
Non-Repudiation Analysis Using LYSA with
Annotations

Mayla Brusò and Agostino Cortesi

Abstract This work introduces a formal analysis of the non-repudiation property
for security protocols. Protocols are modelled in the process calculus LYSA, using
an extended syntax with annotations. Non-repudiation is verified using a Control
Flow Analysis, following the same approach of M. Buchholtz and H. Gao for au-
thentication and freshness analyses.
The result is an analysis that can statically check the protocols to predict if they are
secure during their execution and which can be fully automated.

1 Introduction

With the growth of Internet applications like e-shopping or e-voting, non-repudiation
is becoming increasingly important, as a protocol property. Our aim is to provide
a protocol analysis which checks this property to avoid that a protocol is used in
malicious way. Among the existing techniques that perform the analysis of non-
repudiation protocols, we may cite:

• The CSP (Communicating Sequential Processes) approach [10], [11]: it is an ab-
stract language designed specifically for the description of communication pat-
terns of concurrent system components that interact through message passing.

• The game approach [8]: it considers the execution of the protocol as a game,
where each entity is a player; the protocols are designed finding a strategy, which
has to defend an honest entity against all the possible strategies of malicious
parties.

Mayla Brusò
Computer Science Department, Ca’ Foscari University, Italy, e-mail: mabruso@dsi.unive.it

Agostino Cortesi
Computer Science Department, Ca’ Foscari University, Italy, e-mail: acortesi@dsi.unive.it

1



2 Mayla Brusò and Agostino Cortesi

• The Zhou-Gollmann approach [14]: it uses SVO Logic, a modal logic that is
composed by inference rules and axioms which are used to express beliefs that
can be analysed by a judge to decide if the service provided the property.

• The inductive approach [1]: it uses an inductive model, a set of all the possi-
ble histories of the network that the protocol execution may produce; a history,
called trace, is a list of network events, that can indicate the communication of a
message or the annotation of information for future use.

We follow a different approach, the same as M. Buchholtz [3] and H. Gao [6],
who show how some security properties can be analysed using the LYSA [2] process
calculus with annotations and a Control Flow Analysis (CFA) to detect flaws in the
protocols. The main idea is to extend LYSA with specific annotations, i.e. tags that
identify part of the message for which the property has to hold and that uniquely
assign principal and session identifiers to encryptions and decryptions.

It is interesting to notice that the non-repudiation analysis that we propose easily
fits into the CFA framework [9], yielding a suite of analyses that can be combined
in various ways, with no major implementation overload.

The main differences between our proposal and the previously cited alternative
approaches are the following: our analysis can check many protocols and can model
scenarios with infinitely many principals while other approaches often are developed
to analyse only a particular protocol and can model scenarios with finite principals.
Moreover LYSA does not consider channels, like other approaches does, therefore
a more realistic environment in which the messages are not guaranteed to reach the
destination is not considered.

The structure of the paper is the following: Section 2 is a quick overview of
LYSA; Section 3 presents the CFA framework; Section 4 shows the new non-
repudiation analysis, and its application to the protocols; Section 5 concludes.

2 LYSA

LYSA [2] is a process calculus in the π-calculus tradition that models security pro-
tocols on a global network. It incorporates pattern matching into the language con-
structs where values can become bound to variables. In LYSA all the communica-
tions take place directly on a global network and this corresponds to the scenario
in which security protocols often operate. Channels are considered in many pro-
cess calculi, but they may give a degree of security that there is not in the common
network, where a spy can eavesdrop and forge communications; furthermore, pri-
vate channels are often used explicitly as cryptographic keys. LYSA calculus offers
a realistic environment in which there are not channels to protect the exchange of
messages among the principals.



Non-Repudiation Analysis Using LYSA with Annotations 3

2.1 Syntax and Semantics

An expression E ∈ Expr may represent a name, a variable or an encryption. The
set Expr contains two disjointed subsets, Name and Var. The elements in the first
subset can be identifiers, nonces, symmetric keys or key pairs m+ and m− for asym-
metric key cryptography, etc., ranged over by n. The elements in Var are only
variables, ranged over by x. The remaining expressions are symmetric and asym-
metric encryptions of k-tuples of other expressions, defined as {E1, . . . ,Ek}E0 and
{| E1, . . . ,Ek |}E0 respectively, where E0 represents a symmetric or asymmetric key.

LYSA also allows to construct processes P ∈ Proc, which use the expressions
explained above. Processes can have the following form:

• 〈E1, . . . ,Ek〉.P: the process sends a k-tuple of values onto the global network; if
the message reaches its destination, the process continues as P.

• (E1, . . . ,E j;x j+1, . . . ,xk).P: the process reads the k-tuple of values sent, it checks
if the values expected are identical to E1, . . . ,E j, and, if this succeeds, the remain-
ing k− j values are bound to the variables x j+1, . . . ,xk, and the process continues
as P, which is the scope of the variables; notice that a semi-colon is used to
distinguish between the expressions used for matching and the variables.

• decrypt E as {E1, . . . ,E j;x j+1, . . . ,xk}E0 in P: the process denotes the symmetric
decryption and it works in a way similar to the input construct; if the encryption
key is identical to E0, the process decrypts the k-tuple, then it checks if the values
expected are identical to E1, . . . ,E j, and, if this succeeds, the remaining k− j val-
ues are bound to the variables x j+1, . . . ,xk, and the process continues as P, which
is the scope of the variables; a semi-colon distinguishes between the expressions
used for matching and the variables.

• decrypt E as {| E1, . . . ,E j;x j+1, . . . ,xk |}E0 in P: the process denotes the asym-
metric decryption and it works like symmetric decryption; the only differences
are in E0 and in the key used to encrypt, which have to be a key pair m+ and m−;
their order depends on the role of decryption, i.e. if it is used to verify a private
key signature or to obtain the original message after a public key encryption.

• (ν n)P: the process generates a new name n and it continues in P, which is the
scope of the name.

• (ν±m)P: the process generates a new key pair, m+ and m−, and it continues in
P, which is the scope of the key pair.

• P1 | P2: the process denotes two processes running in parallel that may synchro-
nize through communication over the network or perform actions independently.

• !P: the process acts as an arbitrary number of processes P composed in parallel.
• 0: the process is the inactive or nil process that does nothing.

Both expressions and processes are defined in the Table 1.

A binder introduces new names or variables which have scope in the rest of the
process. The prefix (ν n) in the process (ν n)P and the prefix (ν±m) in the process
(ν±m)P are binders, because they create new keys which have scope in the process
P. Also input and decryption are binders that introduce the variables x j+1, . . . ,xk. If



4 Mayla Brusò and Agostino Cortesi

a name or a variable is not bound by any binder, it is free; the function f n(P) collects
all the free names in the process P and it is defined in the Table 2 while the function
f v(P), defined in the Table 3, collects the free variables. The bound variables are

defined by the function bv(P)
de f
= var(P) \ f v(P), i.e. they are all the variables that

are not free. All these functions are also defined on the terms, which are part of the
processes.

Table 1 Syntax of LYSA calculus

E ::= terms
n name
x variable
m+ public key
m− private key
{E1, . . . ,Ek}E0 symmetric encryption
{| E1, . . . ,Ek |}E0 asymmetric encryption
P ::= processes
〈E1, . . . ,Ek〉.P output
(E1, . . . ,E j;x j+1, . . . ,xk).P input
decrypt E as {E1, . . . ,E j;x j+1, . . . ,xk}E0 in P symmetric decryption
decrypt E as {| E1, . . . ,E j;x j+1, . . . ,xk |}E0 in P asymmetric decryption
(ν n)P restriction
(ν±m)P pair restriction
P1 | P2 parallel composition
!P replication
0 nil

LYSA provides a reduction semantics that describes the evolution of a process
step-by-step, using a reduction relation between two processes, written P→ P′. If
the reduction relation holds then P can evolve in P′ using the rules depicted in Table
6, that show an inductive definition of the relation by axioms and inference rules.

The structural congruence between two processes, written P ≡ P′, means that P
is equal to P′ except for syntactic aspects, but this does not interfere with the way
they evolve. The structural congruence is defined as the smallest relation satisfying
the rules in the Table 4, that express the following ideas:

• The reduction relation is an equivalence relation.
• The parallel composition is defined to be commutative, associative, and has 0 as

neutral element.
• The order of the processes in the parallel composition is not influential.
• The replication corresponds to an arbitrary number of process in parallel.
• The restrictions can be simplified under certain assumptions.
• Two processes are structurally equivalent whenever they are α-equivalent.

Two processes P1 and P2 are α-equivalent, written P1
α≡ P2, when they are iden-

tical except that they may differ in the choice of bound names. A procedure called
α-conversion replaces all the instances of a bound name in a process for another



Non-Repudiation Analysis Using LYSA with Annotations 5

Table 2 Function f n(P) for free names

f n(n)
de f
= {n}

f n(m+)
de f
= {m+}

f n(m−)
de f
= {m−}

f n(x)
de f
= /0

f n({E1, . . . ,Ek}E0 )
de f
= f n(E0)∪ . . .∪ f n(Ek)

f n({| E1, . . . ,Ek |}E0 )
de f
= f n(E0)∪ . . .∪ f n(Ek)

f n(〈E1, . . . ,Ek〉.P)
de f
= f n(E1)∪ . . .∪ f n(Ek)∪ f n(P)

f n((E1, . . . ,E j;x j+1, . . . ,xk).P)
de f
= f n(E1)∪ . . .∪ f n(E j)∪ f n(P)

f n(decrypt E as {E1, . . . ,E j;x j+1, . . . ,xk}E0 in P)
de f
= f n(E)∪ f n(E0)∪ . . .∪ f n(E j)∪ f n(P)

f n(decrypt E as {| E1, . . . ,E j;x j+1, . . . ,xk |}E0 in P)
de f
= f n(E)∪ f n(E0)∪ . . .∪ f n(E j)∪ f n(P)

f n((ν n)P)
de f
= f n(P)\{n}

f n((ν±m)P)
de f
= f n(P)\{m+,m−}

f n(P1 | P2)
de f
= f n(P1)∪ f n(P2)

f n(!P)
de f
= f n(P)

f n(0)
de f
= /0

Table 3 Function f v(P) for free variables

f v(n)
de f
= /0

f v(m+)
de f
= /0

f v(m−)
de f
= /0

f v(x)
de f
= {x}

f v({E1, . . . ,Ek}E0 )
de f
= f v(E0)∪ . . .∪ f v(Ek)

f v({| E1, . . . ,Ek |}E0 )
de f
= f v(E0)∪ . . .∪ f v(Ek)

f v(〈E1, . . . ,Ek〉.P)
de f
= f v(E1)∪ . . .∪ f v(Ek)∪ f v(P)

f v((E1, . . . ,E j;x j+1, . . . ,xk).P)
de f
= f v(E1)∪ . . .∪ f v(E j)∪ ( f v(P)\{x j+1, . . . ,xk})

f v(decrypt E as {E1, . . . ,E j;x j+1, . . . ,xk}E0 in P)
de f
= f v(E0)∪ . . .∪ f v(E j)∪ ( f v(P)\{x j+1, . . . ,xk})

f v(decrypt E as {| E1, . . . ,E j;x j+1, . . . ,xk |}E0 in P)
de f
= f v(E0)∪ . . .∪ f v(E j)∪ ( f v(P)\{x j+1, . . . ,xk})

f v((ν n)P)
de f
= f v(P)

f v((ν±m)P)
de f
= f v(P)

f v(P1 | P2)
de f
= f v(P1)∪ f v(P2)

f v(!P)
de f
= f v(P)

f v(0)
de f
= /0



6 Mayla Brusò and Agostino Cortesi

Table 4 Structural congruence P≡ P′

P≡ P
P1 ≡ P2⇒ P2 ≡ P1
P1 ≡ P2∧P2 ≡ P3⇒ P1 ≡ P3

P1 ≡ P2⇒



〈E1, . . . ,Ek〉.P1 ≡ 〈E1, . . . ,Ek〉.P2
(E1, . . . ,E j;x j+1, . . . ,xk).P1 ≡

(E1, . . . ,E j;x j+1, . . . ,xk).P2
decrypt E as {E1, . . . ,E j;x j+1, . . . ,xk}E0 in P1 ≡

decrypt E as {E1, . . . ,E j;x j+1, . . . ,xk}E0 in P2
decrypt E as {| E1, . . . ,E j;x j+1, . . . ,xk |}E0 in P1 ≡

decrypt E as {| E1, . . . ,E j;x j+1, . . . ,xk |}E0 in P2
(ν n)P1 ≡ (ν n)P2
(ν±m)P1 ≡ (ν±m)P2
P1 | P3 ≡ P2 | P3
!P1 ≡!P2

P1 | P2 ≡ P2 | P1
(P1 | P2) | P3 ≡ P1 | (P2 | P3)
P | 0≡ P
!P≡ P |!P
(ν n)0≡ 0
(ν n1)(ν n2)P≡ (ν n2)(ν n1)P
(ν n)(P1 | P2)≡ P1 | (ν n)P2 if n /∈ f n(P1)
(ν±m)0≡ 0
(ν±m1)(ν±m2)P≡ (ν±m2)(ν±m1)P
(ν±m)(P1 | P2)≡ P1 | (ν±m)P2 if m+,m− /∈ f n(P1)
(ν±m)(ν n)P≡ (ν n)(ν±m)P
P1

α≡ P2⇒ P1 ≡ P2

name. The definition of the equivalence relation is in the Table 5. Notice that a
substitution P[n1 7→ n2] substitutes all the free occurrences of n1 in P for n2.

Table 5 α-equivalence
α≡

P
α≡ P

P1
α≡ P2 implies P2

α≡ P1

P1
α≡ P2∧P2

α≡ P3 implies P1
α≡ P3

(ν n1)P
α≡ (ν n2)(P[n1 7→ n2]) if n2 /∈ f n(P)

(ν±m1)P
α≡ (ν±m2)(P[m+

1 7→ m+
2 ,m−1 7→ m−2 ]) if m+

2 ,m−2 /∈ f n(P)



Non-Repudiation Analysis Using LYSA with Annotations 7

Finally, we define values V ∈Val, which are used in the reduction as expressions
without variables x ∈Var:

V ::= n
| m+

| m−

| {V1, . . . ,Vk}V0
| {|V1, . . . ,Vk |}V0

The reduction relation describes how a process may evolve into another and it
is defined inductively as the smallest relation such that the rules in the Table 6 are
satisfied. A reference monitor is used to check each step before allowing it to be
executed. It can be turned off or on: in the first case there are not requirements that
have to be meet; in the other case some properties are checked at run time and, if
the check does not succeed, the process execution is aborted.

A substitution function is used in the reduction rules, written P[V/x]; it substi-
tutes a variable x for a value V in the process P whenever x becomes bound to V .

The rule (Com) is the parallel composition between an output process and an
input process. This means that the communication between two principals happens
only if these two processes run in parallel. Furthermore, the first j values V1, . . . ,Vj
sent have to be identical to the first j values V ′1, . . . ,V

′
j that the recipient expects. In

this case, the variables are substituted with the values Vj+1, . . . ,Vk. The rules (Dec),
(ADec) and (ASig) are used to decrypt messages with a symmetric key, a private
key and a public key respectively. As before, the first j values V1, . . . ,Vj encrypted
have to be identical to the first j values V ′1, . . . ,V

′
j that who decrypts the message

expects. In this case, the variables are substituted with the values Vj+1, . . . ,Vk. The
rule (New) and (ANew) restrict the scope of the names created, therefore they are
visible only in the respective process. The rule (Par) is the parallel composition that
can evolve in a new parallel composition where one of the two processes involved
is evolved while the other remains unchanged. The rule (Congr) allows to apply the
reduction relation to any process that is structurally congruent to the process found
in the other rules.

2.2 Meta Level Calculus

The meta level is an extension of LYSA that can be used to describe different sce-
narios in which many principals execute a protocol at the same time. Thanks to
this level the analysis can run in a realistic environment with many initiators and
responders. This is done by running several copies of the processes and renaming
each name and each variable using indexes, added to make them unique.

The syntax of the meta level is defined by the grammar described in Table 7. Its
constructs incorporate a countable indexing set S, which includes a set of variables
X .



8 Mayla Brusò and Agostino Cortesi

Table 6 Semantics of LYSA calculus

(Com)
∧ j

i=1 Vi = V ′i
〈V1, . . . ,Vk〉.P | (V ′1, . . . ,V ′j ;x j+1, . . . ,xk).P′→R

P | P′[Vj+1/x j+1, . . . ,Vk/xk]

(Dec)
∧ j

i=0 Vi = V ′i
decrypt {V1, . . . ,Vk}V0 as {V ′1, . . . ,V ′j ;x j+1, . . . ,xk}V ′0 in P→R

P[Vj+1/x j+1, . . . ,Vk/xk]

(ADec)
∧ j

i=1 Vi = V ′i
decrypt {|V1, . . . ,Vk |}m+ as {|V ′1, . . . ,V ′j ;x j+1, . . . ,xk |}m−

in P→R P[Vj+1/x j+1, . . . ,Vk/xk]

(ASig)
∧ j

i=1 Vi = V ′i
decrypt {|V1, . . . ,Vk |}m− as {|V ′1, . . . ,V ′j ;x j+1, . . . ,xk |}m+

in P→R P[Vj+1/x j+1, . . . ,Vk/xk]

(New)
P→R P′

(ν n)P→R (ν n)P′

(ANew)
P→R P′

(ν±m)P→R (ν±m)P′

(Par)
P1→R P′1

P1 | P2→R P′1 | P2

(Congr)
P≡ P′ ∧ P′→R P′′ ∧ P′′ ≡ P′′′

P→R P′′′

The meta level terms are identical to the object level terms, i.e. the terms ex-
plained before, except that names, variables and asymmetric keys are indexed. A
sequence of indexes ī is added as subscript, that is a shorthand for i1, . . . , ik. The
meta level processes are the following:

• |i∈S MP: the process describes the parallel composition of instances of the process
MP where the index i is an element in the set S.

• let X ⊆ S in MP: the process declares a set identifier X which has some values of
the index set S in the process MP; the set X can be infinite.

• (νi∈S nai)MP: the process describes the restriction of all the names nai; a is a
prefix of the index that can be empty.

• (ν±i∈S mai)MP: the process describes the restriction of all the key pairs m+
ai

and
m−

ai
; as above, a is a prefix of the index that can be empty.

• 〈ME1, . . . ,MEk〉.MP: the process sends a k-tuple of values onto the global net-
work; if the message reaches its destination, the process continues as MP.

• (ME1, . . . ,ME j;mx j+1, . . . ,mxk).MP: the process reads the k-tuple of values sent,
it checks if the values expected are identical to ME1, . . . ,ME j, and, if this suc-
ceeds, the remaining k− j values are bound to the variables mx j+1, . . . ,mxk, and
the process continues as MP, which is the scope of the variables; a semi-colon is
used to distinguish between the terms used for matching and the variables, as in
the input process seen in the object level.

• decrypt ME as {ME1, . . . ,ME j;mx j+1, . . . ,mxk}ME0 in MP: the process denotes
the symmetric decryption; it checks if the encryption key is identical to E0, then



Non-Repudiation Analysis Using LYSA with Annotations 9

the process decrypts the k-tuple, and it checks if the values expected are identical
to ME1, . . . ,ME j, and, if this succeeds, the remaining k− j values are bound
to the variables mx j+1, . . . ,mxk, and the process continues as MP, which is the
scope of the variables.

• decrypt ME as {| ME1, . . . ,ME j;mx j+1, . . . ,mxk |}ME0 in MP: the process de-
notes the asymmetric decryption and it works like symmetric decryption except
that E0 and the key used to encrypt have to be a key pair m+ and m−.

• (ν ni)MP: the process generates k new names ni, i ∈ [1..k], and it continues in
MP, which is the scope of the names.

• (ν±mi)MP: the process generates k new key pairs, m+
i and m−i , and it continues

in MP, which is the scope of the key pairs.
• MP1 | MP2: the process denotes two meta level subprocesses running in paral-

lel that may synchronize through communications over the network or perform
actions independently.

• !MP: the process acts as an arbitrary number of processes MP composed in par-
allel.

• 0: the process is the inactive or nil process that does nothing.

The process let X ⊆ S in MP is a binder of X , therefore if X is instantiated to a
subset of S then every occurrence of X in the process MP is instantiated. The process
|i∈S MP is a binder of i and the indexed restrictions are binders of names and key
pairs.

Table 7 Syntax of meta level LYSA calculus

mx ::= xi
ME ::= MTerm
ni
mx
m+

i
m−

i
{ME1, . . . ,MEk}ME0
{|ME1, . . . ,MEk |}ME0
MP ::= MProc
|i∈S MP
let X ⊆ S in MP
(νi∈S nai)MP
(ν±i∈S mai)MP
〈ME1, . . . ,MEk〉.MP
(ME1, . . . ,ME j;mx j+1, . . . ,mxk).MP
decrypt ME as {ME1, . . . ,ME j;mx j+1, . . . ,mxk}ME0 in MP
decrypt ME as {|ME1, . . . ,ME j;mx j+1, . . . ,mxk |}ME0 in MP
(ν ni)MP
(ν±mi)MP
MP1 |MP2
!MP
0



10 Mayla Brusò and Agostino Cortesi

An instantiation relation, written MP→I P, is introduced to describe that a pro-
cess P is an instance of a meta level process MP, as depicted in Table 8.

The rule (ILet) allows the meta level to instantiate to all the object level processes
P that are in some finite subset of the set S. The rule (IIPar) instantiates the process
|i∈S MP to be the parallel composition of processes for each of the indexes in the set
S. The rules (IINew) and (IIANew) instantiate the indexed restrictions to the restric-
tions of the names for all the values in the set {a1, . . . ,ak}. The rules (IOut), (IInp),
(IDec), (IADec), (INew), (IANew), (IRep), (IPar) and (INil) are instantiations of
their subprocesses.

Table 8 Instantiation relation MP→I P

(ILet)
MP[X 7→ S′]V P

let X ⊆ S in MPV P
if S′ ⊆ f in S

(IIPar)
MP[i 7→ a1]V P1 . . .MP[i 7→ ak]V Pk

|i∈{a1,...,ak} MPV P1 | . . . | Pk

(IINew)
MPV P

(νi∈{a1,...,ak} nai)MPV (ν naa1 ) . . .(ν naak )P

(IIANew)
MPV P

(ν±i∈{a1,...,ak} mai)MPV (ν± maa1 ) . . .(ν maak )P

(IOut)
MPV P

〈ME1, . . . ,MEk〉.MPV 〈ME1, . . . ,MEk〉.P
(IInp)

MPV P
(ME1, . . . ,ME j;mx j+1, . . . ,mxk).MPV
(ME1, . . . ,ME j;mx j+1, . . . ,mxk).P

(IDec)
MPV P

decrypt ME as {ME1, . . . ,ME j;mx j+1, . . . ,mxk}ME0 in MPV
decrypt ME as {ME1, . . . ,ME j;mx j+1, . . . ,mxk}ME0 in P

(IADec)
MPV P

decrypt ME as {|ME1, . . . ,ME j;mx j+1, . . . ,mxk |}ME0 in MPV
decrypt ME as {|ME1, . . . ,ME j;mx j+1, . . . ,mxk |}ME0 in P

(INew)
MPV P

(ν na)MPV (ν na)P

(IANew)
MPV P

(ν±ma)MPV (ν±ma)P

(IRep)
MPV P
!MPV!P

(IPar)
MP1V P1 MP2V P2

MP1 |MP2V P1 | P2
(INil) 0V 0

Example 1. Let us introduce a known non-repudiation protocol, namely the Zhou-
Gollmann protocol [12], which is the following:

A→ B : fNRO,B,L,C,NRO
B→ A : fNRR,A,L,NRR
A→ TTP : fSUB,B,L,K,sub K
B↔ TTP : fCON ,A,B,L,K,con K



Non-Repudiation Analysis Using LYSA with Annotations 11

A↔ TTP : fCON ,A,B,L,K,con K

where:

• A is the originator of the non-repudiation exchange;
• B is the recipient of the non-repudiation exchange;
• T T P is the on-line trusted third party providing network services accessible to

the public;
• M is the message sent from A to B;
• C is the encryption for the message M under a key K;
• K is the message key defined by A;
• L is a unique label that links all messages of a particular protocol run together;
• NRO = SigA( fNRO,B,L,C) is the non-repudiation of origin for M;
• NRR = SigB( fNRR,A,L,C) is the non-repudiation of receipt for M;
• sub K = SigA( fSUB,B,L,K) is the proof of submission of K;
• con K = SigT T P( fCON ,A,B,L,K) is the confirmation of K issued by T T P;
• f∗ is a flag which expresses the aim of the message (the sender wants to give a

proof of origin NRO / receipt NRR / submission SUB / confirmation con K).

The encoding is the following, where three key pairs (AK± for A, BK± for B, and
T T P± for the trusted third party) and a symmetric key (SK) are used:

(ν± T T P)(ν± AK)(ν± BK)(

!(ν SK)(ν L)(ν M)
〈 fNRO,B,L,{M}SK ,{| fNRO,B,L,{M}SK |}AK−〉.
( fNRR,A,L;xNRR).
decrypt xNRR as {| fNRR,A,L,{M}SK ; |}BK+ in
〈 fSUB,B,L,SK,{| fSUB,B,L,SK |}AK−〉.
( fCON ,A,B,L,SK;xCon).
decrypt xCon as {| fCON ,A,B,L,SK; |}T T P+ in 0

| !( fNRO,B;xL,xEnMsg,xNRO).
decrypt xNRO as {| fNRO,B,xL,xEnMsg; |}AK+ in
〈 fNRR,A,xL,{| fNRR,A,xL,xEnMsg |}BK−〉.
( fCON ,A,BxL;xK,xCon).
decrypt xCon as {| fCON ,A,B,xL,xK; |}T T P+ in
decrypt xEnMsg as {;xMsg}xK in 0

| !( fSUB,B;xL,xSK,xSub).
decrypt xSub as {| fSUB,B,xL,xSK; |}AK+ in
〈 fCON ,A,B,xL,xSK,{| fCON ,A,B,xL,xSK |}T T P−〉.
〈 fCON ,A,B,xL,xSK,{| fCON ,A,B,xL,xSK |}T T P−〉.0

)

where the restrictions (ν ± T T P), (ν ± AK), and (ν ± BK) are used only once



12 Mayla Brusò and Agostino Cortesi

with scope in the whole protocol, i.e. there are three private keys known only by the
owners and three public keys known by all the principals in the network.

In this scenario we have modelled only three principals, each one with a specific
role, but this is not realistic. In fact, in the global network there are many princi-
pals and this gives chances to an attack. Therefore we have to extend the protocol
above with multiple principals, simply indexing each name, each variable and each
parallel composition construct. We consider a scenario in which there are a trusted
third party (an honest principal) and many initiators and responders. The set X con-
tains both initiators and responders, so each principal can be one or the other. The
resulting protocol is the following:

let X ⊆ S in (ν±i∈X AKi)(ν± T T P)(
|i∈X | j∈X !(ν SKi j)(ν Li j)(ν Mi j)

〈 fNRO, I j,Li j,{Mi j}SKi j ,{| fNRO, I j,Li j,{Mi j}SKi j |}AK−i
〉.

( fNRR, Ii,Li j;xNRRi j).
decrypt xNRRi j as {| fNRR, Ii,Li j,{Mi j}SKi j ; |}AK+

j
in

〈 fSUB, I j,Li j,SKi j,{| fSUB, I j,Li j,SKi j |}AK−i
〉.

( fCON , Ii, I j,Li j,SKi j;xConi j).
decrypt xConi j as {| fCON , Ii, I j,Li j,SKi j; |}T T P+ in 0

||i∈X | j∈X !( fNRO, I j;xLi j,xEnMsgi j,xNROi j).
decrypt xNROi j as {| fNRO, I j,xLi j,xEnMsgi j; |}AK+

i
in

〈 fNRR, Ii,xLi j,{| fNRR, Ii,xLi j,xEnMsgi j |}AK−j
〉.

( fCON , Ii, I j,xLi j;xKi j,xConi j).
decrypt xConi j as {| fCON , Ii, I j,xLi j,xKi j; |}T T P+ in
decrypt xEnMsgi j as {;xMsgi j}xKi j in 0

||i∈X | j∈X !( fSUB, I j;xLi j,xSKi j,xSubi j).
decrypt xSubi j as {| fSUB, I j,xLi j,xSKi j; |}AK+

i
in

〈 fCON , Ii, I j,xLi j,xSKi j,{| fCON , Ii, I j,xLi j,xSKi j |}T T P−〉.
〈 fCON , Ii, I j,xLi j,xSKi j,{| fCON , Ii, I j,xLi j,xSKi j |}T T P−〉.0

)

3 Control Flow Analysis

In this section we introduce our Control Flow Analysis (CFA) as an extension of [9].
The aim of the CFA is to collect information about the behavior of a process and to
store them in some data structures A , called analysis components. To be finite, static
analysis is forced to compute approximations rather than exact answers. Therefore
the analysis can give false positives but it has to preserve soundness.



Non-Repudiation Analysis Using LYSA with Annotations 13

We will use Flow Logic settings for the specification and the proofs. It is a for-
malism for specifying static analysis and it focuses on the relationship between an
analysis estimate and the process to be analysed, formally:

A � P

which is a predicate that holds when A is a description of the behavior of the process
P.

CFA abstracts the executions and represents only some aspects of the behavior of
a process which can also be infinite. We will prove the correctness of the analysis by
showing that the analysis components A are such that the property they represent
also holds when the process evolves. Formally:

A � P∧P→ P′⇒A � P′

The Flow Logic specifications can be of the following formats.

Definition 1 (Verbose Format). A Verbose Flow Logic specification records infor-
mation about a process globally, by rules of the form

A � P iff a logic formula F holds

that means that the analysis components A are estimates of the process P if and
only if the logic formula F holds.

Definition 2 (Succinct Format). A Succinct Flow Logic specification records in-
formation about a process locally, by rules of the form

A � P : A′ iff a logic formula F holds

where A ′ is an analysis component that holds information only about the process P
and it is not known anywhere else in the analysis.

The analysis components record canonical values from the set bValc ranged over
by U to represent values generated by the same restriction. The component κ ∈
P(bValc∗) collects the tuples of canonical values corresponding to the values com-
municated in the global network while ρ : bVarc→P(bValc) records the canonical
values corresponding to the values that variables may become bound. A predicate
ρ,κ � P says that ρ and κ are valid analysis results describing the behavior of P. To
analyse the expressions it is used the form ρ � E : ϑ to describe a set of canonical
values ϑ ∈P(bValc) that the expression E may evaluate.

The analysis of terms and processes is described in Table 9. The rules (AN),
(ANp) and (ANm) say that names may evaluate to themselves iff the canonical
names are in ϑ . The rule (AVar) says that variables may evaluate to the values
described by ρ for the corresponding canonical variable. The rules (AEnc) and
(AAEnc) use the analysis predicate recursively to evaluate all the subexpressions
in the encryption and they require ϑ to contain all the encrypted values that can be
formed combining the values that subexpressions may evaluate to. The rule (AOut)
says that the expressions are evaluated and it is required that all the combinations of
the values found by this evaluation are recorded in κ . The rule (AInp) says that



14 Mayla Brusò and Agostino Cortesi

the first j expressions in the input construct are evaluated to be the sets ϑi for
i = 1, . . . , j; if the pattern match with the values in κ is successful, the remaining
values of the k-tuple is recorded in ρ as possible binding of the variables and the
continuation process is analysed. The rule (ASDec), (AADec) and (AASig) eval-
uate the expression E into the set ϑ and the first j expressions in the decryption
constructs are evaluated to be the sets ϑi for i = 1, . . . , j; if the pattern match with
the values in κ is successful, the remaining values of the k-tuple is recorded in ρ as
possible binding of the variables and the continuation process is analysed. Notice
that the original syntax [3] [6] uses only the rule (AADec) to define both asymmetric
decryption and signature while we introduce here two rules imposing an order in the
choice of the keys to make our analysis more efficient. The rule (ANew), (AANew),
(APar) and (ARep) require that the subprocesses are analysed. The rule (ANil) deals
with the trivial case.

Whenever the requirements hold, the continuation process is analysed.

Table 9 Analysis of terms and processes

(AN) ρ � n : ϑ iff bnc ∈ ϑ

(ANp) ρ � m+ : ϑ iff bm+c ∈ ϑ

(ANm) ρ � m− : ϑ iff bm−c ∈ ϑ

(AVar) ρ � x : ϑ iff ρ(bxc)⊆ ϑ

(AEnc) ρ � {E1, . . . ,Ek}E0 : ϑ iff
∧k

i=0 ρ � Ei : ϑi∧∀U0, . . . ,Uk :
∧k

i=0 Ui ∈ ϑi
⇒{U1, . . . ,Uk}U0 ∈ ϑ

(AAEnc) ρ � {| E1, . . . ,Ek |}E0 : ϑ iff
∧k

i=0 ρ � Ei : ϑi∧∀U0, . . . ,Uk :
∧k

i=0 Ui ∈ ϑi
⇒{|U1, . . . ,Uk |}U0 ∈ ϑ

(AOut) ρ,κ � 〈E1, . . . ,Ek〉.P iff
∧k

i=1 ρ � Ei : ϑi∧∀U1, . . . ,Uk :
∧k

i=1 Ui ∈ ϑi
⇒ (〈U1, . . . ,Uk〉 ∈ κ ∧ρ,κ � P)

(AInp) ρ,κ � (E1, . . . ,E j;x j+1, . . . ,xk).P
iff

∧ j
i=1 ρ � Ei : ϑi∧∀〈U1, . . . ,Uk〉 ∈ κ :

∧ j
i=1 Ui ∈ ϑi

⇒ (
∧k

i= j+1 Ui ∈ ρ(bxic)∧ρ,κ � P)
(ASDec) ρ,κ � decrypt E as {E1, . . . ,E j;x j+1, . . . ,xk}E0 in P

iff ρ � E : ϑ ∧
∧ j

i=0 ρ � Ei : ϑi∧∀{U1, . . . ,Uk}U0 ∈ ϑ

∧
∧ j

i=0 Ui ∈ ϑi⇒ (
∧k

i= j+1 Ui ∈ ρ(bxic)∧ρ,κ � P)
(AADec) ρ,κ � decrypt E as {| E1, . . . ,E j;x j+1, . . . ,xk |}E0 in P

iff ρ � E : ϑ ∧
∧ j

i=0 ρ � Ei : ϑi∧∀{|U1, . . . ,Uk |}U0 ∈ ϑ :
∀U ′0 ∈ ϑ0 : ∀(m+,m−) : (U0,U ′0) = (bm−c,bm+c)
∧

∧ j
i=1 Ui ∈ ϑi⇒ (

∧k
i= j+1 Ui ∈ ρ(bxic)∧ρ,κ � P)

(AASig) ρ,κ � decrypt E as {| E1, . . . ,E j;x j+1, . . . ,xk |}E0 in P
iff ρ � E : ϑ ∧

∧ j
i=0 ρ � Ei : ϑi∧∀{|U1, . . . ,Uk |}U0 ∈ ϑ :

∀U ′0 ∈ ϑ0 : ∀(m+,m−) : (U0,U ′0) = (bm+c,bm−c)
∧

∧ j
i=1 Ui ∈ ϑi⇒ (

∧k
i= j+1 Ui ∈ ρ(bxic)∧ρ,κ � P)

(ANew) ρ,κ � (ν n)P iff ρ,κ � P
(AANew) ρ,κ � (ν±m)P iff ρ,κ � P
(APar) ρ,κ � P1 | P2 iff ρ,κ � P1∧ρ,κ � P2
(ARep) ρ,κ �!P iff ρ,κ � P
(ANil) ρ,κ � 0 iff true



Non-Repudiation Analysis Using LYSA with Annotations 15

The analysis is also defined for the meta level as an extension of the analysis seen
so far and it takes the form

ρ,κ �Γ M

where Γ : SetID∪P(Index f in)→P(Index f in) is a mapping from set identifiers to
finite sets of indexes. To solve the problem of infinite object level processes we use
again the canonical representation of the names. The analysis is defined in Table 10,
and the new rules are explained below; the rest of the rules are similar to the ones
for analysing object level (the one seen so far), except that they range over indexed
names and variables.

The rule (MLet) updates Γ with the mapping X 7→ S′, where S′ is required to be
finite and it has the same canonical names as the set S. The rule (MIPar) expresses
that the analysis holds for all the processes where the index i is substituted by all the
elements in Γ (S). The rules (MINew) and (MIANew) ignore the restriction opera-
tors.

3.1 The attacker

The attacker is unique and runs its protocol P• following the Dolev-Yao formula
F DY

RM [5]. We write Psys | P• to show that an arbitrary attacker controls the whole
network while principals exchange messages using the protocol. A protocol process
Psys has type whenever it is close, all its free names are in N f , all the arities of the
sent or received messages are in Aκ and all the arities of the encrypted or decrypted
messages are in AEnc. These three sets are finite, like Nc and Xc, used to collect
all the names and all the variables respectively in the process Psys. The attacker
uses a new name, n• /∈Nc, and a new variable, z• /∈Xc, which do not overlap the
names and the variables used by the legitimate principals. It is again considered a
process with finitely many canonical names and variables. A formula F DY

RM of the
type (N f ,Aκ ,AEnc), which is capable of characterizing the potential effect of all
the attackers P• of the type (N f ,Aκ ,AEnc), is defined as the conjunction of the
components in Table 11.

4 Non-Repudiation Analysis

Non-repudiation guarantees that the principals exchanging messages cannot falsely
deny having sent or received the messages. This is done using evidences [7] that
allow to decide unquestionably in favor of the fair principal whenever there is a
dispute. In particular, non-repudiation of origin provides the recipient with proof of
origin while non-repudiation of receipt provides the originator with proof of receipt.
Evidences [13] should have verifiable origin, integrity and validity.



16 Mayla Brusò and Agostino Cortesi

Table 10 The meta level analysis

(MLet) ρ,κ �Γ let X ⊆ S in M iff ρ,κ �Γ [X 7→S′] M where S′ ⊆ f in Γ (S) and bS′c= bΓ (S)c
(MIPar) ρ,κ �Γ |i∈S M iff

∧
a∈Γ (S) ρ,κ �Γ M[i 7→ a]

(MINew) ρ,κ �Γ (νi∈Snai)M iff ρ,κ �Γ M
(MIANew) ρ,κ �Γ (ν±i∈Smai)M iff ρ,κ �Γ M
(MN) ρ � ni : ϑ iff bnic ∈ ϑ

(MNp) ρ � m+
i : ϑ iff bm+

i
c ∈ ϑ

(MNm) ρ � m−i : ϑ iff bm−
i
c ∈ ϑ

(MVar) ρ � xi : ϑ iff ρ(bxic)⊆ ϑ

(MEnc) ρ � {ME1, . . . ,MEk}ME0 : ϑ iff
∧k

i=0 ρ �MEi : ϑi∧∀U0, . . . ,Uk :∧k
i=0 Ui ∈ ϑi⇒{U1, . . . ,Uk}U0 ∈ ϑ

(AAEnc) ρ � {|ME1, . . . ,MEk |}ME0 : ϑ

iff
∧k

i=0 ρ �MEi : ϑi∧∀U0, . . . ,Uk :∧k
i=0 Ui ∈ ϑi⇒{|U1, . . . ,Uk |}U0 ∈ ϑ

(MOut) ρ,κ �Γ 〈ME1, . . . ,MEk〉.M iff
∧k

i=1 ρ �MEi : ϑi∧∀U1, . . . ,Uk :∧k
i=1 Ui ∈ ϑi⇒ 〈U1, . . . ,Uk〉 ∈ κ ∧ρ,κ �Γ M

(MInp) ρ,κ �Γ (ME1, . . . ,ME j;x j+1, . . . ,xk).M
iff

∧ j
i=1 ρ �MEi : ϑi∧∀〈U1, . . . ,Uk〉 ∈ κ :

∧ j
i=1 Ui ∈ ϑi

⇒ (
∧k

i= j+1 Ui ∈ ρ(bxic)∧ρ,κ �Γ M)
(ASDec) ρ,κ �Γ decrypt ME as {ME1, . . . ,ME j;x j+1, . . . ,xk}ME0 in M

iff ρ �ME : ϑ ∧
∧ j

i=0 ρ �MEi : ϑi∧
∀{U1, . . . ,Uk}U0 ∈ ϑ ∧

∧ j
i=0 Ui ∈ ϑi

⇒ (
∧k

i= j+1 Ui ∈ ρ(bxic)∧ρ,κ �Γ M)
(AADec) ρ,κ �Γ decrypt ME as {|ME1, . . . ,ME j;x j+1, . . . ,xk |}ME0 in M

iff ρ �Γ ME : ϑ ∧
∧ j

i=0 ρ �Γ MEi : ϑi∧
∀{|U1, . . . ,Uk |}U0 ∈ ϑ : ∀U ′0 ∈ ϑ0 :
∀(m+,m−) : (U0,U ′0) = (bm−c,bm−c)
∧

∧ j
i=1 Ui ∈ ϑi⇒ (

∧k
i= j+1 Ui ∈ ρ(bxic)∧ρ,κ �Γ M)

(AASig) ρ,κ �Γ decrypt ME as {|ME1, . . . ,ME j;x j+1, . . . ,xk |}ME0 in M
iff ρ �Γ ME : ϑ ∧

∧ j
i=0 ρ �MEi : ϑi∧

∀{|U1, . . . ,Uk |}U0 ∈ ϑ : ∀U ′0 ∈ ϑ0 :
∀(m+,m−) : (U0,U ′0) = (bm+c,bm−c)
∧

∧ j
i=1 Ui ∈ ϑi⇒ (

∧k
i= j+1 Ui ∈ ρ(bxic)∧ρ,κ �Γ M)

(ANew) ρ,κ �Γ (ν ni)M iff ρ,κ �Γ M
(AANew) ρ,κ �Γ (ν±mi)M iff ρ,κ �Γ M
(APar) ρ,κ �Γ M1 |M2 iff ρ,κ �Γ M1∧ρ,κ �M2
(ARep) ρ,κ �Γ !M iff ρ,κ �Γ M
(ANil) ρ,κ �Γ 0 iff true

The syntax of the process calculus LYSA has to be extended to guarantee, given
a protocol, the non-repudiation property, i.e. authentication (only the sender of the
message can create it), integrity and freshness. This is done using electronic signa-
tures and unique identifiers for users and sessions. To this aim, we introduce two
sets, used in the body of the messages to collect information that will be useful to
perform the analysis: ID, where id ∈ ID is a unique identifier for a principal, and
NR, where nr ∈NR says that non-repudiation property is required for that part of the
message nr. To include this sets in our analysis, a redefinition of the syntax of LYSA



Non-Repudiation Analysis Using LYSA with Annotations 17

Table 11 The attacker’s capabilities

(1) The attacker may learn by eavesdropping∧
k∈Aκ

∀〈V1, . . . ,Vk〉 ∈ κ :
k∧

i=1

Vi ∈ ρ(z•)

(2) The attacker may learn by decrypting messages with keys already known∧
k∈AEnc

∀{V1, . . . ,Vk}V0 ∈ ρ(z•) : V0 ∈ ρ(z•)⇒
k∧

i=1

Vi ∈ ρ(z•)

∧
k∈AEnc

∀{|V1, . . . ,Vk |}m+ ∈ ρ(z•) : m− ∈ ρ(z•)⇒
k∧

i=1

Vi ∈ ρ(z•)

∧
k∈AEnc

∀{|V1, . . . ,Vk |}m− ∈ ρ(z•) : m+ ∈ ρ(z•)⇒
k∧

i=1

Vi ∈ ρ(z•)

(3) The attacker may construct new encryptions using the keys known∧
k∈AEnc

∀V0, . . . ,Vk :
k∧

i=0

Vi ∈ ρ(z•)⇒{V1, . . . ,Vk}V0 ∈ ρ(z•)

∧
k∈AEnc

∀m+,V1, . . . ,Vk : m+ ∈ ρ(z•)∧
k∧

i=1

Vi ∈ ρ(z•)⇒{|V1, . . . ,Vk |}m+ ∈ ρ(z•)

∧
k∈AEnc

∀m−,V1, . . . ,Vk : m− ∈ ρ(z•)∧
k∧

i=1

Vi ∈ ρ(z•)⇒{|V1, . . . ,Vk |}m− ∈ ρ(z•)

(4) The attacker may actively forge new communications∧
k∈Aκ

∀V1, . . . ,Vk :
k∧

i=1

Vi ∈ ρ(z•)⇒ 〈V1, . . . ,Vk〉 ∈ κ

(5) The attacker initially has some knowledge
{n•,m±• }∪N f ⊆ ρ(z•)

is required, as shown in Table 12. Observe that, with respect to the LYSA calculus
in 1, a unique identifier u is associated to encryption and decryption and an id ∈ ID
is associated to public and private keys to specify the principal that encrypts a given
message. The redefinition is obtained applying the function G to the processes of
the protocol analysed, that acts recursively on the subprocesses and redefines sub-
terms using another function, called F . The definition of the functions F and G ,
that map standard terms and processes into the extended ones, is shown in Table 13.
Notice that the functions provide a new syntax in which:

• ids are attached whenever an asymmetric key appears;
• a session identifier u is attached to each encryption and decryption;
• parallel composition assigns a different id to each process, because the two pro-

cesses belong to a different user;
• replication has a particular form that the semantic rules use to create replications

of the process with different ids (that has to be unique).

Notice that we have generalized the approach [6] proposed by H. Gao to provide
freshness property in a protocol. Indeed, the author defines two functions to attach
a session identifier to each statement; then, he redefines the semantics, using the



18 Mayla Brusò and Agostino Cortesi

Table 12 Syntax of LYSA calculus extended with principal identifiers

ε ::= terms
n name
x variable
[m+]id public key
[m−]id private key
{ε1, . . . ,εk}ε0 symmetric encryption
{| ε1, . . . ,εk |}u

ε0
asymmetric encryption

P ::= processes
〈ε1, . . . ,εk〉.P output
(ε1, . . . ,ε j;x j+1, . . . ,xk).P input
decrypt ε as {ε1, . . . ,ε j;x j+1, . . . ,xk}ε0 in P symmetric decryption
decrypt ε as {| ε1, . . . ,ε j;x j+1, . . . ,xk |}u

ε0
in P asymmetric decryption

(ν n)P restriction
(ν± [m]id)P pair restriction
P1 |P2 parallel composition
[!P]id replication
0 nil

functions to avoid to redefine the structural congruence. In our analysis, because
of the redefinition of the latter, we have not to modify significantly the reduction
semantics, except that the rule (NRNRep) takes advantage of a particular syntax that
allows to attach different and unique identifiers to each process. has to be removed

Table 13 Functions F and G

F : E× ID→ ε

- F (n, id) = n
- F (x, id) = x
- F (m+, id) = [m+]id
- F (m−, id) = [m−]id
- F ({E1, . . . ,Ek}E0 , id) = {F (E1, id), . . . ,F (Ek, id)}F (E0,id)
- F ({| E1, . . . ,Ek |}E0 , id) = {|F (E1, id), . . . ,F (Ek, id) |}u

F (E0,id)
G : P× ID→P
- G (〈E1, . . . ,Ek〉.P, id) = 〈F (E1, id), . . . ,F (Ek, id)〉.G (P, id)
- G ((E1, . . . ,E j;x j+1, . . . ,xk).P, id) =
(F (E1, id), . . . ,F (E j, id);x j+1, . . . ,xk).G (P, id)

- G (decrypt E as {E1, . . . ,E j;x j+1, . . . ,xk}E0 in P, id) =
decrypt F (E, id) as {F (E1, id), . . . ,F (E j, id);x j+1, . . . ,xk}F (E0,id) in G (P, id)

- G (decrypt E as {| E1, . . . ,E j;x j+1, . . . ,xk |}u
E0

in P, id) =
decrypt F (E, id) as {|F (E1, id), . . . ,F (E j, id);x j+1, . . . ,xk |}u

F (E0,id) in G (P, id)
- G ((ν n)P, id) = (ν n)G (P, id)
- G ((ν±m)P, id) = (ν± [m]id)G (P, id)
- G (P | Q, id) = G (P, id) | G (Q, id′)
- G (!P, id) = [!P]id
- G (0, id) = 0



Non-Repudiation Analysis Using LYSA with Annotations 19

because the structural equivalence does not hold in this case. The rule (NRNRep)
will appropriately treat the behavior of the replication statement, as reported in Table
17. Finally, we have to add the following annotations to the signatures:

• [from id] is associated to encryption and it means that the recipient expects a
message from id.

• [check NR] is associated to decryption and it means that for all the elements of the
set NR, non-repudiation property must be guaranteed. It is interesting to notice
that the elements in the set NR can specify a part of the message, not necessarily
the whole message, according to the definition of non-repudiation.

The syntax of asymmetric encryption and decryption becomes:

• {| ε1, . . . ,εk |}u
ε0

[from id]
• decrypt ε as {| ε1, . . . ,ε j;x j+1, . . . ,xk |}u

ε0
[check NR] in P

Notice that the annotation [from id] and the label u have a different role in the
analysis. The first says that the principal who encrypted the message must be the
same specified in the label associated to the private key used, while the second
expresses that the message has to belong to a precise session.

In practice, when there is a violation due to the ids, it means that the attacker
encrypted a message and sent it to a principal who expected it from another princi-
pal (remember that the attacker can even use a key known different from his key).
Instead, when there is a violation due to the labels u, it means that the attacker made
a replay attack using a message exchanged in a previous session.

4.1 Dynamic Property

To guarantee the dynamic property, the values have to be redefined into NRVal,
attaching the identifiers to the asymmetric key pairs and the annotations in the en-
cryption constructs as shown below:

NRV ::= n
| [m+]id
| [m−]id
| {NRV1, . . . ,NRVk}NRV0
| {| NRV1, . . . ,NRVk |}u

NRV0
[from id]

Furthermore, our extension involves redefinition of the semantics, of free names,
of structural congruence, and of α-equivalence, as described in the Tables 17, 14,
15, 16, respectively.

Notice that there are the following differences between the previous semantics
and the one used in the analysis:

• The asymmetric encryption and decryption are redefined adding a session iden-
tifier u, an identifier that shows who has encrypted a given cipher message, and
the annotations above.



20 Mayla Brusò and Agostino Cortesi

• New terms ε and processes P are used instead of the previous, T and P, which
do not carry annotations.

• The process !P is not structurally equivalent to P |!P , because of the recursive
definition of the function G .

• The rule (NRNRep) assures that a different id is associated at each process, there-
fore the same principal will have the same id for each encryption; id′ has to be
unique.

We use the reference monitor semantics (→RM), an extension of the standard
semantics (→R), to check the non-repudiation property. Taking advantage of anno-
tations, it forces some requirements and, if they are not meet, the process execution
is aborted.

The reference monitor semantics P→RM P′ takes annotations into account and
defines RM as

RM(id, id′,u,u′,{NRV1, . . . ,NRVn},NR) =
(id = id′∧u = u′∧∀nr ∈ NR : nr ∈ {NRV1, . . . ,NRVn})

where {NRV1, . . . ,NRVn} is a set of redefined values for non-repudiation analysis.
When the reference monitor is turned on, the reduction relation →R checks if the
requirements are met; otherwise R is considered true, i.e. the execution cannot be
aborted for the requirements above, it verify only the assumptions of the standard
rules.

Intuitively, we verify if the message received is encrypted by the correct sender
and if it is a fresh message.

The main difference between the standard semantics and the redefined semantics
is expressed by the rule used to verify a signature. In fact, when the reference moni-
tor is turned on, the rules (NRNSig) ensures that the non-repudiation property holds
for the elements specified by the annotations.

Definition 3 (Dynamic Non-Repudiation). A process P ensures dynamic non-
repudiation property if for all the executions

P →∗ P ′→RM P ′′

id = id′ and u = u′ and ∀nr ∈ NR : nr ∈ {NRV1, . . . ,NRVk} when P ′→RM P ′′ is
derived using (ASig) on

decrypt {| NRV1, . . . ,NRVk |}u
[m−]id

[from id′] as

{| NRV ′1, . . . ,NRV ′j ;x j+1, . . . ,xk |}u′
[m+]id

[check NR] in P

Definition 1 says that an extended process P ensures non-repudiation property
if there is no violation in any of its execution.

4.2 Static Property

A component ψ ⊆P(NR) will collect all the labels nr such that the non-repudiation
property for the element nr is possibly violated.



Non-Repudiation Analysis Using LYSA with Annotations 21

Table 14 Redefinition of the function f n(P)

f n(n)
de f
= {n}

f n([m+]id)
de f
= {[m+]id}

f n([m−]id)
de f
= {[m−]id}

f n(x)
de f
= /0

f n({ε1, . . . ,εk}ε0 )
de f
= f n(ε0)∪ . . .∪ f n(εk)

f n({| ε1, . . . ,εk |}u
ε0

[from id])
de f
= f n(ε0)∪ . . .∪ f n(εk)

f n(〈ε1, . . . ,εk〉.P)
de f
= f n(ε1)∪ . . .∪ f n(εk)∪ f n(P)

f n((ε1, . . . ,ε j;x j+1, . . . ,xk).P)
de f
= f n(ε1)∪ . . .∪ f n(ε j)∪ f n(P)

f n(decrypt ε as {ε1, . . . ,ε j;x j+1, . . . ,xk}ε0 in P)
de f
= f n(ε)∪ f n(ε0)∪ . . .∪ f n(ε j)∪ f n(P)

f n(decrypt ε as {| ε1, . . . ,ε j;x j+1, . . . ,xk |}u
ε0

[check NR] in P)
de f
= f n(ε)∪ f n(ε0)∪ . . .∪ f n(ε j)∪ f n(P)

f n((ν n)P)
de f
= f n(P)\{n}

f n((ν± [m]id)P)
de f
= f n(P)\{[m+]id , [m−]id}

f n(P1 |P2)
de f
= f n(P1)∪ f n(P2)

f n([!P]id)
de f
= f n(G (P, id))

f n(0)
de f
= /0

Table 15 Redefinition of the structural congruence P≡ P′

P ≡P
P1 ≡P2⇒P2 ≡P1
P1 ≡P2∧P2 ≡P3⇒P1 ≡P3

P1 ≡P2⇒



〈ε1, . . . ,εk〉.P1 ≡ 〈ε1, . . . ,εk〉.P2
(ε1, . . . ,ε j;x j+1, . . . ,xk).P1 ≡ (ε1, . . . ,ε j;x j+1, . . . ,xk).P2
decrypt ε as {ε1, . . . ,ε j;x j+1, . . . ,xk}ε0 in P1 ≡

decrypt ε as {ε1, . . . ,ε j;x j+1, . . . ,xk}ε0 in P2
decrypt ε as {| ε1, . . . ,ε j;x j+1, . . . ,xk |}u

ε0
[check NR] in P1 ≡

decrypt ε as {| ε1, . . . ,ε j;x j+1, . . . ,xk |}u
ε0

[check NR] in P2
(ν n)P1 ≡ (ν n)P2
(ν± [m]id)P1 ≡ (ν± [m]id)P2
P1 |P3 ≡P2 |P3

P1 ≡ P2⇒ [!P1]id ≡ [!P2]id if both P1 and P2 are annotated with the same id
P1 |P2 ≡P2 |P1
(P1 |P2) |P3 ≡P1 | (P2 |P3)
P | 0≡P
(ν n)0≡ 0
(ν n1)(ν n2)P ≡ (ν n2)(ν n1)P
(ν n)(P1 |P2)≡P1 | (ν n)P2 if n /∈ f n(P1)
(ν± [m]id)0≡ 0
(ν± [m1]id)(ν± [m2]id)P ≡ (ν± [m2]id)(ν± [m1]id)P
(ν± [m]id)(P1 |P2)≡P1 | (ν± [m]id)P2 if [m+]id , [m−]id /∈ f n(P1)
(ν± [m]id)(ν n)P ≡ (ν n)(ν± [m]id)P
P1

α≡P2⇒P1 ≡P2



22 Mayla Brusò and Agostino Cortesi

Table 16 Redefinition of the α-equivalence

P
α≡P

P1
α≡P2 implies P2

α≡P1

P1
α≡P2 and P2

α≡P3 implies P1
α≡P3

(ν n1)P
α≡ (ν n2)(P[n1 7→ n2]) if n2 /∈ f n(P)

(ν± [m1]id)P
α≡ (ν± [m2]id)(P[[m1]+id 7→ [m2]+id , [m1]−id 7→ [m2]−id ])

if [m2]+id , [m2]−id /∈ f n(P)

Table 17 Redefinition of the semantics of LYSA calculus

(NRNCom)
∧ j

i=1 NRVi = NRV ′i
〈NRV1, . . . ,NRVk〉.P | (NRV ′1, . . . ,NRV ′j ;x j+1, . . . ,xk).P ′→R

P |P ′[NRVj+1/x j+1, . . . ,NRVk/xk]

(NRNDec)
∧ j

i=0 NRVi = NRV ′i
decrypt {NRV1, . . . ,NRVk}NRV0
as {NRV ′1, . . . ,NRV ′j ;x j+1, . . . ,xk}NRV ′0

[check NR]
in P →R P[NRVj+1/x j+1, . . . ,NRVk/xk]

(NRNADec)
∧ j

i=1 NRVi = NRV ′i
decrypt {| NRV1, . . . ,NRVk |}u

[m+]id
[from id′] as

{| NRV ′1, . . . ,NRV ′j ;x j+1, . . . ,xk |}u′
[m−]id

[check NR] in
P →R P[NRVj+1/x j+1, . . . ,NRVk/xk]

(NRNSig)
∧ j

i=1 NRVi = NRV ′i ∧RM(id, id′,u,u′,{NRVj+1, . . . ,NRVk},NR)
decrypt {| NRV1, . . . ,NRVk |}u

[m−]id
[from id′] as

{| NRV ′1, . . . ,NRV ′j ;x j+1, . . . ,xk |}u′
[m+]id

[check NR] in
P →R P[NRVj+1/x j+1, . . . ,NRVk/xk]

(NRNNew)
P →R P ′

(ν n)P →R (ν n)P ′

(NRNANew)
P →R P ′

(ν± [m]id)P →R (ν± [m]id)P ′

(NRNPar)
P1→R P ′

1
P1 |P2→R P ′

1 |P2

(NRNCongr)
P ≡P ′ ∧ P ′→R P ′′ ∧ P ′′ ≡P ′′′

P →R P ′′′

(NRNRep) [!P]id →R G (P, id) | [!P]id′

The ∝ operator is introduced to ignore the extension of the syntax and is defined
as:

NRV ∝ ϑ iff there exists V ∈Val such that NRV = V and V ∈ ϑ

where the relation NRV = V is defined to be the least equivalence between an ele-
ment in NRVal and an element in Val that inductively ignores the identifiers and the
annotations.

The analyses of the terms and of the processes are shown in the Tables 18 and
19. The rule (NRASig) checks the non-repudiation property whenever a signature is
verified.



Non-Repudiation Analysis Using LYSA with Annotations 23

Table 18 Non-repudiation analysis of terms ρ ` ε : ϑ

(NRAN) ρ � n : ϑ iff bnc ∈ ϑ

(NRANp) ρ � [m+]id : ϑ iff [bm+c]id ∝ ϑ

(NRANm) ρ � [m−]id : ϑ iff [bm−c]id ∝ ϑ

(NRAVar) ρ � x : ϑ iff ρ(bxc)⊆ ϑ

(NRAEnc) ρ � {ε1, . . . ,εk}ε0 : ϑ iff
∧k

i=0 ρ � εi : ϑi ∧
∀NRV0, . . . ,NRVk :

∧k
i=0 NRVi ∝ ϑi⇒

{NRV1, . . . ,NRVk}NRV0 ∝ ϑ

(NRAAEnc) ρ � {| ε1, . . . ,εk |}u
ε0

[from id] : ϑ

iff
∧k

i=0 ρ � εi : ϑi ∧
∀NRV0, . . . ,NRVk :

∧k
i=0 NRVi ∝ ϑi⇒

{| NRV1, . . . ,NRVk |}u
[NRV0]id′

[from bidc]∝ ϑ

Table 19 Non-repudiation analysis of processes ρ,κ,ψ �P

(NRAOut) ρ,κ,ψ � 〈ε1, . . . ,εk〉.P
iff

∧k
i=1 ρ � εi : ϑi∧

∀NRV1, . . . ,NRVk :
∧k

i=1 NRVi ∝ ϑi⇒
(〈NRV1, . . . ,NRVk〉 ∈ κ ∧ρ,κ,ψ �P)

(NRAInp) ρ,κ,ψ � (ε1, . . . ,ε j;x j+1, . . . ,xk).P
iff

∧ j
i=1 ρ � εi : ϑi∧

∀〈NRV1, . . . ,NRVk〉 ∈ κ :
∧ j

i=1 NRVi ∝ ϑi⇒
(
∧k

i= j+1 NRVi ∈ ρ(bxic)∧ρ,κ,ψ �P)
(NRADec) ρ,κ,ψ � decrypt ε as {ε1, . . . ,ε j;x j+1, . . . ,xk}ε0 in P

iff ρ � ε : ϑ ∧
∧ j

i=0 ρ � εi : ϑi∧
∀{NRV1, . . . ,NRVk}NRV0 ∝ ϑ ∧

∧ j
i=0 NRVi ∝ ϑi⇒

(
∧k

i= j+1 NRVi ∈ ρ(bxic)∧ρ,κ,ψ �P)
(NRAADec) ρ,κ,ψ � decrypt ε as {| ε1, . . . ,ε j;x j+1, . . . ,xk |}u′

ε0
[check NR] in P

iff ρ � ε : ϑ ∧
∧ j

i=0 ρ � εi : ϑi∧
∀{| NRV1, . . . ,NRVk |}u

NRV0
[from bidc]∝ ϑ :

∀NRV ′0 ∝ ϑ0 : ∀(m+,m−) : (NRV0,NRV ′0) =
([bm−c]id′ , [bm+c]id′ )∧

∧ j
i=1 NRVi ∝ ϑi⇒

(
∧k

i= j+1 NRVi ∈ ρ(bxic)∧ρ,κ,ψ �P)
(NRASig) ρ,κ,ψ � decrypt ε as {| ε1, . . . ,ε j;x j+1, . . . ,xk |}u′

ε0
[check NR] in P

iff ρ � ε : ϑ ∧
∧ j

i=0 ρ � εi : ϑi∧
∀{| NRV1, . . . ,NRVk |}u

NRV0
[from bidc]∝ ϑ :

∀NRV ′0 ∝ ϑ0 : ∀m+,m−, id, id′ : (NRV0,NRV ′0) =
([bm+c]id′ , [bm−c]id′ )∧

∧ j
i=1 NRVi ∝ ϑi⇒

(
∧k

i= j+1 NRVi ∈ ρ(bxic)∧ρ,κ,ψ �P∧
∀nr ∈ NR : (id 6= id′∨u 6= u′∨
nr /∈ {NRVj+1, . . . ,NRVk})⇒ bnrc ∈ ψ)

(NRANew) ρ,κ,ψ � (ν n)P iff ρ,κ,ψ �P
(NRAANew) ρ,κ,ψ � (ν±m)P iff ρ,κ,ψ �P
(NRAPar) ρ,κ,ψ �P1 |P2 iff ρ,κ,ψ �P1∧ρ,κ,ψ �P2
(NRARep) ρ,κ,ψ � [!P]id iff ρ,κ,ψ � G (P, id)
(NRANil) ρ,κ,ψ � 0 iff true



24 Mayla Brusò and Agostino Cortesi

To prove the correctness of our analysis we must prove that it respects the ex-
tended operational semantics of LYSA, i.e. if ρ,κ,ψ �P then the triple (ρ,κ,ψ)
is a valid estimate for all the states passed through in a computation of P . Further-
more, we prove that when ψ is empty, then the reference monitor is useless.

Our proof uses three lemmas, defined and proved below. The first and the second
show that estimates are resistant to substitution of closed terms for variables, both
in the terms and in the processes; the third says that an estimate for an extended
process P is valid for every process congruent to P .

Lemma 1 (Substitution in expression). If ρ � ε : ϑ and ε ′ ∈ ρ(x) then ρ � ε[ε ′/x] :
ϑ .

Proof. By structural induction over expressions.

Case (Name). We assume that ρ � n : ϑ and ε ′ ∈ ρ(x). Since n = n[ε ′/x], it is
immediate that also ρ � n[ε ′/x] : ϑ .

Case (Public key). We assume that ρ � [m+]id : ϑ and ε ′ ∈ ρ(x). Since [m+]id =
[m+]id [ε ′/x], it is immediate that also ρ � [m+]id [ε ′/x] : ϑ .

Case (Private key). We assume that ρ � [m−]id : ϑ and ε ′ ∈ ρ(x). Since [m−]id =
[m−]id [ε ′/x], it is immediate that also ρ � [m−]id [ε ′/x] : ϑ .

Case (Variable). We assume that ρ � x′ : ϑ (therefore ρ(x′)⊆ ϑ ) and ε ′ ∈ ρ(x).
There are two cases:

1. If ε 6= x then x′ = x′[ε ′/x] and it is immediate that also ρ � x′[ε ′/x] : ϑ .
2. If ε = x then x′[ε ′/x] = ε ′, by hypothesis we have ε ′ ∈ ρ(x) and ρ(x′)⊆ ϑ , then

it holds that ρ � ε ′ : ϑ , in which case ρ � x′[ε ′/x] : ϑ .

Case (Encryption). We assume that ρ � {ε1, . . . ,εk}ε0 : ϑ and ε ′ ∈ ρ(x). By the
induction hypothesis it holds that ρ � ε0[ε ′/x] : ϑ , . . . ,ρ � εk[ε ′/x] : ϑ . Therefore,
by the rule (NRAAEnc), we have ρ � {ε1, . . . ,εk}ε0 [ε

′/x] : ϑ .

Case (Asymmetric encryption). We assume that ρ � {| ε1, . . . ,εk|}u
ε0

[from id] : ϑ and ε ′ ∈ ρ(x). By the induction hypothesis it holds that ρ � ε0[ε ′/x] :
ϑ , . . . ,ρ � εk[ε ′/x] : ϑ . Therefore, by the rule (NRAEnc), we have ρ � {| ε1, . . . ,εk |
}u

ε0
[from id][ε ′/x] : ϑ .

Since both the bases and the inductive steps have been proved, it follows that
Lemma 1 holds for all the expressions by structural induction. ut

Lemma 2 (Substitution in processes). If ρ,κ,ψ �P and ε ∈ ρ(x) then ρ,κ,ψ �
P[ε/x].

Proof. By structural induction over processes.



Non-Repudiation Analysis Using LYSA with Annotations 25

Case (Output). We assume
P = 〈ε1, . . . ,εk〉.P ′

By hypothesis we have

• ρ,κ,ψ � 〈ε1, . . . ,εk〉.P ′

• ε ∈ ρ(x)

By Lemma 1 and the induction hypothesis on the sub-processes, it holds that

• ρ � ε1[ε/x] : ϑ , . . . ,ρ � εk[ε/x] : ϑ

• ρ,κ,ψ �P ′[ε/x]

Therefore, by the rule (NRAOut), we have ρ,κ,ψ �P[ε/x].

Case (Input). We assume
P = (ε1, . . . ,ε j;x j+1, . . . ,xk).P ′

By hypothesis we have

• ρ,κ,ψ � (ε1, . . . ,ε j;x j+1, . . . ,xk).P ′

• ε ∈ ρ(x)

By Lemma 1 and the induction hypothesis on the sub-processes, it holds that

• ρ � ε1[ε/x] : ϑ , . . . ,ρ � ε j[ε/x] : ϑ

• ρ � x j+1[ε/x] : ϑ , . . . ,ρ � xk[ε/x] : ϑ

• ρ,κ,ψ �P ′[ε/x]

Therefore, by the rule (NRAInp), we have ρ,κ,ψ �P[ε/x].

Case (Symmetric decryption). We assume
P = decrypt ε as {ε1, . . . ,ε j;x j+1, . . . ,xk}ε0 in P ′

By hypothesis we have

• ρ,κ,ψ � decrypt ε as {ε1, . . . ,ε j;x j+1, . . . ,xk}ε0 in P ′

• ε ∈ ρ(x)

By Lemma 1 and the induction hypothesis on the sub-processes, it holds that

• ρ � ε1[ε/x] : ϑ , . . . ,ρ � ε j[ε/x] : ϑ

• ρ � x j+1[ε/x] : ϑ , . . . ,ρ � xk[ε/x] : ϑ

• ρ,κ,ψ �P ′[ε/x]

Therefore, by the rule (NRADec), we have ρ,κ,ψ �P[ε/x].

Case (Asymmetric decryption). We assume
P = decrypt ε as {| ε1, . . . ,ε j;x j+1, . . . ,xk |}u

ε0
[check NR] in P ′

By hypothesis we have

• ρ,κ,ψ � decrypt ε as {| ε1, . . . ,ε j;x j+1, . . . ,xk |}u
ε0

[check NR] in P ′

• ε ∈ ρ(x)

By Lemma 1 and the induction hypothesis on the sub-processes, it holds that



26 Mayla Brusò and Agostino Cortesi

• ρ � ε1[ε/x] : ϑ , . . . ,ρ � ε j[ε/x] : ϑ

• ρ � x j+1[ε/x] : ϑ , . . . ,ρ � xk[ε/x] : ϑ

• ρ,κ,ψ �P ′[ε/x]

Therefore, by the rule (NRAADec), we have ρ,κ,ψ �P[ε/x].

Case (Signature). We assume
P = decrypt ε as {| ε1, . . . ,ε j;x j+1, . . . ,xk |}u

ε0
[check NR] in P ′

By hypothesis we have

• ρ,κ,ψ � decrypt ε as {| ε1, . . . ,ε j;x j+1, . . . ,xk |}u
ε0

[check NR] in P ′

• ε ∈ ρ(x)

By Lemma 1 and the induction hypothesis on the sub-processes, it holds that

• ρ � ε1[ε/x] : ϑ , . . . ,ρ � ε j[ε/x] : ϑ

• ρ � x j+1[ε/x] : ϑ , . . . ,ρ � xk[ε/x] : ϑ

• ρ,κ,ψ �P ′[ε/x]

Therefore, by the rule (NRASig), we have ρ,κ,ψ �P[ε/x].

Case (Restriction). We assume
P = (ν n)P ′

By hypothesis we have

• ρ,κ,ψ � (ν n)P ′

• ε ∈ ρ(x)

By the induction hypothesis on the sub-processes, it holds that

• ρ,κ,ψ �P ′[ε/x]

Therefore, by the rule (NRANew), we have ρ,κ,ψ �P[ε/x].

Case (Pair restriction). We assume
P = (ν± [m]id)P ′

By hypothesis we have

• ρ,κ,ψ � (ν± [m]id)P ′

• ε ∈ ρ(x)

By the induction hypothesis on the sub-processes, it holds that

• ρ,κ,ψ �P ′[ε/x]

Therefore, by the rule (NRANew), we have ρ,κ,ψ �P[ε/x].

Case (Parallel composition). We assume
P = P1 |P2

By hypothesis we have

• ρ,κ,ψ �P1 |P2



Non-Repudiation Analysis Using LYSA with Annotations 27

• ε ∈ ρ(x)

By the induction hypothesis on the sub-processes, it holds that

• ρ,κ,ψ �P1[ε/x]
• ρ,κ,ψ �P2[ε/x]

Therefore, by the rule (NRAPar), we have ρ,κ,ψ �P[ε/x].

Case (Replication). We assume
P = [!P′]id

By hypothesis we have

• ρ,κ,ψ � [!P′]id
• ε ∈ ρ(x)

By the induction hypothesis on the sub-processes, it holds that

• ρ,κ,ψ � G (P′, id)[ε/x]

Therefore, by the rule (NRARep), we have ρ,κ,ψ �P[ε/x].

Case (Nil). We assume
P = 0

Since 0 = 0[ε/x] and ρ,κ,ψ � 0, trivially it holds ρ,κ,ψ �P[ε/x].

Since both the basis and the inductive steps have been proved, it follows that
Lemma 2 holds for all the processes by structural induction. ut

Lemma 3 (Invariance of structural congruence). If P ≡Q and ρ,κ,ψ �P then
ρ,κ,ψ �Q.

Proof. By inspection of the clauses defining P ≡Q.

Case (P | 0≡P). We assume ρ,κ,ψ �P | 0, then it must be ρ,κ,ψ �P and
ρ,κ,ψ � 0, therefore ρ,κ,ψ �P .

Other cases can be proved in a similar way, therefore Lemma 3 holds for all the
clauses. ut

Now, we can prove the correctness of the analysis by the Theorem defined below.

Theorem 1 (Correctness of the non-repudiation analysis). If ρ,κ,ψ �P and
ψ = /0 then P ensures static non-repudiation.

Proof. The theorem can be proven by induction in the length of the execution se-
quences, showing that if ρ,κ,ψ �P and P →R P ′ then ρ,κ,ψ �P ′ and fur-
thermore if ψ = /0 then P →RM P ′ does not violate the non-repudiation property.



28 Mayla Brusò and Agostino Cortesi

Case (NRNCom). We assume
ρ,κ,ψ � 〈ε1, . . . ,εk〉.P | (ε ′1, . . . ,ε ′j;x j+1, . . . ,xk).Q

which amounts to:

1.
∧k

i=1 ρ � εi : ϑi
2. ∀NRV1, . . . ,NRVk :

∧k
i=1 NRVi ∝ ϑi⇒ 〈NRV1, . . . ,NRVk〉 ∈ κ

3. ρ,κ,ψ �P

4.
∧ j

i=1 ρ � ε ′i : ϑ ′i
5. ∀〈NRV1, . . . ,NRVk〉 ∈ κ :

∧ j
i=1 NRVi ∝ ϑ ′i ⇒ (

∧k
i= j+1 NRVi ∈ ρ(bxic)∧ρ,κ,ψ �

Q)
6.

∧ j
i=1 εi = ε ′i

and we have to prove
ρ,κ,ψ �P |Q[ε j+1/x j+1, . . . ,εk/xk]

From the hypothesis we obtain:

• (1.)⇒
∧k

i=1 εi ∝ ϑi
•

∧k
i=1 fv(εi) = /0 and (2.)⇒ 〈ε1, . . . ,εk〉 ∈ κ

• (4.) and (6.)⇒
∧ j

i=1 εi ∝ ϑ ′i
• (5.)⇒

∧k
i= j+1 εi ∈ ρ(bxic) and ρ,κ,ψ �Q

• Lemma 1⇒ ρ,κ,ψ �Q[ε j+1/x j+1, . . . ,εk/xk]

Therefore, when ψ = /0, we get immediately
〈ε1, . . . ,εk〉.P | (ε ′1, . . . ,ε ′j;x j+1, . . . ,xk).Q→RM
P |Q[ε j+1/x j+1, . . . ,εk/xk]

Case (NRNDec). We assume
ρ,κ,ψ � decrypt {ε1, . . . ,εk}ε0 as {ε ′1, . . . ,ε ′j;x j+1, . . . ,xk}ε ′0

in P
which amounts to:

1.
∧k

i=0 ρ � εi : ϑi
2. ∀NRV0, . . . ,NRVk :

∧k
i=0 NRVi ∝ ϑi⇒{NRV1, . . . ,NRVk}NRV0 ∝ ϑ

3.
∧ j

i=0 ρ � ε ′i : ϑ ′

4. ∀{NRV1, . . . ,NRVk}NRV0 ∝ ϑ :
∧ j

i=0 NRVi ∝ ϑ ′i ⇒ (
∧k

i= j+1 NRVi ∈ ρ(bxic) ∧
ρ,κ,ψ �P)

5.
∧ j

i=0 εi = ε ′i

and we have to prove
ρ,κ,ψ �P[ε j+1/x j+1, . . . ,εk/xk]

From the hypothesis we obtain:

• (1.) and
∧k

i=0 fv(εi) = /0⇒
∧k

i=0 εi ∝ ϑi
• (2.)⇒{ε1, . . . ,εk}ε0 ∝ ϑ

• (3.) and (5.)⇒
∧ j

i=0 εi ∈ ϑ ′

• (4.)⇒
∧k

i= j+1 εi ∈ ρ(bxic) and ρ,κ,ψ �P
• Lemma 1⇒ ρ,κ,ψ �P[ε j+1/x j+1, . . . ,εk/xk]



Non-Repudiation Analysis Using LYSA with Annotations 29

Therefore, when ψ = /0, we get immediately
decrypt {ε1, . . . ,εk}ε0 as {ε ′1, . . . ,ε ′j;x j+1, . . . ,xk}ε ′0
in P →RM P[ε j+1/x j+1, . . . ,εk/xk]

Case (NRNADec). We assume
ρ,κ,ψ � decrypt {| ε1, . . . ,εk |}u

ε0
[from id′] as

{| ε ′1, . . . ,ε ′j;x j+1, . . . ,xk |}u′
ε ′0

[check NR] in P

which amounts to:

1.
∧k

i=0 ρ � εi : ϑi
2. ∀NRV0, . . . ,NRVk :

∧k
i=0 NRVi ∝ ϑi⇒

{| NRV1, . . . ,NRVk |}u
NRV0

[from bidc]∝ ϑ

3.
∧ j

i=0 ρ � ε ′i : ϑ ′

4. ∀{| NRV1, . . . ,NRVk |}NRV0 [from bidc] ∝ ϑ : ∀NRV ′0 ∝ ϑ0 : ∀([m+]id′ , [m−]id′) :
(NRV0,NRV ′0)= ([bm−c]id′ , [bm+c]id′)∧

∧ j
i=1 NRVi∝ϑ ′i ⇒ (

∧k
i= j+1 NRVi ∈ ρ(bxic)∧

ρ,κ,ψ �P)
5.

∧ j
i=1 εi = ε ′i

and we have to prove
ρ,κ,ψ �P[ε j+1/x j+1, . . . ,εk/xk].

From the hypothesis we obtain:

• (1.) and
∧k

i=0 fv(εi) = /0⇒
∧k

i=0 εi ∝ ϑi
• (2.)⇒{| ε1, . . . ,εk |}u

ε0
[from bidc]∝ ϑ

• (3.) and (5.)⇒
∧ j

i=0 εi ∈ ϑ ′

• (4.)⇒
∧k

i= j+1 εi ∈ ρ(bxic) and ρ,κ,ψ �P
• Lemma 1⇒ ρ,κ,ψ �P[ε j+1/x j+1, . . . ,εk/xk]

Therefore, when ψ = /0, we get immediately
decrypt {| ε1, . . . ,εk |}u

[m+]id
[from id′] as

{| ε ′1, . . . ,ε ′j;x j+1, . . . ,xk |}u′
[m−]id

[check NR] in P →RM

P[ε j+1/x j+1, . . . ,εk/xk].

Case (NRNSig). We assume
ρ,κ,ψ � decrypt {| ε1, . . . ,εk |}u

ε0
[from id′] as

{| ε ′1, . . . ,ε ′j;x j+1, . . . ,xk |}u′
ε ′0

[check NR] in P

which amounts to:

1.
∧k

i=0 ρ � εi : ϑi
2. ∀NRV0, . . . ,NRVk :

∧k
i=0 NRVi ∝ ϑi⇒

{| NRV1, . . . ,NRVk |}u
NRV0

[from bidc]∝ ϑ

3.
∧ j

i=0 ρ � ε ′i : ϑ ′

4. ∀{| NRV1, . . . ,NRVk |}u
NRV0

[from bidc] ∝ ϑ : ∀NRV ′0 ∝ ϑ0 : ∀([m+]id′ , [m−]id′) :

(NRV0,NRV ′0)= ([bm+c]id′ , [bm−c]id′)∧
∧ j

i=1 NRVi∝ϑ ′i ⇒ (
∧k

i= j+1 NRVi ∈ ρ(bxic)∧



30 Mayla Brusò and Agostino Cortesi

ρ,κ,ψ � P ∧ ∀nr ∈ NR : (id 6= id′ ∨ u 6= u′ ∨ nr /∈ {NRVj+1, . . . ,NRVk}) ⇒
bnrc ∈ ψ)

5.
∧ j

i=1 εi = ε ′i ∧RM(id, id′,u,u′,ε j+1, . . . ,εk,NR)

and we have to prove
ρ,κ,ψ �P[ε j+1/x j+1, . . . ,εk/xk].

From the hypothesis we obtain:

• (1.) and
∧k

i=0 fv(εi) = /0⇒
∧k

i=0 εi ∝ ϑi
• (2.)⇒{| ε1, . . . ,εk |}u

ε0
[from bidc]∝ ϑ

• (3.) and (5.)⇒
∧ j

i=0 εi ∈ ϑ ′

• (4.)⇒
∧k

i= j+1 εi ∈ ρ(bxic) and ρ,κ,ψ �P
• Lemma 1⇒ ρ,κ,ψ �P[ε j+1/x j+1, . . . ,εk/xk]

We observe that ∀nr ∈ NR : (id 6= id′ ∨ u 6= u′ ∨ nr /∈ {ε j+1, . . . ,εk})⇒ bnrc ∈ ψ

follows from (5.) and since ψ = /0, must be the case that
RM(id, id′,u,u′,{ε1, . . . ,εn},NR).

Thus the condition of the rule (NRNSig) are fulfilled for→RM .

Case (NRNNew). We assume ρ,κ,ψ � (ν n)P , therefore (ν n)P→R (ν n)P ′

using rule (NRNNew) and the hypothesis P →R P ′.
We have to prove ρ,κ,ψ � (ν n)P ′.
By the induction hypothesis ρ,κ,ψ �P ′ and by the rule (NRANew) ρ,κ,ψ �
(ν n)P ′ and, when ψ = /0, it follows immediately that (ν n)P →RM (ν n)P ′.

Case (NRNANew). We assume ρ,κ,ψ � (ν±[m]id)P , therefore (ν±[m]id)P→R

(ν± [m]id)P ′ using rule (NRNANew) and the hypothesis P →R P ′.
We have to prove ρ,κ,ψ � (ν± [m]id)P ′.
By the induction hypothesis ρ,κ,ψ �P ′ and by the rule (NRAANew) ρ,κ,ψ �
(ν ± [m]id)P ′ and, when ψ = /0, it follows immediately that (ν ± [m]id)P →RM
(ν± [m]id)P ′.

Case (NRNPar). We assume
ρ,κ,ψ �P1 |P2

which amounts to:

1. ρ,κ,ψ �P1
2. ρ,κ,ψ �P2
3. P1→R P ′

1

and we have to prove
ρ,κ,ψ �P ′

1 |P2.
By the induction hypothesis ρ,κ,ψ �P ′ and by the rule (NRAPar) ρ,κ,ψ �P ′

1 |
P2 and, when ψ = /0, it follows immediately that P1 |P2→RM P ′

1 |P2.

Case (NRNCongr). We assume
ρ,κ,ψ �P

which amounts to:



Non-Repudiation Analysis Using LYSA with Annotations 31

1. P ≡P∗

2. P∗→R P∗∗

3. P∗∗ ≡P ′

and we have to prove
ρ,κ,ψ �P ′.

By Lemma 3 and (1.) we obtain ρ,κ,ψ �P∗. By the induction hypothesis ρ,κ,ψ �
P∗∗ and by Lemma 3 ρ,κ,ψ �P ′ and, when ψ = /0, it follows immediately that
P →RM P ′.

Case (NRNRep). We assume
ρ,κ,ψ � [!P]id

which means that ρ,κ,ψ � G (P, id); we have to prove ρ,κ,ψ � G (P, id) | [!P]id′ .
But ψ does not contain information about ids, therefore ρ,κ,ψ � G (P, id∗) for all
id∗ ∈ ID, which means that ρ,κ,ψ � [!P]id′ . Therefore we get ρ,κ,ψ � G (P, id) |
[!P]id′ and, when ψ = /0, it follows immediately that [!P]id →RM G (P, id) | [!P]id′ .

Since both the basis and the inductive steps have been proved, it follows that
Theorem 1 holds for all the rules by induction. ut

4.3 The attacker

In the setup of P |P•, the attacker process P• has to be annotated with the ex-
tended syntax. We will use a unique label u• to indicate the session and a unique
label id• to indicate the encryption place used by the attacker. The Dolev-Yao con-
dition has to be redefined to be used for the non-repudiation analysis, as shown in
Table 20.

The main enhancement with the usual LYSA attacker can be seen in rule (3.):
whenever the attacker is able to get an encryption key and generate an encrypted
message with that key, the receiver checks the id of the sender, and, in case the latter
does not correspond to the intended one, the component ψ becomes non empty, as
a signal of a non-repudiation violation.

Now we have to prove that the redefined Dolev-Yao condition holds and this is
done by the following Theorem.

Theorem 2 (Correctness of Dolev-Yao Condition). If (ρ,κ,ψ) satisfies F DY
RM

of type (Nf,Aκ ,AEnc) then ρ,κ,ψ � Q for all attackers Q of extended type
({z•},Nf∪{n•},Aκ ,AEnc).

Proof. By structural induction on Q.

Case of (NRAOut). We assume:
Q = 〈ε1, . . . ,εk〉.P

and we need to find ϑ1, . . . ,ϑk and show



32 Mayla Brusò and Agostino Cortesi

Table 20 Redefinition of the attacker’s capabilities

(1) The attacker may learn by eavesdropping∧
k∈Aκ

∀〈NRV1, . . . ,NRVk〉 ∈ κ :
k∧

i=1

NRVi ∈ ρ(z•)

(2) The attacker may learn by decrypting messages with keys already known∧
k∈AEnc

∀{NRV1, . . . ,NRVk}NRV0 ∈ ρ(z•) : NRV0 ∈ ρ(z•)⇒
k∧

i=1

NRVi ∈ ρ(z•)∧
k∈AEnc

∀{| NRV1, . . . ,NRVk |}u
[m+]id

[from id′] ∈ ρ(z•) : [m−]id ∈ ρ(z•)⇒∧k
i=1 NRVi ∈ ρ(z•)∧

k∈AEnc

∀{| NRV1, . . . ,NRVk |}u
[m−]id

[from id′] ∈ ρ(z•) : [m+]id ∈ ρ(z•)⇒∧k
i=1 NRVi ∈ ρ(z•)

(3) The attacker may construct new encryptions using the keys known∧
k∈AEnc

∀NRV0, . . . ,NRVk :
k∧

i=0

NRVi ∈ ρ(z•)⇒{NRV1, . . . ,NRVk}NRV0 ∈ ρ(z•)

∧
k∈AEnc

∀[m+]id ,NRV1, . . . ,NRVk : [m+]id ∈ ρ(z•)∧
k∧

i=1

NRVi ∈ ρ(z•)⇒

{| NRV1, . . . ,NRVk |}u•
[m+]id•

∈ ρ(z•)∧
k∈AEnc

∀[m−]id ,NRV1, . . . ,NRVk : [m−]id ∈ ρ(z•)∧
k∧

i=1

NRVi ∈ ρ(z•)⇒

{| NRV1, . . . ,NRVk |}u•
[m−]id•

∈ ρ(z•)∧
∀ decrypt {| NRV ′1, . . . ,NRV ′k |}

u•
[m−]id•

[from id′] as

{| NRV ′′1 , . . . ,NRV ′′j ;x j+1, . . . ,xk |}u′′
[m+]id′′

[check NR] in P :
∀nr ∈ NR ((id′ 6= id•∨u′′ 6= u•∨
nr /∈ {NRV ′j+1, . . . ,NRV ′k})⇒ bnrc ∈ ψ)

(4) The attacker may actively forge new communications∧
k∈Aκ

∀NRV1, . . . ,NRVk :
k∧

i=1

NRVi ∈ ρ(z•)⇒ 〈NRV1, . . . ,NRVk〉 ∈ κ

(5) The attacker initially has some knowledge
{n•, [m±]id•}∪N f ⊆ ρ(z•)

1.
∧k

i=1 ρ � ε i : ϑi
and for all NRV1, . . . ,NRVk with

∧k
i=1 NRVi ∝ ϑi that

2. 〈NRV1, . . . ,NRVk〉 ∈ κ

3. ρ,κ,ψ �P

We choose ϑi (1 ≤ i ≤ k) as the least set such that ρ � ε i : ϑi and prove that ϑi ⊆
ρ(z•). If ε i has free variables z1, . . . ,zm then ϑi consists of all values ε i[NRV1/z1, . . . ,NRVm/zm]
where NRVl (1≤ l ≤ m) ∈ ρ(z•). This proves (1.).
(2.) is true by definition of κ .
By hypothesis, P has type ({z•},Nf∪{n•},Aκ ,AEnc) and (3.) is proved by induc-
tion hypothesis.



Non-Repudiation Analysis Using LYSA with Annotations 33

Case of (NRAInp). We assume:
Q = (ε1, . . . ,ε j;x j+1, . . . ,xk).P

and we need to find ϑ1, . . . ,ϑ j and show

1.
∧ j

i=1 ρ � ε i : ϑi

and for all 〈NRV1, . . . ,NRVk〉 ∈ κ with
∧ j

i=1 NRVi ∝ ϑi that
2.

∧k
i= j+1 NRVi ∈ ρ(bxic)

3. ρ,κ,ψ �P

We choose ϑi (1 ≤ i ≤ j) as the least set such that ρ � ε i : ϑi and prove that ϑi ⊆
ρ(z•). If ε i has free variables z1, . . . ,zm then ϑi consists of all values ε i[NRV1/z1, . . . ,NRVm/zm]
where NRVl (1≤ l ≤ m) ∈ ρ(z•). This proves (1.).
Since

∧ j
i=1 ϑi ⊆ ρ(z•), we have

∧ j
i=1 NRVi ∈ ϑ and by F DY

RM we get
∧k

i= j+1 NRVi ∈
ρ(z•) and, since bxic= z•, we have (2.).
By hypothesis, P has type ({z•},Nf∪{n•},Aκ ,AEnc) and (3.) is proved by induc-
tion hypothesis.

Case of (NRADec). We assume:
Q = decrypt ε as {ε1, . . . ,ε j;x j+1, . . . ,xk}ε0 in P

and we need to find ϑ and ϑ0, . . . ,ϑ j and show

1. ρ � ε : ϑ ∧
∧ j

i=0 ρ � ε i : ϑi

and for all {NRV1, . . . ,NRVk}NRV0 ∝ ϑ with
∧ j

i=0 NRVi ∝ ϑi that
2.

∧k
i= j+1 NRVi ∈ ρ(bxic)

3. ρ,κ,ψ �P

We choose ϑ as the least set such that ρ � ε : ϑ and prove that ϑ ⊆ ρ(z•). If ε

has free variables z1, . . . ,zm then ϑ consists of all values ε[NRV1/z1, . . . ,NRVm/zm]
where NRVi (1≤ i≤ m) ∈ ρ(z•). The same development for ϑ0, . . . ,ϑ j proves (1.).
Since ϑ0 ⊆ ρ(z•), we have NRV0 ∈ ϑ and by F DY

RM we get
∧k

i= j+1 NRVi ∈ ρ(z•) and,
since bxic= z•, we have (2.).
By hypothesis, P has type ({z•},Nf∪{n•},Aκ ,AEnc) and (3.) is proved by induc-
tion hypothesis.

Case of (NRAADec). We assume:
Q = decrypt ε as {| ε1, . . . ,ε j;x j+1, . . . ,xk |}u′

ε0
[check NR] in P

and we need to find ϑ and ϑ0, . . . ,ϑ j and show

1. ρ � ε : ϑ ∧
∧ j

i=0 ρ � ε i : ϑi
and for all {|NRV1, . . . ,NRVk |}u

NRV0
[from bidc]∝ ϑ : ∀NRV ′0 ∝ ϑ0 : ∀(m+,m−) :

(NRV0,NRV ′0) = ([bm−c]id′ , [bm+c]id′) with
∧ j

i=1 NRVi ∝ ϑi that
2.

∧k
i= j+1 NRVi ∈ ρ(bxic)

3. ρ,κ,ψ �P

We choose ϑ as the least set such that ρ � ε : ϑ and prove that ϑ ⊆ ρ(z•). If ε

has free variables z1, . . . ,zm then ϑ consists of all values ε[NRV1/z1, . . . ,NRVm/zm]



34 Mayla Brusò and Agostino Cortesi

where NRVi (1≤ i≤ m) ∈ ρ(z•). The same development for ϑ0, . . . ,ϑ j proves (1.).
Since ϑ0 ⊆ ρ(z•), we have NRV0 ∈ ϑ and by F DY

RM we get
∧k

i= j+1 NRVi ∈ ρ(z•) and,
since bxic= z•, we have (2.).
By hypothesis, P has type ({z•},Nf∪{n•},Aκ ,AEnc) and (3.) is proved by induc-
tion hypothesis.

Case of (NRASig). We assume:
Q = decrypt ε as {| ε1, . . . ,ε j;x j+1, . . . ,xk |}u′

ε0
[check NR] in P

and we need to find ϑ and ϑ0, . . . ,ϑ j and show

1. ρ � ε : ϑ ∧
∧ j

i=0 ρ � ε i : ϑi
and for all {|NRV1, . . . ,NRVk |}u

NRV0
[from bidc]∝ϑ :∀NRV ′0∝ϑ0 :∀m+,m−, id, id′ :

(NRV0,NRV ′0) = ([bm+c]id′ , [bm−c]id′) with
∧ j

i=1 NRVi ∝ ϑi that
2.

∧k
i= j+1 NRVi ∈ ρ(bxic)

3. ρ,κ,ψ �P
4. ∀nr ∈ NR : (¬RM(id, id′,u,u′,{NRVj+1, . . . ,NRVk},{nr})⇒ bnrc ∈ ψ)

We choose ϑ as the least set such that ρ � ε : ϑ and prove that ϑ ⊆ ρ(z•). If ε

has free variables z1, . . . ,zm then ϑ consists of all values ε[NRV1/z1, . . . ,NRVm/zm]
where NRVi (1≤ i≤ m) ∈ ρ(z•). The same development for ϑ0, . . . ,ϑ j proves (1.).
Since ϑ0 ⊆ ρ(z•), we have NRV0 ∈ ϑ and by F DY

RM we get
∧k

i= j+1 NRVi ∈ ρ(z•)
and ∀nr ∈ NR : (¬RM(id, id′,u,u′,{NRVj+1, . . . ,NRVk},{nr})⇒ bnrc ∈ ψ). Since
bxic= z•, we have (2.) and (4.).
By hypothesis, P has type ({z•},Nf∪{n•},Aκ ,AEnc) and (3.) is proved by induc-
tion hypothesis.

Case of (NRANew). We assume:
Q = (ν n)P

and we need to show ρ,κ,ψ �P . But this is true by induction hypothesis.

Case of (NRAANew). We assume:
Q = (ν±m)P

and we need to show ρ,κ,ψ �P . But this is true by induction hypothesis.

Case of (NRAPar). We assume:
Q = P1 |P2

and we need to show

1. ρ,κ,ψ �P1
2. ρ,κ,ψ �P2

But this is true by induction hypothesis.

Case of (NRARep). We assume:
Q = [!P]id

and we need to show ρ,κ,ψ � G (P, id). But G (P, id) has the same type of [!P]id ,



Non-Repudiation Analysis Using LYSA with Annotations 35

therefore ρ,κ,ψ � G (P, id) by induction hypothesis.

The case (NRANil) is trivial.

Since both the basis and the inductive steps have been proved, it follows that
Theorem 2 holds for all the rules of the analysis by structural induction. ut

Theorem 3. If P guarantees static non-repudiation then P guarantees dynamic
non-repudiation.

Proof. If ρ,κ, /0 �Psys and (ρ,κ, /0) satisfies F DY
RM then, by Theorems 1 and 2, RM

does not abort Psys | Q regardless of the choice of attacker Q.
ut

4.4 Meta Level Analysis

The analysis seen so far only deals with one session. In order to get a more realistic
analysis, it has to be enhanced to a meta level, like in [3], [6]. We have to add indexes
to names and variables, as explained in the Chapter 2, so a scenario with multiple
principals can be modelled. The meta level non-repudiation analysis takes the form
ρ,κ,ψ �Γ M.

Example 2. Let us now consider the protocol seen in Example 1, namely the Zhou-
Gollmann protocol [12]. The whole protocol has been extended using the annota-
tions and the functions F and G . The resulting protocol is the following:

let X ⊆ S in (ν±i∈X [AKi]Ii)(ν± [T T P]T T P)(
|i∈X | j∈X !(ν SKi j)(ν Li j)(ν Mi j)

〈 fNRO, I j,Li j,{Mi j}SKi j ,

{| fNRO, I j,Li j,{Mi j}SKi j |}
ui j

[AK−i ]Ii
[from Ii]〉.

( fNRR, Ii,Li j;xNRRi j).
decrypt xNRRi j as {| fNRR, Ii,Li j,{Mi j}SKi j ; |}

ui j

[AK+
j ]I j

[check fNRR, Ii,Li j,{Mi j}SKi j ] in
〈 fSUB, I j,Li j,SKi j,{| fSUB, I j,Li j,SKi j |}

ui j

[AK−i ]Ii
[from Ii]〉.

( fCON , Ii, I j,Li j,SKi j;xConi j).
decrypt xConi j as {| fCON , Ii, I j,Li j,SKi j; |}

ui j
[T T P+]T T P

[check fCON , Ii, I j,Li j,SKi j] in 0

||i∈X | j∈X !( fNRO, I j;xLi j,xEnMsgi j,xNROi j).
decrypt xNROi j as {| fNRO, I j,xLi j,xEnMsgi j; |}

ui j

[AK+
i ]Ii

[check fNRO, I j,xLi j,xEnMsgi j] in



36 Mayla Brusò and Agostino Cortesi

〈 fNRR, Ii,xLi j,{| fNRR, Ii,xLi j,xEnMsgi j |}
ui j

[AK−j ]I j
[from I j]〉.

( fCON , Ii, I j,xLi j;xKi j,xConi j).
decrypt xConi j as {| fCON , Ii, I j,xLi j,xKi j; |}

ui j
[T T P+]IT T P

[check fCON , Ii, I j,xLi j,xKi j] in
decrypt xEnMsgi j as {;xMsgi j}xKi j in 0

||i∈X | j∈X !( fSUB, I j;xLi j,xSKi j,xSubi j).decrypt xSubi j as
{| fSUB, I j,xLi j,xSKi j; |}

ui j

[AK+
i ]Ii

[check fSUB, I j,xLi j,xSKi j] in

〈 fCON , Ii, I j,xLi j,xSKi j,

{| fCON , Ii, I j,xLi j,xSKi j |}
ui j
[T T P−]T T P

[from T T P]〉.
〈 fCON , Ii, I j,xLi j,xSKi j,

{| fCON , Ii, I j,xLi j,xSKi j |}
ui j
[T T P−]T T P

[from T T P]〉.0
)

After completing the analysis the component ψ is an empty set, i.e. the protocol
guarantees non-repudiation even under attack. In fact, the attacker cannot create
new encryptions because he has not knowledge about the private keys and he cannot
make a replay attack because there is a unique label that identifies the session.

4.5 Over-approximation

When the analysis checks a protocol, we could expect that if the component ψ is
empty then the protocol is correct, else the protocol does not guarantee the non-
repudiation protocol. But the analysis cannot be precise, because of the infinitely
many possible scenarios in which a protocol can be executed and the additional
assumptions that can be made. Because of the over-approximation, our analysis can
give sometimes a false positive, i.e. the component ψ is non empty but the protocol
is correct. It is important that the analysis does not mistake in the opposite direction,
and this is what happens in practice, because the analysis says that the property
holds if the protocol behaves as expected, therefore it never says that a protocol
is correct even if it does not guarantee the non-repudiation property. Intuitively,
when a protocol guarantees authentication, freshness and integrity of the messages,
it should guarantee even non-repudiation.

An example of false positive is given by the protocol described in [4] by Ced-
erquist, Corin, and Dashti. In fact it does not use labels to identify sessions, and this
is why our analysis says that this protocol does not guarantee non-repudiation prop-
erty. However the protocol is correct, because it distinguishes session runs thanks
to the usage of fresh keys per-session. Our analysis requires a session identifier, but
there is not any element that is used in each message of the protocol, so a principal
cannot verify if a message belongs to a particular session or not; indeed, without the
assumption of the unique keys, an attacker could pretend to be another principal,



Non-Repudiation Analysis Using LYSA with Annotations 37

starting the protocol after eavesdropping a protocol run. The main protocol is the
following:

A→ B : {M}K ,EOOMfor EOOM = sigA(B,T T P,H,{| K,A |}T T P)
B→ A : EORM for EORM = sigB(EOOM)
A→ B : K
B→ A : EORK for EORK = sigB(A,H,K)

where H = h({M}K) and h is a hash function. There are other two sub-protocols
used in case of dispute, i.e. when a principal does not finish the protocol execution,
but we are interested only in the main protocol.

The encoding with annotation is the following:

let X ⊆ S in (ν±i∈X [AKi]Ii)(ν± T T P)(
|i∈X | j∈X !(ν SKi j)(ν Hi j)(ν Mi j)

〈{Mi j}SKi j ,{| I j,T T P,Hi j,{| SKi j, Ii |}
ui j
[T T P+]T T P

[from /0] |}ui j

[AK−i ]Ii
[from Ii]〉.(;xEORMi j).

decrypt xEORMi j as {| {| I j,T T P,Hi j,

{| SKi j, Ii |}
ui j
[T T P+]T T P

[from /0] |}ui j

[AK−i ]Ii
[from Ii] |}

ui j

[AK+
j ]I j

[check {| I j,T T P,Hi j,{| SKi j, Ii |}
ui j
[T T P+]T T P

[from /0] |}] in
〈SKi j〉.(;xEORKi j).
decrypt xEORKi j as {| Ii,Hi j,SKi j;}

ui j

[AK+
j ]I j

[check Hi j,SKi j] in 0
|i∈X | j∈X !(;xEnMsgi j,xEOOMi j).

decrypt xEOOMi j as {| I j,T T P;xHi j,xT T P |}ui j

[AK+
i ]Ii

[check xHi j] in
〈{| xEOOMi j |}

ui j

[AK−j ]I j
[from I j]〉.

(;xSKi j).
decrypt xEnMsgi j as {xMsgi j}xSKi j in
〈{| Ii,xHi j,xSKi j |}〉.0

)

Because of the lack of labels, the result of the analysis shows that a possible flaw
may arise. The component ψ contains all the elements that are also in NR when |S| ≥
2. In fact, it does not use labels to identify the session, and this is why our analysis
says that this protocol does not guarantee non-repudiation property. However the
protocol is correct, because of an implicit additional assumption on the uniqueness
of the keys, which prevents from replay attacks.



38 Mayla Brusò and Agostino Cortesi

5 Conclusions and Future Works

This paper extends the work by M. Buchholtz and H. Gao who defined a suite of
analyses for security protocols, namely authentication, confidentiality, freshness,
simple and complex type flaws. The annotations we introduce allow to express non-
repudiation also for part of the message: this allow to tune the analysis focussing
on relevant components. It results that the CFA framework developed for the pro-
cess calculus LYSA can be extended to security properties by identifying suitable
annotations, thus re-using most of the theoretical work.

References

1. Bella, G., Paulson, L.C.: Mechanical proofs about a non-repudiation protocol. In: TPHOL01,
volume 2152 of LNCS, pp. 91–104. Springer (2001)

2. Bodei, C., Buchholtz, M., Degano, P., Nielson, F., Nielson, H.R.: Static validation of security
protocols. In: Journal of Computer Security, pp. 347–390 (2005)

3. Buchholtz, M., Lyngby, K.: Automated analysis of security in networking systems. ph. d.
thesis proposal. available from http://www.imm.dtu.dk/ mib/thesis. Tech. rep. (2004)

4. Cederquist, Corin, Dashti: On the quest for impartiality: Design and analysis of a fair non-
repudiation protocol. In: ICIS, LNCS (2005)

5. Dolev, D., Yao, A.C.: On the security of public key protocols. Tech. rep., Stanford, CA (1981)
6. Gao, H.: Analysis Of Protocols By Annotations. Ph. D. Thesis, Informatics and Mathematical

Modelling, Technical University of Denmark (2008)
7. Gollmann, D.: Computer security. John Wiley & Sons, Inc., New York, NY, USA (1999)
8. Kremer, S., Raskin, J.F.: A game-based verification of non-repudiation and fair exchange pro-

tocols. In: Journal of Computer Security, pp. 551–565. Springer-Verlag (2001)
9. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer-Verlag New

York, LLC (1999)
10. Schneider, S.: Formal analysis of a non-repudiation protocol. In: 11th IEEE Computer Secu-

rity Foundations Workshop, p. 54 (1998)
11. Schneider, S., Holloway, R.: Security properties and csp. In: IEEE Symp. Security and Privacy,

pp. 174–187. IEEE Computer Society Press (1996)
12. Zhou, J., Gollmann, D.: A fair non-repudiation protocol. IEEE Computer Society Press (1996)
13. Zhou, J., Gollmann, D.: Evidence and non-repudiation. J. Netw. Comput. Appl. 20(3), 267–

281 (1997). DOI http://dx.doi.org/10.1006/jnca.1997.0056
14. Zhou, J., Gollmann, D.: Towards verification of non-repudiation protocols. In: Proceedings of

International Refinement Workshop and Formal Methods Pacific. Springer-Verlag (1998)


