
Language Components for Modular DSLs using Traits

Walter Cazzolaa,∗, Edoardo Vacchia

aDepartment of Computer Science, Università degli Studi di Milano, Italy.

Abstract

Recent advances in tooling and modern programming languages have progressively brought
back the practice of developing domain-specific languages as a means to improve software
development. Consequently, the problem of making composition between languages easier
by emphasizing code reuse and componentized programming is a topic of increasing
interest in research. In fact, it is not uncommon for different languages to share common
features, and, because in the same project different DSLs may coexist to model concepts
from different problem areas, it is interesting to study ways to develop modular, extensible
languages. Earlier work has shown that traits can be used to modularize the semantics of
a language implementation; a lot of attention is often spent on embedded DSLs; even when
external DSLs are discussed, the main focus is on modularizing the semantics. In this
paper we will show a complete trait-based approach to modularize not only the semantics
but also the syntax of external DSLs, thereby simplifying extension and therefore evolution
of a language implementation. We show the benefits of implementing these techniques
using the Scala programming language.

1. Introduction

In recent years, the practice of developing domain-specific languages (DSL) to deal
with domain-specific problems has started to regain interest among researchers and
practitioners as demonstrated by surveys and books [1, 2] and a more recent study about
research trends and applications of DSLs [3]. Support tooling is becoming more and
more powerful, flexible and convenient, with the introduction of new frameworks and
platforms; modern API design is progressively converging to a style that resembles an
embedded language, to the point where the very distinction between a DSL and a general
purpose language (GPL) is becoming thinner; a style that Martin Fowler and Eric Evans
dubbed fluent interface [4], and that languages such as Scala [5], Smalltalk, Ruby and
Groovy actively promote: the flexible parser and syntax of such languages allow users to
even omit some punctuation, making it simple to simulate the embedding of a foreign
language. For instance, Listing 1, shows a Scala internal DSL (punctuation that can be
omitted has been dimmed).

However, language embedding as a fluent interface has still to obey to the host language
limitations; inevitably, external DSLs, provide an unrivaled level of syntactic flexibility

∗Corresponding author, E-mail: cazzola@di.unimi.it

Preprint submitted to Elsevier December 2, 2015

// multiple init

val opened, closed = new State;

// builder pattern

val open = Transition.from(opened).to.(closed);

val close = Transition.from(closed).to.(opened);

// abstract factory

val door = StateMachine (

// named parameters

states = List(opened, closed),

transitions = List(open, close)

);

Listing 1: A State Machine language as a Scala embedded DSL

(for instance, compare the state machine in Listing 1 with the equivalent written in an
external DSL and reported in Listing 3), at the cost of requiring developers to write
their own parsing routines, and to implement the semantics of each single construct.
Nevertheless, modern libraries and languages today provide programmers with tools
that make developing their own external DSL within their reach. For instance, parser
combinator libraries [6–8] make it possible to define an executable parser in such a way that
the code that describes it closely resemble the structure and looks of its formal grammar.
We are getting closer and closer to a full componentization of language implementations,
where domain specific languages could be implemented as the combination of features
concretized as reusable assets.

Modular language development is a research branch that investigates tools and tech-
niques to componentize the design and implementation of languages, with particular
attention to DSLs, where each feature may be easy to represent as a distinct code unit,
making a language implementation very close to a combination of a selection of such
components, realizing a form of feature-oriented language composition [9–12]. In general
a language implementation can be described by i) a parser for a concrete syntax, yielding
ii) an abstract syntax tree that puts in relation the concrete syntax of an input program
with an abstract syntax representation, and iii) the semantics that can be associated with
the nodes of the abstract syntax tree [13, 14]. These three parts of a language can be
decomposed into a collection of language components [9, 15], that is, a sort of bundle
that includes the syntax, and the semantics of that construct; the semantics may be
represented as a sequence of evaluation phases (e.g., type checking, evaluation, etc.) that
pertain to that particular construct (Fig. 1). A language component can be shared and
distributed as a whole across different language implementations, possibly as a binary,
pre-compiled package; the final objective is to provide the features of the language as
self-contained bundle of components that can be just combined together. The contribution
of this work is to synthesize a collection of patterns and techniques that can be used to
implement language components, using traits, lightweight entities of code reuse that are
often contrasted to single and multiple inheritance [16, 17], and that have been already
shown (e.g., [12, 18, 19]) to be especially good to achieve language componentization. To
this end, we will show how to

• separate the syntactic concern from the construction of the abstract representation
of the language;

• separate the abstract representation of the language from the implementation of its
semantics;

2

Language Component

GrammarGrammar ASTAST Phase 1Phase 1 Phase 2Phase 2 Phase 3Phase 3

Figure 1: A Language Component.

• modularize the implementation of the semantics in distinct phases;
• decouple the abstract representation from the semantics of each phase, possibly

expressing dependencies between phases.
We will use traits to componentize the parser implementation in such a way that the
code resembles a grammar, thereby making it easier to understand and develop, and to
implement the interpreter pattern separating different concerns of the semantics of the
language constructs.

The benefit of representing language concepts through traits is an improved modu-
larization, thereby simplifying code sharing across language implementations. Moreover,
since traits in most languages can be written as separate code units, employing them in
the modularization of a language make it possible to compile each language component
separately and independently from the others, allowing them to be shared as binary assets,
that, nevertheless, can still be combined together post-compilation.

The approach that we present has been influenced by many sources of inspiration:
first of all, Scala’s parser combinator library bundles traits with predefined combinators
for commonly used literals and regex patterns, that users can mix-in to their classes;
then, our experience with the implementation of the Neverlang framework [15, 20–22]
for componentized language development, with which the trait-based model that we
will present shares a few commonalities; finally, the previous work on modularizing
the semantics of an interpreter (e.g., [12, 18, 19]). The objective of this work is to
present a complete solution, including syntax and semantic composition, to realize the
implementation of language components. The final goal will be, in the future, to be able to
implement languages in a feature-oriented way, possibly using feature modeling techniques
to present the variability in a language family; such an experience has been already carried
out —see [9, 23, 24]— using our own programming language framework, that provides
first-class support for language components (known as slices); in this work we want
to show that, although a dedicated tool simplifies a componentized model of language
development, a similar degree of code reuse can be reached by employing constructs and
features that are already available in many modern GPLs.

For this work we chose to use Scala’s trait implementation, since it completes Schärli’s
original prototype [16] with the additional guarantees of correctness that a static type
system provides. Nevertheless, the approach should be portable to any language that
supports trait-like composition and a library for parser combinators, such as Smalltalk,
Ruby, Groovy, etc.

A simple state machine DSL. As our running example we will use a simple State Machine
language similar to the one from Tratt’s paper [25] (see Listing 2). Similarly to Tratt,
we will also show how to extend the basic state machine DSL with guards and action
language; but in our case the extended DSL will be the result of composing together

3

// StateMachine

SMachine → "state" "machine" Ident Initial "{" Body "}" ;

Initial → "initial" "(" Ident ")"

// Transition types

Transition → SimpleTransition ;

SimpleTransition → "transition" "from" Ident "to" Ident ":" Ident ;

// State types

State → SimpleState ;

SimpleState → "state" Ident;

// Body Definition

Body → State* Transition* ;

Listing 2: State Machine DSL Grammar.

state machine Door initial closed {

state opened state closed

transition from opened to closed: close

transition from closed to opened: open

}

Listing 3: Door State Machine for the grammar in Listing 2.

traits from the basic state machine language and a separate action language.

The rest of this paper is structured as follows. Section 2 describes the background.
Then the paper is divided into two parts: in Sect. 3 we will draw a parallel between
grammars and traits and we will show that it is possible to modularize a parser im-
plementation in the same way we will partition the set of rules of a formal grammar.
In this section we will use Scala’s traits and its parser combinator library. In Sect. 4
we will show how to implement the semantics of our DSLs using traits to decouple the
semantic implementation of the interpreter from the abstract representation of language
concepts. Section 5 expands the running example of state machines in a full case study,
by extending the basic state machine language with support for an action language and
guard expressions. Section 6 compares our solution to some related work, and in Sect. 7
we draw our conclusions.

2. Background

We will give a few details on the technical background that is required to understand
the rest of this paper. We first briefly recap formal grammars, then we define the concept
of trait as found in [16, 17], and finally we describe the peculiarities of Scala’s trait
implementation, with respect to the features we will use here.

2.1. Formal Grammars
In the following we will assume that the reader has some confidence with language

theory, please refer to a book on the topic for general definitions (e.g., [26]). In short, a
formal grammar is a tuple 𝐺 = ∐︀Σ,𝑁,𝑃,𝑆̃︀, where Σ is an alphabet of terminal symbols,
𝑁 is an alphabet of nonterminal symbols, 𝑃 is a set of production rules and 𝑆 ∈ 𝑁 is the
start symbol. A production rule (or simply a production) is written as 𝐴→ 𝜔 where 𝐴 ∈ 𝑁 ,

4

package sm.lang

trait StateMachine extends RegexParsers {

// provided

def statemachine = "state" ~> "machine" ~> ident ~ initial ~ ("{" ~> body <~ "}")

def initial = "initial" ~> ("(" ~> ident <~ ")")

// required

type TBody

def body : Parser[TBody]

def ident: Parser[String]

}

trait SimpleTransition extends RegexParsers {

def simpleTransition = ("transition" ~ "from") ~> ident ~ ("to" ~> ident) ~ (":" ~> ident)

def ident: Parser[String]

}

trait SimpleState extends RegexParsers {

def simpleState = "state" ~> ident

def ident: Parser[String]

}

trait Transition extends RegexParsers {

type TTransition

def simpleTransition: Parser[TTransition]

def transition = simpleTransition

}

trait State extends RegexParsers {

type TState

def simpleState: Parser[TState]

def state = simpleState

}

trait Body extends RegexParsers {

type TTransition; type TState

def state: Parser[TState]

def transition: Parser[TTransition]

def body = state.* ~ transition.*
}

Listing 4: A trait-based parser for grammar in Listing 2.

and 𝜔 ∈ (Σ∪𝑁)∗, with (Σ∪𝑁)∗ being the transitive closure of set Σ∪𝑁 with respect to
symbol juxtaposition. The generated language 𝐿(𝐺) of a grammar is the set of all the
words that can be derived from a starting nonterminal 𝑆 for the grammar 𝐺. A language
for a grammar 𝐺 is said to be empty if 𝐿(𝐺) = ∅ and, conversely, non-empty when it
contains at least one sentence. In other words, there exists at least one sentence, (or word,
or program) that can be expressed using the language represented by 𝐺. In the following,
we will assume grammars that generate non-empty languages, and, for simplicity, we will
make the assumption that our grammars do not contain the empty word 𝜀1.

1As well-known this is not a real limitation since any context-free grammar with 𝜀 can be transformed
without losing any information in a grammar without any empty word. This only affects the grammar
size.

5

2.2. Parser Combinators
A parser can be seen as a function that takes a stream of characters as input and

produces a parse tree. Higher-order functions known as combinators can be composed
together to construct grammar structures such as sequencing, repetitions, optionality
and choice. If the host language supports infix operator notation, then a grammar rule
written using parser combinators resembles an EBNF production. The biggest advantage
of parsing with combinators is improved composability; larger parsers are generated
by taking simple, primitive parser and composing them functionally. There are many
object-oriented frameworks for parser combinators, for instance jParsec2 and Scala parser
combinators [7]. All implementations use the host language to build an object model of
parsers.

Scala’s parser combinator library provides a hierarchy of traits, the base trait Parsers

provides the basic combinators, and its descendants provide utility combinators, like
pre-defined tokenizers; e.g., JavaTokenParsers defines combinator for Java-style identi-
fiers, numbers, string literals, etc. Each combinator is represented as an instance of a
Parser[T], a function Input⇒ ParseResult[T]. Parser[T] provides methods that combine
the Parser[T] on which they are invoked with the combinator that they are given as an
argument. For instance p.~(q) is the sequence combinator, p.* is the repetition com-
binator, etc. The ^^ attaches an action to the combinator it is invoked onto. Because
of Scala’s ability to emulate infix operators through methods, combined with implicit
conversions (e.g., a quoted identifier such as "state" is implicitly converted into the
combinator literal("state")), Scala’s parser combinators closely resemble the EBNF
representation of the syntax of the language. Listing 4, that we will describe with more
detail in Sect. 3, shows the parser combinators that implement the grammar in Listing 2.

2.3. Traits
Formally, a trait [16, 17] is a function 𝑡 ∶ 𝒩 → ℬ∗, mapping the set 𝒩 of method names

into the set ℬ∗ of method bodies; the set ℬ∗ includes the undefined method (�) and
the overspecified method (⊺), that represent required methods and conflicting methods,
respectively. A trait is free of conflicts if, for each method name 𝑛 ∈ 𝒩 it must always be
the case that 𝑡(𝑛) ≠ ⊺. Traits are composed with the sum operation + ∶ 𝒯 × 𝒯 → 𝒯 ; given
two traits 𝑡1, 𝑡2 ∈ 𝒯 the sum trait 𝑡 = 𝑡1 + 𝑡2 is the respective union of all the provided
and required methods in 𝑡1 and 𝑡2. In case of conflict, it is possible to provide a method
dictionary 𝑑 with an alternative definition of the conflicting methods in 𝑡; this is defined
as a function 𝑑 ⊳ 𝑡 ∶ 𝒩 → ℬ∗:

(𝑑 ⊳ 𝑡)(𝑙) ≜
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

𝑡(𝑙) 𝑑(𝑙) = �
𝑑(𝑙) otherwise

where a method dictionary is again, a mapping 𝑑 ∶ 𝒩 → ℬ∗.

Traits in Scala. Although there is sometimes debate about whether Scala’s traits do
really follow closely Schärli’s original formulation [16], but Schärli compared Scala’s trait
implementation with his work [27]; the main differences are that they are modeled as

2jparsec.codehaus.org

6

http://jparsec.codehaus.org

a “special form of an abstract class” [28] that does not encapsulate state; they cannot
only be composed but can also be inherited; they support generics; they do not support
aliasing and exclusion. Otherwise, Scala’s trait implementation is pretty close to the
original definition, while the main limitations can be ascribed to the fact that Scala is
a statically typed language whereas Smalltalk (the original implementation target) is a
dynamic language. For instance, when two traits provide different, alternative, conflicting
implementations of the same member, Scala is able to resolve automatically the conflict,
by considering the order of composition of the traits (this is one way to tackle the diamond
problem) otherwise the conflict has to be resolved manually ; for more details, see [28].
Being Scala’s traits statically typed, mixing in a trait with another requires to pay extra
care to the type signatures of the members; however, besides methods Scala’s traits
include abstract type definitions to require that a concrete implementation provides a
valid definition of a type at the moment of instantiation. For instance, in Listing 4 each
trait provides the definition of concrete members (e.g., statemachine), it requires the
definition of abstract members (e.g., body) and it declares abstract return types for its
abstract members (e.g., TBody).

For a given trait 𝑡, in Scala it is not possible to override members of 𝑡 with any method
dictionary 𝑑. For instance, arbitrary redefinitions of a concrete member’s return type
are clearly forbidden: in particular, overriding methods may be contravariant in their
arguments and covariant in their return types. For instance, let 𝑡(𝑛), with 𝑛 ∈ 𝒩 be a
function 𝑓 ∶ 𝐴 → 𝐵 for two arbitrary sets 𝐴,𝐵, and let 𝑑 be a dictionary of overriding
members for 𝑡: we can define 𝑡′ = 𝑡 ⊳ 𝑑 if and only if 𝑑(𝑛) is a function 𝑔 ∶ 𝐴′ → 𝐵′ and
both 𝐴′ ⊇ 𝐴 and 𝐵′ ⊆ 𝐵.

3. Trait-Based Grammar Modularization

A parser is usually defined as a single, self-contained entity, but reasoning by analogy
with language grammar, a parser may be easily componentized. A grammar can be parti-
tioned into a collection of interdependent sets of productions. Using parser combinators
and traits, we provide a construction method to represent such sets and their dependencies
as pluggable, shareable and reusable components. The resulting traits implement parser
components that can be easily combined together, unplugged for language restriction, and
shared with other languages for extension (Sect. 5). Similar results could be achieved by
using inheritance [29] but sacrificing some flexibility when the language does not support
multiple inheritance.

For a given grammar 𝐺 = ∐︀Σ,𝑁,𝑃,𝑆̃︀, the set of its productions 𝑃 can be thought of
as a collection of disjoint sets of rules 𝑃0, 𝑃1, . . . , 𝑃𝑛−1 such that 𝑃 ≡ 𝑃0 ∪ 𝑃1 ∪ ⋅ ⋅ ⋅ ∪ 𝑃𝑛−1,
each of which may represent a different syntactic feature of the language. In other words,
for a set of productions 𝑃 , we can define an 𝑛-size partition P = {𝑃0, 𝑃1, . . . , 𝑃𝑛−1}, and
each set 𝑃𝑘 ∈ P would represent a different syntactic feature or concern of a language.

Example. Consider the state machine grammar in Listing 2. Productions have been
grouped into logical sets of features: i) the container for the body of the state machine,
specifying an initial state, ii) the body of the state machine, as a sequence of states plus
a sequence of transitions, iii) the definition of a simple state as an identifier, and iv) the
definition of a simple transition as pair of state identifiers, plus a name.

7

Now, let 𝐺 be a grammar such that 𝐿(𝐺) ≠ ∅. Then there is at least some 𝑤 ∈ 𝐿(𝐺)
and consequently there must be some sequence of derivations

𝑆 ⇒ 𝛾 ⇒ 𝛾1 ⇒ 𝛾2 ⇒⋯⇒ 𝛾𝑚 ⇒ 𝑤.

By the definition of derivation, we write 𝛾 ⇒ 𝛾′ if and only if there are 𝛼, 𝛽, 𝜔 ∈ (Σ∪𝑁)∗,
𝐴 ∈ 𝑁 such that (𝛾 = 𝛼𝐴𝛽) ∧ (𝐴 → 𝜔 ∈ 𝑃) ∧ (𝛾′ = 𝛼𝜔𝛽). Thus, for each derivation
step there must be some rule 𝐴 → 𝜔 ∈ 𝑃 . In particular, if we consider a set P of 𝑛 > 0
partitions of 𝑃 , then, by definition of partition, there is exactly one 𝑃𝑖 ∈ P such that
0 ≤ 𝑖 < 𝑛 and 𝐴→ 𝜔 ∈ 𝑃𝑖. Then, for each partition 𝑃𝑘 of productions, we can define a set
𝑟(𝑃𝑘) ⊆ 𝑁 of required nonterminals and a set 𝑝(𝑃𝑘) ⊆ 𝑁 of provided nonterminals. Then,
for 𝑗 = 0,1, . . . ,𝑚, with 𝑚 = ⋃︀𝑃𝑘 ⋃︀, each production is of the form:

𝑋𝑗0 →𝑋𝑗1𝑋𝑗2⋯𝑋𝑗n𝑗

where n𝑗 is the number of right-hand symbols in the 𝑗-th production (thus n𝑗 + 1 is the
number of symbols of that production).

• The provide set 𝑝(𝑃𝑘) is the set of all the left-hand nonterminals of all the productions
in 𝑃𝑘:

𝑝(𝑃𝑘) = {𝑋𝑗0 ⋃︀ 𝑗 = 0,1, . . . ,𝑚},

• The require set is the set of all the right-hand nonterminals of all the productions
in 𝑃𝑘, that are not also in 𝑝(𝑃𝑘):

𝑟(𝑃𝑘) = {𝑋𝑗𝑖 ⋃︀ 𝑗 = 0,1, . . . ,𝑚, 0 < 𝑖 ≤ 𝑛j, 𝑋𝑗𝑖 ⇑∈ 𝑝(𝑃𝑘)}

For instance, the set {Body→ State∗Transition∗} in Listing 2 provides Body and requires
State and Transition.

Grammar Composition. Because of the definition of partition, it is clear that any grammar
𝐺 = ∐︀Σ,𝑁,𝑃,𝑆̃︀, can be seen as the union 𝑃0 ∪𝑃1 ∪⋯∪𝑃𝑛−1. But also, for each language
with a grammar 𝐺, it is always possible to define a grammar 𝐺′ = ∐︀Σ,𝑁,𝑃 ′, 𝑆′̃︀ where
𝑆′ ∈ 𝑁 and 𝑃 ′ is

𝑃 ′ = ⋃
𝑃𝑖∈P′⊂P

𝑃𝑖.

In other words, every grammar 𝐺′ can be seen as the union of a collection of sets of
productions P′, which is itself a subset of a universe of sets of productions P, with some
axiom 𝑆′ ∈ 𝑁 (not necessarily such that 𝑆 = 𝑆′), and it is easy to see that 𝐿(𝐺′) ⊆ 𝐿(𝐺)
for all P′ ⊂ P. In particular, in order to guarantee that 𝐿(𝐺′) ≠ ∅, we might want to
pose the following restrictions:

𝑆′ ∈ 𝑝(𝑃𝑘), 𝑃𝑘 ∈ P′ (1)
𝑋 ∈ 𝑟(𝑃𝑘), 𝑃𝑘 ∈ P′ Ô⇒ ∃𝑃𝑗 ∈ P′ ∶𝑋 ∈ 𝑝(𝑃𝑘) (2)

That is, the axiom for 𝐺′ is a provided nonterminal for some set 𝑃𝑘 ∈ P′. Moreover, for
each required nonterminal 𝑋 in a production set 𝑃𝑘 there must exist a set of rules 𝑃𝑗

such that it provides 𝑋. Please notice that (2) is a strong requirement: in fact, although
8

Traits Production Sets

A trait 𝑡 provides the set of methods {𝑛 ∈ 𝒩 ⋃︀ 𝑡(𝑁) ≠ �}; 𝑃𝑘 provides a set of rewrite rules for the nonterminals
𝑋 ∈ 𝑝(𝑃𝑘)

A trait 𝑡 requires the set of methods {𝑛 ∈ 𝒩 ⋃︀ 𝑡(𝑁) = �}; For all 𝑋 ∈ 𝑟(𝑃𝑘), it requires that there exist 𝑋 → 𝜔 ∈ 𝑃𝑗 ,
with 𝑃𝑗 ∈ P.

For all pairs of traits 𝑡𝑖, 𝑡𝑗 ∈ 𝒯 it is possible to define the
sum 𝑡𝑖 + 𝑡𝑗 ; in case of conflicts in 𝑡 = 𝑡𝑖 + 𝑡𝑗 a function
𝑑 ⊳ 𝑡 ∶ 𝒩 → ℬ∗ must be provided to resolve them;

For all pairs 𝑃𝑘, 𝑃𝑗 ∈ P it is possible to define the union
set 𝑃𝑘 ∪𝑃𝑗 . In grammars there is no notion of conflict, but
two productions with the same left-hand side represent an
alternate choice in a derivation step. For instance, consider
some derivation 𝛾 ⇒ 𝛾′ with 𝛾 = 𝛼𝐴𝛽, and suppose that
𝐴→ 𝜔,𝐴→ 𝜔′ ∈ 𝑃 , then 𝛾′ might be either 𝛼𝜔𝛽 or 𝛼𝜔′𝛽.
This follows from the definition of derivation step and does
not require an explicit resolution.

Assuming that there are no conflicts, the composition of
𝑡𝑖 + 𝑡𝑗 is equivalent to the flattened trait 𝑡 that contains
all of the methods defined either in 𝑡𝑖 or 𝑡𝑗 .

The union 𝑃𝑗 ∪ 𝑃𝑘 is the collection of the productions
either in 𝑃𝑗 or in 𝑃𝑘; in other words, the set 𝑃𝑗 ∪𝑃𝑘 ≡ {𝑝 ∈
𝑃𝑗 ∨ 𝑝 ∈ 𝑃𝑘}.

Table 1: Analogies between traits and sets of productions.

for each set P′ for which (1) and (2) hold, it will be 𝐿(𝐺) ≠ ∅, it is easy to see that there
might be cases when 𝐿(𝐺) ≠ ∅ even when (2) is not satisfied.3 For instance consider the
sets:

𝑃0 = {𝑆 → 𝑥}, 𝑃1 = {𝐴→ 𝐵}
then grammar 𝐺 = ∐︀Σ,𝑁,𝑃0 ∪ 𝑃1, 𝑆̃︀ generates a non-empty language, although there is
𝐵 ∈ 𝑟(𝑃𝑘) and 𝐵 ⇑∈ 𝑝(𝑃0),𝐵 ⇑∈ 𝑝(𝑃1).

In the following we propose a construction method to represent a production set 𝑃𝑘

as a trait 𝑡𝑘 and we show how the union operation 𝑃𝑘 ∪ 𝑃𝑗 , for 𝑃𝑘, 𝑃𝑗 ∈ P relates to the
trait composition 𝑡𝑘 + 𝑡𝑗 . We will see that, with this method, such restrictions play an
important role.

3.1. Trait Construction
If we consider a partition P of the set 𝑃 of productions of a grammar 𝐺, each set of

the partition shares many commonalities with a trait; for brevity we summarize them in
Table 1. A recursive descent parser would implement each production of a grammar as
a function, and one way to implement such functions is to employ parser combinators
(Sect. 2.2). A grouping of these functions could represent a set of productions in a
partition, with all of its dependencies (that is, its require set). Traits may represent this
grouping, thereby implementing a modular parser for a given grammar 𝐺.

Let be 𝑃𝑘 ∈ P, then the trait 𝑡𝑘 ∈ 𝒯 is defined as follows:

• 𝑋 ∈ 𝑟(𝑃𝑘) Ô⇒ 𝑋 ∈ 𝑁 , with 𝑡(𝑋) = �, that is, each required nonterminal 𝑋 is a
required method of 𝑡

• 𝑋 ∈ 𝑝(𝑃𝑘) Ô⇒ 𝑋 ∈ 𝑁 and it will be 𝑡(𝑋) ≠ �; in particular, let 𝑝𝑗 ∈ 𝑃𝑘 be the 𝑗-th
rule in 𝑃𝑘 of the form 𝑋 → 𝜔, such that:

𝑝𝑗 =𝑋 →𝑋𝑗1𝑋𝑗2⋯𝑋𝑗n𝑗

3For a more extensive discussion on the extension and restriction of grammars and parsers, see also [30].
9

object SimpleStateMachine extends StateMachine

with Body with SimpleState with State

with SimpleTransition with Transition with JavaTokenParsers {

type TState = String

type TTransition = ~[~[String,String],String]

type TBody = ~[List[TState],List[TTransition]]

def program = SMachine

}

Listing 5: Composition of the traits and type refinement.

then the body of the method named 𝑋 is a function of all the right-hand nonterminals
of all the productions with left-hand 𝑋; and in particular, using the notation in [31],
the method named 𝑋 will be:

𝑡(𝑋) =𝑋11 • 𝑋22 • ⋯ • 𝑋1n1

∪𝑋21 • 𝑋22 • ⋯ • 𝑋2n2

∪ ⋮
∪𝑋𝑚1 • 𝑋𝑚2 • ⋯ • 𝑋𝑚n𝑚

where “ • ” denotes the parser combinator for sequence, “∪” denotes the parser
combinator for alternative choice (union), and each 𝑋𝑖𝑗 ∈ 𝒩 when it is a nonterminal
(that is, it is also 𝑋𝑖𝑗 ∈ 𝑁); if 𝑋𝑖𝑗 ∈ Σ+, then it is represented using the parser
combinator that matches the character sequence 𝑋𝑖𝑗 . Finally, assuming EBNF
grammars, the grammar formalism will also include the quantifiers ‘?’, ‘∗’ and
‘+’. In this case, for each quantifier in the grammar, there will be an equivalent
combinator in the method body.

Example. We previously showed (Listing 2) the grammar for our simple state machine lan-
guage. In Listing 4 we translated the four sets of production sets into traits : StateMachine,
State, Transition and the Body of a StateMachine. Scala’s traits require to i) declare the
undefined members, and ii) declare the return types of these members. Abstract types
make it possible to declare and use a type that will be defined only when the trait will be
mixed-in to a concrete class. This feature will particularly come in handy when we will
later introduce the semantics of the language implementation. As a convention, abstract
types in our code will always start with T. The composition of the first version of the
language (parser-only) is shown in Listing 5. At this stage, we finally have to define the
abstract types TBody as a list of States and a list of TTransitions where TState is defined
as a String and TTransition as a triplet of Strings4. Notice how we also compose the
library-provided JavaTokenParser trait, which provides a definition for ident: a parser
combinator that matches an identifier, and returns it as a String.

4This strange type signature is the result of how Scala represents the return type of the “~” parser
combinator; we will not discuss these details here; for more information see [5].

10

Conflicts. Suppose that some grammar provides an alternative definition for some con-
cepts. For instance, in the previous example there might be the rules:

Transition→ ShortTransition,

ShortTransition→ Ident ":" Ident "[" Ident "]"

and some trait 𝑡 would represent them. Now, suppose that the grammar has been
partitioned as such:

𝑃𝑘 = {Transition→ ShortTransition}
𝑃𝑗 = {Transition→ SimpleTransition}

then we would have two traits 𝑡𝑘, 𝑡𝑗 with two alternative, conflicting definitions of
Transition. This conflict can be resolved by providing a resolution (the function 𝑑 ⊳ 𝑡 in
Sect. 2.3); this can be done at the moment of the composition by overriding the method
transition:
override def transition = simpleTransition | shortTransition

where “|” is the alternative combinator.

4. Trait-Based Semantics Composition

In a typical interpreter or compiler implementation, the concrete syntax of a language
is mapped onto an abstract representation, the abstract syntax tree (AST). In a functional
programming language, we would usually define an eval(AstNode) function that would
pattern match on the type of these nodes. In Scala we could write:
def eval(n: AstNode): TResult = n match {

case StateMachine(name, initial, body)⇒ ...

case Transition(from, to, name)⇒ ...

case State(name)⇒ ...

}

This solution has the limit to centralize the implementation of the semantics of our in-
terpreter in the code of such function, thus making the interpreter less modular and
configurable, especially with respect to data type extensions: adding a new type of
Transition requires to modify the actual body of the eval function. In an object-oriented
context, the usual solution to the problem is to delegate the role of pattern matching
to polymorphism. In the interpreter pattern a language construct is represented as an
AstNode type with an abstract eval method. Each AstNode subtype defines a concrete
eval method, that implements the semantics only for that specific subtype. This, on the
one hand, makes it easier to add new node types to the language implementation, but
each concrete AstNode subtype is then forced to comply with the interface of the base
type. On the other hand, we could compose the semantics onto the nodes using traits.
The object-oriented approach, in terms of required lines of code, is indeed more verbose
than the functional version, but it leads to an implementation that is more configurable.
For instance, different traits may provide an implementation of a different evaluation
phase, and these traits could be independently shared and distributed among different
language implementations.

In this section we show how to realize a modular interpreter using traits. The
key idea is to represent the bare AST node as a pure data structure and then inject

11

package sm.ast

class StateMachine[+T](val name:String, val initial:String, val transitions: List[T])

class Transition(val from:String,val to:String, val name:String)

class State(val name:String)

trait SMVerify {

def initial:String; def transitions:List[Transition]

def verify: Boolean = ...

}

trait SMEval { this: StateMachineVerify =>

def states:List[State]

def transitions:List[Transition]

// evaluate and return the final state iff the sm is well-formed

def eval: Option[State] =

if (verify) Some(doEval) else None

// find the first fireable transition leaving the initial state and evaluate it;

// then return the final state name

def eval: State = {

val nxtT = transitions.find(t⇒ t.from == initial && t.fireable)

val finalStateName = nxtT.get.eval(transitions)

states.find(s⇒ s.name == finalStateName).get

}

def verify: Boolean

}

Listing 6: State Machine AST with evaluation and, optionally, verification (optional parts are in violet).

the methods implementing the semantics, thereby decoupling the semantics that these
methods implement from the abstract data representation. Note that the construction of
each AST node and its composition with the traits that implement its semantics (the
evaluation phases) can be delegated to a factory method (Fig. 2). In Sect. 6 we will
describe how this technique compares to the related work [12, 18, 19].

4.1. A Modular Interpreter Pattern
In the interpreter pattern, the collection of the AST node types is represented as a

collection of classes 𝑐0, 𝑐1, . . . , 𝑐𝑚; an instance of one of these classes represents a typed
node; each node class 𝑐𝑗 implements an eval method; if a node of type 𝑐′ is supposed to
be a child of a node of type 𝑐, then the eval method of 𝑐 is supposed to invoke the eval

method of its child 𝑐′. Using traits, we can decouple the representation of the semantics
of the evaluation from the representation of the nodes, by factoring out the eval method
into a trait 𝑡. Thus, each node 𝑐 may mix-in a trait 𝑡 with a method eval, implementing
the semantics for a particular evaluation strategy of the node 𝑐. Using traits, it is possible
to configure each node with a different evaluation strategy, independently. Moreover,
assuming that the semantics of a language may be represented by several phases, i.e.,
visits of the AST, and that, in the interpreter pattern, such phases could be represented
by different methods, for each class node 𝑐 it is possible to compose many traits, each
implementing a different phase. In other words, let 𝑐 be a class representing an AST
node, and let 𝑡0, 𝑡1, . . . , 𝑡𝑛−1 be a sequence of 𝑛 evaluation phases, represented as traits,
respectively providing the methods eval0, eval1, . . . , eval𝑛−1. The AST node can be then

12

Parser for
Feature

Concrete
AST Node
instance

Factory
Method

Phase 1 Phase 2 Phase 3

other
syntax
traits...

requires

co
n
st
ru

ct
s

requires

requires

requires

composes
with

composes
with

composes
with

requ
ires

yields

Figure 2: AST Node composition

composed using the trait composition operation “+”:

𝑡0 + 𝑡1 +⋯ + 𝑡𝑛−1

• Each trait 𝑡𝑘 may require members of 𝑐. For instance, if 𝑐 declares a member 𝑛, then
it might be that 𝑡𝑘(𝑛) = �. The members of 𝑐 that each 𝑡𝑘 may require represent
values in the AST node class, prevalently children of that AST node. In a statically
typed context, traits would also impose constraints on the typing of such children.

• A trait 𝑡𝑘 may also depend on a particular evaluation phase, by requiring a method
eval𝑗 , effectively imposing that a trait 𝑡𝑗 such that 𝑡𝑗(eval𝑗) ≠ � will be eventually
mixed-in to 𝑐.

The evaluation of each AST node will then consist in invoking in sequence the eval𝑘
methods that have been composed onto the node object instance.

Example. In Listing 6 we present the AST types that we use in the state machine language.
The AST classes are not required to expose methods to evaluate the language semantics.
Instead, the semantics can be implemented separately in traits that will be mixed-in at
construction-time. A state machine might be compiled, interpreted, verified for correctness
(e.g., check that all states and transitions are reachable), etc. All these concerns can be
easily represented as separate traits. The semantics of the nodes can then be composed
onto the AST nodes at construction time. For instance, if we assume that the evaluation
of StateMachine is implemented by the SMEval trait, and the verification is in the SMVerify

trait, then we might write:
new StateMachine(smName,start,trans) with SMVerify with SMEval

The evaluation of the abstract tree is then similar to the application of a standard inter-
preter pattern, by invoking the eval𝑘 method, for each implemented phase; alternatively
a main phase might be defined that invokes in sequence the required phases.
def eval = { eval0(args0); eval1(args1); ...; eval𝑛−1(args𝑛−1) }

Each trait will have visibility only to the members of the node that are relevant to the
particular evaluation phase that they implement, by requiring a member to be available

13

(e.g., transitions, see Listing 6). A trait may also declare dependency on a particular
evaluation phase: this can be primarily expressed using abstract member declarations
(e.g., verify) and, in Scala, possibly using explicitly-typed self references (commonly
referred to as the cake pattern [28]): traits may specify that their self-type should be
an instance of a particular trait. For instance, if trait SMEval were to declare its willing
to depend on a verification phase (in violet, in Listing 6), it may require the verify:

Boolean method and/or declare the self-type SMVerify. In the first case the trait is only
requiring that a member verify with that signature will be available at construction
time, while the self-type requires that exactly a particular interface has been composed
onto the base class at construction time. Because the state machine is inconsistent when
verify is false, the eval method may return an Option that is None when the verification
step has failed. In the online version of this example5 we implemented an error reporting
mechanism using the Either monad.

4.2. AST Configuration
Now, only one detail has been left aside, namely, how the parser should construct

the node instances, by composing the phase-specific traits to the semantic-agnostic AST
representation. We can impose that each trait that yields an AST node requires a factory
method for that node to be present. For instance, if the method 𝑛 should return an
AST node of type 𝑁 , then 𝑡′ should require a factory method newN that returns a new
node instance of type 𝑁 . In the previous section, we showed a construction to represent
a partition P of the production set 𝑃 of a grammar 𝐺 as a collection of traits. Using
abstract types, type refinements and abstract members we were able to represent the parser
as a collection of components, that could be recomposed at will. At this point, we would
like to refine the implementation so that the parser returns AST nodes instead of a parse
tree. However, in Scala it is not possible to extend the previous traits and arbitrarily
override their members, changing their return and argument types (Sect. 2.3): like in Java,
argument types can be contravariant and return types can be covariant. Nevertheless, it
is possible to substitute a trait 𝑡 with a refined trait 𝑡′ that includes alternative member
implementations, with the desired signatures.

In general, if 𝑡 is a trait with a member 𝑛, 𝑅 is the return type of the method 𝑛, and
we want to override it with a member with return type 𝑅′, incompatible with 𝑅, then
we can define a new 𝑡′ such that the its method 𝑛 is a function that returns a value of
type 𝑅. In our case, the method 𝑛 for which we would like to change the return type will
require an adequate factory method to be present.

Example. The method sm.lang.Transition#transition yields a Parser[TTransition] (List-
ing 4), and it is defined in terms of the parser simpleTransition with type ~[~[String,

String], String], that is, a triplet of Strings. Now consider the function Transition in
Listing 7. We can define the new trait AstTransition with a different transition method
defined as the combination of simpleTransition with a function that returns a Transition

node. The function is defined as a factory method, whose implementation is provided by
the trait AstFactory (Listing 7). By applying the same pattern, we are also able to attach
a function to the statemachine method to return a Parser[StateMachine].

5neverlang.di.unimi.it/tblc.tgz.

14

http://neverlang.di.unimi.it/tblc.tgz

trait AstFactory {

...

type TTransition = sm.ast.Transition

def Transition(frm:String,to:String,nm:String)=

new sm.ast.Transition(frm,to,nm)

}

trait AstTransition {

...

def transition = super.simpleTransition ^^ {

case from ~ to ~ name⇒ Transition(from, to, name)

}

}

Listing 7: Snippet from the new version of the state machine language, where the parser yields an AST.
In blue, the factory method.

EnvProvider

Transition
Grammar

Simple Transition
Grammar

Guarded Transition
Grammar

Transition GuardedTransition

TransitionEval

BoolExpr

EvalExpr[Boolean]

Stmt

EvalStmt

Action
Grammar

Guard
Grammar

State Machine
Grammar

State Grammar StateStateMachine

SMEval

SMVerify

GuardedTransition
Eval

constructs
verifies
depends
evaluates

Grammar

AST Node

Trait

Figure 3: Relations between components in the State Machine case study. The constructs relation
indicates usage of a factory method.

4.3. Semantic Dependencies
The factory method mechanism can be generalized to express further semantic de-

pendencies. For instance a method may require that a specific service is available to
the language implementation, such as a support library providing utility functions, or
a data structure containing shared state information. Suppose that a method 𝑛 in a
trait 𝑡 uses a method 𝑛′ defined by some interface 𝑖′. Then, 𝑡 may require that a valid
instance of 𝑖′ is available to 𝑡 by declaring a member 𝑚 in 𝑡 such that 𝑚 returns one such
instance of 𝑖′. For instance, consider again our state machine example, and suppose that
some phase CodeGen defines a method def compile(File):Boolean; that compiles the state
machine to disk and returns a boolean that indicates if the operation succeeded. The
trait CodeGen may then require a member def fsLibProvider: FsLib for some interface
FsLib that declares methods for file system interaction. The desired FsLib instance could
then be provided by a concrete implementation of the fsLibProvider method, possibly
defined in a different trait (similarly to what we saw for the AstFactory), that would act
as a singleton provider.

5. Case Study

The main point of a DSL is to describe the solution of a domain problem concisely,
and the purpose of componentizing a language implementation is to reuse part of its

15

waitstart

vend candy

vend drink

empty

select candy
[choice = 1, candies > 0]
candies := candies − 1

candy restart
[candies > 0 ∨ drinks > 0]

choice := 0

select drink
[choice = 2, drinks > 0]
drinks := drinks − 1

drink restart
[candies > 0 ∨ drinks > 0]

choice := 0

drink empty
[candies = 0, drinks = 0]

choice := 0

candy empty
[candies = 0, drinks = 0]

choice := 0

Figure 4: Vending Machine state machine.

features in different language implementations. This is particularly useful when put in
the perspective of evolving a DSL implementation. In the previous sections we introduced
the state machine DSL as our running example. In Sect. 3 we showed that, given a
partition over the grammar of a language, it is possible to componentize the parser for
that language if we represent as traits the sets of that partition, and we gave instructions
to realize this representation. Such a modularization of the parser makes it possible to
atomically extend and restrict the syntax of a language implementation, by mixing-in or
excluding traits from the language implementation. Likewise, the trait-based interpreter
pattern presented in Sect. 4, makes it simpler to extend a language implementation with
new data types, and new evaluation phases. In this section we will expand further on
our running example, making it our case study. We will take the state machine DSL
and evolve it by plugging in a new feature, borrowing part of its implementation from
a distinct language: we will substitute the simple transitions of the running example
with an alternative implementation, with support for guards and actions. This example
is an adaptation from [25], but, in contrast to this work, in our case the language for
guards and actions is implemented as a standalone language. We want to show that
using our approach, it is easy to plug the trait-based implementation of the syntax and
the semantics of this separate language into the initial state machine language, and to
substitute part of the original implementation with new components. The advantage of
this approach is that all of the extensions and updates that we apply to the original
implementation, do not require to actually act on its code; rather, each new feature
is implemented as a separate component. In Fig. 3 we show the situation of the state
machine language so far, and the extension that we will describe in this section. The part
on the left, in the grey box, represents the components that have been already described,
while the part on the right will be presented in this section. In Fig. 4, we show the state
chart for the vending machine that we will use as an example usage of the extended state
machine language (code in Listing 8). For the sake of clarity, we have not included the
complete source code for this example in this paper, but it is available from the online
version.

16

state machine VendingMachine initial wait {

state wait state vend_candy

state vend_drink state empty

transition from wait to vend_candy: select_candy

[choice = 1 && candies > 0]{ candies:=candies-1; }

transition from vend_candy to wait : candy_restart

[candies > 0 || drinks > 0]{ choice := 0; }

transition from vend_candy to empty : candy_empty

[candies = 0 && drinks = 0]{ choice := 0; }

...

}

Listing 8: Code for the Vending Machine in Fig. 4. Code for drinks is omitted, since it mirrors the candies

side.

5.1. Action Language
Executable UML models include the specification of an action language [32] that can

be used for many purposes, such as expressing actions and guards in a state machine
model. In this example, let us suppose that we already have an implementation of a
suitable language for this purpose, that is a simple, imperative programming language
with support for variables and assignment statements. The parser and the AST types for
this language may come as a bundle of self-contained components that may be reused
within other DSLs. In Listing 9 we show the data types for a part of this language. The
semantics of a suitable interpreter could be implemented with the same technique that
we employed in the previous sections, using traits to represent features of the language as
components. As in typical small programming languages, the evaluation of an expression
language requires the definition of some Env type, representing the environment; two base
traits (EvalExpr[T] and EvalStmt, Listing 9) represent the contract for the behavior of
expressions and statements of the language. An expression such as Sum would yield a
result of some type T, a boolean expression such as Eq would be a comparison between
objects of type T yielding a truth value, and a statement (such as variable assignment)
would produce a change in the environment. The environment may be represented as a
map env ∶ String→ Int, that is, a binding between variable names and their current value.
For instance, the VarDef statement assigns (e.g., x :=1 + y) the result of an (integer)
expression to a variable identifier. Each trait represents only one small aspect of the
semantics of the language, and each trait may require only those members of the node
that are required for that particular piece of semantics. The composition of semantics
onto the AST nodes happens using the factory method technique described in Sect. 4.2.

5.2. Guards and Actions
In Fig. 4 and Listing 8 we are showing the state chart of a vending machine. The

machine vends drinks and candies, depending on an initial choice, which is an integer
value—that is, 1 for candies, 2 for drinks, and 0 for neither. Once a candy or a drink has
been vended, the machine resets the choice to 0, and it goes back to the initial waiting
state, unless both candies and drinks are unavailable, in which case the machine goes to
the empty state. The example requires us to introduce the concepts of variable, guard and
action to transitions: the guard is a boolean expression that causes a transition to fire only
when it evaluates to true, an action is a sequence of statements of the action language

17

trait IntExpr

class Sum[T](val x:T, val y:T) extends IntExpr

trait BoolExpr

class Eq[T](val x:T, val y:T) extends BoolExpr

trait Stmt[+T]

class VarDef[T](val x:String,val n: T) extends Stmt[T]

trait Eval {

type Env = Map[String,Int]

}

trait EvalExpr[T] extends Eval {

def eval(env:Env): T

}

trait EvalStmt extends Eval {

def eval(env:Env): Env

}

...

trait SumEval extends EvalExpr[Int] {

def x:EvalExpr[Int]; def y:EvalExpr[Int]

def eval(env:Env) = x.eval(env) + y.eval(env)

}

trait VarDefEval extends EvalStmt {

def x: String; def n: EvalExpr[Int]

def eval(env:Env) = env.updated(x, n.eval(env))

}

trait AstFactory {

...

def Sum(x:IntExpr, y:IntExpr) = new Sum(x,y) with SumEval

def VarDef(x:String, n:IntExpr) = new VarDef(x,n) with VarDefEval

}

Listing 9: Part of the Action Language AST and Traits for Action Language Evaluation. In blue, the
factory methods.

that are executed when a transition fires, and a variable is an identifier that is associated
with an integer value. In Fig. 3 we show the relations between the new guarded transition
components, the affected components of the original state machine implementation, and
the traits of the action language that are plugged into the guarded transition components
to implement the guards and action concerns. These components substitute the transition-
related components of the running example (e.g., GuardedTransition), and bridge the basic
state machine language with the components from the action language (e.g., BoolExpr
and Stmt).

Syntax. Guarded transitions may optionally specify a guard and an action (Fig. 4), thus
it subsumes SimpleTransition (Listing 4). Because of the modular implementation, it is
possible to unplug the old component from the parser implementation and introduce the
new GuardedTransitionSyntax trait (Listing 10), which extends SimpleTransition. This
trait requires a valid definition of the TAction and TGuard abstract types: these types can
be concretized so that the action language that we described in the previous section can
be plugged in. For instance we can introduce the ActionLang trait, containing the full
implementation of the action language for simplicity; of course, each component may be
also introduced individually. In Fig. 3 we only show the BoolExpr and Stmt data types,
with the related traits. At this point, the parser would be able to recognize the full

18

trait GuardedTransitionSyntax extends sm.lang.SimpleTransition {

type TGuard; type TAction; type TTransition

def guardedTransition: Parser[TTransition] =

super.simpleTransition ~ guard.? ~ action.? ^^ {

case from~to~id~g~a⇒ GuardedTransition(from,to,id,g,a)

}

def guard = "[" ~> boolExpr <~ "]"

def action = "{" ~> stmtList <~ "}"

// requires:

def boolExpr:Parser[TGuard]

def stmtList:Parser[TAction]

// factory method

def GuardedTransition(f:String,t:String,id:String,g:Option[TGuard],a:Option[TAction]): TTransition

}

Listing 10: Guarded Transition trait. In red, the syntactic dependencies (nonterminals of the grammar);
in blue, the semantic dependencies (factory methods for the AST nodes).

description of a transition with guards. Let us then generate the new data types with
their semantics.

Semantics. We need to define the GuardedTransition data type (Listing 10); this AST
node differs from Transition data type found in the basic state machine (Listing 6), in
that it optionally contains a guard and an action. Had we defined the interpreter using
pattern matching (see Sect. 4), we would have had to rewrite the eval(AstNode) function.
Using the trait-based approach we can implement the new GuardedTransitionEval (see
Listing 11) separately and mix it in the new language implementation, leaving the other
parts of the language untouched. For instance, a new GuardAstFactory should be provided
so that the new GuardedTransition node type will mix-in the new trait:

new GuardedTransition(from,to,id,guard,action) with GuardedTransitionEval

The semantics for guard and action is implemented respectively by the EvalExpr[Boolean]

and EvalStmt traits (Fig. 3) from the action language, which provides eval(env:Env),
where Env represents an environment. Thus, the GuardedTransitionEval trait should be
able to invoke these methods with suitable arguments. We can express the dependency
on this concept using a semantic dependency (Sect. 4.3). The GuardedTransitionEval

trait will require a method envProvider of type EnvDef (Listing 11). The EnvDef interface
includes methods to retrieve and update an instance of type Env. The eval method of
the new transition type, retrieves the env instance with envProvider.env and passes it
down to the guard, implemented as an Option[StmtEval] and the action (represented as
an Option[EvalExpr[Boolean]]): once the computation of the action has been performed,
it then updates env instance. Using this technique the only part of the code that changed
is the junction point between the state machine language and the action language; that
is, only the traits that pertain to the guarded transition component. The interface of
the StateMachine node has not changed, and the composed evaluation trait is still the
same, with the same eval method. The guarded transition implementation only relies
on the presence of an EnvProvider instance. This provider can be initialized to drive the
execution of the state machine. In the vending machine example, the wait state is the
initial state. The eval method of the guarded transition fires the next transition and

19

trait EnvDef { def env:Env; def env_=(e:Env) }

trait EnvProvider { def envProvider:EnvDef = ... }

trait GuardedTransitionEval extends TransitionEval with EnvProvider {

def from: String; def to: String;

def action: Option[StmtEval];

def guard: Option[EvalExpr[Boolean]]

// describe whether the transition is fireable;

// the transition is always fireable when the guard is None

def fireable = guard.map(_.eval(envProvider.env)).getOrElse(true)

// returns the name of the final state

def eval(transitions:List[TransitionEval]): String = {

println("entering state " + from)

// update the environment

val env = envProvider.env

// if action is None, env does not change

val newEnv = action.map(stmt⇒ stmt.eval(env)).getOrElse(env)

envProvider.env = newEnv

val next = transitions.find(t⇒ t.from == to && t.fireable)

if (next.isEmpty) this.to

else next.get.eval(transitions)

}

}

Listing 11: Evaluating a Transition with guards.

executes the corresponding optional action when a specified guard evaluates to true (or
unconditionally if no guard is specified). For instance, by initializing the envProvider as
follows:
envProvider.env = Map("choice" -> 1, "candies" -> 1, "drinks" -> 0)

The final state will be empty (Fig. 4), and the environment will result in choice ↦
0, candies↦ 0, drinks↦ 0.

6. Evaluation and Comparison with Related Work

Many component-based language development frameworks have been proposed over
the years (e.g., [11, 33–35]). These frameworks emphasize the separation of the concepts
of a language as pluggable and composable units, but do not rely on a particular host
language; rather, they provide a programmable platform to implement external DSLs;
some of them, even provide IDEs and generate IDEs for the implemented languages.
For this work we took inspiration from Neverlang [15, 20, 21], where each unit usually
represents a syntactic feature of the language (a keyword, or a construct) along with the
implementation of its semantics. These units are called modules and slices. Modules
declare the syntax of a feature, that is a portion of a grammar of the language in BNF,
and may provide the definition of several roles, i.e., the implementation of an evaluation
phase, with respect to that part of the syntax. All the roles together represent the
semantics of the construct. A slice then selects the syntax definition and the semantic
roles and composes them together. The composition of all the slices yields the full
implementation of a language interpreter or compiler. Modules and slices can be compiled
separately and distributed in pre-compiled form. The final objective is being able to

20

represent a language as a selection of heterogeneous pre-packaged features [9, 23, 24].
In the approach that we presented, syntax definitions are represented as grammar-like
traits using parser combinators (Sect. 3), roles are represented by the evaluation phases
encoded by traits, and slices can be roughly seen as the equivalent of factory methods
(Sect. 4.2) that describe the configuration of an AST node. In Neverlang, a slice may also
describe the mapping between the concrete syntax and the abstract syntax (in fact, in
a Neverlang DSL, the two may often overlap, making the mapping implicit). With this
work we wanted to show that the Neverlang model of modular language implementation
can be easily reproduced and implemented and used within other frameworks achieving
the same degree of language decomposition and language component reusability.

In general, the problem of componentizing GPLs and DSLs is a long-standing issue
that over the years has been explored far and wide. In the functional domain, many
authors have described techniques to represent interpreters for programming languages in
a modular way. We have compared the proposed technique with some of work that can be
found in the literature. Since most work focuses on the implementation of the semantics
of a language, rather than the syntax definition, we will assume that in every case it is
possible to write a parser using parser combinators, following the technique described in
Sect. 3. We will therefore focus on the modular implementation of the semantics of a
DSL. In particular, we will consider the case of the action language that we used in state
machine DSL, with particular attention to the expression part, since it is small but it
is known to be challenging enough, and most works address the implementation of an
expression language as a running example. In order for the comparison to be as fair as
possible, we considered the Scala implementation of each technique.

Monad Transformers. Wadler’s original paper on monads [13] in Haskell describes a way
to represent an interpreter for a simple expression language in a purely functional context.
Within this context, monads are useful to represent stateful computations or computations
that may fail. Liang et al. [14] showed how monad transformers can be employed in
Haskell as building blocks of an interpreter. Both Wadler’s and Liang et al.’s approaches
minimize the amount of code that is required to extend the interpreter with new logic.
Later, Martin Grabmüller [36] wrote a step-by-step tutorial that describes the technique
for modern-day Haskell. These techniques at a first glance might look opposed to the
work we have presented, but they are actually orthogonal. Being Scala a hybrid between
an object-oriented and a functional programming language, many functional patterns can
be easily translated into Scala. For instance, Debasish Gosh, author of the book DSLs
in action [37], has adapted Liang et al.’s technique for Scala using the Scalaz library6.
The code at the GitHub repository7 is a full implementation of an expression language
using Liang et al.’s technique. Monad transformers make it easier to separate evaluation
phases (Sect. 4). Using monad transformers it is possible to compose the function with
new behavior, while respecting the original type signature of the function. However, the
composition of the new behavior actually requires to reformulate the implementation of
the function from scratch. Moreover, employing pattern matching has the downside of
limiting extensibility on the side of data type cases.

6debasishg.blogspot.it/2011/07/monad-transformers-in-scala.html.
7github.com/debasishg/monad-trans.

21

http://debasishg.blogspot.it/2011/07/monad-transformers-in-scala.html
http://github.com/debasishg/monad-trans

Modular Visitor and Object Algebras. Oliveira et al. have proposed [12, 19] solutions to the
expression problem [38] in two forms. The first is an extensible visitor pattern where both
the dimensions of data-type and evaluation phase extensibility are considered. The visitor
pattern is generally regarded as the object-oriented rendition of pattern matching; it has
therefore the same downsides of pattern matching in functional programming languages,
that is, it is possible to add new language processors, but not to extend the data types.
This rendition of the technique uses traits for composing the semantics. In object algebras,
the semantics of language constructs can be built up using trait composition, and instance
creation can be abstracted using factories. The technique implements an extension of the
factory-based mechanism that we presented in Sect. 4 to compose behavior of the language
interpreter. Instead of explicitly invoking the constructor of the corresponding instance,
the authors describe combinators to compose the traits. These traits can be defined
inline, through anonymous classes, or defined separately to improve reuse, similarly to
what we described in Sect. 4. The most important feature of this technique is the use
of combinators to abstract the composition of the behavior of the interpreter. Without
these combinators, the technique is similar to the one we describe: on the other hand,
relying on combinators raises the bar of the language requirements, making it less easy to
implement in simpler programming languages. For instance, lack of higher-kinded types
would rule out Java as an implementation language.

Trait-Based Composition Through Shadowing. The technique described by Zenger and
Odersky [18] combines trait composition with member shadowing, a feature of the Scala
programming language which makes it possible to hide members of a class or trait from the
inheritors. This feature is different from overriding since it involves inner type definitions
such as inner classes and inner traits, for which speaking of overriding would be incorrect.
The usage of this peculiar feature of the Scala programming language makes the technique
quite tailored to the choice of the programming language, limiting its use.

Summary. Overall, there are quite a few works that deal with the problem of language
extensibility, some of which use traits. Traits guarantee a better reuse of features, and
make it possibile to better modularize the implementation both along the dimension of
language constructs and that of evaluation phases. Besides monad transformers, which
in their purest form do not use trait-based composition, but pattern matching, all the
other techniques that we evaluated are on par with the features they provide in terms of
reusability and composition (Table 3), because the basic objectives of separate compilation
and composability are the same. There are however differences in the requirements that
each of these features imposes on the host language in order to support them. Most of
the techniques rely on features of the host language that are often unavailable in most
mainstream programming languages (Table 2) such as higher-order polymorphism and
pattern matching. This makes adopting these techniques, in part or completely, less
practical: some programming languages are not even powerful enough to express them.

On the other hand, even though we chose Scala for our implementation, the technique
that we describe should be easily portable to any language, provided i) that it supports
traits (either as a library, or as a native construct) and ii) that there is a parser combinator
library. These are not really restrictive constraints, as today many mainstream program-
ming languages are implementing traits or trait-like constructs. For instance, even Java 8
has introduced default implementations for members of an interface, which makes them

22

Traits Higher-Order Polymorphism Pattern Matching Member Shadowing Monads

Modular Interpreter (Sect. 4) 3

Monad Transformers 3 3 3

Object Algebras 3 3

Modular Visitor 3 3

Traits+Member Shadowing 3 3

Table 2: Comparison between features in the host language, by technique. More requirements mean that
the technique may be harder to implement in simpler programming languages.

Parser Integration Sep. Compilations Data-Type Ext. Eval. Phases

Modular Interpreter (Sect. 4) 3 3 3 3

Monad Transformers 3

Object Algebras 3 3 3

Modular Visitor 3 3 3

Traits+Member Shadowing 3 3 3

Table 3: Comparison between features of the technique.

quite close to traits, and there are combinator libraries that would be suitable for the
same purpose. In this work we chose to use Scala’s trait implementation because a static
type system can be used to guarantee that the composition of the language is correct at
compile time; nonetheless, the original implementation of traits [27] was developed for
Squeak Smalltalk. Thus, similar results can be achieved using Smalltalk, equipped with a
parsing library such as PetitParser [8]. Other dynamic languages, such as Python, Ruby,
Perl and JavaScript support parser combinators through libraries, and traits or trait-like
constructs natively or as add-ons; thus, even in such cases, the same technique can be
implemented.

This work is geared towards the modularization of a language implementation over two
dimensions: the syntactic dimension and the semantic dimension. With respect to the
first dimension, our approach makes it possible to define modular parser implementations,
by reasoning only on the structure of the language grammar. In particular, in our work
we are giving guidelines on how to componentize a grammar, and how the specification
of the parser, in the form of a trait-based grammar decomposition, may then construct
the abstract representation of the interpreter through composition of factory methods.
In Sect. 5 we showed that this approach simplifies the extension of the syntax of the
language, possibly reusing components from different languages.

From the semantic standpoint, our approach has a number of benefits, but it does
involve quite a bit of boilerplate. In particular, for every data type, it is necessary to
define a trait for each evaluation phase and a factory method to configure the composition
between the AST data types and the traits that implement their evaluation phases.
Nevertheless boilerplate is a necessary evil to address the modularity concern: a bit of
boilerplate is in fact required in all of the other techniques. Of course, in a comparison
that involved only the count of lines of code, pattern-matching would win hands down:
in this case, an evaluation function would just need to specify the case matches for each

23

data type. On the other hand, the known problem of this approach is that the pattern
matching approach is harder to extend with new data types (e.g., see [18]). The challenge
is to find an approach where i) the AST implementation should be extensible with new
subtypes ii) it is possible to add new processing phases, iii) existing code is not modified
or duplicated, iv) it is possible to compile each extension separately and v) to combine
together independently developed extensions. However, much of the required boilerplate
could be auto-generated using naming conventions. For instance, for each AST data
type T the trait for the evaluation phase might be called TEval. On the other hand,
the conciseness that is lost with this approach is traded for a much greater extent of
extensibility and reuse: separate compilations and reuse make it possible to mechanize
language composition, to the point where a language implementation may be reduced to
configuring a selection of components (cf. [9, 23, 24]).

Looking instead at Erdweg et al.’s taxonomy in [10], the proposed approach clearly
supports language extensions and restrictions. Self-extension and unification are not
considered even if feasible in this work because, in our view, they do not represent the
common case for language evolution. The unification consists of merging two languages
in one so that elements of the first are integrated to those of the other and vice versa; no
host language is present. In our approach the unification of two languages decomposed as
suggested consists only on adjusting some grammar rules so that the final grammar result
fully connected; all the language features are at the end at the same level and interpreted
by the same interpreter. This approach is quite different from some recent approaches
(such as [39, 40]) to language unifications that let every original language element be
interpreted by the original interpreter and only their interactions are dealt with separately.
Self-extension or language embedding occurs when a language is embedded into another
by simply using the language constructs already available (such as [41, 42]); the advantage
of this approach is that the original interpreter remains unchanged. This basically is what
our approach proposes in order to achieve language extension.

7. Conclusions

DSL development is an aspect that modern GPLs have been emphasizing more and
more. In this work, we exploited well-known patterns, techniques and constructs to
implement external DSLs with a high degree of flexibility and modularity. The final
objective is being able to implement DSLs by combining components together, maximizing
code reuse and minimizing duplication. The approach revolves around the use of traits
both for the realization of the parser of the DSL and for the implementation of the
semantics of the interpreter, and because of the guarantees of correctness that static
typing provides, we chose to employ Scala’s trait implementation. Nevertheless, the
assumptions and reasoning we made to pursue our results in Scala should make our
approach reproducible in other mainstream programming languages that provide trait-
like composition capabilities. Our final objective is to be able to pursue a model of
componentization that simplifies the implementation of feature-oriented programming
languages, possibly using variability modeling techniques to present choices to end users,
following up to our previous experiences on the subject matter [9, 23, 24].

24

References

[1] M. Mernik, J. Heering, A. M. Sloane, When and How to Develop Domain Specific Languages, ACM
Comput. Surv. 37 (4) (2005) 316–344.

[2] M. Fowler, R. Parsons, Domain Specific Languages, Addison Wesley, 2010.
[3] T. Kosar, S. Bohra, M. Mernik, Domain Specific Languages: A Systematic Mapping Study, Informa-

tion and Software Technology 71 (2016) 77–91.
[4] M. Fowler, Fluent Interface, Martin Fowler’s Blog (May 2005).

URL http://martinfowler.com/bliki/FluentInterface.html

[5] M. Odersky, L. Spoon, B. Venners, Programming in Scala: A Comprehensive Step-by-Step Guide,
2nd Edition, Artima Inc., 2011.

[6] D. J. P. Leijen, E. Meijer, Parsec: Direct Style Monadic Parser Combinators for the Real World,
Technical Report UU-CS-2001-35, Department of Information and Computing Sciences, Utrecht
University, Utrecht, The Netherlands (2001).

[7] A. Moors, F. Piessens, M. Odersky, Parser Combinators in Scala, CW Report 491, Katholieke
Universiteit Leuven, Leuven, Belgium (Feb. 2008).

[8] L. Renggli, S. Ducasse, T. Gîrba, O. Nierstrasz, Practical Dynamic Grammars for Dynamic Languages,
in: Proceedings of the 4th Workshop on Dynamic Languages and Applications (DYLA’10), Málaga,
Spain, 2010.

[9] E. Vacchi, W. Cazzola, S. Pillay, B. Combemale, Variability Support in Domain-Specific Language
Development, in: M. Erwig, R. F. Paige, E. Van Wyk (Eds.), Proceedings of 6th International
Conference on Software Language Engineering (SLE’13), Lecture Notes on Computer Science 8225,
Springer, Indianapolis, USA, 2013, pp. 76–95.

[10] S. Erdweg, P. G. Giarrusso, T. Rendel, Language Composition Untangled, in: A. Sloane, S. Andova
(Eds.), Proceedings of the 12th Workshop on Language Description, Tools, and Applications
(LDTA’12), ACM, Tallinn, Estonia, 2012.

[11] H. Krahn, B. Rumpe, S. Völkel, MontiCore: A Framework for Compositional Development of
Domain Specific Languages, International Journal on Software Tools for Technology Transfer 12 (5)
(2010) 353–372.

[12] B. C. d. S. Oliveira, T. van der Storm, A. Loh, W. R. Cook, Feature-Oriented Programming
with Object Algebras, in: G. Castagna (Ed.), Proceedings of the 27th European Conference on
Object-Oriented Programming (ECOOP’13), Lecture Notes in Computer Science 7920, Springer,
Montpellier, France, 2013, pp. 27–51.

[13] P. Wadler, Monads for Functional Programming, in: J. Jeuring, E. Meijer (Eds.), Advanced
Functional Programming, LNCS 925, Springer, Bøastad, Sweden, 1995, pp. 24–52.

[14] S. Liang, P. Hudak, M. Jones, Monad Transformers and Modular Interpreters, in: R. K. Cytron,
P. Lee (Eds.), Proceedings of the 22nd ACM Symposium on Principles of Programming Languages
(POPL’95), ACM, San Francisco, CA, USA, 1995, pp. 333–343.

[15] E. Vacchi, W. Cazzola, Neverlang: A Framework for Feature-Oriented Language Development,
Computer Languages, Systems & Structures 43 (3) (2015) 1–40. doi:10.1016/j.cl.2015.02.001.

[16] N. Schärli, S. Ducasse, O. Nierstrasz, A. P. Black, Traits: Composable Units of Behaviour, in:
L. Cardelli (Ed.), Proceedings of the 17th European Conference on Object-Oriented Programming
(ECOOP’03), Lecture Notes in Computer Science 2743, Springer, Darmstadt, Germany, 2003, pp.
248–274.

[17] S. Ducasse, O. Nierstrasz, N. Schärli, R. Wuyts, A. P. Black, Traits: A Mechanism for Fine-Grained
Reuse, ACM Transactions on Programming Languages and Systems 28 (2) (2006) 331–388.

[18] M. Zenger, M. Odersky, Independently Extensible Solutions to the Expression Problem, in: Proceed-
ings of the 12th International Workshop on Foundations of Object-Oriented Languages (FOOL’12),
Long Beach, CA, USA, 2005.

[19] B. C. d. S. Oliveira, Modular Visitor Components: A Practical Solution to the Expression Families
Problem, in: S. Drossopoulou (Ed.), Proceedings of the 23rd European Conference on Object-
Oriented Programming (ECOOP’09), Lecture Notes in Computer Science 5653, Springer, Genoa,
Italy, 2009, pp. 269–293.

[20] W. Cazzola, Domain-Specific Languages in Few Steps: The Neverlang Approach, in: T. Gschwind,
F. De Paoli, V. Gruhn, M. Book (Eds.), Proceedings of the 11th International Conference on Software
Composition (SC’12), Lecture Notes in Computer Science 7306, Springer, Prague, Czech Republic,
2012, pp. 162–177.

[21] W. Cazzola, E. Vacchi, Neverlang 2: Componentised Language Development for the JVM, in:
W. Binder, E. Bodden, W. Löwe (Eds.), Proceedings of the 12th International Conference on

25

http://martinfowler.com/bliki/FluentInterface.html
http://martinfowler.com/bliki/FluentInterface.html
http://dx.doi.org/10.1016/j.cl.2015.02.001

Software Composition (SC’13), Lecture Notes in Computer Science 8088, Springer, Budapest,
Hungary, 2013, pp. 17–32.

[22] E. Vacchi, D. M. Olivares, A. Shaqiri, W. Cazzola, Neverlang 2: A Framework for Modular Language
Implementation, in: Proceedings of the 13th International Conference on Modularity (Modularity’14),
ACM, Lugano, Switzerland, 2014, pp. 23–26.

[23] E. Vacchi, W. Cazzola, B. Combemale, M. Acher, Automating Variability Model Inference for
Component-Based Language Implementations, in: P. Heymans, J. Rubin (Eds.), Proceedings of the
18th International Software Product Line Conference (SPLC’14), ACM, Florence, Italy, 2014, pp.
167–176.

[24] T. Kühn, W. Cazzola, D. M. Olivares, Choosy and Picky: Configuration of Language Product Lines,
in: G. Botterweck, J. White (Eds.), Proceedings of the 19th International Software Product Line
Conference (SPLC’15), ACM, Nashville, TN, USA, 2015, pp. 71–80.

[25] L. Tratt, Evolving a DSL Implementation, in: R. Lämmel, J. Visser, J. Saraiva (Eds.), Proceedings
of the International Summer School on Generative and Transformational Techniques in Software
Engineering II (GTTSE’07), LNCS 5235, Springer, Braga, Portugal, 2008, pp. 425–441.

[26] A. V. Aho, R. Sethi, J. D. Ullman, Compilers: Principles, Techniques, and Tools, Addison Wesley,
Reading, Massachusetts, 1986.

[27] N. Schärli, Traits — Composing Classes from Behavioral Building Blocks, Phd thesis, Universität
Bern, Bern, Switzerland (Feb. 2005).

[28] M. Odersky, M. Zenger, Scalable Component Abstractions, in: R. P. Gabriel (Ed.), Proceedings
of 19th ACM International Conference on Object-Oriented Programming Systems, Languages and
Applications (OOPSLA’05), ACM Press, San Diego, CA, USA, 2005, pp. 41–57.

[29] M. Mernik, An Object-Oriented Approach to Language Compositions for Software Language
Engineering, Journal of Systems and Software 86 (9) (2013) 2451–2464.

[30] W. Cazzola, E. Vacchi, On the Incremental Growth and Shrinkage of LR Goto-Graphs, Acta Inf.
51 (7) (2014) 419–447. doi:10.1007/s00236-014-0201-2.

[31] M. Might, D. Darais, Yacc is dead, CoRR abs/1010.5023.
[32] S. J. Mellor, S. Tockey, R. Arthaud, P. Leblanc, An Action Language for UML: Proposal for a

Precise Execution Semantics, in: J. Bézivin, P.-A. Muller (Eds.), Proceedings of the first Workshop
on The Unified Modeling Language («UML»’98), LNCS 1618, Springer, Mulhouse, France, 1998, pp.
307–318.

[33] E. Visser, WebDSL: A Case Study in Domain-Specific Language Engineering, in: R. Lämmel,
J. Visser, J. Saraiva (Eds.), Generative and Transformational Techniques in Software Engineering II,
LNCS 5235, Springer, 2008, pp. 291–373.

[34] T. Ekman, G. Hedin, The JastAdd System — Modular Extensible Compiler Construction, Science
of Computer Programming 69 (1-3) (2007) 14–26.

[35] E. Van Wyk, D. Bodin, J. Gao, L. Krishnan, Silver: an Extensible Attribute Grammar System,
Electronic Notes on Theoretical Computer Science 203 (2) (2008) 103–116.

[36] M. Grabmüller, Monad Transformers Step by Step, draft paper (October 2006).
[37] D. Ghosh, DSL for the Uninitiated, Commun. ACM 54 (7) (2011) 44–50.
[38] P. Wadler, The Expression Problem, Java Genericity Mailing List (Nov. 1998).
[39] E. Barrett, C. F. Bolz, L. Tratt, Approaches to Interpreter Composition, Computer Languages,

Systems & Structures 44 (Part C) (2015) 199–217.
[40] M. Grimmer, C. Seaton, T. Würthinger, H. Mössenböck, Dynamically Composing Languages in a

Modular Way: Supporting C Extensions for Dynamic Languages, in: G. Leavens (Ed.), Proceedings
of the 14th International Conference on Modularity (Modularity’15), ACM, Fort Collins, CO, USA,
2015, pp. 1–13.

[41] V. Karakoidas, D. Mitropoulos, P. Louridas, D. Spinellis, A Type-Safe Embedding of SQL into Java
Using the Extensible Compiler Framework, Computer Languages, Systems & Structures 41 (2015)
1–20. doi:10.1016/j.cl.2015.01.001.

[42] P. G. Giarrusso, K. Ostermann, M. Eichberg, R. Mitschke, T. Rendel, C. Kästner, Reify Your
Collection Queries for Modularity and Speed!, in: J. Kienzle (Ed.), Proceedings of the 12th Annual
International Conference on Aspect-Oriented Software Development (AOSD’13), ACM, Fukuoka,
Japan, 2013, pp. 1–12.

26

http://dx.doi.org/10.1007/s00236-014-0201-2
http://dx.doi.org/10.1016/j.cl.2015.01.001

	1 Introduction
	2 Background
	2.1 Formal Grammars
	2.2 Parser Combinators
	2.3 Traits

	3 Trait-Based Grammar Modularization
	3.1 Trait Construction

	4 Trait-Based Semantics Composition
	4.1 A Modular Interpreter Pattern
	4.2 AST Configuration
	4.3 Semantic Dependencies

	5 Case Study
	5.1 Action Language
	5.2 Guards and Actions

	6 Evaluation and Comparison with Related Work
	7 Conclusions

