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Summary Writing a computer program for modeling multi-state disease process for
cancer or chronic disease is often an arduous and time-consuming task. We have devel-
oped a SAS macro program for estimating the transition parameters in such models
using SAS IML. The program is very flexible and enables the user to specify homo-
geneous and non-homogeneous (i.e. Weibull distribution, log—logistic, etc.) Markov
models, incorporate covariates using the proportional hazards form, derive transition
probabilities, formulate the likelihood function, and calculate the maximum likeli-
hood estimate (MLE) and 95% confidence interval within a SAS subroutine. The program
was successfully applied to an example of a three-state disease model for the pro-
gression of colorectal cancer from normal (disease free), to adenoma (pre-invasive
disease), and finally to invasive carcinoma, with or without adjusting for covariates.
This macro program can be generalized to other k-state models with s covariates.
© 2004 Published by Elsevier Ireland Ltd.

1. Introduction

Multi-state models of disease progression are use-
ful for describing the natural history of chronic
diseases and cancer. A typical three-state model
for the early detection of cancer by screening [1]
might be defined as follows; normal, pre-clinical
screen-detectable phase (PCDP) and clinical phase
for early detection of cancer. For a non-malignant
chronic disease such as type 2 diabetes [2,3] suit-
able states would be normal, pre-symptomatic

*Corresponding author. Tel.: +886-2-23587620;
fax: +886-2-23587707.
E-mail address: stony@episerv.cph.ntu.edu.tw

(T. Hsiu-Hsi Chen).

phase, and symptomatic phase. The three-state
model can be extended to a five-state model by
using tumor attributes or other clinical measures in
non-malignant chronic disease. For example, the
PCDP phase and clinical phase for the three-state
model can be further dichotomized by tumor
size (≥2 cm/<2 cm) or by node status (node posi-
tive/node negative) [4].

To model the transition rates of multi-state
disease progression, the continuous-time Markov
process has been proposed [5,6]. However, es-
timating transition parameters pertaining to a
multi-state Markov process is not straightforward
and requires a sophisticated computation program.
There are three key issues to consider when writ-
ing the computer program. The first is that the
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formulation of specific Markov models, particularly
for non-homogeneous models which have rarely
been addressed in previous medical applications.
The second is the formulation of the likelihood func-
tion from empirical data because there are many
potential problems, such as hidden transition (un-
observable transition from no disease to pre-clinical
phase in the three-state model), truncation and
censoring. Finally, the calculation of point esti-
mates and their 95% confidence intervals for rel-
evant parameters is often computationally inten-
sive. Efficient computer programming is therefore
a necessity. The requirement to validate the model
after fitting also adds to the computational load.

The objective of this study was therefore to de-
velop a computational program for estimating the
transition parameters in a multi-state disease pro-
cess, particularly non-homogeneous models, using
SAS IML. The program has been further generalized
in a SAS macro program and tested on empirical
data on disease progression in colorectal cancer.

2. Model formulation

In principle, our computer program can be applied
to any k-state continuous-time Markov process with
progressive property (see Fig. 1). For simplicity,
a three-state continuous-time Markov processes is
demonstrated here. However, the proposed com-
putational program can be generalized to other
Markov models without loss of generality.

2.1. Model specification

A general form of k-state continuous-time Markov
process model with progressive property is delin-
eated in Fig. 1. Let X(t), the state of an individual
at time t, be a random variable with state space
Ω = {1,2,3, . . . ,k}, where 1 usually represents no
disease, and the others represent states of subse-
quent progression. The transition rate from state
1 to state 2 in the current model is modeled by
a non-homogeneous distribution that captures the
property of increasing or decreasing transition rate
with time denoted as λ1(t). Suitable examples are
the Weibull, log—logistic and gamma distributions.
In theory, other transition rates between two states
can also be modeled with a non-homogeneous dis-
tribution. However, the complexity of the algebra
increases with number of states. For simplicity, only

Fig. 1 A k-state progressive Markov model.

the transition rate from state 1 to state 2 is modeled
with non-homogeneous distribution, the Weibull,
and the remaining transition rates given the Markov
property by modeling with the exponential distribu-
tion. We believe such a simplification is not unrea-
sonable for multi-state disease progression of can-
cer or chronic diseases.

The non-homogeneous and homogeneous parts
are expressed in the transition matrix.

(1)

The transition rate, λ1(t), is defined by

λ1(t) = lim
δt→0

Pr{transition i → (i+l) in [t, (t+δt))|
in state i at time t}

δt

The transition time from state 1 to state 2 fol-
lowing the Weibull distribution is denoted asW(λ10,
γ1). Note that λ10 is a scale parameter and γ1 is a
shape parameter. The hazard function for λ1(t) is

λ1(t) = λ10γ1tγ1−1 (2)

The elements of the transition matrix with the
Markov property, denoted M in Eq. (1), are as fol-
lows:

(3)

where λi is defined by

λi = lim
δt→0

Pr{transition i → (i+ 1) in [t, (t+ δt)]|
in state i at time t}

δt

2.2. Transition probabilities

Following from Eq. (1), the transition probability of
staying in state 1, P11(t1, t2), is

P11(t1, t2) = S1(t1, t2) = exp

{
−

∫ t2

t1
λ1(u − t1)du

}

= exp(−λ10(t2 − t1)γ1) (4)
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where S1(t) represents the corresponding survival
function.

The corresponding probabilities of transition
during time interval [t1, t2] is the (k − 1) × (k − 1)
probability matrix, PM, where the homogeneous
matrix M in which the element of ith row and
jth column, denoted by PM

ij (t1, t2), represents the
probability of transition from state i to state j
for i = 2, . . . , k and j = 2, . . . , k. Transition prob-
abilities were calculated by using the forward
Kolmogorov equation [7] as follows:

dPM(t) = PM(t)Q

Subject to the boundary conditions PM(0) = I,
the Kolmogorov equation leads to the unique solu-
tion PM(t) = exp(Qt). If Q has unique eigenvalues
v2, v3, . . . , vk, denoted as a vector of V, and if A
is the (k − 1) × (k − 1) matrix whose jth column is
the right eigenvector for rj, then the solution is
given by

PM
2j(t) = Adiag(exp(v2t), . . . , exp(vkt)) A−1 (5)

The probability for an individual progressing from
state 1 to state j during [t1, t2], is therefore

P1j(t1, t2) =
∫ t2

t1
f1(u)P M

2j (t2 − u)du (6)

where j = 2, 3, . . . , k, PM
2j represents the transition

probabilities from state 2 to state j derived from
Eq. (5), and f1(t), the probability density function
of the Weibull distribution relating to the transition
from state 1 to state 2, is written as

f1(t) = λ1(t)S1(t) = λ10γ1tγ1−1 exp(−λ10tγ1) (7)

From Eqs. (4)—(6), the probability functions for
the transition from one state to another state are
obtained and denoted as follows:

(8)

Note that Pij(t) represents the risk of transition
from state i to state j.

2.3. Exponential regression model for
patient-specific covariates

Tomodel the effect of individual’s covariates, say z,
on multi-state transitions, the exponential regres-
sion model is proposed by treating the scale param-

eter in the Weibull distribution as a function of an
individual’s covariates and is expressed by

λm10 = λ10 exp(β10zm) (9)

where λ10 is the scale parameter of Weibull distri-
bution for the transition rate from state 1 to state 2
for the covariate at baseline value, zm and β10 are
vectors of covariates and the corresponding regres-
sion coefficient for individual m.

For the homogeneous part of the above k-state
stochastic model, the effect of patient-specific co-
variates on multi-state transitions was modeled by
the exponential regression model as

λmi = λi exp(βixm) (10)

for i = 2, 3, . . . , k.

2.4. Likelihood function

Following Eq. (8), we use Pij(t1, t2) to represent the
transition from state i to state j in a given time in-
terval, [t1, t2]. Since we attempt to estimate the
parameters pertinent to the disease natural his-
tory, only data on the first examination are used.
This yields k possible observed transitions before
the first examination, staying in state 1 (state 1 to
state 1), state 1 to state 2, . . . , and state 1 to state
k. The likelihood function with k states is

L =
k∏

j=1

nj∏
m=1

P1j(tm)δmj (11)

where tm represents the age of the mth individual
at first examination, and δmj is an indicator for the
mth individual in state j ( j = 1, 2, . . . , k). Taking the
logarithm of Eq. (11), the log likelihood function is
obtained as

log L = δmj

k∑
j=1

nj∑
m=1

P1j(tm) (12)

2.5. Parameter estimation

Parameters regarding regression coefficients, base-
line scale parameters, λ10, shape parameters, �1,
and the remaining transition parameters, λ2—λk−1,
were obtained by maximum likelihood estimation
(MLE). The corresponding standard errors were also
calculated from the inverse of minus the second
derivative of the likelihood function given the max-
imum likelihood estimates. All estimation proce-
dures were performed using SAS IML procedures,
SAS Version 8 [8].
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2.6. Model validation

The goodness-of-fit of the model will be assessed
using Pearson’s χ2-test statistic to determine how
well the observed data’s empirical distribution
function agrees with the posited theoretical dis-
tribution function. The statistic is calculated as
follows:

χ2 =
g∑

u=1

(Ou − Eu)2

Eu
, (13)

where g is number of modes (i.e. the number of
transition types we observed in the data), Ou is the
observed count for the uth mode, and Eu is the ex-
pected count for the uth mode. Small probabilities
indicate a poor fit.

3. Empirical data for sample runs

The data used in this study were derived from a
cohort that consisted of 9021 subjects undergoing
first colonoscopic examination at Kaohsiung Medi-
cal Center between 1979 and 1998. After receiving
colonoscopy, this cohort was classified into three
groups, 6522 normal subjects, 1755 adenoma cases
(diagnosed at first examination), and 744 colorectal
carcinoma (CRC) cases (diagnosed at first examina-
tion).

Details of study design were described in full
elsewhere [9,10]. In brief, because the clinical at-
tributes associated with progression to adenoma
or CRC were recorded in pathological reports and
medical charts that were not held on computer, a
subset of samples, including 205 normal subjects,
200 adenoma cases, and 100 CRC cases, were ran-
domly selected (Fig. 2). The sampling fractions for
normal, adenoma and invasive CRC were denoted
as π1(205/6522), π2(200/1755), and π3(100/744).

6,522 Normal 

9,021 Subjects

3

100 CRC 

744 CRC 

2

200 Adenoma 

1,755 Adenoma

1

205 Normal 

π π π

Fig. 2 A non-standard case-cohort design for adenoma
and colorectal cancer.

Such a study design is called a non-standard
case-cohort design (Fig. 2).

In this example data set, we wished to quantify
the progression rates from adenoma and invasive
carcinoma, and assess the effect of relevant covari-
ates, such as gender, on each progression. To illus-
trate this, we modeled the natural history of col-
orectal cancer using a three-state model, incorpo-
rating covariates.

3.1. Three-state model without covariates

We model the disease process for colorectal can-
cer as a three-state continuous-time Markov pro-
cess (Fig. 3) in which X(t), the state of an individual
at time t, is a random variable with a state space
Ω = {1, 2, 3}, where 1 represents no disease (nor-
mal), 2 represents colorectal adenoma, and 3 rep-
resents invasive colorectal carcinoma. K is three in
this example.

According to Eqs. (1) and (8), the intensity matrix
(with transition rates as elements) is

(14)

where λ1(t) is the annual incidence rate of ade-
noma, and λ2 is the annual transition rate from
adenoma to cancer. The corresponding transition
probability matrix is

(15)

where P11(t) is calculated using Eq. (4). P12(t) and
P13(t) are calculated as per Eq. (6) as

P12(t1, t2) = ∫ t2
t1
f1(u)PM22(u, t2)du

P13(t1, t2) = ∫ t2
t1
f1(u)PM23(u, t2)du

(16)

As our study design was based on three subsets
of samples, the likelihood function for estimating
parameters cannot be formed by direct applica-
tion of the above transition probabilities. Bayesian
revision was used instead to calculate the prob-
ability for the selected cases. The conditional

Fig. 3 A three-state Markov model for colorectal can-
cer.
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probability for state j, for j = 1, 2, 3, according to
whether the sample was selected (S = 1) is denoted
by

P1∗
j
(t) = Pr(state j at first examination at age

t|whether to be sampled)

= Pr(P1j(t)|S = 1)

= Pr(S = 1|P1j(t))P1j(t)∑3
j=1Pr(S = 1|P1j(t))P1j(t)

= πjP1j(t)∑3
j=1πjP1j(t)

(17)

where π1, π2, and π3 are random sampling fractions
for states 1, 2, and 3, respectively. Therefore, ac-
cording to Eqs. (11) and (12), the likelihood func-
tion for such data is

L =
3∏
j=1

nj∏
m=1

P1∗
j
(tm)δmj (18)

where tm represents age at which the mth individ-
ual was first examined, δmj is an indicator for the
mth individual in state j ( j = 1,2,3), and the log
likelihood function is as follows:

log L = δmj

3∑
j=1

nj∑
m=1

P∗
1j(tm) (19)

Table 1 shows the data for the three-state model,
where ‘‘AGE’’ represents age at first examination,
‘‘S1’’, ‘‘S2’’ and ‘‘S3’’ represent the number of sub-
jects in state 1 (normal), state 2 (adenoma), and

Table 1 Data for the three-state model

AGE S1 S2 S3 XN AGE S1 S2 S3 XN AGE S1 S2 S3 XN AGE S1 S2 S3 XN

16 1 0 0 1 36 3 1 3 7 53 3 6 3 12 70 5 1 6 12
18 1 0 0 1 37 2 0 0 2 54 4 1 0 5 71 3 3 1 7
19 2 1 0 3 38 1 0 0 1 55 2 1 5 8 72 1 4 5 10
21 2 0 0 2 39 6 1 0 7 56 5 1 2 8 73 2 2 2 6
23 1 0 0 1 40 6 2 1 9 57 3 2 2 7 74 2 3 3 8
24 1 0 0 1 41 4 2 1 7 58 3 0 3 6 75 5 3 3 11
25 2 0 0 2 42 6 0 1 7 59 5 2 4 11 76 1 3 2 6
26 1 0 1 2 43 7 1 0 8 60 6 3 4 13 77 2 0 1 3
27 1 0 0 1 44 5 1 2 8 61 3 2 0 5 78 0 0 2 2
28 5 1 1 7 45 6 0 0 6 62 4 3 2 9 79 1 1 2 4
29 2 0 0 2 46 2 1 0 3 63 3 2 1 6 80 1 2 1 4
30 3 1 2 6 47 1 0 2 3 64 3 4 5 12 81 0 1 0 1
31 4 1 0 5 48 2 1 0 3 65 3 4 1 8 82 0 0 1 1
32 5 0 1 6 49 5 3 0 8 66 5 4 4 13 84 1 1 0 2
33 6 0 0 6 50 3 6 3 12 67 1 3 3 7 85 1 0 0 1
34 10 0 2 12 51 5 3 2 10 68 5 2 7 14
35 1 0 0 1 52 5 2 1 8 69 5 2 2 9

state 3 (invasive CRC), respectively, and ‘‘XN’’ rep-
resents the total number of subjects with the same
age at first examination.

3.2. Three-state model incorporating one
covariate

In order to assess the effect of gender onmulti-state
disease progression, we take the covariate, gender,
into account using the above three-state Markov
model (Fig. 3).

Using Eqs. (2) and (9) was extended to give

λm1 (t) = λ10 exp(β10Gender)γ1tγ1−1 (20)

Similarly, using Eqs. (3) and (11) was extended to
give

λm2 = λ2 exp(β2Gender) (21)

The likelihood function can be similarly obtained
from Eqs. (4)—(6), (8), (17) and (18).

4. Computer program

We developed a computational program for es-
timating the transition parameters underpinning
multi-state disease process using SAS IML language.
The program was delineated as follows.

4.1. Three-state model without covariate

(a) Read data
Reading the data shown in Table 1 using ma-

trix form.
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read all var(‘‘S1’’ :‘‘S3’’ ) into num;
read all var{xn} into xn;
read all var{age} into tt;

(b) Transition probabilities
The following programs show the correspond-

ing transition probabilities, P11, P12, and P13,
with Weibull distribution. For clarity, the fol-
lowing equations were labeled by S-X, where
X was derived from a series of Eqs. (4)—(19)
listed above. The corresponding statement for
Eq. (4), the transition probability staying at
state 1 (P11) from birth (t1) to the first exami-
nation (t2), was

lamda10=xh[1];
gamma1=xh[3]
P11=exp(-lamda1∗ ((t[2]

-t[1])∗∗ gamma1));
S-(1)

xh [1] and xh [3] are variable names of λ10 and
γ1, t[1] is set as 0 (age at birth) and t[2] rep-
resents age at first examination. In addition to
the non-homogeneous part, the homogeneous
transition rate matrix M (following Eq. (3)) was
calculated using the following statements:

Q=J(2,2,0);
Q[1,1]=-xh[2];
Q[1,2]=xh[2];

S-(2)

Note that xh[2] is the variable name of λ2.
Then the homogeneous transition probability
PM
2j(u, t2) can be calculated from Eq. (5).

A=teigvec(Q);
V=teigval(Q);
D=diag(exp(v[,1]#(t[m,2]-u)));
P=A∗ D∗ inv(A);

S-(3)

t[m, 2] represents age at first examination for
the mth individual.

The density function for the transition from
state 1 to state 2 in Eq. (7) was written as fol-
lows:

f1=lamda1∗ gamma1∗ (u∗∗ (gamma1-1))
∗ exp(-lamda1∗ (u∗∗ gamma1)); S-(4)

The two density functions for the transitions
from normal (state 1) to adenoma (state 2) and
invasive CRC (state 3) were

f12=f1∗ P[1,1];
f13=f1∗ P[1,2];
According to Eq. (16), the transition probabil-

ities P12(t1, t2) and P13(t1, t2) can be calculated

by the integration of the above equations using
the subroutine of SAS language ‘‘quad( )’’.

Call quad(P12,‘‘f12’’ ,t[m,]);
Call quad(P13,‘‘f13’’ ,t[m,]);

S-(5)

t[m,] is the range from 0 to age for integration.
The conditional probability, P∗

1j(t), with sam-
pling fractions, as in Eq. (17) are calculated as

pi1=205/6522;
pi2=200/1755;
pi3=100/744;
px1=p11∗ pi1/(pi1∗ p11

+pi2∗ p12 + pi3∗ p13);
px2=p12∗ pi2/(pi1∗ p11

+pi2∗ p12+pi3∗ p13);
px3=p13∗ pi3/(pi1∗ p11

+pi2∗ p12+pi3∗ p13);

S-(6)

px1, px2, and px3 are variable names for P∗
1j.

Note that Pi1—Pi3 will be set to 1 if data are
based on the full longitudinal data rather than
sampling design.

(c) Likelihood function
Following Eq. (19), the log likelihood func-

tions were programmed as follows:

sum=sum+num[m,1]∗ log(px1/
(px1+px2+px3))+

num[m,2]∗ log(px2/
(px1+px2+px3))+

num[m,3]∗ log(px3/
(px1+px2+px3));

S-(7)

The above program is included in a SAS module
called f log L, and sum is the summation of the
log likelihood functions.

(d) Parameter estimation
Maximum likelihood estimates was obtained

by using the iterative Newton—Raphson method
(using subroutine nlpnra( )), where f log L is the
log likelihood function mentioned above. Initial
values for λ10, λ2, and γ1, were 0.005, 0.015,
and 1, with the corresponding constraints, 10−8

to 1, 10−5 to 1, and 0—∞. Optn[1] = 1 gives
maximum likelihood estimates and optn[2] = 2
provides details of the iteration process. Esti-
mate is the vector of MLEs of parameters.

h0={0.005 0.015 1};
con={1.e-8 1.e-5 0, 1 1 .};
optn={1 2};
call nlpnra(rc,xres,‘‘f logL’’,
h0,optn,con);

estimate=xres‘;
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The SAS subroutine nlpfdd( ), in IML, was also
applied to calculate the standard errors of esti-
mates and 95% CIs. The Hessian matrix is named
as hes2. The variance and covariance were cal-
culated by taking minus the inverse of the Hes-
sian matrix. The program is written as follows:

call nlpfdd(f,g,hes2,‘‘f logL’’,
estimate);

cov=-inv(hes2);
norqua=probit(1-0.05/2);
stderr=sqrt(vecdiag(cov));
low=estimate-norqua∗ stderr;
up=estimate+norqua∗ stderr;
Low and up are the corresponding 95% confi-
dence intervals.

(e) Model validation
Substituting the parameter estimates into the

equation of transition probabilities enables one
to calculate the expected values.

expect[i,1]=xn[i]∗ (px1);
expect[i,2]=xn[i]∗ (px2);
expect[i,3]=xn[i]∗ (px3);
create exp from expect[colname

={‘‘exp1’’ ‘‘exp2’’ ‘‘exp3’’ }];
append from expect;

Note that ‘‘px1’’—‘‘px3’’ are transition prob-
abilities calculated by estimated parameters;
three variables, exp1, exp2, and exp3 represent
the expected values of states 1, 2, and 3, re-
spectively, and were stored in a data set named
as exp.

The comparison between the expected and
the observed results was programmed as fol-
lows:

data good;

merge dataset exp;

observed=s1; expected=exp1;
state=1; output;

observed=s2; expected=exp2;
state=2; output;

observed=s3; expected=exp3;
state=3; output;

drop s1-s3 exp1-exp3;

proc means noprint;

var observed expected;

class state;

output out=t1 sum(observed)
=O sum(expected)=E;

The above statements yield the observed, O,
and the expected number, E, for each mode.
Following Eq. (13), the chi-square values are
calculated as follows:

data t2(drop= freq type );

set t1;

z=(O-E)∗ ∗ 2/E;
proc means sum noprint;

var z;

output out=good1 sum=chisquar;

S-(8)

where ‘‘chisquare’’ is the estimated chi-square
value.

data good1(drop= freq type );

set good1;

n mode=3; n para=3;
df=n mode-n para;

p value=1-probchi(chisquar,df);
where ‘‘n mode’’ is the number of modes includ-
ing three transition types, from normal to normal,
from normal to adenoma, and from normal to in-
vasive cancer; ‘‘n para’’ is the number of param-
eters. The P-value given the estimated chi-square
was also calculated as ‘‘p-value’’.

4.2. Three-state model with covariates

The program for the three-state model with one co-
variate is similar to the above model without co-
variate. Following Eqs. (9) and (10), we have

lamda1=xh[1]∗ exp(xh[4]
∗ (gender=1)); S-(9)

The homogeneous transition rate matrix, M, ac-
cording to Eqs. (10) and (17), is written as follows:

Q=J(2, 2, 0);
Q[1, 1]=-xh[2]∗ exp(xh[5]

∗ (gender=1));
Q[1, 2]=xh[2]∗ exp(xh[5]

∗ (gender=1));

S-(10)

xh[4] and xh[5] are variable names for β10 and β2
(Eqs. (20) and (21)).

The transition probabilities Pij(t), log likelihood
function, and parameter estimates are derived in a
similar way.

4.3. SAS macro MARKOV

To generalize our SAS program, we therefore de-
veloped a SAS macro MARKOV to accommodate
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k-state disease natural history with s covariates.
The SAS macro MARKOV has eight components,
(1) data, the SAS data set to be analyzed; (2) k,
the number of states; (3) dist, the distribution for
non-homogeneous transition from state 1 to state
2; (4) init, the initial values of each relevant tran-
sition parameter; (5) upcon and lowcon, the values
of upper constraints and lower constraints on each
relevant transition parameters; (6) covnum and
cov, the number of covariates and the declaration
of variable names for s covariates; (7) n mode,
number of modes; (8) like, the likelihood function.
The input SAS data set data consists of four numer-
ical variables, AGE, age at first examination, COVs,
variable names for s covariates, Sn, number of sub-
jects in state n, XN represent the total number of
subjects with the same age at first examination
and with the same covariate status. Types of distri-
bution, dist, for time to state 2 include exponent,
weibull, llogist, and gamma for exponential distri-
bution, Weibull distribution, log—logistic distribu-
tion, and gamma distribution, respectively. Initial,
upcon, and lowcon, are three vectors containing
a series of initial values, upper constraints, and
lower constraints, which the first (k − 1) columns
are transition rates λk where k = 1,2, . . . , (k − 1),

Fig. 4 Analysis of colorectal cancer data set: output of the SAS program for the three-state Markov model.

relating to each state; column k is the second pa-
rameter, γ, of the Weibull, log—logistic or gamma
distributions; the remaining columns contain the
regression coefficients relating to the sth covari-
ate on k − 1 transition rates. Further modifications
to the likelihood function were needed because
the likelihood function for estimating parameters
cannot always be formed by direct application
of the above transition probabilities, the original
likelihood P1—Pk can be transformed into a new
likelihood PX1—PXk by macro the like.

The above SAS programs of macro MARKOV
are available at website http://211.20.120.19/
sas program. The macro program was also ap-
plied to two examples mentioned above (see
Appendix A).

5. Result of sample runs

Fig. 4 displays the SAS output for the three-state
Markov model. The estimates and the correspond-
ing 95% confidence intervals for λ10, λ2, and γ1,
are 4.7 × 10−5 (1.9 × 10−5 to 7.4 × 10−5), 0.038
(0.028—0.048), and 2.12 (1.97—2.27), respectively.
Therefore, the transition rate, λ1(t), from state 1

http://211.20.120.19/sas_program
http://211.20.120.19/sas_program
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Fig. 5 Analysis of colorectal cancer data set: output of the SAS program for the three-state Markov model with one
covariate.

to state 2 assuming the Weibull distribution is

λ1(t) = 4.7 × 10−5 × 2.12 × t(2.12−1).

The second part shows goodness-of-fit of the
model. The observed number is close to the ex-
pected number but because the model is saturated,
with 0 degrees of freedom, the model cannot be
tested with Pearson’s χ2-statistics.

Fig. 5 shows the output for the three-state
Markov model with one covariate, gender. The es-
timates and the corresponding 95% confidence in-
tervals for λ10, λ2, γ1, β10, and β2, are 2.6 × 10−5

(1.5 × 10−5 to 3.8 × 10−5), 0.036 (0.02—0.05),
2.19 (2.06—2.31), 0.61 (0.24—0.98), and 0.10
(−0.42—0.62), respectively. The chi-square statis-
tic with one degree of freedom is 0.00997and the
P-value is 0.92047. The results show perfect model
fit. The hazard ratios for the effects of gender on
annual incidence rate of adenoma and the annual
transition rate from adenoma to cancer are 1.84
(1.27—2.66) and 1.11 (0.65—1.87), as calculated by
exponentiating of β10 and β2.

6. Discussion

A series of computer programs using IML language,
from non-macro tomacro program, for amulti-state
disease progression model was developed. Several
features render the program easy to use and flexible
in modeling the natural history of a various cancers
or chronic diseases with multi-state transitions.

First, the application of different distributions
enables our model to allow the transition rates
to vary with time. This characteristic dispenses
with the assumption of constant hazards which
has been made in the majority of previous stud-
ies and is useful in epidemiology because the
annual incidence rate for the onset of the first
state of disease rarely satisfies this criterion.
The current finding, that the annual incidence
rate of adenoma, from the three-state model,
increases with age is an illustration of this. The
Weibull or gamma distributions with increas-
ing hazard rates were therefore considered. Our
SAS macro program provides a series of survival
distributions.
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Secondly, calculation of transition probabilities
using the spectral method with the forward Kolo-
mogorov Eq. (S-3) also enables one to avoid the
complexity of symbolic mathematical algebra. One
can extend the program into a k-state model with
ease by only making a few modifications on the
transition rate matrix. Therefore, although only a
three-state model was demonstrated in the text,
the proposed program can be extended easily to any
progressive k-state model.

Thirdly, the incorporation of exponential regres-
sion models, also lets one to elucidate the influence
of different patient-specific covariates on each pro-
gression rate. In our example of gender and colorec-
tal cancer, the only significant effect of gender is on
the transition between normal to adenoma. Males
have almost a two-fold increase in risk of adenoma.
The natural history of cervical intraepithelial neo-
plasm (CIN) and its relationship with Human Papil-
lomavirus (HPV) is another example. Modeling the
effect of patient-specific covariates on multi-state
disease natural history can also throw light on the
role of each covariate on each transition. Besides,
in our program, one can incorporate several covari-
ates simultaneously and the covariates can also be
continuous variables. In addition, another advan-
tage of using exponential regression models is to es-
timate the hazard ratio with which the epidemiolo-
gist is familiar, by taking exponentials of the regres-
sion coefficients of the covariates. Hence, the in-
terpretation of the results is convenient and mean-
ingful. Fourthly, the corresponding standard errors
and 95% CIs of the relevant parameters can be eas-
ily calculated by applying the SAS IML subroutine
nlpfdd( ). Hence, hypothesis testing can be carried
out without difficulty.

Finally, for economy a two-stage sampling design
is used in our example. Thus, the likelihood of such
design becomes complicated due to sampling. Our
purpose is not to show the advantage of two-stage
sampling design but to elaborate how the likelihood
functions for different empirical data can be easily
accommodated using our SAS macro program. Be-
sides the two-stage sampling design, our program
can be easily adapted to other empirical data such
as truncation, censoring, and other properties.

Furthermore, the program also includes model
validation by using Pearson’s χ2-test to assess
whether the model is well fitted.

Markov process has been widely used in modeling
the transition rates of multi-state disease progres-
sion, however, estimation of transition parameters
is usually a stumbling block. We developed flexible
SAS non-macro and macro computer programs for
multi-state disease progression Markov models by
using SAS IML language. The macro program can be

generalized to other k-state models with s covari-
ates.

Appendix A. Illustration using two
examples of colorectal cancer screening

Example 1. Three-state model using Weibull distri-
bution with no covariate.

%main(data=c.state3, k=3,
dist=weibull, covnum=0,n mode=3,

init=0.005 0.015 1, upcon=1 1 .,
lowcon=1.e-8 1.e-5 0,

like=

pi1=205/6522;

pi2=200/1755;

pi3=100/744;

px1=p1∗ pi1/(pi1∗ p1+pi2∗ p2+pi3∗ p3);
px2=p2∗ pi2/(pi1∗ p1+pi2∗ p2+pi3∗ p3);
px3=p3∗ pi3/(pi1∗ p1+pi2∗ p2+pi3∗ p3);
);

Example 2. Three-state model using Weibull distri-
bution with one covariate, gender.

%main(data=c.state3c, k=3,
dist=weibull, covnum=1,
cov=cov1=2-gender;,

n mode=6, init=0.005 0.015 1 0.02 0.04,

lowcon=1.e-8 1.e-5 0 0 0, upcon=1 1 . . .,

like=

pi1=205/6522;

pi2=200/1755;

pi3=100/744;

px1=p1∗ pi1/(pi1∗ p1+pi2∗ p2+pi3∗ p3);
px2=p2∗ pi2/(pi1∗ p1+pi2∗ p2+pi3∗ p3);
px3=p3∗ pi3/(pi1∗ p1+pi2∗ p2+pi3∗ p3);
);
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