | never invokes Stage Il and tigeéSil never invokes Stage Ill. This
effectively breaks any possibility of circularity.
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5.4 Policy Evaluation

When an access mirror is checked against &M oD policy, the policy clauses are examined
in turn. IsoMoD evaluates each of the policy clauses to determine if theselasi applicable
to the access. Applicability is specified in thedMoD policy language via thevhern/unless
construct, which states a binary relation between the stubjad the target. This binary relation
is expressed in the form of a first-order formula with freeialales denoting the subject and the
target. Determining the applicability of a policy clausedlves binding the subject and target
variables, respectively, to the subject and target mifransl subsequently deciding if the mirror
hierarchy that has been preloaded so farnsoalelfor the formula. That is, the first-order formula
is evaluated against the subtyping and type interface nmiition that EOM oD has collected so
far. This can be achieved easily by a syntax-directed etialuaf the abstract syntax trees of the
formulas [15].

A natural question to ask is whether the implementatiortesgsadescribed in this section de-
livers its performance promise, a topic to which we will nawrt.

6 Performance Evaluation

This section reports the results of experiments conduatedrbfiling the performance character-
istics of IsoMoD. The goal of this study is threefold:

1. Tractability. To quantify the performance overhead incurred by execuim@pplication
through 1IsoMOD.

2. Overhead composition.To identify the major components of thedM oD implementation
which contribute to the overhead incurred.

3. Overhead distribution. To characterize the way in which the overhead incurredgy |
Mob is distributed over the life cycle of an application.

These characteristics are important in validatiagM oD as a viable approach to software se-
curity. The Tractability Study in Section 6.2 measures therlbead incurred by usingsgbM oD.

A quantifiable result was obtained through this study by carmg the running times of a test
suite with and without$oM oD The analysis described in Section 6.3 further examinedabgts
gathered from the Tractability experiment. The purposéhisf analysis was concerned with dis-
covering the makeup ofsiboMoD’s overhead. The above analysis suggested that the magdrity
the overhead occurred during application startup. Seétidmlescribes an experiment designed to
discover how a longer executing system would experienceneagl as opposed to that of a shorter
lived execution.

The results of the experiments and analysis aided in valiglds oM oD as a viable approach to
software security. The first experiment demonstrated tie@bverhead incurred bysbM oD was
reasonable and manageable. The analysis of this expertisenivered $oMoD’s overhead to be
comprised of two major parts. The first part consisted of ta&iing the type mirror hierarchy and
the second was authorization of the access mirrors. Thendeexperiment demonstrated that a
longer executing system causexbM oD’s overhead to amortize away. That is, a longer executing
system experienced less of an overhead encumbrance asdgpdbat of a shorter lived system.
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6.1 Methodology
The experiments were conducted on a system with the follpwiraracteristics:
e 3.0 GHz Pentium 4
¢ 1 Gigabyte of RAM
e Fedora Core 4 Linux Operating System
e Java Standard Edition, version 1.5

Accompanying software included BCEL (Byte Code Engineeringdny), version 5.1.

We used a benchmarking suite consisting of six open souveeapglications (Figure 8). These
applications were chosen because they could be executeatdh mode without real-time inter-
action from users. The applications were tested under fiméguarations. The first configuration,
Control, runs an application in a bare JVM. The other four configoreticonsisted of loading an
application with an $oM oD class loader with one of fousbM oD policies. The policies used in
the configurations consisted of:

NULL. Contains no policy clauses, and the default authorizatieisam is to allow all accesses.
See Figure 9.

AllowAll. Contains policy clauses allowing access for every right ooog within the JVM. See
Figure 10.

DCC. An IsoMobD encoding of the Discretionary Capability Confinement cajtgtiyype system.
See Appendix A.

JAC. Encoding of the Java access control mechanism as specifi@2,irSection 5.4.4]. See
Figure 11.

Five trial$ were repeated for each configuration to account for vaiighii the Operating
System. Factors such as process scheduling and conteghswitnay have contributed variations
to the results. The average running time (in seconds) wasded for each configuration.

In Section 6.4, the Java application JavaTar was used fiindgasnder ten configurations. The
configurations consisted of loading the application with oM oD class loader with th&®CC
policy and input data varying in size from 24KB to 495MB. TREC policy was chosen for its
complexity, which would incur significant overhead.

6.2 Tractability

This experiment quantified the overhead incurred by #@M oD class loader. A classfile loaded
by the IsoM oD class loader is subjected to the verification process destpreviously. During
this verification process, the complete collection of asgasrors is collected. These access mir-
rors are authorized against a policy. A classfile that pasi§etages of verification is turned into a
Cl ass object and loaded into the JVM.

30nly five trials were used because the standard deviatiovarance in the experimental results were found to
be small.
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Name | Description Number of Classes
ZipDiff | Utility to compare the contents of two zip files 8
JavaTar | A TAR compression program written in Java 43
JavaCC | Sun’s Compiler-Compiler 135
SableCC| A compiler-compiler 263

JRuby | A Java implementation of the Ruby language 473

Kawa | A Scheme interpreter written in Java 746

Figure 8: Benchmarking Suite

policy AllowAll
default allow

Figure 9:NULL Policy

policy AllowAll
default allow

classC
allows { new, extend, implement, catch, clasast, instanceof, arrayto classD

whentrue

method C.m
allows { invoke, inherit, overridg to classD
whentrue

field C.f
allows { get, put, inherit} to classD
whentrue

Figure 10:AllowAll Policy
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policy JAC
default allow

classC
allows { new, catch, classast, instanceof, extend, implement, arfap classD

when public(C') or (pkg(C) = pkgD))

field C.F
allows { get, put} to classD
when
(public(C') or (pkg(C) = pkygD)))
and ((public(F) or (protectedF’) and subclassD, C)))
or (((protectedF’) or pkg-privaté F')) and (pkg(C') = pkg(D))) or
(private( F') and (C' = D))))

method C.M
allows { invoke } to classD
when
(public(C') or (pkg(C') = pkgD)))
and ((public(M) or (protected/) and subclassD, C')))
or (((protected) ) or pkg-privaté M )) and (pkg(C') = pkgD))) or
(private(M) and (C' = D))))

Figure 11: Java Access ContrdC) Policy
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The results of the experiment are shown in Figure 12. Thigdigescribes the run-time over-
head incurred by theslioM oD class loader for each application under the five configunati6rom
this figure it can be seen that tNRJLL configuration incurred the least amount of overhead, while
DCC incurred the most. The other two configuratioAdpwAll and JAC incurred almost equal
amounts of overhead. The values of running time are showedorgls and represent the total
time for an execution.

A number of observations can be made about these resulss. thi graph describes how much
overhead is incurred when an application executes thradugltsobM oD class loader. Regardless
of whether a policy is enforced or nos®M oD incurs some overhead. This fact is demonstrated
by the NULL configuration, where no policy clauses exist in the policgc@d, as the policies
become more complex, the run-time overhead increases,camdby theDCC configuration.
With the introduction of more policy clauses, and more carm@pplicability conditions, more
time must be given to authorize the accesses describedwlitdimirror. Third, the total overhead
for any application never exceeded three seconds. In treegsmf a longer executing application
such as SableCC which executed for just over ten seconds, semnds of additional overhead
may be considered reasonable.

Overhead while executing througbdM oD cannot be avoided, but it has been demonstrated
in the experimental results that the overhead is managealleeasonable. By enforcing more
complex policy clauses, such BCC, the overhead increases. This particular result is exgecte
as more conditional applicability checks must be made byéniication process. In our exper-
iments with larger applications that execute longer, therlowad did not prove to be much of an
encumbrance, since it never exceeded three seconds.

6.3 Composition of Overhead
Analysis of the above results revealed two major comporantgrising BOMoD’s overhead:

1. Mirror maintenance. the process involved in constructing mirror objects déstdiin a
classfile. This process involved loading the classfile, tan8ng mirror objects for each
method and field in the type interface. Supertypes undergmitas construction. External
accesses described in the classfile are examined, and pmmdiisg access mirror objects
are constructed and recorded. The overhead of this proaedseceasily measured by sub-
tracting the running time of th€ontrol configuration from the running time of ti¢ULL
configuration. This is because tiNJLL configuration contains no policy clauses. With
no policy clauses, access mirrors are not subjected tocatyility evaluation. The access
mirrors are iterated through, but since remM 0D policy clauses exist, all accesses will be
immediately allowed. Since no access evaluation occutsza oD only performedMirror
Maintenance

2. Access authorization.this is the process of authorizing access mirrors agas@liop pol-
icy clauses. Each access collected for a given classfile beuatithorized against relevant
policy clauses. These clauses can involve applicabilityoofditions of various complexity.
Complex conditions require more time to evaluate when aigimgy access mirrors. This
process can be measured by taking the difference in thengrime between th&lULL
configuration and a non-trivial configuration, sB\¢C. TheNULL configuration takes into
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Figure 12: soM oD Overhead

account the time spent dviirror Maintenance DCC includes complex access mirror appli-
cability checks as well aBlirror Maintenance By removing the time spent on thidULL
configuration, we are left with the time spent Aocess Authorization

Figure 13 depicts the percentage of time spent for each coemp@f the overhead over the
complete cycle of execution. It can be seen that most of the & spent oMirror Maintenance
On averageMirror Maintenancerequired 68% of the time, while only 32% was neededXocess
Authorization

Also shown in Figure 13 is the ratio between the number of@ightions checked during a
full execution and the number of preloadings performed. [&kter figure is the total number of
Stage-I, Stage-Il, and Stage-IlI classfile preloads algtpairformed during a full execution.

This ratio relates the number of authorizations to the nunabedeclared types that were
preloaded. This ratio is associated with the compositidh@bverhead in a direct manner. As the
number of access mirrors that are authorized increasassthdoes the percentage of time spent
on performing this process. This particular aspect can &e geectly when looking at the JavaTar
configuration up to the SableCC configuration. The ratio isgasing, as does the percentage of
processing time spent gxccess AuthorizatiornThis direct correlation indicates that the number of
accesses being authorized will have an impact on how muehisispent o ccess Authorization
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6.4 Overhead Distribution

The goal of this experiment was to determine the percentatieeadunning time devoted to over-
head during a long execution. Figure 14 descriBPeralty of Overheadas the percentage of
running time given to $oMobD during a complete execution. The size of the input is given in
logarithmic scale because the input size varied from 24KBouO5MB.

The JavaTar application creates an archive of files. Theréwas main reasons for choosing
JavaTar in this experiment. First, the applications exenuime could be varied, by varying the
number of files to be archived. Second, since JavaTar wasopelsating on multiple sets of data,
the number of mirrors constructed and the number of accasemnrecorded would be identical
for all configurations. Third, JavaTar’s performance dgrihe first experiment (Section 6.2) was
found to have the highest percentage of run-time devotegtdthead (although the magnitude of
the overhead was small). Executing JavaTar throwgiMoD with the policyDCC was found to
have 81% of the execution time dedicated to overhead.

The graph in Figure 14 clearly demonstrates that as the sipeitvas increased, the percentage
of run-time spent on overhead decreased. The results oi{leximent clearly indicated how a
longer executing application reacted when executed thiréaagMoD. Through each execution,
the overhead incurred bysbM oD was constant. This was because the policy used was never
changed. The difference in execution times arises fromingrne size of the input data.

The results of this experiment were as expected. Becauseuthbar of mirrors constructed
and number of access mirrors authorized remained congsiaath configuration, the amount
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Figure 14: Penalty of Overhead

of overhead incurred bysloMoD remained constant and independent of the input data. This
particular phenomenon of the overhead amortizing away avbel even more visible in longer
running applications, such as those found on servers. Quld twerefore enforce more complex
policies on longer running application with a manageablerlogad. The overhead incurred by
enforcing these more complex policies would also be anemtavay, as was demonstrated in this
experiment.

Summary. Performance is one factor among many when determining ipproach to language-
based access control is viable. Since these experimengsdeawmonstrated that the overhead in-
curred by BoMoD is manageable and reasonable, they provide evidence ofstfelness of
IsoMoD as a language-based access control mechanism. sidMdD class loader efficiently
preloads and discharges accesses with small impact ontt#ieexecution time of an application.
The most complex policy testeBCC, incurred at most three seconds of overhead, which is rea-
sonable. The authorization of accesses against policisgauad to be minimal when compared
to that of mirror maintenance. Because so little time is spenauthorization, more complex
policies could be enforced with minor impact on the overhetldese results paved the way for
exploring how EOM oD behaved in a longer executing system. An application usiadtoM oD
class loader that executed for a longer period of time hadvaripercentage of time devoted to
overhead. $oM oD only incurred overhead during application startup, ansldhierhead amortizes
away during a long run.
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7 Concluding Remarks

7.1 Limitations

Enforcement mechanisms that are based solely on statigsisalf which BOM oD is an example,
are provably less powerful than those that also employ d@@cmonitoring [17]. For example,
policies in which authorization decision is a function ofacation arguments or execution history
are not enforceable bysbMoD. This fact is demonstrated bg®M oD only being able to capture
a subset of the Java 2 permissions, for which runtime inftonas not needed for enforcement.
Our goal, however, is not to match the expressiveness otiig@amonitoring, but rather to find a
lightweight alternative to interposition when full-fledfyexecution monitoring is not necessary.

The analysis of reference acquisition in Section 4 does caiunt for the acquisition of ref-
erences through such Java platform facilities as reflecfa®)serialization and object cloning. To
ensure thatdoM oD functions properly one should formulate policy clausesitioee completely
disable such facilities, or selectively control their bifty. This can be easily achieved by the
techniques demonstrated in Sections 4.1 and 4.2.

7.2 Related Work

As surveyed in Section 1, language-based software isolatie been achieved mostly by interposition-
based mechanisms in the past. Early language-based systemss Scheme 48 [26], Safe-Tcl
[24] and SPIN [4] adophamespace managemeasta primary protection mechanism. Two compo-
nent mechanisms are involved. Firstly, dynamic linkingpdishes monitoring code when system
services are invoked. This is simply another form of interpon. A Java incarnation of linking-
based interposition is described in [34]. Secondly, ruditagy name visibility control is employed
to hide certain names in a namespace. None of the policyedansSections 4.2 and 4.3 can be
enforced in this manner. We have thus demonstrated that masbdity control can in fact be
much more expressive than conventional belief.

The study of module systems has a long history [19]. We hyhhlsome recent developments
on the Java front. JavaMod [2] is a module system for Javaldikguages. The interaction between
modularity and subtyping is carefully articulated. Baeeal[3] extend the Java package facility to
obtain a module system that supports the decoration of ingpatements with linking obligations,
which are in turn implemented as digital signatures. MJ$4 module system designed to control
the complexity of configuration management in Java platérmiu and Smith [23] describe a
module system that supports the declaration of bi-direalinterfaces. Designed primarily for
access control,doMoD is unique in two ways: (1) name visibility constraints canitmposed
dynamically; (2) fine-grained name visibility constraicen be expressed in thedM oD policy
language to control not only what names are visible, butt@sehom and to what extent they are
visible.

This work has been informed by the recent workeimcapsulation policief28, 27]. Specif-
ically, the designer of a clas$ associates tol a fixed number of access control policies, each
presenting a different view of. A client classB then selects a policy through whidhinteracts
with A. Three points of comparison are worth noting. Firstly, heseathe client decides which
policy to adopt, the scheme cannot be used for protectionor&Hy, policies are formulated on
a per-class basis, the universally quantified access dontes described in Section 4 cannot be
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expressed. Thirdly,9oMoD defines a wider collection of access rights, thereby diffea¢ing
finer levels of visibility.

7.3 Future Work

A number of future directions are suggested by this worksthiralthough oM oD provides a
means for enforcing a given name visibility policy, it doest prescribe what policy to enforce
in a given security context.slbMoD could be extended into a full-fledged authorization system
in the style of Java Authentication and Authorization Segv{JAAS). Doing so would fill the
aforementioned gap.

When a complexsoMoD policy is given, it can be a non-trivial matter to understénithe
policy is achieving what the author intends. Therefore tlagodirection is to construct a formal
semantic model ofdoMoD. With such a semantic model, it would be possible to detegrfia
given safety property is enforced by asxdM oD policy.

A third direction has to do with the pragmatics of usirgpMoD. This work provides an
expressive policy language for defining scoping rules. Wiitbh expressiveness, it is possible
for programmers to construct improper scoping rules, teguln scoping disciplines that are in-
compatible with the typing disciplines of modern objedeated programming languages. For
example, how can one guarantee that a set of scoping rulesiteotine Principle of Subsumption
[25]? Future work is necessary to address this challenge.

A fourth direction would be to incorporate name resolutiontcol into ISOM 0D, in a way that
is secure, expressive and declarative, so teaMoD can be extended to support a general form
of namespace management. Name resolution control coulddedavhen a class is preloaded.
Certain methods would be “tagged” as sensitive. Whenever brieese sensitive methods is
encountered, the name is resolved to a more secure methold witliperform additional run-time
security checks.

A final direction is concerned with the automatic constrectof ISOMoOD policies. Policy
engineering from scratch can be a tedious process. A rersgédyave a tool that will scan sample
code units, and infer a policy that serves as the startingt pdifurther policy engineering.

7.4 Summary

Through the design of thesbM oD module system and its policy language, we demonstrated that
name visibility control can serve as a lightweight accesgrobmechanism that avoids the techni-
cal difficulties of interposition when full-fledged exeauimonitoring is not necessary. We further
demonstrated that a rich family of access control policas lee encoded as name visibility con-
straints (aka scoping rules), the enforcement of which egpebformed efficiently. Name visibility
control in the style of $OM 0D is therefore a viable access control mechanism for dyndinmea
tensible systems.
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A Anl|soMob Policy for DCC

policy DCC
default allow

I (DCC1)
method B.N

denies{ invoke } to method A.M
unless(not statiqV)) or trusty B, A)
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11 (DCC2)

classC'
denies{ catch, cast, ney to method A. M
unlesstrustgC, A)
method B.N
denies{ invoke } to method A. M
unlesstrustgreturn-typgé N'), A) or
(trust§ A, B) and trusty B, A))
field B.F
denies{ get} to method A.M
unlesstrustgfield-typé '), A) or
(trust§ A, B) and trusty B, A))
field B.F'
denies{ put } to method A.M
unlesstrustgA, field-typeF')) or
(trust§ A, B) and trusty B, A))

11 (DCC3)

method B.N
denies{ invoke } to method A.M
unless
(trustg A, B) and trust§ B, A)) or
(for C'in parameter-typesV) :
trustgC, B) or
(trust§ B, M) and trustgC, M)))

I1 (DCC4)
method B.N
denies{ invoke } to method A.M
unlesstrusty N, M)
I1 (DCC5)
classB
denies{ extend, implemenj to classA
unlesstrusty B, A)

I (DCC6)

method B.N
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denies{ override} to method A. M
unlesstrustg M, N)
method B.N
denies{ override} to method A.M
unlesstrustgreturn-typé N), B) or
(trustg A, B) and trusty B, A))
method B.N
denies{ override} to method A.M
unless
(trust§ A, B) and trusty B, A)) or
(for C'in parameter-typesV) : trust§C, A))

11 (DCCT)

classB
denies{ extend, implement to classA
unlessstrongly-trust$B, A)

I (HMS1)

classC
denies{ extend} to class&
unless
domair(&) implies
strongly-dominatg€, or g. aegi s. dcc. Root )

I (HMS2)

classC'
denies{ extend} to class&
unless
domain(&) implies
for D in strongly-dominate() :
dominate&€, D)

I (HMS3)

classC
denies{ extend} to class&
unless
domair(&) implies
for D in strongly-dominate(F) :
for D’ in dominated¢) :
dominatesD, D’) or dominatesD’, D)
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