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Abstract. In this paper, we compose six different Python and Prolog
VMs into 4 pairwise compositions: one using C interpreters; one running
on the JVM; one using meta-tracing interpreters; and one using a C inter-
preter and a meta-tracing interpreter. We show that programs that cross
the language barrier frequently execute faster in a meta-tracing compo-
sition, and that meta-tracing imposes a significantly lower overhead on
composed programs relative to mono-language programs.

1 Overview

Programming language composition aims to allow the mixing of programming
languages in a fine-grained manner. This vision brings many challenging prob-
lems, from the interaction of language semantics to performance. In this paper,
we investigate the runtime performance of composed programs in high-level lan-
guages. We start from the assumption that execution of such programs is most
likely to be through composing language implementations that use interpreters
and VMs, rather than traditional compilers. This raises the question: how do
different styles of composition affect performance? Clearly, such a question can-
not have a single answer but, to the best of our knowledge, this issue has not
been explored in the past.

This paper’s hypothesis is that meta-tracing – a relatively new technique
used to produce JIT (Just-In-Time) compilers from interpreters [8] – will lead
to faster interpreter composition than traditional approaches. To test this hy-
pothesis, we present a Python and Prolog composition which allows Python
programs to embed and call Prolog programs. We then implement the com-
position in four different ways, comparing the absolute times and the relative
cross-language costs of each. In addition to the ‘traditional’ approaches to com-
posing interpreters (in C and upon the JVM), we also investigate the application
of meta-tracing to interpreter composition. The experiments we then carry out
confirm our initial hypothesis.

There is a long tradition of composing Prolog with other languages (with
e.g. Icon [33], Lisp [38], and Smalltalk [21]) because one can express certain
types of programs far easier in Prolog than in other languages. We have two ad-
ditional reasons for choosing this pairing. First, these languages represent very
different points in the language design space: Prolog’s inherently backtracking
nature, for example, leads to a much different execution model than that of
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Python. It is therefore reasonable to assume that it is harder to optimise the
composition of such languages than it would be if they were substantially similar.
Second, each language has incarnations in several different language implemen-
tation paradigms, making our experiment practical. Few other languages meet
both these criteria at the current time.

The four compositions we implemented are as follows: CPython-SWI com-
poses two C interpreters; PyPy-SWI composes RPython and C interpreters;
Unipycation composes two RPython interpreters; and Jython-tuProlog two JVM
interpreters. CPython-SWI, PyPy-SWI, and Jython-tuProlog represent ‘tradi-
tional’ techniques to language composition; Unipycation embodies a new tech-
nique. Each composition implements exactly the same user-visible language, so
composed programs run without change on each of the composed VMs. We have
implemented the Python to Prolog interface as a mixture of pure Python code
and code written in the language of the underlying system (RPython, C, Java),
deliberately modelling how such libraries are typically implemented. Unipyca-
tion is an extension of work presented in a previous workshop paper [2], which
we have since enhanced to allow full cross-language inlining. Note however, that
unlike our previous work, this paper restricts itself to Python code calling Pro-
log, and not vice versa (some of the composed VMs are fundamentally unable
to support the latter).

To address our hypothesis, we present a series of microbenchmarks, each
designed to focus on a single aspect of cross-language performance, as well
as a small set of (relatively) larger benchmarks which cross language barriers
more freely. Each benchmark has both mono-language variants written in either
Python or Prolog, and composed variants written in a mixture of Python and
Prolog. We report our benchmark timings in absolute seconds, but also as ratios
of the mono-language variants and Unipycation. The latter results allow us to
understand the cost of moving from mono-language to composed variants, as
well as the performance consequences of using meta-tracing for composed VMs.
To ensure that our results are as robust as possible, we use the rigorous method-
ology of Kalibera/Jones; since we are, as far as we know, the first ‘users’ of this
methodology, we also describe our experiences of it.

Our results break down as follows. First, as an unsurprising base-line, bench-
marks which rarely cross the language barrier are dominated by the performance
characteristics of the individual language implementations; put another way, the
particular composition technique used makes little difference. Second, for those
benchmarks which cross the language barrier frequently, Unipycation is, on av-
erage, significantly faster than PyPy-SWI; CPython-SWI is somewhat slower
again; and Jython-tuProlog is hugely (unusably) slower. Third, Unipycation ex-
ecutes composed microbenchmarks in the same performance ballpark as the
mono-language variants (at worst, well within an order of magnitude difference;
and often only a few percent slower). By contrast, the next best performing
composed VM PyPy-SWI is often at least 1–3 orders of magnitude worse than
the mono-language variants. Bearing in mind the dangers of generalising from
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any specific set of benchmarks, we consider these results to validate the paper’s
hypothesis.

Our contributions are as follows:

– We present a viable Python/Prolog composition and show four different
implementations each using a different composition style.

– We present the first experiment designed to help understand the effects of
different composition styles upon performance.

– We thoroughly analyse and discuss the results of the experiment, breaking
down the impact that each composition style has on performance.

The experiments contained in this paper are downloadable and repeatable from:

http://soft-dev.org/pubs/files/interpcomp/

This paper is structured as follows. We briefly introduce meta-tracing (Section 2)
and Prolog for those readers who may be unfamiliar, or rusty, with either. After
introducing the generic Unipycation interface, including an example Python and
Prolog composition with an implementation of Connect 4 (Section 4.2), we then
describe the four implementations of this interface (Section 5). The experimental
setup (Section 6) is followed by a quantitative analysis of its results (Section 7)
and a qualitative discussion (Section 8).

2 Meta-tracing

This section briefly introduces the concept of meta-tracing. Meta-tracing takes as
input an interpreter, and from it creates a VM containing both the interpreter
and a tracing JIT compiler [34,40,6,44,4]. Although tracing is not a new idea
(see [1,17]), it traditionally required manually implementing both interpreter
and trace compiler. Meta-tracing, in contrast, automatically generates a trace
compiler from an interpreter. At run-time, user programs running in the VM
begin their execution in the interpreter. When a ‘hot loop’ in the user program
is encountered, the actions of the interpreter are traced (i.e. recorded), optimised,
and converted to machine code. Subsequent executions of the loop then use the
fast machine code version rather than the slow interpreter. Guards are left behind
in the machine code so that execution can revert back to the interpreter when
the path recorded by the trace differs from that required.

Meta-tracing works because of the particular nature of interpreters. Irrespec-
tive of whether they operate on bytecode or ASTs, are iterative or recursive,
interpreters are fundamentally a large loop: ‘load the next instruction; perform
the associated actions; repeat the loop’. To generate a tracing JIT, the language
implementer annotates the interpreter to inform the meta-tracing system when
a loop1 at position pc (program counter) has been encountered; the meta-tracing

1 Loops are often, though not exclusively, program counter jumps with a negative
index.

http://soft-dev.org/pubs/files/interpcomp/
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system then decides if the loop has been encountered often enough to start trac-
ing. The annotation also tells the meta-tracing system that execution of the
program at position pc is about to begin and that if a machine code version is
available, it should be used; if not, the standard interpreter will be used.

The main extant meta-tracing language is RPython, a statically-typed sub-
set of Python which translates to C. RPython’s type system is similar to Java’s,
extended with further analysis, e.g. to ensure that list indices are not negative.
Users can influence the analysis with assert statements, but otherwise it is fully
automatic. Unlike seemingly similar languages (e.g. Slang [25] or PreScheme
[32]), RPython is more than just a thin layer over C: it is, for example, fully
garbage collected and has several high-level datatypes (e.g. lists and dictionar-
ies). Despite this, VMs written in RPython have performance levels which far
exceed traditional interpreter-only implementations [8].

Meta-tracing is appealing for composed VMs because it holds the prospect
of achieving meaningful cross-language optimisations for little or no effort. We
explore this in the context of Unipycation in Section 5.3.

3 Prolog Background

While we assume that most readers have a working knowledge of a mainstream
imperative language such that they can understand Python, we can not rea-
sonably make the same assumption about Prolog. This section serves as a brief
introduction to Prolog for unfamiliar readers (see e.g. [9] for more details). Those
familiar with Prolog will notice a distinct imperative flavour to our explanations.
This is intentional, given the paper’s likely audience, but nothing we write should
be considered as precluding the logic-based view of Prolog.

Prolog is a rule-based logic programming language whose programs consist
of a database of predicates which is then queried. A predicate is related to,
but subtly different from, the traditional programming language concept of a
function. Predicates can be loosely thought of as overloaded pattern-matching
functions that can generate a stream of solutions (including no solutions at all).
Given a database, a user can then query it to ascertain the truth of an expression.

Prolog supports the following data types:

Numeric constants Integers and floats.
Atoms Identifiers starting with a lowercase letter e.g. chair.
Terms Composite structures beginning with a lowercase letter e.g. vector(1.4,

9.0). The name (e.g. vector) is the term’s functor, the items within paren-
theses its arguments.

Variables Identifiers beginning with either an uppercase letter (e.g. Person) or
an underscore. A variable denotes an as yet unknown value that may become
known later when a concrete value is bound to the variable.

Lists Lists are made out of cons cells, which are simply terms of the functor
’.’. Since lists are common, and the ’.’ syntax rather verbose, lists can
be expressed using a comma separated sequence of elements enclosed in-
side square brackets. For example, the list [1,2,3] is equivalent to ’.’(1,
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’.’(2, ’.’(3, []))). Furthermore, a list can be denoted in terms of its
head and tail, for example [1 | [2, 3]] is equivalent to [1,2,3].

To demonstrate some of these concepts, consider the Prolog rule database shown
in Listing 1.1. The edge predicate describes a directed graph which may, for
example, represent a transit system such as the London Underground. The path

predicate accepts four arguments and describes valid paths of length MaxLen or
under, from the node From to the node To, as the list Nodes. In this example, a,
b, . . . , g are atoms. The expression edge(a, c) defines a predicate called edge

which is true when the atoms a then c are passed as arguments. The expression
path(From, To, MaxLen, Nodes, 1) is a call to the path predicate passing as
arguments, four variables and a integer constant.

1 edge(a, c). edge(c, b). edge(c, d). edge(d, e).
2 edge(b, e). edge(c, f). edge(f, g). edge(e, g).
3 edge(g, b).
4

5 path(From , To, MaxLen , Nodes) :-
6 path(From , To, MaxLen , Nodes , 1).
7

8 path(Node , Node , _MaxLen , [Node], _Len).
9 path(From , To, MaxLen , [From | Ahead ], Len) :-

10 Len < MaxLen , edge(From , Next),
11 Len1 is Len + 1,
12 path(Next , To, MaxLen , Ahead , Len1).

Listing 1.1: A Prolog rule database.

Queries can either succeed or fail. For example, running the query edge(c,

b) (“is it possible to transition from node c to node b?”) against the above
database succeeds, but edge(e, f) (“is it possible to transition from node e to
node f?”) fails. When a query contains a variable, Prolog searches for solutions,
binding values to variables. For example, the query edge(f, Node) (“which node
can I transition to from f?”) binds Node to the atom g. Queries can produce
multiple solutions. For example, path(a, g, 7, Nodes) (“Give me paths from
a to g of maximum length 7”) finds several bindings for Nodes: [a, c, b, e,

g], [a, c, d, e, g], [a, c, f, g], and [a, c, f, g, b, e, g].
Solutions are enumerated by recording choice points where more than one

rule is applicable. If a user requests another solution, or if an evaluation path
fails, Prolog backtracks and explores alternative search paths by taking different
decisions at choice points. In the above example, edge(From, Next) (line 10)
can introduce a choice point, as there can be several ways of transitioning from
one node to the next.

4 The Unipycation interface

Unipycation is both an implementation of a Python and Prolog composition, and
an interface which other implementations can target. In this paper we provide
4 composed VMs which, while they differ significantly internally, presents the
same interface to the programmer. All Unipycation programs start with Python
code, subsequently using the uni module to gain access to the Prolog interpreter,
as in the following Unipycation program:
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1 import uni
2 e = uni.Engine ("""
3 % parent(ParentName , ChildName , ChildGender)
4 parent(jim , lucy , f). parent(evan , lily , f).
5 parent(jim , sara , f). parent(evan , emma , f).
6 parent(evan , kyle , m).
7

8 siblings(Person1 , Person2 , Gender) :-
9 parent(Parent , Person1 , Gender),

10 parent(Parent , Person2 , Gender),
11 Person1 \= Person2.
12 """)
13

14 for (p1, p2) in e.db.siblings.iter(None , None , "f"):
15 print "%s and %s are sisters" % (p1, p2)

Listing 1.2: Program showing basic usage of the uni API.

The Python code first imports the uni module and creates an instance of a Prolog
engine (line 2). In this case, the engine’s database is passed as a Python string
(lines 3-11 inclusive), although databases can be loaded by other means (e.g. from
a file). The Prolog database models a family tree with a series of parent facts.
The siblings predicate can then be used to infer pairs of same-sex siblings.
This example queries the Prolog database for all pairs of sisters (line 14) and
successively prints them out (line 15). The Prolog database is accessed through
the db attribute of the engine (e.g. e.db.siblings). Calling a Prolog predicate
as if it were a Python method transfers execution to Prolog and returns the
first solution; if no solution is found then None is returned. Predicates also have
an iter method which behaves as a Python iterator, successively generating all
solutions (as shown in the example on line 14). Solutions returned by the iterator
interface are generated in a lazy on-demand fashion.

Calling to, and returning from, Prolog requires datatype conversions. Python
numbers map to their Prolog equivalents; Python strings map to Prolog atoms;
and Python (array-based) lists map to Prolog (cons cell) lists. A Python None

is used to represent a (distinct) unbound variable. Composite terms (not shown
in the example) are passed as instances of a special Python type uni.Term,
instantiated by a call to a method of the engine’s terms attribute. For example,
a term equivalent to vec(4, 6) is instantiated by executing e.terms.vec(4,

6). Prolog solutions are returned to Python as a tuple, with one element for
each None argument passed.

When run, Listing 1.2 generates the following output:

1 lucy and sara are sisters
2 lily and emma are sisters
3 sara and lucy are sisters
4 emma and lily are sisters

4.1 High-Level and Low-Level Interface

Although it may not be evident from studying Unipycation code, our composed
VMs are implemented in two distinct levels. The uni module (shown in the
previous section) exposes a high-level programming interface written in pure
Python. This allows us to use it unchanged across our four composed VMs. At
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Fig. 1: The Connect 4 GUI using Python/Tk.

a lower-level, each of the compositions exposes a fixed API for the uni module
to interface with. This split has several advantages: it maximises code sharing
between the compositions; makes it easier to experiment with different uni in-
terface designs; and models a typical approach used by many Python libraries
that wrap non-Python code such as C libraries.

The low-level interface provides a means to create a Prolog engine with a
database. It also provides an iterator-style query interface and some basic type
conversions—higher-level conversions are delegated to the uni module. In partic-
ular, Prolog terms have the thinnest possible wrapper put around them. When
returning solutions to Python, the high-level interface must perform a deep copy
on terms, as most of the Prolog implementations garbage collect, or modify,
them when a query is pumped for more solutions.

The low-level interface is an implementation detail that is not intended for
end-users. Failing to follow certain restrictions leads to undesirable behaviour,
from returning arbitrary results to segmentation faults (depending on the com-
posed VM). The uni module follows these restrictions by design.

4.2 An Example

To show what sorts of programs one might wish to write with the Unipycation
interface, we present a small case study of a Connect 4 implementation. Connect
4 is a well known strategy game, first released in 1974. The game involves two
players (red and yellow), and a vertically standing grid-like board, divided into 6
rows and 7 columns. Players take turns dropping one of their coloured counters
into a column. The first player to place 4 counters in a contiguous horizontal,
vertical, or diagonal line wins.

Connect 4 has two distinct aspects: a user interface and an AI player. Without
wishing to start a war between fans of either language, we humbly suggest that
Python is better suited to expressing the GUI, whereas Prolog is better suited
to expressing the behaviour of an AI player. Our implementation follows this
pattern, and has a Python GUI of 183LoC and a Prolog AI player of 168LoC.

The basic operation of the case study is as follows. The Python part of
the program performs all interactions with users and stores the state of the
board. After every move, the Python part divides the state of the board into
two lists (reds and yellows), encoding counter positions as Prolog terms (e.g. a
counter at row one, column two is encoded as c(2, 1)). Unipycation’s Python
→ Prolog interface is then used to query the Prolog has won predicate passing
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as arguments the two lists and a final unbound variable. If the Prolog interpreter
finds a binding to the variable, then the game has finished, and the last player
to move has won.

If no player has won, and the next player to move is the AI opponent, the
Python part hands over to the Prolog AI player. To decide a good move, the
computer opponent uses a bounded-depth minimax solver [35,36] implemented
efficiently using alpha-beta pruning [15]; we used Bratko’s alpha-beta framework
as a reference implementation [9, p. 586]. This approach considers the game as
a tree of potential moves, where each move is characterised by the positions of
the counters (again as two lists) and whose move it is next. Each move has an
associated cost which is used as a basis for deciding a good move. We model
Connect 4 as a zero sum game, so for one player a good move minimises the
cost, whereas for the other player a good move maximises the cost. The alpha-
beta framework requires us to define three predicates: one to tell the framework
whose turn it is in a given position, one to calculate all possible next moves,
and one to calculate the cost of a move. Given these predicates, the alpha-beta
framework can make an informed decision about the best move for the computer
opponent. Once the best move has been chosen, it is passed back to Python and
the game state is updated to reflect the AI player’s move.

We discuss our experiences of using Unipycation for the case study in Sec-
tion 8.

5 The Composed VMs

In this section we describe our four composed VMs. Each takes two existing lan-
guage implementations – one Python, and one Prolog – and glues them together.
The language implementations and the versions used, are shown in Table 1a; the
size of the glue is shown in Table 1b. To ensure our experiment is repeatable, we
used only open source language implementations.

5.1 CPython-SWI

CPython-SWI composes two interpreters written in C: CPython and SWI Pro-
log [43]. CPython is the de-facto standard implementation of Python and SWI
Prolog is the most popular open-source Prolog interpreter.

CPython-SWI’s glue code is the largest of the composed VMs. This reflects
the intricacies of mixing together low-level interpreters with different garbage
collectors (etc.). To make our life somewhat easier, the glue code was written in
Python using the CFFI library.2 On first import, CFFI emits C code which is
compiled into a CPython extension and loaded; the extension in turn loads SWI
Prolog as a dynamic library, meaning, in essence, that the composition occurs
at the C level. Around 430LoC relate to CFFI from which around 2KLoC of C
code are generated. To give a flavour of our implementation style, Listing 1.3

2 https://cffi.readthedocs.org/

https://cffi.readthedocs.org/
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Implementation Version

CPython 2.7.6
Jython HG aa042b69bdda
SWI Prolog 6.6.1
PyPy HG fa985109fcb9
Pyrolog HG cab0c5802fe9
tuProlog SVN 1263

(a)

VM LoC

CPython-SWI 800 (Python)
PyPy-SWI See CPython-SWI (same code)
Unipycation 650 (RPython)
Jython-tuProlog 350 (Python)

(b)

Table 1: (a) Base language implementations used, and (b) lines of glue code for
each of the composed VMs.

shows an excerpt from the CPython-SWI conversion code (conversion code for
the other VMs looks much the same). Implementing CPython-SWI required no
modifications to either CPython or SWI Prolog.

1 def py_of_pro(pro_term ):
2 lib = C._libpl
3 pl_type = lib.PL_term_type(pro_term)
4 if pl_type == lib.PL_ATOM:
5 return py_str_of_pro_atom(pro_term)
6 elif pl_type == lib.PL_TERM:
7 return py_term_of_pro_term(pro_term)
8 elif pl_type == ...:
9 ...

10

11 def py_str_of_pro_atom(pro_atom ):
12 return C.get_str(pro_atom)
13

14 def py_term_of_pro_term(pro_term ):
15 return CoreTerm.from_pl_term(pro_term)

Listing 1.3: Prolog → Python conversion code in CPython-SWI

5.2 PyPy-SWI

PyPy-SWI is a simple variant of CPython-SWI, swapping CPython for PyPy.
Because we used CFFI for CPython-SWI’s glue code, ‘creating’ PyPy-SWI is
simply a matter of invoking the same (unchanged) code under PyPy. PyPy-
SWI is interesting in that it composes a JITing VM (PyPy) with a traditional
interpreter (SWI Prolog).
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5.3 Unipycation

Unipycation composes two RPython (see Section 2) interpreters: PyPy [37] and
Pyrolog [7]. PyPy is a fast [8], industrial strength implementation of Python
2.7.3 and has been widely adopted in the open-source community. Pyrolog has its
origins in a research project investigating the application of meta-tracing to logic
programming. As PyPy modules need to be statically compiled into the VM, the
low-level interface required adding a module to PyPy’s source. Pyrolog is, from
this paper’s perspective, unmodified.3 In the rest of this subsection, we explain
how meta-tracing enables cross-language optimisations, and how Unipycation
can inline Prolog code called from Python.

Each of Unipycation’s constituent interpreters has its own meta-tracing JIT,
such that running Python or Prolog code under Unipycation is as fast as running
it in a stand-alone PyPy or Pyrolog VM. Most of Unipycation’s optimisations are
inherent to meta-tracing. Both PyPy and Pyrolog are optimised for meta-tracing
in the sense that their implementation has, where necessary, been structured ac-
cording to meta-tracing’s demands. Such structuring is relatively minor (see [8]
for more details): most commonly, tracing annotations are added to the inter-
preter to provide hints to the tracer (e.g. “this RPython function’s loops can
safely be unrolled”). Less commonly, code is e.g. moved into its own function to
allow an annotation to be applied. To improve the performance of Unipycation,
we added ten such annotations, but PyPy and Pyrolog themselves were mostly
left unchanged. This is not to suggest that the two interpreters have identical
execution models: PyPy is a naive recursive bytecode interpreter, whereas Py-
rolog uses continuation-passing style (in fact, Pyrolog uses two continuations:
one for success and one for failure [7] using a trampoline).

A tracing JIT’s natural tendency to aggressively type-specialise code (see [16])
is important in reducing the overhead of object conversions between interpreters.
Tracing a call from one language to the other naturally traces the object con-
version code in the uni module, type specialising it. In essence, Unipycation
assumes that the types of objects converted at a given point in the code will
stay relatively constant; similar assumptions are the basis of all dynamically
typed language JITs. Type specialisation leaves behind a type guard, so that if
the assumption of type constancy is later invalidated, execution returns to the
interpreter. If, as is likely, the object conversion is part of a bigger trace with
a previous equivalent type guard, RPython’s tracing optimiser will remove the
redundant type guard from the object conversion.

A related optimisation occurs on the wrapped objects that are created by
cross-interpreter object conversion. The frequent passing of objects between the
two interpreters would seem to be inefficient, as most will create a new wrapper
object each time they are passed to the other interpreter. Most such objects exist
only within a single trace and their allocation costs are removed by RPython’s
escape analysis [5].

3 Calling Python from Prolog required modifying Pyrolog, but we do not tackle that
issue in this paper.
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The final optimisation we hope to inherit from meta-tracing is inlining. While
it is relatively easy to inline Python code called from Prolog, the other way
around – which is of rather more importance to this paper – is complicated
by tracing pragmatics. In essence, the tracer refuses to inline functions which
contain loops, since it is normally better to trace them separately. Languages like
Python can trivially detect most loops statically (e.g. the use of a while loop
in a function). Prolog loops, in contrast, are tail-recursive calls, which, due to
Prolog’s highly dynamic nature, can often only be detected reliably at run-time.
By default, the tracer therefore considers every call to Prolog as a potential loop
and does not inline any of them.

Our solution is simple, pragmatic, and can easily be applied to similar lan-
guages. Rather than trying to devise complex heuristics for determining loops in
Prolog, we always inline a fixed number of Prolog reduction steps into Python. If
the Prolog predicate finishes execution within that limit, then it is fully inlined.
If it exceeds the limit, a call to the rest of the predicate is emitted, stopping
inlining at that point. This means that if the Prolog predicate being inlined
does contain a loop, then part of it is unrolled into the machine code for the
outer Python function. Remaining loop iterations (if any) are executed via an
explicitly inserted call to the rest of the predicate. This approach allows small
predicates to benefit from inlining, while preventing large predicates from caus-
ing unpalatable slow-downs. Ultimately the effect is similar to the meta-tracer’s
normal inlining behaviour in mono-language implementations like PyPy.

5.4 Jython-tuProlog

Jython-tuProlog composes two languages atop the JVM: Jython4 and tuPro-
log [13]. Jython is the only mature Python JVM implementation and targets
Python 2.7. We chose tuProlog since it is the most complete embeddable JVM
Prolog implementation we know of.5 Neither Jython nor tuProlog were altered
in realising Jython-tuProlog.

6 Experimental Setup

This paper’s main hypothesis is as follows:

H1 Meta-tracing leads to faster interpreter composition than traditional ap-
proaches.

To address this hypothesis, we run a number of benchmarks across the four
compositions we created. The benchmarks are organised into two groups: mi-
crobenchmarks, which aim to test a single aspect of cross-language composition;
and larger benchmarks, which aim to test several aspects at once.

Running such benchmarks in a fair, consistent manner is tricky: bias – often
unintentional and unnoted – is rife. This is particularly true for virtual machines

4 http://jython.org/
5 We also considered Jtrolog, JLog, W-prolog, and GNU Prolog for Java.

http://jython.org/
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with complex JIT compilers and garbage collectors. These components bring in
many sources of non-determinism, many of them related to code and data layout
differences in the JIT-compiled code, which can lead to significant performance
effects via different caching behaviour [20,18]. The fact that we combine VMs
that each have their individual effects exacerbates the issue.

We therefore base our experimental methodology on the statistically rigorous
Kalibera/Jones method [30]. Since, to the best of our knowledge, we are the first
people apart from Kalibera/Jones to do so, we assume that most of our readers
are unfamiliar with this method, and give a gentle introduction in Section 6.3.

6.1 Microbenchmarks

We have designed six microbenchmarks that measure the costs of specific activ-
ities when crossing language boundaries. Each benchmark consists of a ‘caller’
function and ‘callee’ function:

SmallFunc The caller passes an integer to a tiny callee which returns the inte-
ger, incremented by 1.

L1A0R Both the caller and the callee functions are loops. The callee receives
a single integer argument.

L1A1R Both the caller and callee are loops. The callee receives a single integer
argument and returns a single integer result.

NdL1A1R The caller invokes the callee in a loop. The callee produces more
than one integer result (by returning an iterator in Python, and leaving a
choice point in Prolog). The caller asks for all of the results (with a for loop
in Python, and with a failure-driven loop in Prolog).

Lists The callee produces a list, and the caller consumes it (e.g. iterates over all
its elements). The lists are converted between Prolog linked lists and Python
array-based lists when passing the language barrier.

TCons The caller walks a linked list which is produced by the callee using
Prolog terms.

Each of the microbenchmarks comes in three variants:

Python Both caller and callee are Python code.
Prolog Both caller and callee are Prolog code.
Python → Prolog The caller is Python code, the callee is Prolog code.

The first two variants give us a baseline, while the latter measures cross-language
calling. Whilst we have created Prolog → Python variants of the benchmarks,
only Unipycation can execute them (see Section 8.2) so we do not consider them
further.

6.2 Larger Benchmarks

The limitations of microbenchmarks are well known. Since there are no pre-
existing Unipycation programs, we have thus created three (relatively) larger
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benchmarks, based on an educated guess about the style of programs that real
users might write. While we would have liked to create a larger set of bigger
benchmarks, we are somewhat constrained by inherent limitations in Jython-
tuProlog and CPython-SWI, which accept a narrower range of programs than
Unipycation itself. However, while we do not claim that these benchmarks are
definitely representative of programs that other people may find Unipycation
useful for, they do enable us to examine a different class of behaviours than the
microbenchmarks.

Each of the benchmarks has two variants: Prolog only; and composed Python
/ Prolog. The composed benchmarks can be broadly split into two: those that
cross the language barrier frequently (SAT model enumeration) and those that
spend most of their time in Prolog (Connect 4 and the Tube benchmark).

Connect 4 This benchmark is based on the implementation described in Sec-
tion 4.2. To make a sensible benchmark, we removed the GUI, made the AI
player deterministic, and pitted the AI player against itself. We measure the
time taken for a complete AI versus AI game to execute.

Tube Route Finder Given a start and end station, this benchmark finds
all the shortest possible routes6 through an undirected graph representing the
London Underground.7 This is achieved by an iterative deepening depth-first
search, monotonically increasing the depth until at least one solution is found;
backtracking is used to enumerate all shortest routes. In the composed variant,
Python increases the depth in a loop, with each iteration invoking Prolog to run
a depth first search. Despite this, the composed benchmark intentionally spends
nearly all of its time in Prolog and is thus a base-case of sorts for composed
programs which do not cross the language barrier frequently. We measure the
time taken to find routes between a predetermined pair of stations.

SAT Model Enumeration This benchmark exhaustively enumerates the so-
lutions (models) to propositional formulas using Howe and King’s small Prolog
SAT solver [23]. As the models are enumerated, we count the number of propo-
sitional variables assigned to true. The composed variant uses Python for the
outer model enumeration loop. We measure the time taken to count the true
literals appearing in the models of a SAT instance borrowed from the SATLIB
suite [22].

Note that since tuProlog does not support coroutines, this benchmark cannot
be run under Jython-tuProlog.

6 Accurately modelling the behaviour of new tourists, our program fails to consider
the costs of changing lines and chooses routes which visit the fewest possible stations.

7 The graph data comes from: http://commons.wikimedia.org/wiki/London_

Underground_geographic_maps/CSV/

http://commons.wikimedia.org/wiki/London_Underground_geographic_maps/CSV/
http://commons.wikimedia.org/wiki/London_Underground_geographic_maps/CSV/
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6.3 Kalibera/Jones Method

Benchmarks often exhibit non-deterministic behaviour which goes unnoticed or
unexplained, distorting results and our perceptions of them. In computing, the
default response has mostly been to ignore the issue and hope for the best [42].
To help make our benchmarks as fair and representative as reasonably possible,
we have adopted the more statistically rigorous Kalibera/Jones method [30].
The basic aim of the method is to determine a suitable number of experimental
repetitions for the various levels involved in benchmarking, whilst retaining a
reasonable level of precision. It also gives a mathematically sound method for
computing relative speed-ups of benchmarks, including confidence intervals. We
now give a brief overview of the method and detail how we applied it to our
benchmarks.

The method first requires us to consider the levels involved in the experiment.
At each of the levels there is an opportunity to repeat experimentation. Typi-
cal levels for a VM-based language (from low to high) might be: the iterations
level, sequential repetitions within a process; the executions level, repetitions
of the iteration level, each time spawning a fresh process; and the VMs level,
repetitions of compiling the VM. Multiple levels need to be considered because
benchmarks can be non-deterministic at one level, but not at another. For ex-
ample, benchmarks which are non-deterministic in their initialisation code will
exhibit variation at the executions level but not the iterations level. Cursory
inspection showed that for our experiments there was no meaningful variation
at the VM level, so we concentrated on the iterations and executions levels.

Having identified the appropriate levels, a dimensioning run of the experi-
ment is performed with many repetitions to determine each benchmark’s vari-
ance at each level. The ordered measurements are first used to determine if each
benchmark reaches an initialised state: the point at which subsequent runs are
no longer subject to start-up costs (e.g. JIT warmup). This is determined by
plotting a graph of sequential run times and manually determining when such
a state has been reached. The method also gives a process to determine if a
benchmark reaches an independent state. If the benchmark reaches the indepen-
dent state, then we can be sure that the measurements taken for subsequent
iterations level runs are in no way correlated with previous runs. This is a useful
property since it means that one can safely take a sample of measurements at any
point from the independent state onwards. Since some experiments may never
converge upon the independent state, the methodology also provides a fallback
method, whereby a single consistent post-initialised iteration (in our case, the
first) is taken.

For dimensioning, we used 10 runs at the iterations level and 10 at the execu-
tions level – i.e. 10 ∗ 10 = 100 runs – which was large enough to give useful data
in a somewhat reasonable time frame (about 3 weeks). To make our life easier,
for each VM we took the maximum initialisation sequence position (rather than
using a manually determined value for each VM / benchmark combination).
We set the initialisation state as iteration #6 for all VMs except for CPython-
SWI which, not using a JIT, reaches an initialised state at iteration #2. Since
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Jython-tuProlog is so much slower than other implementations, we were unable
to do a full dimensioning run in reasonable time; we thus used a subset of the
benchmarks to determine that it also reached the initialisation state at iteration
#6.

Given data from a dimensioning run, one can then compute the amount of
variance introduced at each level. To our surprise, the variation in our bench-
marks was consistently much higher at the executions level than the iterations
level. The method’s heuristic therefore suggested that, since there was little vari-
ation at the iterations level, we need only measure the time taken for a single
post-initialisation iteration. Since the methodology does not give a method for
choosing a number of repetitions for the highest level of experimentation, we
chose 30 repetitions for the executions level. However, we were forced to lower
this for Jython-tuProlog, which is rather slow (30 repetitions would lead to a
running time of 3 months), instead using 10 repetitions for Jython-tuProlog’s
execution level.

With the repetition counts determined, we then ran the real experiment
and computed 99% confidence intervals. As suggested by Kalibera/Jones, we
used the bootstrap re-sampling method with 10000 iterations to compute the
confidence intervals, which has the advantage that we are not required to make
any assumptions about the shape of the underlying distribution.

Our experiments were run on an otherwise idle system with a 4GHz Intel Core
i7-4790K CPU (with turbo mode disabled), 24 GiB RAM, and running Debian
Linux 7.7 in 64 bit mode. All timings are wall-clock with a sub-microsecond
resolution.

6.4 Investigating conversion and the effect of meta-tracing

In addition to measuring the raw benchmarks, we perform two additional exper-
iments designed to help us address two additional hypotheses:

H2 Cross-language inlining is a significant part of meta-tracing’s benefits.
H3 Meta-tracing reduces data conversion costs.

To test hypothesis H2, we created a variant of Unipycation that completely
disables inlining across the Python/Prolog boundary and ran all benchmarks on
that variant.

To test hypothesis H3, we created another benchmark variant Python
nc→ Pro-

log which measures how fast the benchmarks run with zero-cost conversions. For
each benchmark we hand-crafted two versions: one that computes and records
the arguments and results for every cross-interpreter call; and one that uses the
precomputed arguments and results. The latter variant is the one for which we
measure times.

7 Experimental Results

Tables 2, 3, and 5 show the raw results from running the benchmarks against
the four composed VMs. Table 2 shows how often each benchmark crosses the
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Benchmark Crossings Objs converted

SmallFunc 1 000 000 5 000 000
L1A0R 100 000 100 000
L1A1R 100 000 300 000
NdL1A1R 100 300 000 100 300 000
TCons 100 000 400 400 000
Lists 100 000 100 500 000

sat-models 41 505 12 579 962
tube 558 3 984
connect4 126 14 889

Table 2: How often each of our benchmarks crosses the language barrier, and
how many objects are converted in those crossings.

language barrier and how many objects are converted in those crossings; Tables 3
and 5 show benchmark timings in absolute seconds.

Tables 4 and 6 show two subtly different things. First, the relative costs
of moving from a mono-language to a composed VM; informally, we say the
composed VM is efficient if the relative cost of the composed variant is ‘close’
to the mono-language variant. Second, the slow-down of using a composed VM
relative to Unipycation.

In the rest of this section, we analyse these results in detail and share our
insights into them.

7.1 Microbenchmarks

The microbenchmarks outlined in Section 6.1 are designed to measure the costs
of specific cross-language activities and enable us to understand the behaviour
of larger benchmarks. Looking at Table 3, several things are worthy of note. We
start with the simplest observations, moving gradually to more subtle details.

The timings of the mono-language Python benchmarks are near-identical
for Unipycation and PyPy-SWI since they both execute under PyPy; Jython is
somewhat slower; and CPython considerably slower (bar TCons and NdL1A1R).
These results are roughly consistent with other benchmarking of Python VMs [8],
though these microbenchmarks flatter Jython, which would typically be some-
what closer to CPython in performance.

The mono-language Prolog benchmarks follow a similar pattern. CPython-
SWI and PyPy-SWI are equivalent within the margin of error because both
use SWI Prolog; Pyrolog is at least an order of magnitude faster; and tuProlog
is 1–2 orders of magnitude slower than SWI Prolog. These results are broadly
consistent with previous benchmarking involving these Prolog VMs [7], though
one should bear in mind that these microbenchmarks disproportionately flatter
Pyrolog. As these results show, tuProlog is so slow that it is close to unusable
(see Section 9 for discussion of this).
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VM Benchmark Python Prolog Python → Prolog

CPython-SWI

SmallFunc 0.933s ±0.002 1.983s ±0.011 196.000s ±4.225

L1A0R 3.150s ±0.008 5.712s ±0.035 6.895s ±0.024

L1A1R 4.820s ±0.006 15.279s ±0.054 16.378s ±0.056

NdL1A1R 6.637s ±0.011 12.186s ±0.129 427.917s ±3.239

TCons 237.952s ±1.209 36.034s ±0.100 1451.516s ±7.143

Lists 9.328s ±0.009 19.463s ±0.060 1379.922s ±7.618

PyPy-SWI

SmallFunc 0.006s ±0.001 1.986s ±0.014 20.840s ±0.403

L1A0R 0.049s ±0.002 5.714s ±0.042 5.774s ±0.019

L1A1R 0.074s ±0.003 15.232s ±0.039 14.628s ±0.048

NdL1A1R 0.423s ±0.010 12.171s ±0.119 50.424s ±0.529

TCons 5.576s ±0.032 36.040s ±0.057 104.392s ±1.284

Lists 0.701s ±0.003 19.472s ±0.088 71.818s ±0.341

Unipycation

SmallFunc 0.008s ±0.000 0.048s ±0.007 0.010s ±0.001

L1A0R 0.045s ±0.002 0.047s ±0.003 0.045s ±0.001

L1A1R 0.069s ±0.003 0.071s ±0.003 0.074s ±0.003

NdL1A1R 0.422s ±0.000 0.442s ±0.016 2.493s ±0.019

TCons 4.754s ±0.035 2.143s ±0.003 28.871s ±0.449

Lists 0.700s ±0.002 1.252s ±0.002 4.176s ±0.012

Jython-tuProlog

SmallFunc 0.700s ±0.013 23.788s ±0.080 313.299s ±3.294

L1A0R 1.104s ±0.007 153.766s ±1.685 150.828s ±1.032

L1A1R 1.707s ±0.062 222.879s ±0.620 220.224s ±1.994

NdL1A1R 5.524s ±0.134 1880.981s ±7.642 2000.043s ±15.500

TCons 544.376s ±6.075 7845.380s ±28.407 8001.564s ±26.390

Lists 5.114s ±0.079 7043.844s ±15.929 5266.634s ±13.188

Table 3: Absolute performance (in seconds) of the microbenchmarks under each
composed VM.

The first two numeric columns of table 4 show that composed programs gen-
erally run slower than their mono-language cousins. There are two reasons for
this. First, composed programs must perform type conversion when crossing
the language barrier: as Table 2 shows, the microbenchmarks cross the barrier
frequently and often convert a large number of objects (we break these costs
down in more detail in Section 7.4). Second, composed microbenchmarks tend
to be dominated by the slower of the two language implementations being used.
In our case, the slower implementation is always Prolog. Moving an appropri-
ate chunk of code from the slower part of the composition to the faster part
can therefore outweigh the overheads imposed by the language barrier.8 In our
benchmarks, we can see this behaviour clearly in the SmallFunc benchmark on

8 This same observation is the basis for a standard style of performance programming
in languages like Python and Ruby, where small chunks of code are moved to C.
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VM Benchmark
Python→Prolog

Python
Python→Prolog

Prolog
Python→Prolog

Unipycation

CPython-SWI

SmallFunc 210.060× ±4.465 98.840× ±2.188 20433.776× ±1381.309

L1A0R 2.189× ±0.009 1.207× ±0.009 151.951× ±3.853

L1A1R 3.398× ±0.012 1.072× ±0.005 222.353× ±10.662

NdL1A1R 64.473× ±0.493 35.114× ±0.452 171.661× ±1.860

TCons 6.100× ±0.044 40.281× ±0.232 50.276× ±0.811

Lists 147.939× ±0.842 70.901× ±0.454 330.461× ±2.112

PyPy-SWI

SmallFunc 3759.944× ±535.177 10.494× ±0.219 2172.673× ±150.436

L1A0R 118.906× ±5.622 1.010× ±0.008 127.247× ±3.153

L1A1R 197.594× ±8.467 0.960× ±0.004 198.598× ±9.384

NdL1A1R 119.137× ±2.999 4.143× ±0.062 20.228× ±0.263

TCons 18.721× ±0.251 2.897× ±0.035 3.616× ±0.072

Lists 102.497× ±0.646 3.688× ±0.025 17.199× ±0.096

Unipycation

SmallFunc 1.276× ±0.081 0.201× ±0.038 1.000×
L1A0R 1.005× ±0.053 0.957× ±0.057 1.000×
L1A1R 1.072× ±0.071 1.034× ±0.069 1.000×
NdL1A1R 5.902× ±0.044 5.635× ±0.216 1.000×
TCons 6.073× ±0.106 13.471× ±0.208 1.000×
Lists 5.969× ±0.025 3.335× ±0.010 1.000×

Jython-tuProlog

SmallFunc 447.378× ±9.737 13.170× ±0.146 32662.702× ±2186.768

L1A0R 136.595× ±1.257 0.981× ±0.013 3324.147× ±87.511

L1A1R 128.989× ±5.334 0.988× ±0.009 2989.890× ±140.681

NdL1A1R 362.045× ±9.169 1.063× ±0.009 802.325× ±8.918

TCons 14.699× ±0.178 1.020× ±0.005 277.151× ±4.256

Lists 1029.866× ±15.745 0.748× ±0.003 1261.242× ±4.698

Table 4: Relative performance of the microbenchmarks under each composed

VM.
Python→Prolog

Python
should be read as “the performance of the composed VM

relative to the performance of the Python part of the composed VM in isolation”
(similarly when Prolog is the divisor). The first two numeric columns therefore
show how expensive it is to move from a mono-language Python/Prolog program
to a composed variant. The third numeric column shows the slow-down of using
a composed VM relative to the composed version running on Unipycation.

Unipycation: function calls in PyPy are much faster than Pyrolog’s equivalents,
because the latter has additional machinery for unification, backtracking and
non-determinism that cannot always be optimised away.

The final numeric column in table 4 shows clearly that Unipycation is hugely
faster on these microbenchmarks than any other composed VM. In general it
is at least one order of magnitude faster, often two, and occasionally three or
four orders of magnitude faster. Unipycation benefits hugely from its ability to
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VM Benchmark Prolog Python → Prolog

CPython-SWI
sat-models 3.779s ±0.090 91.205s ±0.629

tube 0.272s ±0.001 0.286s ±0.001

connect4 14.172s ±0.033 14.324s ±0.036

PyPy-SWI
sat-models 3.148s ±0.006 12.156s ±0.208

tube 0.263s ±0.002 0.265s ±0.001

connect4 14.172s ±0.035 14.243s ±0.045

Unipycation
sat-models 1.958s ±0.024 2.862s ±0.021

tube 2.348s ±0.026 2.381s ±0.036

connect4 7.533s ±0.047 10.783s ±0.078

Jython-tuProlog
sat-models n/a n/a
tube 435.555s ±1.644 411.496s ±0.607

connect4 278.352s ±0.787 268.351s ±1.606

Table 5: Absolute performance (in seconds) of the larger benchmarks under each
composed VM.

VM Benchmark
Python→Prolog

Prolog
Python→Prolog

Unipycation

CPython-SWI
sat-models 24.137× ±0.599 31.871× ±0.310

tube 1.052× ±0.005 0.120× ±0.002

connect4 1.011× ±0.004 1.328× ±0.010

PyPy-SWI
sat-models 3.862× ±0.065 4.248× ±0.076

tube 1.008× ±0.009 0.111× ±0.002

connect4 1.005× ±0.004 1.321× ±0.010

Unipycation
sat-models 1.462× ±0.021 1.000×
tube 1.014× ±0.019 1.000×
connect4 1.431× ±0.014 1.000×

Jython-tuProlog
sat-models n/a n/a
tube 0.945× ±0.004 172.798× ±2.599

connect4 0.964× ±0.006 24.887× ±0.234

Table 6: Relative performance of the larger benchmarks under each composed
VM. See the caption for Table 4 for details.

trace and optimise across language boundaries (we examine this in more detail in
Section 7.3). An exceptional case is the TCons benchmark on PyPy-SWI, which
manages a mere factor of 3.6 slowdown over Unipycation. This is because most
of the cost of this benchmark is the conversion of a great many Prolog terms (see
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Table 2) into Python lists, which is handled in the high-level uni module. Since
the uni module is a pure Python module, both PyPy-SWI and Unipycation use
PyPy for this aspect, and thus Unipycation has less of an advantage.

7.2 Larger Benchmarks

With the results of the microbenchmarks in mind, two of the three larger bench-
marks in Tables 5 and 6 are relatively easily understood. The tube benchmark
spends nearly all of its time in Prolog (as Table 2 shows, it makes few crossings)
and thus its results are dominated by the Prolog language implementation. In
this case, SWI Prolog considerably outperforms Pyrolog. The SAT models bench-
mark, in contrast, crosses the language barrier frequently, passing large amounts
of data across. Unipycation thus outperforms the other composed VMs by at
least a factor of 4.

The Connect 4 benchmark is more interesting. It crosses the language bar-
rier relatively infrequently but, as Table 2 shows, passes a moderate amount of
information (the game state) in each crossing. The amount of data converted
in the uni module is small enough that substituting CPython for PyPy makes
little difference to performance (i.e. CPython-SWI and PyPy-SWI perform near-
identically). Table 5 shows that, in the pure Prolog variant, Pyrolog runs this
benchmark roughly twice as fast as SWI Prolog. However, running it as a com-
posed program on Unipycation leads to a surprisingly large slowdown of around
40%. Such a large difference cannot be explained by the relatively small amount
of data passed around. Manual inspection of the traces compiled by the JIT re-
veals the cause to be the interaction between two important Prolog predicates:
alphabeta, which computes the AI’s next move; and has won, which decides if
either player has won the game. In the pure Prolog variant, these two predicates
are optimised together. In the composed variant, the loop that calls them is in
Python, requiring a translation of the data from alphabeta into Python and
then back to Prolog to be passed to has won. The presence of the conversion
code prevents the two Prolog predicates being optimised together, accounting
for most of the slowdown.

Jython-tuProlog’s results are interesting as the cross-language benchmark
variants run faster than the mono-language variants. In this case, tuProlog is
so slow that moving code into Jython can often be a net win. This emphasises
Section 7.1’s observation that the language crossing overhead can be smaller
than the difference in performance between two language implementations.

7.3 The Effects of Cross-Language Tracing

The final numeric columns of Tables 4 and 6 compare the relative performance
of the different styles of composed VMs. Here, the outcome is clear (with the
exception of the tube benchmark, which rarely crosses the language boundary):
Unipycation outperforms the other styles of VM composition. This is particu-
larly interesting given that PyPy-SWI uses PyPy just as Unipycation does. An
important question therefore is whether the difference can be solely explained
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VM Benchmark Python Prolog Python → Prolog

Unipycation NoXTrace

SmallFunc 0.007s ±0.001 0.049s ±0.007 5.390s ±0.013

L1A0R 0.047s ±0.002 0.046s ±0.002 0.170s ±0.001

L1A1R 0.070s ±0.003 0.071s ±0.003 0.207s ±0.001

NdL1A1R 0.423s ±0.000 0.401s ±0.023 51.100s ±0.050

TCons 4.969s ±0.020 2.144s ±0.003 28.996s ±0.092

Lists 0.710s ±0.004 1.250s ±0.001 4.517s ±0.009

sat-models n/a 1.953s ±0.017 2.523s ±0.017

tube n/a 2.363s ±0.025 2.374s ±0.019

connect4 n/a 7.396s ±0.034 10.610s ±0.114

Table 7: Absolute performance of Unipycation with cross-language tracing
turned off.

VM Benchmark
Python→Prolog

Python
Python→Prolog

Prolog
Python→Prolog

Unipycation

Unipycation NoXTrace

SmallFunc 798.291× ±80.406 109.019× ±16.048 561.895× ±36.223

L1A0R 3.657× ±0.199 3.688× ±0.184 3.756× ±0.096

L1A1R 2.961× ±0.143 2.900× ±0.143 2.814× ±0.136

NdL1A1R 120.903× ±0.147 127.359× ±7.736 20.499× ±0.157

TCons 5.836× ±0.030 13.524× ±0.046 1.004× ±0.016

Lists 6.358× ±0.041 3.615× ±0.008 1.082× ±0.004

sat-models n/a 1.292× ±0.014 0.882× ±0.009

tube n/a 1.005× ±0.014 0.997× ±0.018

connect4 n/a 1.434× ±0.017 0.984× ±0.013

Table 8: Relative performance of Unipycation with and without cross-language
tracing. See the caption for Table 4 for details.

by Pyrolog outperforming SWI Prolog. Looking at Tables 3 and 5, we can see
from the mono-language Prolog benchmarks that this is not the case. Take, for
example, the SmallFunc benchmark where Pyrolog is about 42 times faster than
SWI Prolog; in the composed variant of the benchmark Unipycation is over 2000
times faster than PyPy-SWI. There must, therefore, be one or more other factors
which explain this.

Hypothesis H2 captures the intuition that cross-language inlining is likely to
explain this speedup. Tables 7 and 8 show the effect of turning off cross-language
inlining. Looking at Table 8 we can clearly see that cross-language tracing ef-
fects vary considerably depending on the benchmark. Most of the microbench-
marks benefit from cross-language inlining, sometimes substantially. For those
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microbenchmarks such as SmallFunc and NdL1A1R that cross the language
barrier frequently and call functions that are small enough to be inlined by the
meta-tracer, cross-language tracing is highly effective. The effect is magnified for
SmallFunc because, unlike NdL1A1R, it generates a single solution which can
be highly optimised.

The effect with the larger benchmarks is rather different. Once we account
for confidence intervals, the effect of cross-language inlining on the tube bench-
mark is inconclusive, connect4 slows down microscopically, and sat-models slows
down noticeably. At its root, sat-models is a highly data-dependent benchmark,
and some examples cause Pyrolog to generate a large number of traces (around
600). On its own, this is not necessarily a problem—the pure Prolog version of
Unipycation is the fastest implementation of that benchmark. However, these
traces suffer from tail duplication, a common problem with tracing JIT compil-
ers [16], where many traces have identical or near-identical code at their end.
In the case of sat-models, these tails are identical, and come from Unipycation
(e.g. for data conversion) and PyPy (i.e. the Python code that follows the call
to Prolog). Each of these needless tails causes around 1KiB of extra machine
code per trace, which is sufficient to cause cache misses, and thus largely ac-
counts for the slight slowdown. It is possible that modifying Pyrolog with the
tail call identifying techniques from Pycket [3] might reduce tail duplication in
such examples.

While our data shows that hypothesis H2 sometimes explains Unipycation’s
good performance, we consider our data insufficient to validate or refute hypoth-
esis H2 in general.

7.4 The Cost of Data Conversion

Table 9 shows the results from running the Python
nc→ Prolog benchmarks (see

Section 6.4).9 As one would expect, removing conversion makes all benchmarks
faster. The benchmarks that benefit the most in terms of relative time reduction
are TCons, Lists and sat-models, which is consistent with the fact that these
benchmarks convert a large number of objects. NdL1A1R does not benefit as
much; although many objects are converted, they are simple integers rather than
more complex structures.

The results also indirectly show that there are additional costs beyond data
conversion: additional function calls, predicate lookups, allocate additional mem-
ory for other reasons etc. The Python

nc→ Prolog numbers are therefore still slower
than the pure Prolog or Python variants, despite the elimination of the conver-
sion costs. Of particular interest are Unipycation’s results: although it performs
better without data conversion costs, it benefits much less than the other com-
posed variants, showing that meta-tracing is particularly effective at removing
data conversion costs in composed VMs. We believe that these results validate
hypothesis H3 fairly clearly.

9 Since it would take two additional weeks to run, we did not run the Python
nc→ Prolog

benchmark on Jython-tuProlog.
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VM Benchmark Python
nc→ Prolog

Python→Prolog
Pythonnc→Prolog

CPython-SWI

SmallFunc 125.273s ±4.514 1.565× ±0.066

L1A0R 6.901s ±0.039 0.999× ±0.007

L1A1R 15.895s ±0.135 1.030× ±0.010

NdL1A1R 229.359s ±2.036 1.866× ±0.023

TCons 144.363s ±0.457 10.055× ±0.060

Lists 10.988s ±0.058 125.590× ±0.980

sat-models 5.715s ±0.068 15.960× ±0.226

tube 0.260s ±0.001 1.103× ±0.006

connect4 14.223s ±0.051 1.007× ±0.004

PyPy-SWI

SmallFunc 9.517s ±0.139 2.190× ±0.052

L1A0R 5.791s ±0.031 0.997× ±0.006

L1A1R 14.631s ±0.048 1.000× ±0.005

NdL1A1R 18.864s ±0.201 2.673× ±0.043

TCons 19.004s ±0.071 5.493× ±0.070

Lists 7.389s ±0.032 9.719× ±0.063

sat-models 3.041s ±0.005 3.997× ±0.066

tube 0.257s ±0.001 1.031× ±0.006

connect4 14.226s ±0.042 1.001× ±0.004

Unipycation

SmallFunc 0.006s ±0.001 1.725× ±0.257

L1A0R 0.047s ±0.002 0.969× ±0.047

L1A1R 0.072s ±0.003 1.020× ±0.068

NdL1A1R 1.624s ±0.010 1.535× ±0.015

TCons 4.800s ±0.028 6.015× ±0.102

Lists 1.075s ±0.002 3.884× ±0.013

sat-models 2.071s ±0.086 1.382× ±0.058

tube 1.688s ±0.024 1.411× ±0.030

connect4 10.773s ±0.114 1.001× ±0.012

Unipycation NoXTrace

SmallFunc 4.669s ±0.019 1.154× ±0.006

L1A0R 0.171s ±0.001 0.998× ±0.006

L1A1R 0.203s ±0.001 1.020× ±0.009

NdL1A1R 45.280s ±0.568 1.129× ±0.014

TCons 5.216s ±0.025 5.559× ±0.033

Lists 1.328s ±0.006 3.402× ±0.018

sat-models 1.985s ±0.075 1.271× ±0.049

tube 1.680s ±0.018 1.413× ±0.020

connect4 10.674s ±0.056 0.994× ±0.012

Table 9: Absolute performance in seconds of all VMs with conversion costs re-
moved (left column) and relative performance of Python → Prolog to Python

nc→
Prolog (right column).
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7.5 Disentangling Cross-language Inlining and Data Conversion

By turning off cross-language inlining and using our modified zero-cost data con-
version benchmarks, we can understand their individual effects. The results are
shown in the Unipycation-NoXTrace parts of Table 9. As we would expect, the
absolute times between Unipycation and Unipycation-NoXTrace in Table 9 are
often substantially different; however, the relative times are generally fairly close.
For example, the relative speed-up of the NdL1A1R benchmark on Unipycation
is 1.535× and for Unipycation-NoXTrace 1.129×. This shows that the bene-
fits of cross-language inlining and data conversion in meta-tracing are largely
independent.

7.6 Summary: The Cost of Moving to Composed VMs

The first two numeric columns of Table 4 and first numeric column of Table 6 give
an indication of the performance penalty users can expect to incur when moving
from a mono-language VM to a composed VM. This clearly shows that it is more
costly to move from Python to Unipycation than from Prolog to Unipycation.
Put another way, Python users who care only about performance may have
to think more carefully about such a move than Prolog users. There are several
factors that are likely to contribute to this: PyPy is generally faster than Pyrolog;
it is generally easier to optimise an imperative programming implementation
such as PyPy than a declarative implementation such as Pyrolog; and it is easier
for an end-user to write a Python program in such a way that an implementation
can run it efficiently relative to Prolog.

Fortunately, the results also show that the costs of moving from mono-
language PyPy or Pyrolog to composed Unipycation are not terrible. Even for
the worst-case microbenchmark, the penalty for moving to Unipycation is an
order of magnitude, but more typically a factor of 1–6. In the larger bench-
marks, the penalty for moving is at most a factor of 1.462, which many users
may consider an acceptable cost for the increase in expressiveness that composed
programming brings.

8 Discussion

Section 7 gave the quantitative results from our experiment. In this section, we
give our qualitative impressions, first of the four different compositions, and then
of the Kalibera/Jones method.

8.1 Unipycation

RPython’s relatively high-level nature (e.g. rich data types and garbage col-
lection) made much of Unipycation’s development fairly easy. On the other
hand, compiling (or, in RPython terminology, translating) RPython VMs is slow.
Unipycation takes the best part of an hour to translate on a fast machine, a cost
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that is born anew for every single change due to the lack of incremental compi-
lation. A partial remedy used by the RPython community is to unit test small
fragments of functionality untranslated in a Python interpreter. This inevitably
gives little idea of the performance of a translated VM, but can catch many
errors quicker than running the translator (though some errors are only likely to
be found by the translator’s type inference).

8.2 CPython-SWI and PyPy-SWI

Using CFFI eased the development of CPython-SWI significantly. We would not
have enjoyed dealing with intricate details such as CPython’s reference counting
and reference ownership semantics. Since CFFI is portable across Python imple-
mentations, we were able to run CPython-SWI’s glue code under PyPy without
modification to ‘create’ PyPy-SWI. Despite the use of CFFI – and despite the
experience we accumulated having implemented the other VMs – CPython-SWI
and PyPy-SWI were without doubt the most challenging compositions to create.
There were two chief reasons for this.

First, we did not initially appreciate that SWI Prolog cannot interleave
queries within a single Prolog engine, so code such as the following fails to
execute as expected:

1 it1 = e.db.f.iter (...)
2 it2 = e.db.g.iter (...)
3 s1 = it1.next()

After the second query is invoked, SWI Prolog does not allow the first to be
pumped for additional values. We eventually made line 3 raise an exception
(StaleSolutionIterator) in CPython-SWI / PyPy-SWI. One work around for
this would be to create a new Prolog engine for each query; however, SWI Prolog
requires a new thread for each engine, which would lead to unacceptably high
overheads.

Secondly, our unit testing approach, which worked well for Unipycation and
Jython-tuProlog, was less effective for CPython-SWI. Seemingly innocuous mis-
takes led to the test suite crashing without useful debugging information or
corrupted the system such that the next test (which in isolation, would pass)
then failed.

8.3 Jython-tuProlog

Since Jython can seamlessly call Java from Python, implementing glue code
for Jython-tuProlog was fairly trivial. However, Jython-tuProlog’s poor perfor-
mance highlights the semantic mismatch problem [8]. VMs can’t optimise every
possible program; instead, they optimise common idioms in the family of lan-
guages they expect to encounter. Both Jython and tuProlog fall some way out-
side what current JVMs can best optimise; Jython-tuProlog exacerbates these
issues, and performance suffers greatly. We suggest that language composition
on existing VMs such as the JVM is very hard to optimise, unless all languages
involved fall within the boundaries of the expected language model.
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8.4 Effort Levels

Reporting precise levels of effort for each composed VM is impractical. How-
ever, we believe that, roughly speaking, each composition took about one per-
son month to implement; and that designing and implementing the uni interface
took roughly one person month as well (we count CPython-SWI and PyPy-SWI
as one composition in this regard). Unipycation was implemented first; then
Jython-tuProlog; and then CPython-SWI (and therefore PyPy-SWI). We thus
had the ability to learn from our experiences along this journey, which perhaps
made Jython-tuProlog and CPython-SWI slightly easier to implement (though
CPython-SWI’s proneness to segfault in unexpected ways caused the most hair-
pulling). The main lesson we drew from this was that while the style of composi-
tion chosen has a big effect on benchmark performance, it does not significantly
effect how much effort is needed to create the composition.

8.5 The Kalibera/Jones Method

The Kalibera/Jones method is not yet commonplace and so we believe readers
may gain some insights from our experiences of it. The first thing to note is that
the method is not a prescriptive sequence of steps, but instead is a cookbook of
related techniques and suggestions. While some aspects are clearly more impor-
tant than others, there is plenty of scope for variation. It is also more obviously
aimed at long-running, rather than micro, benchmarks.

The method forced us to think about the multiple levels involved in executing
a benchmark. Previously, we had tended to benchmark either the iterations or
the executions level. We already knew that we should discard results prior to the
initialisation state, but the dimensioning run made it clear that the variation at
the executions level was much bigger than at the iterations level. The method
allowed us to understand these issues, and to concentrate the experiment’s time
on the level(s) where the variation was the greatest.

We deviated from the method by not applying separate initialisation state
counts to each benchmark. Instead, we took the maximum and applied that to all
benchmarks on a per-VM basis. This very slightly increased the time benchmarks
took to execute but made configuration easier, and has no detrimental effect on
the final results. We consider this a reasonable trade-off. We ignored the notion
of independent state, as the heuristics told us to perform just one (initialised)
repetition at the iterations level.

One inherent limitation of the method is that it cannot choose repetition
counts for the highest level (for us, the executions level). In our case we chose 30
repetitions (and only 10 for Jython-tuProlog) for this level based on our intuition
of the benchmarking in question.

One of the largest contributions of the method is that it brings together
some advanced statistics and makes them approachable. The method covers all
aspects of experimentation, from designing the experiment, to presenting the
results with confidence intervals (e.g. Tables 4, 6 and 8). We reimplemented the
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statistical aspects of the Kalibera/Jones method as a Python package which can
be freely downloaded.10

9 Threats to Validity

As ever with microbenchmarks, one must not expect that they tell us much about
real-world programs. Our larger benchmarks are an attempt to gain a slightly
better idea of how benchmarks that cross the language barrier in different ways
perform. ‘Real’ composed programs will be many times bigger than our biggest
benchmark and are likely to have different performance characteristics.

The fact that the VM glue code which performs high-level type conversions
and so on is written in pure Python, rather than in the language of the underlying
language implementation, is a potential worry. In particular, CPython-SWI has
no good way to dynamically optimise this code (unlike Unipycation and PyPy-
SWI). We are able to get a good handle on the size of this effect through the

Python
nc→ Prolog data from Section 7.4. By reducing all data conversion costs to

zero, we emulate an extreme version of what would happen if the glue code was
rewritten in C. In other words, we can use this as a good proxy for answering the
question ‘would CPython-SWI outperform Unipycation if it’s glue code wasn’t
written in Python?’ As the numbers clearly show, even when data conversions
costs are removed, Unipycation achieves significantly better performance in all
but the tube benchmark, which has no relevance from the perspective of data
conversions (see Page 20). This is strong evidence that our overall conclusions
would remain the same even if CPython-SWI’s glue code were to be rewritten.

Although the same argument could be extended to Jython-tuProlog, it is
largely irrelevant: tuProlog is so slow that it dominates all benchmarks it is a
part of. We stuck with tuProlog as it is the only JVM Prolog we could find which
is stable and easily embeddable. A different JVM Prolog may lessen this effect,
though the semantic mismatch problem (see Section 8.3) suggests that it will
always be difficult to make Prolog perform well on the JVM.

10 Related Work

The motivation for language composition dates back to the late 60s [12], though
most of the early work was on extensible languages (e.g. [26]); to the best of
our knowledge such work largely disappeared from view for many years, though
there has been occasional successor work (e.g. [29,10]). We are not aware of an
extensive study of this early work and, unfortunately, the passing of time has
made it hard to relate much it to the current day—in some cases it has been
decades since the systems involved could be run.

The Domain Specific Language (DSL) movement aims for a limited form of
language composition. One part of the movement (best represented by [24]) sees
DSLs as a specific way of using a language’s existing syntax and semantics, and

10 http://soft-dev.org/src/libkalibera/

http://soft-dev.org/src/libkalibera/
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is of little relevance to this paper. The other part of the movement aims to ac-
tively extend a language’s syntax and semantics. This is normally achieved either
by source-to-source translation, or by macro-esque compilation of an embedded
DSL into a host language. Translating one language into another generally leads
to semantic mismatches which cause poor performance (see e.g. [41]), analogous
to Jython-tuProlog. However, it is perfectly possible to implement DSLs as in-
terpreters, and our results may give useful suggestions to performance-concious
DSL authors as to which approach may be most suitable for them.

Arguably the most common approach to composing languages is through an
FFI (Foreign Function Interface). In most operating systems, C or C++ are
the de facto standard languages, and most other languages thus provide an FFI
to them. Traditional FFIs can not inline across languages which, as our results
show, often compromises performance.

Another approach to language composition is to glue together VMs run-
ning in different processes through CORBA and its ilk (e.g. [28]). However such
approaches inevitably have to take a ‘lowest-possible common denominator’ ap-
proach, even when all parts of the composition could communicate at a higher-
level [31], making programming awkward and inefficient. The approaches we use
in this paper impose no such requirement on the composition, which can interop-
erate at whatever level makes sense. Furthermore, our intra-process approaches
can communicate without the substantial overhead of inter-process communica-
tion (often 4–6 orders of magnitude difference, even with the most efficient OS
implementations). Because of these issues, inter-process composition has never
seen any meaningful use for fine-grained composition, although it is used to glue
together large components in a coarse-grained fashion.

Semantic mismatches make it difficult to create performant language compo-
sitions atop a single VM. While Java programs on HotSpot have excellent perfor-
mance, other languages (e.g. Python) on HotSpot often run slower than simple
C-based interpreters [8,39]. While better VM extensions (e.g. invokedynamic)
or compiler alterations (e.g. [27]) can improve performance, the results still lag
some way behind their tracing equivalents [11]. Our experience with Unipycation
shows that this result holds true in the face of language composition too.

Similar approaches to Unipycation exist at the language-level: Smalltalk
and SOUL (a Prolog-like logic programming language) [21,14]; Java and tuPro-
log [13]; Icon and Prolog [33]; and Lisp and Prolog in LOGLISP [38]. Most of
these compositions have a similar cross-language API to Unipycation. For ex-
ample, SOUL predicates are mapped to message sends, and SOUL’s multiple
solutions are mapped to collections (albeit not lazily). Note however that such
approaches simply embed a (slow) Prolog interpreter written in the host lan-
guage, leading to much worse performance than Unipycation’s cross-language
JIT compiler. LOGLISP is the outlier, extending Lisp’s primitives with Prolog-
like features. Due to LOGLISP’s age, we have little idea about its performance
characteristics.
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11 Conclusions

In this paper we aimed to further our understanding of which style of composition
leads to the best run-time performance. By composing Python and Prolog, we
hope to have chosen a difficult scenario that gives an indication of the worst-
case in terms of performance and engineering effort. Although we must be careful
not to over-generalise our experiences, our results are fairly clear and validate
hypothesis H1. Meta-tracing led to a composed VM which at least holds its
own with, and generally beats significantly, other styles of composition. The
composition was no more difficult to implement than the next fastest style of
composition, which required interfacing at the C level.

Our current assumption is that this pattern is likely to be repeated for most
languages which are naturally suited to meta-tracing. However, languages which
block cross-language inlining will perform poorly. Fortunately, our experiences
with Pyrolog suggest that interpreters for such languages can be easily tweaked
such that meta-tracing can inline across the language boundary. An open ques-
tion is how our results may apply to languages less suited to meta-tracing. For ex-
ample, in isolation, a traditional static C compiler is likely to beat a meta-tracing
C interpreter in most cases. As our results have shown, the cost of repeatedly
crossing the language boundary can outweigh the performance characteristics
of individual interpreters. A validation of this can be seen in [19] which uses
dynamic partial-evaluation of self-optimising interpreters – an approach similar
in intent to meta-tracing – to show that composing a C interpreter with Ruby
can give good results. This leads us to suggest that perhaps the most impor-
tant factor in determining which interpreter composition should be used is the
frequency with which one expects users to cross the language boundary: if the
answer is ‘not often’, then the implementation choice may not be hugely impor-
tant; if ‘often’, then meta-tracing (or a similar approach) may well be the best
choice, irrespective of the individual languages in the composition.

Finally, while our work is pitched in the context of language composition,
much of the results and insights will be applicable to cross-language libraries.
This is relatively common-place on the JVM (e.g. Scala calling Java), and in
many dynamically typed languages (e.g. Ruby calling C). Our results give a
good understanding of how moving to different language implementation styles
effects performance in such cases.
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A A Larger Example

To give readers an idea of what a composed Python / Prolog program looks
like, in this appendix we show an elided example of a program which uses a
SAT solver. It exhaustively enumerates the satisfying models of a SAT instance,
counting the number of propositional variables set true.

The SAT instance is read from a DIMACS file. The solver is called from
Python by invoking the Prolog sat predicate. This converts from a ground rep-
resentation where SAT variables are atoms, to one where they are represented
as Prolog variables. It then invokes the Howe/King SAT solver [23].

1 import uni

2

3 class SatSolver(object ):

4 def __init__(self):

5 self.engine = uni.Engine ("""

6 extract_variables ([], []).

7 extract_variables ([_/Var | T], [Var | T2]) :-

8 extract_variables(T, T2).

9

10 variablify(ReifiedProblem , ProblemWithVariables , Mapping) :-

11 % convert representation into what the sat solver expects

12

13 sat(ReifiedProblem , Result) :-

14 variablify(ReifiedProblem , ProblemWithVariables , Result),

15 extract_variables(Result , Variables),

16 sat_from_paper(ProblemWithVariables , Variables ).

17

18 sat_from_paper(Clauses , Vars) :-

19 % as in the Howe/King paper """)

20

21 # Generate prolog terms to pass to the SAT solver

22 def _generate_input_terms(self , py_clauses ):

23 minus_term = getattr(self.engine.terms , "-")

24 pl_cnf = []

25 for py_clause in py_clauses:

26 pl_clause = []

27 for py_lit in py_clause:

28 var = "v" + str(abs(py_lit ))

29 if py_lit < 0:

30 polarity = "false"

31 else:

32 polarity = "true"

33 pl_lit = minus_term(polarity , var)

34 pl_clause.append(pl_lit)

35 pl_cnf.append(pl_clause)

36 return pl_cnf

37

38 def enumerate_in_python(self , clauses ):

39 pl_clauses = self._generate_input_terms(clauses)
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40 counts = []

41 for (model , ) in self.engine.db.sat.iter(pl_clauses , None):

42 count = 0

43 for varname , binding in model:

44 count += int(binding == "true")

45 counts.append(count)

46 return counts

47

48 print SatSolver (). enumerate_in_python(parse_dimacs(fh))
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