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Abstract

In a modern programming language,scoping rulesdetermine the visibility of names in
various regions of a program [15]. In this work, we examine the idea of allowing an application
developer to customize the scoping rules of its underlying language. We demonstrate that such
an ability can serve as the cornerstone of a security architecture for dynamically extensible
systems.

A run-time module system, ISOMOD, is proposed for the Java platform to facilitate soft-
ware isolation. A core application may create namespaces dynamically and impose arbitrary
name visibility policies (i.e., scoping rules) to control whether a name is visible, to whom it
is visible, and in what way it can be accessed. Because ISOMOD exercises name visibility
control at load time, loaded code runs at full speed. Furthermore, because ISOMOD access
control policies are maintained separately, they evolve independently fromcore application
code. In addition, the ISOMOD policy language provides a declarative means for expressing a
very general form of visibility constraints. Not only can the ISOMOD policy language simu-
late a sizable subset of permissions in the Java 2 security architecture, it does so with policies
that are robust to changes in software configurations. The ISOMOD policy language is also
expressive enough to completely encode a capability type system known asDiscretionary Ca-
pability Confinement. In spite of its expressiveness, the ISOMOD policy language admits an
efficient implementation strategy. Name visibility control in the style of ISOMOD is therefore
a lightweight access control mechanism for Java-style language environments.

Keywords: Access control, name visibility control, scoping rules, language-based security, Java.

1 Introduction

In a modern programming language,scoping rulesdetermine the visibility of names in various
regions of a program [15]. In this work, we examine the idea ofallowing an application developer
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to customize the scoping rules of its underlying language. We demonstrate that such an ability can
serve as the cornerstone of a security architecture for dynamically extensible systems.

In modern day computing, a successful software system must anticipate the evolution of soft-
ware requirements. This gives rise to a family of software systems known asdynamically extensible
systems, in which the functionality of a core application can be augmented dynamically by load-
ing, linking, and invoking program code units that were not originally part of the core application.
Dynamically extensible systems find their uses in mobile code platforms, scriptable applications,
and systems with plug-in architectures. In each case, trusted and untrusted code units are loaded
and executed in the same run-time environment. The challenge ofsecure cooperationis to protect
these mutually suspicious code units from one another whilethey are executing within the same
run-time environment.

An established paradigm for addressing the challenge of secure cooperation is language-based
security [30]. Specifically, untrusted code units are encoded in a safe language, and subsequently
executed in a secure run-time environment, the protection mechanisms of which are implemented
by programming language technologies such as type systems,program rewriting and execution
monitoring.

Most existing language-based approaches to access controlare based on the classical notion
of interposition[1, 32, 33, 35]. A direct implementation of this idea is to interpose monitoring
code at the entry points of security relevant system services. At run time, authorization decisions
are made by examining invocation arguments or execution history. In the Java Virtual Machine
(JVM) [22] and the Common Language Infrastructure (CLI) [9], adirect implementation of this
approach is found. Specifically,stack inspection[33], the main access control mechanism of the
JVM and the CLI, is essentially a form of interposition. Direct interposition, however, is difficult to
maintain. Security checks are scattered over the entire host system. Fixing a vulnerability requires
the availability of host system source code. Worst still, assecurity checks are hard-coded into the
host system, evolution in security requirements or software configuration is not easily addressed
without reprogramming the host system itself.

A second language-based approach to implement interposition is byload-time binary rewriting
[10, 32, 33, 35] Specifically, monitoring code isweavedinto untrusted code at load time. Although
this so calledInlined Reference Monitor (IRM)approach [32] is equal in expressive power to di-
rect interposition [17], the former has clear software engineering advantages over the latter. In
particular, the late binding of security checks allows security code to evolve separately from the
rest of the system, thereby addressing the software engineering concerns raised in the previous
paragraph. Unfortunately, independent reports have confirmed that the injected code incurs sig-
nificant run-time overhead [32, 33]. For example, in [32], upto 70% slow down was observed if
domain-specific optimization was not introduced.

There is an obvious engineering dilemma in the design of interposition-based access control
mechanisms. By embedding security checks in the host system,direct interposition fails to support
the evolution of security requirements and software configurations in a graceful manner. Maintain-
ing the security policy offline, IRM has the advantage of anticipating software evolution, but it
incurs significant runtime overhead.

The research question investigated by this work is as follows. Is interposition (direct or IRM-
based) always necessary for access control in the context of dynamically extensible systems?In-
terposition is motivated by the need for execution monitoring [29], in which the dynamic state and
the execution history of a system are examined when authorization decisions are made. In many
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cases, one simply wants to completely turn off a system service. (This is evident in the large num-
ber of target-lessBasicPermissions defined in the Java 2 security architecture [16].) In other
cases, the safety property [29] to be enforced is memory-less, and the avoidance of the confused
deputy problem [18] is not a significant concern. In such contexts, execution monitoring can be re-
placed by a lighter-weight enforcement mechanism that doesnot exhibit the engineering dilemma
presented by interposition.

This work examines a seldom studied point in the design spaceof language-based access con-
trol, specifically,name visibility control. The intuition is that, if the name of the entry point for a
system service is not visible to an untrusted code unit, thenthe service is essentially inaccessible
to the code unit. Therefore, access control can be achieved by specifying what names are visible,
to whom they are visible, and to what extent they are visible.These aspects of name visibility
are specified by thescoping rulesof a programming language. Such rules are usually fixed for
modern block-structured programming languages. In order to use name visibility control as an
access control mechanism, two ingredients are necessary: (1) a policy language for specifying
custom scoping rules that constrain the visibility of names, and (2) a protection mechanism that
allows an application to impose custom scoping rules over a local namespace in which untrusted
code resides. In the programming language literature, a facility that is responsible for managing
the visibility of names across namespaces [19] is called amodule system.

The goal of this research is to investigate the degree to which name visibility control can serve
the purpose of access control when full-fledged execution monitoring is not necessary. To this
end, a module system, ISOMOD, is proposed as a practical security architecture for dynamically
extensible Java applications (Section 2). Because ISOMOD exercises name visibility control only
at load time, and does not inject any monitoring code into classfiles, loaded code runs at full
speed. Furthermore, because ISOMOD access control policies are maintained separately, they
evolve independently from core application code.

An intriguing finding of this study is thata rich family of access control policies can be ex-
pressed as name visibility constraints. The ISOMOD policy language provides a declarative means
for expressing a very general form of visibility constraints (Section 3). Not only can the ISOMOD

policy language simulate a sizable subset of permissions inthe Java 2 security architecture (Section
4.1), it can do so with policies that are robust to changes in software configurations (Section 4.2).
The ISOMOD policy language is also expressive enough to completely encode a capability type
system known as Discretionary Capability Confinement [12, 13](Section 4.3). In spite of its ex-
pressiveness, the ISOMOD policy language admits an efficient implementation strategy (Sections
5 and 6).

In short, ISOMOD avoids the technical difficulties of interposition by trading off an acceptable
level of expressiveness. Therefore, name visibility control in the style of ISOMOD is a lightweight
alternative to interposition for language-based access control.

2 The ISOM OD Security Architecture

ISOMOD employsname visibility controlas the sole mechanism for access control. We begin
our discussion with a review of the Java class loading mechanism from the perspective of name
visibility control.
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Figure 1: Hierarchical Namespaces and ISOMOD

2.1 Delegation-style Class Loading

In programming language terminology, a Java class loader isthemirror [5] of a run-time names-
pace. An instance of theClassLoader class is employed by the JVM to load the object code of
classes, and to define the classes in the namespace mirrored by theClassLoader instance. The
object code of a class is transported through a network or stored in a file system in an intermediate
representation known as aclassfile. Class definition[22, Section 5.3.5] is the process by which a
classfile is converted into aClass object in the JVM. Programmers may define a custom subclass
of theClassLoader class, thereby overriding the procedure by which the JVM locates classfiles
(e.g., loading classfiles from the World Wide Web), or introducing a classfile preprocessing step
prior to class definition (e.g., injecting instrumentationcode). Once a classC is defined by a class
loaderL, L is said to be thedefining class loader[21] of C.

Hierarchical organization of namespaces is enabled by the delegation model of class loading
[21], in which the names visible in a parent namespace is imported implicitly into a child names-
pace (Figure 1). Specifically, the set of class names visiblein a namespaceL is the union of (1) the
set of class names visible in the parent ofL plus (2) the set of class names that are defined locally
by L. How is this effect achieved algorithmically? Associated with every class loaderL is another
class loader, called thedelegation parentof L. The class loaders thus form adelegation hierarchy,
at the root of which is thebootstrap class loader. To look up theClass object of a given class
name in a class loaderL, the delegation parent ofL is first consulted. If aClass object of the
specified name is defined by the delegation parent, then thatClass is returned. Otherwise, the
delegation parent of that delegation parent is consulted, and so on. When none of the delegation
ancestors ofL defines aClass of the given name, thenL will load and define that class (if it has
not already done so). This class is then returned as the result of class look up.

A class may refer to external entities such as other classes or their fields and methods. These
external references are resolved in the same namespace in which the referring class is defined (i.e.,
via the defining class loader of the referring class). In thisway, static scoping is enforced.
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2.2 An Architecture for Name Visibility Control

In a dynamically extensible software system, the trusted application core is defined in a parent
namespace, while child namespaces are created for defining untrusted software extensions (Fig-
ure 1). Core application services are exposed to the extension code by implicitly importing names
from the core application namespace to the extension namespace. ISOMOD is a run-time module
system designed for isolating untrusted software extensions. It does so by controlling the visibil-
ity of names in the namespaces in which untrusted software extensions reside. Specifically, an
ISOMOD namespace enforces two kinds of control: (1) restricting the visibility of names that are
imported from the parent namespace, and (2) restricting thevisibility of locally defined names.
When a name is placed under visibility control, an ISOMOD namespace may (a) control which
locally defined class can “see” the name, and (b) present an alternative, restricted view of the en-
tity to which the name is bound. Every ISOMOD name space is endowed with a customname
visibility policy, which specifies visibility restrictions to be imposed on the names visible in the
namespace. When appropriately constructed, an ISOMOD policy may be used to selectively hide
core application services from untrusted extensions (Section 4.1 and 4.2), or impose collaboration
protocols among classes defined in the extension namespace (Section 4.3). A major contribution of
this work is the design of a policy language that can express arich family of access control policies
as fine-grained visibility constraints.

An ISOMOD namespace is an instance of a user-defined class loader class. An ISOMOD class
loader performs extra checks on a classfile before converting it into aClass object. Specifically,
class definition is only authorized when no external accesses in the classfile are denied by the
policy. This late enforcement(i.e., load time) of visibility control distinguishes ISOMOD from
traditional module systems, in which visibility control isenforced only at compile time. It is this
feature that makes the ISOMOD module system into a viable protection mechanism.

An ISOMOD namespace may be constructed at run-time by an application core from an ISO-
MOD policy. This late bindingof access control policy to code not only supports the separate
maintenance of code and policy, but also supports the presentation of different views of the same
application core to different extensions.

3 The ISOM OD policy language

The ISOMOD policy language provides a declarative and expressive means to specify the access
control policy of an ISOMOD name space. Anaccessis composed of three elements: (1) asubject,
(2) anobject, and (3) anaccess right. An object is also called atarget to avoid confusion in the
context of object-oriented programming. ISOMOD controls access to three kinds of targets: (a)
declared types, (b) fields, and (c) methods. Adeclared typeis either a class or an interface. For
brevity, the word “class” is used as a synonym of “declared type”. Every target is identified by
a name visible in the ISOMOD namespace. A target can be accessed by exercising a fixed set of
access rights as outlined in Figure 2. A subject is either (a)a declared type whose name is defined
in the ISOMOD namespace, or (b) a method declared in such a class.

An ISOMOD policy is made up of a finite number ofpolicy clauses(or access control rules),
each of which has the following general syntax:

O (allows|denies) {r1, . . . , rk} [ to S ] [ (when|unless) c ]
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Access Right Description
Declared type targetC / Declared type subjectD

extend D extendsC
implement D implementsC

Declared type targetC / Method subjectN
catch N handles exception typeC
cast N casts a reference toC
instanceof N checks if a reference isC
new N creates an instance ofC

reflect N gets theClass object ofC
new-array N creates an array ofC
Similarly, cast-array, instanceof-array, reflect-array.

Field targetF / Method subjectN
get N readsF
put N writesF

Method targetM / Method subjectN
invoke N invokesM
override N overridesM

Figure 2: Access Rights

Unary Predicates
final(C) abstract(C) interface(C)

public(C) package-private(C)

Binary Predicates
subclass(C, D) superinterface(C, D) assignable(C, D)

extends(C, D) implements(C, D)

Figure 3: Built-in Predicates on Declared Types

In general, a policy clause tells whether or not a targetO grants (resp. denies) access rights
r1, . . . , rk to a subjectS. When the optionalto-phrase is omitted, the rights are granted (resp. de-
nied) categorically. An optional conditionc may also be supplied to specify when the policy
clause is applicable (not applicable). The conditionc is a first-order predicate inO andS. The
ISOMOD policy language predefines a number of built-in connectives, predicates and functions
for expressing complex applicability conditions. ISOMOD also provides a simple mechanism for
policy programmers to define application-specific predicates and functions. A sample of built-in
predicates is given in Figure 3. A sample of built-in functions is given in Figure 4.

Prior to the definition of a declared type [22, Section 5.3], its classfile is examined by the
ISOMOD class loader for conformance to the corresponding ISOMOD policy. To this end, the set
of all accesses in which the classfile (or one of its declared methods) is a subject is first collected.
Each access is then checked according to the authorization algorithm outlined in Figure 5: the
policy clauses are examined in the order they appear in the policy, and the authorization decision of
the first applicable policy clause is then adopted. (A default authorization decision can be specified
by the user of ISOMOD to handle the case when no policy clause applies.) In this process, if any
access is denied by the policy, the definition of the declaredtype will not be authorized.
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formal-parameters(M) a list containing the formal parameters of methodM

return-type(M) the return type of methodM
field-type(F ) the field type of fieldF
package(C) the package to which declared typeC belong
equals(O1, O2) equality test

Figure 4: Built-in Functions on Declared Types, Methods, andFields

To decide if access〈S, O, r〉 is granted by policyP :
for each ruleR in policy P do

if R is relevant to〈S, O, r〉 then
if c is truethen

if R is awhen-rule then
if R is anallow-rule then

return grant;
else// R is adeny-rule

return deny;
else// c is false

if R is anunless-rule then
if R is anallow-rule then

return grant;
else// R is adeny-rule

return deny;
return user-specified default;

Figure 5: Operational Semantics for Authorization

Simple as it is, the ISOMOD policy language is capable of expressing a rich family of access
control policies, a topic to which we will now turn.

4 Sample Applications

The goal of this section is to demonstrate the utility of the ISOMOD policy language through
examples. The first example demonstrates how to selectivelyhide system services (Section 4.1).
The second example illustrates how to systematically control the acquisition of references, and
to do so in a way that accommodates evolving software configurations (Section 4.2). Finally, the
ISOMOD policy language is employed to completely encode a capability policy language, thereby
demonstrating the expressiveness of the policy language (Section 4.3).

4.1 Selective Hiding of System Services

ISOMOD can be used to enforce many of theBasicPermissions defined in the Java 2 platform
[16]. For example, thegetClassLoader permission controls whether untrusted code may acquire
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a ClassLoader reference from the platform library. The effects of denyingthis permission can
be simulated by the ISOMOD policy below:

policy getClassLoader
default allow

methodClassLoader.getParent
denies{ invoke}

methodClassLoader.getSystemClassLoader
denies{ invoke}

methodClass.getClassLoader
denies{ invoke}

methodClass Class.forName(String,boolean,ClassLoader)

denies{ invoke}

The policy begins with a header that identifies the policy name and asserts that the default autho-
rization decision is to allow access (i.e., when no policy clause applies). Next come the policy
clauses, which disallow invocation of all methods declaredin the Java platform library that returns
a ClassLoader. Notice that one may either specify a method target solely byits name (e.g.,
getClassLoader), or by both its name and its type signature (e.g.,forName1).

The relatedcreateClassLoader permission controls whether untrusted code may create
new instances of theClassLoader class. In the Java 2 platform, security checks are embedded
in the constructors ofClassLoader, SecureClassLoader andURLClassLoader for ensuring
that the caller possesses the said permission. Denying thecreateClassLoader permission can
be simulated with the following policy clause:

methodC.M

denies{ invoke}
whenconstructor(M) and subclass(C, ClassLoader)

Notice that this policy clause is more general than the ones aforementioned: it is applicable to any
constructorM of a classC that is eitherClassLoader or one of its subclasses (i.e., the predicate
constructortests if a method is a constructor, and the binary relationsubclassis the reflexive
transitive closure of theextendsrelation). Specifically, constructor invocation is denied. This rules
out all means of creatingClassLoader instances.

The following is an alternative policy clause that achievesthe same effect.

classC
denies{ new}

whensubclass(C, ClassLoader)

Rather than controlling the invocation ofClassLoader constructors, this policy clause directly
disallows the creation of newClassLoader instances.

Most BasicPermissions defined in the Java 2 platform can be expressed declaratively by
ISOMOD. There is, however, a clear software engineering advantageto the ISOMOD approach.
Consider what is required in implementing and maintaining a Java 2BasicPermission. One

1TheforName method is denied because untrusted code may pass in anull ClassLoader reference to access the
bootstrapClassLoader.
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has to inspect the entire Java 2 platform library to identifyall points of attack, and then inter-
pose monitoring code at each point. When a vulnerability is found, library source code has to be
modified. In the ISOMOD example above, an exhaustive audit of the platform library is still neces-
sary, yet the maintenance path is far superior: the policy isexpressed declaratively and maintained
independently: e.g., in a policy file separate from the library source code.

The ISOMOD approach provides a way to enforce fine-grained access control policies not ex-
pressible by the Java 2 permission system. Suppose we are to prevent untrusted code from using
theReflection APIto invoke methods, access fields and arrays, and create new object instances, but
we want to permit the examination of class interfaces. The existing permissions defined in Java
2 are not sufficient for expressing this highly selective policy: the entire Reflection API must be
turned on or off as a whole. However, there is no problem constructing ISOMOD policy clauses
to selectively hide the following reflection services: (1)method invocation: Method.invoke; (2)
field access: theField.get/set family of methods; (3)array access: theArray.get/set fam-
ily of methods; (4)object instantiation: Class.newInstance, Constructor.newInstance,
Array.newInstance, Proxy.newProxyInstance; (5) subtyping: Proxy.getProxyClass.

4.2 Systematic Control of Reference Acquisition

In the createClassLoader example discussed in Section 4.1, we could have formulated the
following rule to deny the instantiation of newURLClassLoader instances:

methodURLClassLoader.newInstance
denies{ invoke}

We did not impose this policy clause because such a restriction is not part of the semantics of
thecreateClassLoader permission. Yet, this observation reveals a general challenge in policy
formulation. Suppose we want to eliminate all means by whichuntrusted code may acquire a
ClassLoader instance (that is, either by retrieving an existing instance or by creating a new
one). An exhaustive audit of the platform library must be conducted to ensure all means of leaking
ClassLoader references are accounted for. Not only is this an error-prone approach, it does
not account for many useful configuration management practices: What if non-standard platform
extension libraries are installed? What if ISOMOD is used for isolating dynamically downloaded
plug-ins of an extensible application? Platform extensions and application classes may expose
additional means of leakingClassLoader references. To ensure that the access control policy is
bullet proof, even a minor perturbation of the software configuration will necessitate a re-audit of
the software infrastructures. Such a practice is too costlyto be feasible.

A major contribution of ISOMOD is that it offers an expressive and declarative policy language
that addresses the aforementioned configuration management challenge in access control. We
demonstrate this feature by producing an ISOMOD policy that systematically restricts the acquisi-
tion of ClassLoader references. To this end, we begin by exhaustively enumerating all means,
excluding those involving array types, by which a referenceof declared typeA may acquirea
reference of typeC:

1. A declared typeA generatesa reference of typeC when one of the following occurs: (a)A
creates an instance ofC; (b) A casts a reference to typeC; (c) an exception handler inA
with catch typeC catches an exception.
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2. A declared typeB sharesa reference of typeC with declared typeA when one of the
following occurs: (a)A invokes a method declared inB with return typeC; (b) A reads a
field declared inB with field typeC; (c) B writes a reference into a field declared inA with
field typeC.

3. A declared typeB grantsa reference of typeC to declared typeA whenB invokes a method
declared inA, passing an argument via a formal parameter (including the pseudo-parameter
this) of typeC.

Based on the analysis above2, we formulate the following policy clauses to prevent untrusted
code from acquiring aClassLoader reference:

policy acquireClassLoader
default allow

classC
denies{ new, cast, catch}

whensubclass(C, ClassLoader)
field C.F

denies{ get, put}
whensubclass(field-type(F ), ClassLoader)

methodC.M

denies{ invoke}
whensubclass(return-type(M), ClassLoader)

methodC.M

denies{ invoke}
when existsA in parameter-types(M) : subclass(A, ClassLoader)

The first policy clause eliminates all means ofgeneratingClassLoader references. The second
and third policy clauses eliminate all means ofsharingClassLoader references. The last policy
clause eliminates all means ofgrantingClassLoader references. Built-in functions such asfield-
type, return-typeandparameter-typesare employed to specify fine-grained accessibility criteria.
The use of existential quantification (exists) is also demonstrated.

The policy above systematically restricts the acquisitionof ClassLoader instances. Neither
policy reformulation nor source code auditing is necessaryeven if the configuration of the under-
lying system has evolved.

4.3 Discretionary Capability Confinement

This section demonstrates how ISOMOD can be used for enforcing a general-purpose capability
type system,Discretionary Capability Confinement (DCC)[12, 13]. A lightweight, statically en-
forceable type system, DCC supports the use of abstractly-typed object references as capabilities
in a Java-like object-oriented programming language. Acapability[8] is an object reference qual-
ified by a set of access rights, where, the latter specify in what ways the underlying object can
be accessed through the reference. Capabilities can be modeled in a language-based environment
through acapability type system, in which every object reference is statically assigned acapability

2For brevity, the analysis does not account for array types, but such an extension is straightforward.
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(DCC1) UnlessB ⊲ A, A shall not invoke a static method declared inB.

(DCC2) (i) A can generate a reference of typeC only if C ⊲ A; (ii) B may share a reference of typeC with
A only if (C ⊲ A) ∨ (A ⊲⊳ B).

(DCC3) If A.m invokesB.n, andC is the type of a formal parameter ofn, then(C ⊲B)∨ (A ⊲⊳ B)∨ (B ⊲

m ∧ C ⊲ m).

(DCC4) A methodm may invoke another methodn only if n ⊲ m.

(DCC5) If A is a subtype ofB, thenB ⊲ A.

(DCC6) SupposeB.n is overridden byB′.n′. Then (i)n′ ⊲ n; (ii) if the method return type isC, then
(C ⊲ B) ∨ (B ⊲ B′); (iii) if C is the type of a formal parameter, then(C ⊲ B′) ∨ (B ⊲⊳ B′).

(DCC7) If A is a subtype ofB, thenB :⊲ A.

(HMS1) ⊤ :◮ D.

(HMS2) If D :◮ E , thenD ◮ E .

(HMS3) If (D :◮ E) ∧ (D′
◮ E), then(D ◮ D′) ∨ (D′

◮ D).

Figure 6: DCC Type Constraints

typethat restricts access to the underlying object. In a sense, acapability type presents a restricted
view of the object it types. In a Java-like object-oriented programming language, an object ref-
erence with a static interface type (or abstract class type)can be seen as a capability, because the
typed reference only exposes a restricted view of the underlying object. This approach to model-
ing capabilities suffers from two problems: capability leakage and capability theft [31]. DCC is a
minimal perturbation to Java for controlling capability propagation. In the following, the expres-
siveness of ISOMOD is demonstrated through a complete encoding of the DCC type system in the
policy language. The focus here is ISOMOD and not DCC. Interested readers may consult [13] for
more details of DCC.

In DCC, the space of declared types (i.e., class and interface)is partitioned into a finite number
of confinement domains, so that every declared type belongs to exactly one confinement domain.
We write l(C) = D when declared typeC is assigned to confinement domainD. The confinement
domains are partially ordered by adominance relation◮. We say that domainD dominatesdomain
E whenE ◮ D. Together, domain membership and dominance induce a natural pre-ordering of
declared types: ifl(B) = E , l(A) = D, andE ◮ D, then we writeB ⊲ A, and say thatB trustsA.
The intuition behind these definitions is that, ifC trustsA, thenA may freely acquire a reference
of static typeC. Otherwise,C is said to be acapability for A. Capability acquisition is carefully
restricted in DCC. We also writeA ⊲⊳ B whenA⊲B andB ⊲A hold simultaneously. We postulate
that there is aroot domain⊤ which is dominated by every domain.

To control capability granting, associated with every method m is a domain labell(m), called
thecapability granting policyof m. Intuitively, the capability granting policyl(m) dictates what
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capabilities may be granted bym, and to which declared typesm may grant a capability. (We write
m ⊲ n, m ⊲ A andA ⊲ m for the obvious meaning.)

A second partial ordering:◮ on domains is postulated. We say thatD strongly dominatesE
whenE :◮ D. As we shall see, strong dominance controls whether subtyping is allowed across
domain boundaries. This helps to establish mutually exclusive roles. As before, we writeB :⊲ A

whenl(B) = E , l(A) = D, andE :◮ D.
Figure 6 enumerates the type constraints of DCC as specified in[13]. The complete set of

DCC type constraints has been successfully encoded as an ISOMOD policy, which is displayed
in Appendix A. Behind the policy of Appendix A is a number of assumptions. As in [13], we
assume that domain membership and capability granting policies are embedded in Java classfiles
via the JDK 1.5 metadata facility. Domains are represented by specially annotated interfaces, and
the dominance and strongly dominance relations are encoded, respectively, by the subinterfacing
relation and JDK 1.5 annotations. Domain-specific functions and predicates have been defined to
examine these annotations. In the following we will examineaspects of this encoding that illustrate
further features of ISOMOD.

Consider the following type constraint from Figure 6:

(DCC2) (i) A can generate a reference of typeC only if C ⊲ A; (ii) B may share a reference of
typeC with A only if C ⊲ A ∨ A ⊲⊳ B.

In this constraint, the first clause denies the generation ofcapabilities, and the second clause denies
the sharing of capabilities with reference types belongingto a different confinement domain. This
constraint can be encoded as the following ISOMOD policy clauses:

classC
denies{ catch, cast, new} to methodA.M

unlesstrusts(C,A)
methodB.N

denies{ invoke} to methodA.M

unlesstrusts(return-type(N), A) or (trusts(A,B) and trusts(B,A))
field B.F

denies{ get} to methodA.M

unlesstrusts(field-type(F ), A) or (trusts(A,B) and trusts(B,A))
field B.F

denies{ put} to methodA.M

unlesstrusts(A, field-type(F )) or (trusts(A,B) and trusts(B,A))

Two additional features of ISOMOD are demonstrated in the above policy clauses. Firstly, ISOMOD

provides a syntax (i.e.,to) for qualifying to which subject a policy clause applies. Ascapability
acquisition is permitted for some subjects but not others, this discrimination enables fine-grained
access control. Secondly, ISOMOD supports user-defined predicates and functions for modeling
domain-specific relations. For example,trusts is a user-defined predicate for representing the bi-
nary trust relation between declared types.

Let us consider another type constraint from Figure 6:

(HMS3) If (D :◮ E) ∧ (D′
◮ E), then(D ◮ D′) ∨ (D′

◮ D).
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This constraint is the soul of a property known ashereditary mutual suspicion[13], which enforces
a strong form of separation of duty [6, 20], so that collusionbetween mutually exclusive roles is
severely restricted. The constraint mandates that, given an arbitrary domainE , some form of
dominance relation must exist between a domainD strongly dominated byE and a domainD′

dominated byE . An ISOMOD encoding of it is given below:

classC
denies{ extend} to classE

unless
domain(E) implies

for D in strongly-dominated(E) :
for D′ in dominated(E) :

dominates(D,D′) or dominates(D′,D)

Our goal is to check(HMS3) exactly once for every domainE . To this end, we observe that, at
the bytecode level, every declared type extends exactly onesuperclass, withjava.lang.Object
being the only, uninteresting exception. We therefore “schedule” the verification of(HMS3)
to occur whenE extends some dummy classC. The same technique is used in the encoding of
(HMS1) and(HMS2) (see Appendix A).

Besides DCC, we have also completely encoded the class-based access control mechanism of
Java [22, Section 5.4.4] (i.e., public, protected, private, etc) as an ISOMOD policy (Section 6).
These examples demonstrate the expressiveness and versatility of the ISOMOD policy language.

5 Implementation Experience

ISOMOD has been fully implemented in approximately 10,000 lines ofpure Java code. This sec-
tion reports the implementation experience. The technicalchallenges encountered and the solutions
adopted to address these challenges are discussed. Enough details of the ISOMOD load-time ver-
ification mechanism are given so that its design can be reusedin future work involving load-time
type checking.

5.1 Design Rationales

We begin by identifying the technical challenges our implementation strategy attempts to address.

1. Efficiency. Class loading and policy evaluation incur a significant link-time overhead, slow
down application start-up, and should thus be minimized.

2. Early enforcement. Class definition [22, Section 5.3.5] is irrevocable. Policy enforcement
must be complete before a classfile is converted into aClass object.

3. Circularity. Circular dependency between type interfaces may arise from forward refer-
ences. Policy evaluation must handle circularity gracefully.

4. Attribution correctness. Policy violation should be attributed to the offending classfiles
(i.e., subjects) rather than the offended classfiles (i.e.,targets). Only the definition of the
subjects should be denied.
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Initially we considered three possible designs, and eventually adopted one that adequately ad-
dresses all of the aforementioned technical challenges. The difference between the three designs
lies in when external dependencies are resolved. Specifically, before a class is defined, its corre-
sponding classfile ispreloadedand screened for policy violation. Policy checking may involve the
examination of external classes, as the following example (taken from Section 4.2) illustrates:

methodC.M

denies{ invoke}
whensubclass(return-type(M ), ClassLoader)

Checking whether a declared typeA conforms to this policy clause involves examining bothC and
return-type(M). These latter declared types may not have been preloaded yet. The three designs
differ in how this situation is handled.

Design #1: Eager preloading. PreloadC andreturn-type(M ) right away. While this design is
easy to implement, the resulting class loading overhead will likely be prohibitive.

Design #2: Constraint maintenance. Lazy preloading can be achieved by constraint mainte-
nance. That is, the definition ofA is authorized right away, but the policy clause is recorded as a
proof obligation, the discharging of which is deferred until C andreturn-type(M) are preloaded
at a later time. This design eschews eager preloading, but its implementation is complex. This
design has been adopted by Sun’s implementation of the JVM for enforcing Temporal Namespace
Consistency [21]. The most serious problem with this approach is its inability to correctly attribute
policy violation to the offender. When the checking of the proof obligation fails at the timeC or
return-type(M) is preloaded, the only thing a system could do is to deny the definition of C and
return-type(M), an incorrect attribution of policy violation.

Design #3: Three-stage, lightweight preloading. Preloading is divided into three stages (Fig-
ure 7), which incrementally constructs and maintains a lightweight representation of the classfile
being preloaded. In the first stage, references to the classfile’s supertypes are resolved, and all “ex-
tend” and “implement” accesses are checked. In the second stage, type references appearing in the
type interface of a classfile are resolved, and then all “override” accesses are checked. In the third
stage, type references appearing in the remaining externalaccesses are resolved, and then those
accesses are checked. This design performs shallow preloading eagerly, but maintains lightweight
type mirrors to anticipate deep preloading. This design implements a lazy preloading strategy,
carefully breaks circularity, and correctly attributes policy violations to the offending classfiles.
The preloading algorithm is detailed in Figure 7. This design is informed by previous work in
modular bytecode verification in the presence of lazy, dynamic linking [14, 11].

The rest of this section provides details concerning Design#3, which was adopted in the im-
plementation of ISOMOD.

5.2 Type Mirrors

This section describes the lightweight representation of declared types created by ISOMOD. This
lightweight representation is called amirror in the programming language literature [5]. More
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Stage-I Preloading of Declared TypeC
1. Retrieve the classfile ofC.
2. Perform stage-I preloading on the supertypes ofC. Circular subtyping is detected.
3. Check the “extend” and “implement” accesses ofC.
4. Cache a lightweight representation ofC, recording its type interface and the re-

maining external accesses.
Stage-II Preloading of Declared TypeC
1. Perform stage-I preloading onC.
2. Perform stage-II preloading on the supertypes ofC.
3. Perform stage-I preloading on the return types and parameter types of methods

declared inC, and the field types of fields declared inC.
4. Check the “override” accesses ofC.
Stage-III Preloading of Declared TypeC

1. Perform stage-II preloading onC.
2. Perform stage-III preloading on the supertypes ofC.
3. Perform stage-II preloading on those type references appearing in the targets of the

remaining external accesses associated withC.
4. Check the remaining external accesses ofC.
5. Authorize the definition of declared typeC.

Figure 7: Preloading Algorithm

specifically, ISOMOD maintains a mirror object for each declared type, method, field, and external
access. The following presents the layout of these data structures and the incremental process by
which they are constructed.

5.2.1 Structure of Mirrors

A classfileis a file format used by Java to represent object code in a file system. Each classfile
describes a declared type (i.e., a class or an interface), including its methods, fields, and bytecode
instructions. In order to perform verification, the preloading process converts a classfile into its
respective mirror object, called adeclared type mirror, or simply type mirror, the structure of
which is described below. Notice that the following describes the data structures as they are fully
constructed. The intermediate steps are left to Section 5.2.2.

Type mirror. A type mirror records the type interface of a declared type.

Class name:The name of this declared type

Super class∗: The type mirror representing the direct super class of this declared type

Interfaces∗: The type mirrors of the interfaces directly implemented by this declared type

Declared methods∗: The method mirrors of the methods (including constructors)declared
in this declared type

Declared fields∗: The field mirrors of the fields declared in this declared type
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External accesses∗: The access mirrors corresponding to the external accesses made by this
declared type (e.g., as reflected in the bytecode instructions)

Method mirror. A method mirror describes the signature of a method.

Method name:Name of this method

Return type∗∗: The type mirror representing the return type of this method

Parameter types∗∗: The type mirrors representing the parameter types of this method

Defining class∗: The type mirror of the declared type in which this method is declared

Field mirror. A field mirror describes the signature of a field.

Field name: Name of this field

Field type∗∗: The type mirror representing the type of this field

Defining class∗: The type mirror of the declared type in which this field is declared

Access mirror. An access mirror represents an external access, which is made up of a triple
〈subject, object, right〉. Such a data structure is recorded to facilitate lazy verification.

Subject∗: The subject of this external access, which can be either a type or method mirror

Object∗∗∗: The object (i.e., target) of this external access, which canbe either a type, method
or field mirror

Right: A particular right exercised by this access (Figure 2)

5.2.2 Staged Construction of Mirrors

This subsection describes the incremental process by whichthe aforementioned mirrors are con-
structed. The mirror objects contain references to other mirror objects. These references are indi-
cated by one or more asterisks (∗, ∗∗, or ∗∗∗) in Section 5.2.1. For example, a type mirror contains a
reference to the mirror of its direct super class; an access mirror contains a reference to the mirror
object representing the target of the external access. During the preloading process, some of the
references are not fully resolved, because the targets of the references have not been constructed
(or preloaded) yet. In these cases, a symbolic reference (e.g., a string) is recorded in place of the
actual mirrors. The following explains when mirrors are constructed and how symbolic references
are resolved.

Stage I. This stage initiates the construction of mirror objects fora given classfile. Another
goal is to incrementally construct atype mirror hierarchyto facilitatesubtyping queries. When a
declared type is preloaded in Stage-I, mirrors of methods declared in that declared type are created.
At this point, the bytecode of the method body is scanned, andall external accesses are recorded as
access mirrors. If the same access occurs multiple times in the method body, only a single instance
is recorded. The newly created method mirror is linked to thetype mirror, and vice versa. Similarly,
a field declared in the declared type has its respective field mirror constructed and properly linked.
The direct supertypes (super class and super interfaces) are resolved into their respective type

16



mirrors through recursive Stage-I Preloading (Figure 7, Stage I, Step 2). In short, all the mirror
references annotated with a single asterisk (∗) in Section 5.2.1 are resolved in this stage. By the
end of Stage-I, the basic structure of the type mirror is established, its external accesses recorded,
and the part of the type mirror hierarchy above this type mirror fully constructed.

Stage II. This stage is responsible for resolving the symbolic references appearing in method
and field mirrors: i.e., the ones annotated with double asterisks (∗∗) in Section 5.2.1. The goal
of this stage is to make the type interface of a given type mirror fully usable. Specifically, the
method and field mirrors of the type mirror are examined. Symbolic references corresponding to
the return type and parameter types of a method mirror are resolved through Stage-I Preloading.
The method mirror is updated, by linking the respective components to their mirror counterparts.
The field types of field mirrors are updated in a similar fashion. Notice that Stage-II Preloading
is performed on the mirrors of supertypes before it is performed on a given type mirror (Figure 7,
Stage II, Step 2). This means, not only are the mirrors of methods and fields declared in the type
mirror fully constructed in Stage II, the mirrors of those methods and fieldsinheritedby the type
mirror are also fully constructed by then. By the end of Stage-II, the type interface of the type
mirror is fully constructed to facilitatetype interface queries.

Stage III. This stage is responsible for resolving the targets of external accesses: i.e., those
marked by triple asterisks (∗∗∗) in Section 5.2.1. The goal is to resolve the symbolic references
embedded in access mirrors, so that the external accesses can be authorized prior to class definition
[22, Section 5.3.5]. To this end, the collection of access mirrors associated with a given type mirror
are scanned. For every access mirror, each of its targets is examined. If the target is a type reference
(e.g., as in the case of a “new” access), the reference is resolved by Stage-II Preloading. If the target
is a method (resp. field) reference (e.g., as in the case of an “invoke” access), then such a reference
will be of the form c.m (resp.c.f ), wherec is a symbolic reference to a declared type, andm

(resp.f ) is a method signature (resp. field signature) consisting ofa method name plus return type
and parameter types (resp. field name plus field type). The type referencec is resolved into a
type mirrorC by Stage-II Preloading, after which the proper method mirror (resp. field mirror) is
located in eitherC or one ofC ’s supertype mirrors. This resolution process closely parallels that
of [22, Section 5.4.3]. This final step concludes the staged construction process for a type mirror.

5.3 Staged Verification

Not all external accesses are verified at once (Figure 7). The“extend” and “implement” accesses
are discharged in Stage I, “override” in Stage II, and the rest in Stage III. Why is the verification
process divided into three stages? And why is a given check scheduled to occur in a specific stage?
These are the questions the present section attempts to answer. As we shall see, the three-stage
design facilitates lazy preloading and gracefully handlescircularity.

Stage I. Recall that this stage gathers subtyping information for a given declared type. Such
subtyping information must be verified before it can be queried. Firstly, circular subtyping is
detected by checking if a type mirror argument re-appears inthe call chain of recursive Stage-
I Preloading. Secondly, access mirrors corresponding to “extend” and “implement” rights are
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verified in this stage against the current policy. The completion of this stage ensures that subtyping
queries are supported by properly verified subtyping information.

Notice as well that circular Stage-I Preloading is prevented because circular subtyping is ruled
out.

Stage II. Recall that by the end of Stage II, the type interface of a type mirror is fully constructed
to support type interface queries. The type interface of a declared type extends the type interfaces
of its supertypes through inheritance and method overriding. To ensure type extension is proper,
the “override” accesses are checked in this stage for policycompliance. This ensures that type
interface queries are supported by a properly verified type interface.

Two kinds of recursive preloading are performed in this stage. Firstly, Stage-II Preloading is
performed on the type mirrors of the supertypes. This does not lead to circular preloading because
circular subtyping has already been ruled out in Stage I. Secondly, Stage-I Preloading is invoked
on type references embedded in method and field mirrors. Thisdoes not lead to circular preloading
because Stage-I Preloading never invokes Stage II Preloading.

Stage III. Recall that the third and final stage is responsible for resolving the symbolic references
embedded in the targets of access mirrors, so that the lattercan be discharged. Resolution is
achieved by Stage-II Preloading. As a result, the followingqueries are supported:

• Type interface queries can be applied to the targets of access mirrors.

• Subtyping queries can be applied to the type mirrors embedded in the type interface of the
above access targets.

Observe that these are the very queries that the ISOMOD policy language is designed to support.
The remaining access mirrors are therefore ready for verification.

Again, two kinds of recursive preloading is performed in this stage. Firstly, Stage-III Preload-
ing is performed on the type mirrors of the supertypes. This does not lead to circular preloading
because of the absence of circular subtyping. Secondly, Stage-II Preloading is invoked on type ref-
erences embedded in the targets of access mirrors. This, again, does not lead to circular preloading
because Stage-II Preloading never initiates Stage-III Preloading.

Efficiency. Observe from the above discussion that access mirrors are only checked when it is
absolutely necessary to do so. To check an access mirror, type interface queries will be made
against the target, and thus it undergoes Stage-II Preloading. Similarly, subtyping queries will be
made against the type references embedded in the type interface of the access target, so Stage-
II Preloading guarantees that such references are resolvedvia Stage-I Preloading. In this way,
preloading is minimized to improve preloading efficiency.

Circularity. The staged preloading and verification process gracefully handles the two possi-
ble types of circularity. Subtyping circularity is managedin Stage I by ensuring that no circular
subtyping occurs. Circularity arising from forward referencing is handled by stratification of the
preloading process: Stage I never invokes Stage II and III; Stage II never invokes Stage III. This
effectively breaks any possibility of circularity.
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5.4 Policy Evaluation

When an access mirror is checked against an ISOMOD policy, the policy clauses are examined
in turn. ISOMOD evaluates each of the policy clauses to determine if the clause is applicable
to the access. Applicability is specified in the ISOMOD policy language via thewhen/unless
construct, which states a binary relation between the subject and the target. This binary relation
is expressed in the form of a first-order formula with free variables denoting the subject and the
target. Determining the applicability of a policy clause involves binding the subject and target
variables, respectively, to the subject and target mirrors, and subsequently deciding if the mirror
hierarchy that has been preloaded so far is amodelfor the formula. That is, the first-order formula
is evaluated against the subtyping and type interface information that ISOMOD has collected so
far. This can be achieved easily by a syntax-directed evaluation of the abstract syntax trees of the
formulas [15].

A natural question to ask is whether the implementation strategy described in this section de-
livers its performance promise, a topic to which we will now turn.

6 Performance Evaluation

This section reports the results of experiments conducted for profiling the performance character-
istics of ISOMOD. The goal of this study is threefold:

1. Tractability. To quantify the performance overhead incurred by executingan application
through IsoMOD.

2. Overhead composition.To identify the major components of the ISOMOD implementation
which contribute to the overhead incurred.

3. Overhead distribution. To characterize the way in which the overhead incurred by ISO-
MOD is distributed over the life cycle of an application.

These characteristics are important in validating ISOMOD as a viable approach to software se-
curity. The Tractability Study in Section 6.2 measures the overhead incurred by using ISOMOD.
A quantifiable result was obtained through this study by comparing the running times of a test
suite with and without ISOMOD The analysis described in Section 6.3 further examined the results
gathered from the Tractability experiment. The purpose of this analysis was concerned with dis-
covering the makeup of ISOMOD’s overhead. The above analysis suggested that the majorityof
the overhead occurred during application startup. Section6.4 describes an experiment designed to
discover how a longer executing system would experience overhead as opposed to that of a shorter
lived execution.

The results of the experiments and analysis aided in validating ISOMOD as a viable approach to
software security. The first experiment demonstrated that the overhead incurred by ISOMOD was
reasonable and manageable. The analysis of this experimentdiscovered ISOMOD’s overhead to be
comprised of two major parts. The first part consisted of maintaining the type mirror hierarchy and
the second was authorization of the access mirrors. The second experiment demonstrated that a
longer executing system caused ISOMOD’s overhead to amortize away. That is, a longer executing
system experienced less of an overhead encumbrance as opposed to that of a shorter lived system.
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6.1 Methodology

The experiments were conducted on a system with the following characteristics:

• 3.0 GHz Pentium 4

• 1 Gigabyte of RAM

• Fedora Core 4 Linux Operating System

• Java Standard Edition, version 1.5

Accompanying software included BCEL (Byte Code Engineering Library), version 5.1.
We used a benchmarking suite consisting of six open source Java applications (Figure 8). These

applications were chosen because they could be executed in batch mode without real-time inter-
action from users. The applications were tested under five configurations. The first configuration,
Control, runs an application in a bare JVM. The other four configurations consisted of loading an
application with an ISOMOD class loader with one of four ISOMOD policies. The policies used in
the configurations consisted of:

NULL. Contains no policy clauses, and the default authorization decision is to allow all accesses.
See Figure 9.

AllowAll. Contains policy clauses allowing access for every right occurring within the JVM. See
Figure 10.

DCC. An ISOMOD encoding of the Discretionary Capability Confinement capability type system.
See Appendix A.

JAC. Encoding of the Java access control mechanism as specified in[22, Section 5.4.4]. See
Figure 11.

Five trials3 were repeated for each configuration to account for variability in the Operating
System. Factors such as process scheduling and context switching may have contributed variations
to the results. The average running time (in seconds) was recorded for each configuration.

In Section 6.4, the Java application JavaTar was used for testing under ten configurations. The
configurations consisted of loading the application with the ISOMOD class loader with theDCC
policy and input data varying in size from 24KB to 495MB. TheDCC policy was chosen for its
complexity, which would incur significant overhead.

6.2 Tractability

This experiment quantified the overhead incurred by the ISOMOD class loader. A classfile loaded
by the ISOMOD class loader is subjected to the verification process described previously. During
this verification process, the complete collection of access mirrors is collected. These access mir-
rors are authorized against a policy. A classfile that passesall stages of verification is turned into a
Class object and loaded into the JVM.

3Only five trials were used because the standard deviation andvariance in the experimental results were found to
be small.
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Name Description Number of Classes
ZipDiff Utility to compare the contents of two zip files 8
JavaTar A TAR compression program written in Java 43
JavaCC Sun’s Compiler-Compiler 135
SableCC A compiler-compiler 263
JRuby A Java implementation of the Ruby language 473
Kawa A Scheme interpreter written in Java 746

Figure 8: Benchmarking Suite

policy AllowAll
default allow

Figure 9:NULL Policy

policy AllowAll
default allow

classC
allows{ new, extend, implement, catch, classcast, instanceof, array} to classD

when true

methodC.m

allows{ invoke, inherit, override} to classD
when true

field C.f

allows{ get, put, inherit} to classD
when true

Figure 10:AllowAll Policy
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policy JAC
default allow

classC
allows{ new, catch, classcast, instanceof, extend, implement, array} to classD

whenpublic(C) or (pkg(C) = pkg(D))

field C.F

allows{ get, put} to classD
when

(public(C) or (pkg(C) = pkg(D)))
and ((public(F ) or (protected(F ) and subclass(D,C)))

or (((protected(F ) or pkg-private(F )) and (pkg(C) = pkg(D))) or
(private(F ) and (C = D))))

methodC.M

allows{ invoke} to classD
when

(public(C) or (pkg(C) = pkg(D)))
and ((public(M) or (protected(M) and subclass(D,C)))

or (((protected(M) or pkg-private(M)) and (pkg(C) = pkg(D))) or
(private(M) and (C = D))))

Figure 11: Java Access Control (JAC) Policy
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The results of the experiment are shown in Figure 12. This figure describes the run-time over-
head incurred by the ISOMOD class loader for each application under the five configurations. From
this figure it can be seen that theNULL configuration incurred the least amount of overhead, while
DCC incurred the most. The other two configurations,AllowAll andJAC incurred almost equal
amounts of overhead. The values of running time are shown in seconds and represent the total
time for an execution.

A number of observations can be made about these results. First, the graph describes how much
overhead is incurred when an application executes through the ISOMOD class loader. Regardless
of whether a policy is enforced or not, ISOMOD incurs some overhead. This fact is demonstrated
by theNULL configuration, where no policy clauses exist in the policy. Second, as the policies
become more complex, the run-time overhead increases, as shown by theDCC configuration.
With the introduction of more policy clauses, and more complex applicability conditions, more
time must be given to authorize the accesses described within the mirror. Third, the total overhead
for any application never exceeded three seconds. In the process of a longer executing application
such as SableCC which executed for just over ten seconds, three seconds of additional overhead
may be considered reasonable.

Overhead while executing through ISOMOD cannot be avoided, but it has been demonstrated
in the experimental results that the overhead is manageableand reasonable. By enforcing more
complex policy clauses, such asDCC, the overhead increases. This particular result is expected
as more conditional applicability checks must be made by theverification process. In our exper-
iments with larger applications that execute longer, the overhead did not prove to be much of an
encumbrance, since it never exceeded three seconds.

6.3 Composition of Overhead

Analysis of the above results revealed two major componentscomprising ISOMOD’s overhead:

1. Mirror maintenance. the process involved in constructing mirror objects described in a
classfile. This process involved loading the classfile, constructing mirror objects for each
method and field in the type interface. Supertypes undergo a similar construction. External
accesses described in the classfile are examined, and corresponding access mirror objects
are constructed and recorded. The overhead of this process can be easily measured by sub-
tracting the running time of theControl configuration from the running time of theNULL
configuration. This is because theNULL configuration contains no policy clauses. With
no policy clauses, access mirrors are not subjected to applicability evaluation. The access
mirrors are iterated through, but since no ISOMOD policy clauses exist, all accesses will be
immediately allowed. Since no access evaluation occurred,ISOMOD only performedMirror
Maintenance.

2. Access authorization.this is the process of authorizing access mirrors against ISOMOD pol-
icy clauses. Each access collected for a given classfile mustbe authorized against relevant
policy clauses. These clauses can involve applicability ofconditions of various complexity.
Complex conditions require more time to evaluate when authorizing access mirrors. This
process can be measured by taking the difference in the running time between theNULL
configuration and a non-trivial configuration, say,DCC. TheNULL configuration takes into
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Figure 12: ISOMOD Overhead

account the time spent onMirror Maintenance. DCC includes complex access mirror appli-
cability checks as well asMirror Maintenance. By removing the time spent on theNULL
configuration, we are left with the time spent onAccess Authorization.

Figure 13 depicts the percentage of time spent for each component of the overhead over the
complete cycle of execution. It can be seen that most of the time is spent onMirror Maintenance.
On average,Mirror Maintenancerequired 68% of the time, while only 32% was needed forAccess
Authorization.

Also shown in Figure 13 is the ratio between the number of authorizations checked during a
full execution and the number of preloadings performed. Thelatter figure is the total number of
Stage-I, Stage-II, and Stage-III classfile preloads actually performed during a full execution.

This ratio relates the number of authorizations to the number of declared types that were
preloaded. This ratio is associated with the composition ofthe overhead in a direct manner. As the
number of access mirrors that are authorized increases, then so does the percentage of time spent
on performing this process. This particular aspect can be seen directly when looking at the JavaTar
configuration up to the SableCC configuration. The ratio is increasing, as does the percentage of
processing time spent onAccess Authorization. This direct correlation indicates that the number of
accesses being authorized will have an impact on how much time is spent onAccess Authorization.
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6.4 Overhead Distribution

The goal of this experiment was to determine the percentage of the running time devoted to over-
head during a long execution. Figure 14 describesPenalty of Overhead, as the percentage of
running time given to ISOMOD during a complete execution. The size of the input is given in
logarithmic scale because the input size varied from 24KB upto 495MB.

The JavaTar application creates an archive of files. There are two main reasons for choosing
JavaTar in this experiment. First, the applications execution time could be varied, by varying the
number of files to be archived. Second, since JavaTar was onlyoperating on multiple sets of data,
the number of mirrors constructed and the number of access mirrors recorded would be identical
for all configurations. Third, JavaTar’s performance during the first experiment (Section 6.2) was
found to have the highest percentage of run-time devoted to overhead (although the magnitude of
the overhead was small). Executing JavaTar through ISOMOD with the policyDCC was found to
have 81% of the execution time dedicated to overhead.

The graph in Figure 14 clearly demonstrates that as the inputsize was increased, the percentage
of run-time spent on overhead decreased. The results of the experiment clearly indicated how a
longer executing application reacted when executed through ISOMOD. Through each execution,
the overhead incurred by ISOMOD was constant. This was because the policy used was never
changed. The difference in execution times arises from varying the size of the input data.

The results of this experiment were as expected. Because the number of mirrors constructed
and number of access mirrors authorized remained constant for each configuration, the amount
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Figure 14: Penalty of Overhead

of overhead incurred by ISOMOD remained constant and independent of the input data. This
particular phenomenon of the overhead amortizing away would be even more visible in longer
running applications, such as those found on servers. One could therefore enforce more complex
policies on longer running application with a manageable overhead. The overhead incurred by
enforcing these more complex policies would also be amortized away, as was demonstrated in this
experiment.

Summary. Performance is one factor among many when determining if an approach to language-
based access control is viable. Since these experiments have demonstrated that the overhead in-
curred by ISOMOD is manageable and reasonable, they provide evidence of the usefulness of
ISOMOD as a language-based access control mechanism. The ISOMOD class loader efficiently
preloads and discharges accesses with small impact on the total execution time of an application.
The most complex policy tested,DCC, incurred at most three seconds of overhead, which is rea-
sonable. The authorization of accesses against policies was found to be minimal when compared
to that of mirror maintenance. Because so little time is spenton authorization, more complex
policies could be enforced with minor impact on the overhead. These results paved the way for
exploring how ISOMOD behaved in a longer executing system. An application using the ISOMOD

class loader that executed for a longer period of time had a lower percentage of time devoted to
overhead. ISOMOD only incurred overhead during application startup, and this overhead amortizes
away during a long run.
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7 Concluding Remarks

7.1 Limitations

Enforcement mechanisms that are based solely on static analysis, of which ISOMOD is an example,
are provably less powerful than those that also employ execution monitoring [17]. For example,
policies in which authorization decision is a function of invocation arguments or execution history
are not enforceable by ISOMOD. This fact is demonstrated by ISOMOD only being able to capture
a subset of the Java 2 permissions, for which runtime information is not needed for enforcement.
Our goal, however, is not to match the expressiveness of execution monitoring, but rather to find a
lightweight alternative to interposition when full-fledged execution monitoring is not necessary.

The analysis of reference acquisition in Section 4 does not account for the acquisition of ref-
erences through such Java platform facilities as reflection, (de)serialization and object cloning. To
ensure that ISOMOD functions properly one should formulate policy clauses to either completely
disable such facilities, or selectively control their visibility. This can be easily achieved by the
techniques demonstrated in Sections 4.1 and 4.2.

7.2 Related Work

As surveyed in Section 1, language-based software isolation has been achieved mostly by interposition-
based mechanisms in the past. Early language-based systemssuch as Scheme 48 [26], Safe-Tcl
[24] and SPIN [4] adoptnamespace managementas a primary protection mechanism. Two compo-
nent mechanisms are involved. Firstly, dynamic linking dispatches monitoring code when system
services are invoked. This is simply another form of interposition. A Java incarnation of linking-
based interposition is described in [34]. Secondly, rudimentary name visibility control is employed
to hide certain names in a namespace. None of the policy clauses in Sections 4.2 and 4.3 can be
enforced in this manner. We have thus demonstrated that namevisibility control can in fact be
much more expressive than conventional belief.

The study of module systems has a long history [19]. We highlight some recent developments
on the Java front. JavaMod [2] is a module system for Java-like languages. The interaction between
modularity and subtyping is carefully articulated. Baueret al [3] extend the Java package facility to
obtain a module system that supports the decoration of import statements with linking obligations,
which are in turn implemented as digital signatures. MJ [7] is a module system designed to control
the complexity of configuration management in Java platforms. Liu and Smith [23] describe a
module system that supports the declaration of bi-directional interfaces. Designed primarily for
access control, ISOMOD is unique in two ways: (1) name visibility constraints can beimposed
dynamically; (2) fine-grained name visibility constraintscan be expressed in the ISOMOD policy
language to control not only what names are visible, but alsoto whom and to what extent they are
visible.

This work has been informed by the recent work inencapsulation policies[28, 27]. Specif-
ically, the designer of a classA associates toA a fixed number of access control policies, each
presenting a different view ofA. A client classB then selects a policy through whichB interacts
with A. Three points of comparison are worth noting. Firstly, because the client decides which
policy to adopt, the scheme cannot be used for protection. Secondly, policies are formulated on
a per-class basis, the universally quantified access control rules described in Section 4 cannot be
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expressed. Thirdly, ISOMOD defines a wider collection of access rights, thereby differentiating
finer levels of visibility.

7.3 Future Work

A number of future directions are suggested by this work. Firstly, although ISOMOD provides a
means for enforcing a given name visibility policy, it does not prescribe what policy to enforce
in a given security context. ISOMOD could be extended into a full-fledged authorization system
in the style of Java Authentication and Authorization Service (JAAS). Doing so would fill the
aforementioned gap.

When a complex ISOMOD policy is given, it can be a non-trivial matter to understandif the
policy is achieving what the author intends. Therefore, another direction is to construct a formal
semantic model of ISOMOD. With such a semantic model, it would be possible to determine if a
given safety property is enforced by an ISOMOD policy.

A third direction has to do with the pragmatics of using ISOMOD. This work provides an
expressive policy language for defining scoping rules. Withsuch expressiveness, it is possible
for programmers to construct improper scoping rules, resulting in scoping disciplines that are in-
compatible with the typing disciplines of modern object-oriented programming languages. For
example, how can one guarantee that a set of scoping rules honours the Principle of Subsumption
[25]? Future work is necessary to address this challenge.

A fourth direction would be to incorporate name resolution control into ISOMOD, in a way that
is secure, expressive and declarative, so that ISOMOD can be extended to support a general form
of namespace management. Name resolution control could be added when a class is preloaded.
Certain methods would be “tagged” as sensitive. Whenever one of these sensitive methods is
encountered, the name is resolved to a more secure method which will perform additional run-time
security checks.

A final direction is concerned with the automatic construction of ISOMOD policies. Policy
engineering from scratch can be a tedious process. A remedy is to have a tool that will scan sample
code units, and infer a policy that serves as the starting point of further policy engineering.

7.4 Summary

Through the design of the ISOMOD module system and its policy language, we demonstrated that
name visibility control can serve as a lightweight access control mechanism that avoids the techni-
cal difficulties of interposition when full-fledged execution monitoring is not necessary. We further
demonstrated that a rich family of access control policies can be encoded as name visibility con-
straints (aka scoping rules), the enforcement of which can be performed efficiently. Name visibility
control in the style of ISOMOD is therefore a viable access control mechanism for dynamically ex-
tensible systems.

Acknowledgments

This work was supported in part by an NSERC Discovery Grant.

28



References
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A An I SOM OD Policy for DCC

policy DCC
default allow

// (DCC1)

methodB.N

denies{ invoke} to methodA.M

unless(not static(N)) or trusts(B,A)
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// (DCC2)

classC
denies{ catch, cast, new} to methodA.M

unlesstrusts(C,A)
methodB.N

denies{ invoke} to methodA.M

unlesstrusts(return-type(N), A) or
(trusts(A,B) and trusts(B,A))

field B.F

denies{ get} to methodA.M

unlesstrusts(field-type(F ), A) or
(trusts(A,B) and trusts(B,A))

field B.F

denies{ put} to methodA.M

unlesstrusts(A, field-type(F )) or
(trusts(A,B) and trusts(B,A))

// (DCC3)

methodB.N

denies{ invoke} to methodA.M

unless
(trusts(A,B) and trusts(B,A)) or
(for C in parameter-types(N) :

trusts(C,B) or
(trusts(B,M) and trusts(C,M)))

// (DCC4)

methodB.N

denies{ invoke} to methodA.M

unlesstrusts(N,M)

// (DCC5)

classB
denies{ extend, implement} to classA

unlesstrusts(B,A)

// (DCC6)

methodB.N
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denies{ override} to methodA.M

unlesstrusts(M,N)
methodB.N

denies{ override} to methodA.M

unlesstrusts(return-type(N), B) or
(trusts(A,B) and trusts(B,A))

methodB.N

denies{ override} to methodA.M

unless
(trusts(A,B) and trusts(B,A)) or
(for C in parameter-types(N) : trusts(C,A))

// (DCC7)

classB
denies{ extend, implement} to classA

unlessstrongly-trusts(B,A)

// (HMS1)

classC
denies{ extend} to classE

unless
domain(E) implies
strongly-dominates(E , org.aegis.dcc.Root)

// (HMS2)

classC
denies{ extend} to classE

unless
domain(E) implies
for D in strongly-dominated(E) :

dominates(E ,D)

// (HMS3)

classC
denies{ extend} to classE

unless
domain(E) implies
for D in strongly-dominated(E) :

for D′ in dominated(E) :
dominates(D,D′) or dominates(D′,D)
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