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ABSTRACT 

Digital Image-based Elasto-tomography (DIET) is an emerging method for non-

invasive breast cancer screening. Effective clinical application of the DIET system 

requires highly accurate motion tracking of the surface of an actuated breast with 

minimal computation. Normalized cross correlation (NCC) is the most robust 

correlation measure for determining similarity between points in two or more images 

providing an accurate foundation for motion tracking. However, even using fast 

fourier transform (FFT) methods, it is too computationally intense for rapidly 

managing several large images. A significantly faster method of calculating the NCC 

is presented that uses rectangular approximations in place of randomly placed 

landmark points or the natural marks on the breast. These approximations serve as an 

optimal set of basis functions that are automatically detected, dramatically reducing 

computational requirements. To prove the concept, the method is shown to be 37-150 

times faster than the FFT-based NCC with the same accuracy for simulated data, a 

visco-elastic breast phantom experiment and human skin. Clinically, this approach 

enables thousands of randomly placed points to be rapidly and accurately tracked 

providing high resolution for the DIET system. 

 

Keywords—Breast Cancer Screening, Surface Motion Tracking, Normalized 

Cross Correlation, Landmark points, Basis functions 

 

1. Introduction 
 

Digital Image-based Elasto-Tomography (DIET) is an emerging technology for 

breast cancer screening [1]. The stiffness of breast tissue can be reconstructed from 

measured 3D surface motion of a sinusoidally actuated breast using multiple high 

resolution digital cameras. This approach is similar to full volume elastographic 

methods using MRI [2-4] or ultra-sound [5]. Areas of high stiffness suggest cancerous 

tissue as it is 3-10 times stiffer than healthy tissue types [6, 7]. 

To measure useful 3D surface motion requires accurate motion tracking of a 

large number of randomly placed landmark points on the breast, or direct tracking of 

the natural marks and tone on the breast. In addition, clinical application for several 
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hundred or thousand points will require minimal computation to ensure clinical 

effectiveness. Hence, the DIET concept requires highly accurate motion tracking with 

minimal computation to be practicable.  

The standard way of tracking features between two images is by template 

matching.  This approach involves taking a given pattern in one image and shifting a 

template containing the same pattern in another image until the best comparison is 

found. The most common and effective way of doing this task is by Normalized Cross 

Correlation (NCC) methods, which have a significant advantage over standard cross 

correlation (CC) methods, in that these methods are robust to different lighting 

conditions across an image and less sensitive to noise [8]. However, both methods can 

be computationally intense, especially for large images.  

There are other methods of tracking that do not use NCC, including Gradient 

Descent Search (GDS) and Active Contour Matching (“Snakes”). The GDS [9] is 

based on a first order approximation to image motion and has the restriction that 

feature translation is small and the inter-frame translation must be less than the radius 

of the basin surrounding the minimum of the matching error surface. In the DIET 

system, there will be large numbers of landmark points to track, which are all close 

together [1]. Thus, any significant local perturbation on the surface due to a tumour 

[10] that causes a sudden local increase in amplitude relative to other parts of the 

surface could cause an error in the motion measurement predicted by GDS, since 

GDS only uses a first order approximation to motion. Furthermore, GDS methods 

only require one occasion where a particular landmark point jumps to another 

landmark point nearby for the whole trajectory to be corrupted. Another drawback for 

GDS methods is that the image gradient is required, which like any numerical 

derivative is sensitive to noise. Thus, to compute a reliable estimate of the gradient, 

the image must be smoothed, which depending on the number of smoothings applied, 

can distort the image introducing further potential error.  

The snake method [11] tracks individual feature contours, but in a similar way 

to GDS, is restricted to small changes in the contour’s shape and displacement. 

Furthermore, the snake method is sensitive to any intrinsic fuzziness or varying 

lighting conditions, as the image features must have clearly defined boundaries. In the 

DIET system, some landmark points must be quite close together so any variation in 

lighting conditions could cause a contour to be placed around one point in one image 

and two points in another image, thus corrupting results. An improvement to the 
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robustness of snake tracking has been proposed [12], however the method tracks 

macro scale single contours like the shape of a hand. The DIET system would need 

thousands of contours to be tracked, which would require significantly large 

computation. Another feature based method has been looked at involving thin plate 

splines [13], however the method is very computationally heavy.   

An empirical study of five template matching algorithms in the presence of 

various image distortions [14] found that NCC provides the best performance in all 

image categories. Also the choice of the correlation coefficient over alternative 

matching criteria, such as the sum of absolute differences, has also been justified as a 

maximum-likelihood estimation [15]. Thus, the NCC approach is potentially most 

suitable for the DIET system, which requires highly robust and accurate tissue surface 

motion tracking for a large number of closely located points. 

Currently, a relatively efficient way of calculating the NCC is by using the Fast 

Fourier Transform (FFT) to compute the standard CC and then using sum-tables to 

perform the normalization [16]. The method of [16] has also been applied for defect 

detection [17, 18]. However, it was shown in [19] that if basis functions are used to 

approximate the template then substantial computational gains could be obtained over 

the FFT-based methods.  

However, the method of [19] relies on choosing a suitable set of basis functions 

to approximate the template. The process of choosing the best set of basis functions is 

non-trivial with no guarantee of finding the optimal solution in terms of the best 

approximation with the fewest basis functions. Additionally, a threshold value that 

describes how close the basis functions should approximate the template image has to 

be chosen and impacts accuracy. In the case of tracking breast motion, there is no 

guarantee that this threshold value will stay constant as many complex surface 

motions can be produced if a tumour is present [1, 10].   

The concept in this paper is to let every randomly placed landmark point on the 

breast correspond to a basis function. The problem is then reformulated in terms of 

tracking the landmarks. Thus, the basis function representation in this case is 

guaranteed to be the optimal and there is physical control over the number and 

distribution of landmark points that are placed on the breast. An automatic method of 

calculating the specific basis functions is also presented. The method is tested on 

simulated motion, as well as human skin motion to prove the concept. Note that 

unlike the methods of [19], the pre-calculation of sum-tables are included in the time 
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taken for computations. Substantial computational speed gains are obtained over the 

NCC method of [16] while maintaining the same high accuracy.  

 

 

2. Methodology 
 

2.1 Standard NCC Method and Motion Tracking 
 

The NCC method is a simple template-matching method that determines the 

location of a desired pattern represented by a template function, t , inside a two-

dimensional image function, f . The template is shifted pixel-by-pixel across the 

image, forming a correlation plane that provides information of where the template 

best matches the image. In correlation based motion tracking applications, a pair of 

time-dependent images 
ot

Im  and tto ∆+Im  are compared in a pixel-by-pixel basis.  

For example, consider a 44 ×  sub-image of tto ∆+Im  denoted by ),( yxW  and a 

22 ×  feature template ),( yxT  of 
ot

Im  which is contained in ),( yxW . The template 

),( yxT  is shifted into nine different positions, where at each position, intensities are 

multiplied and summed, producing a correlation coefficient matrix, vu,γ , as shown in 

Figure 1. The pixel location ),( vu  corresponding to the maximum NCC maxγ  value 

corresponds to the best location of the template feature in the sub-image ),( yxW . 

This process is continued over all sub-images ),( yxW  contained in tto ∆+Im  until 
ot

Im  

is correlated to 
ot

Im  and motion tracking of features in the template is achieved [20].     

Let ),( yxf  be the intensity value of the yx MM ×  image f at pixel 

),( yx , }1,...,0{ −∈ xMx , }1,...,0{ −∈ yMy . Similarly, let ),( yxt be the intensity 

value of the yx NN ×  template t  at pixel ),( yx  where xx MN ≤  and yy MN ≤ . NCC 

is evaluated at every point ),( vu  for f  and t , which has been shifted over the 

original image ),( yxf  by steps-u  in the direction-x  and steps-v  in the 

direction-y . All the NCC coefficients are stored in a correlation matrix vu,γ  defined: 
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where },...,2,1,0{ xx NMu −∈  and },...,2,1,0{ yy NMv −∈ , and vuf ,  denotes the mean 

value of ),( yxf  within the area of the template t  shifted by ),( vu  steps and defined: 
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Finally, t  denotes the mean value of the template t  defined in a similar way. 

Direct computation of Equation (1) involves the order of  

))(( yyxxyx NMNMNN −−  calculations, which is very computationally expensive 

and not suitable for motion tracking of large numbers of points or features in each 

image. For example, to match a small 200200 ×  pixel template with a 250250 ×  

pixel image would require a total of approximately 108 calculations.  

 

 

 

2.2 FFT and Sum-Table for Denominator of NCC 
 

A significantly more efficient way of calculating the NCC is by computing the 

numerator of Equation (1) via FFT. More specifically, cross-correlation in the spatial 

domain as in Equation (1) is equivalent to multiplication in the frequency-domain:  

 

)),((),(

),(),(),(

),(),(),(

1

,

vuRvur

vuTvuFvuR

vyuxtyxfvur
yx

−ℑ=�

⋅=�

−−⋅=�
 (3) 

 

Equation (3) corresponds to computing a 2D FFT on the template, t , and the region of 

interest (ROI) window, f , of the images followed by a complex-conjugate 

multiplication of the resulting Fourier coefficients. The final products are then inverse 
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Fourier transformed to produce the actual coefficient cross-correlation plane, as 

demonstrated in Figure 2. The use of the FFT to simplify the numerator calculations 

in Equation (1) reduces the number of NCC calculations to the order of 

)(log2 yxyx MMMM . However the denominator of the NCC in Equation (1) does not 

have a correspondingly efficient frequency domain expression [16].  

A further significant reduction to the number of computations required to 

compute the NCC in Equation (1) can be made using the idea of a sum-table to 

simplify computation of the denominator in Equation (1). The sum-table is a pre-

computed data structure that acts as a lookup table, dramatically reducing the number 

of multiplications or additions required to evaluate a given expression. More 

specifically, the sum-table is a discrete version of an integral image [21, 22].  

Let ),( yxf  be an integrable 2-dimensional function with non-negative yx, . 

The integral image of f  is defined:  
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where u  and v  are defined over the domain of f  and ),( vuI  is an integral 

transformation of ),( yxf  into the vu,  domain.  

Equation (4) can be used to compute an explicit integral: 
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The discrete versions of Equation (4) and (5) are defined: 
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where Equation (6) corresponds to a rectangular numerical approximation to the 

analytical integral of Equation (4). For a digital image, where ),( yxf  is a pixel 

intensity, at the ),( yx  pixel, Equation (6) represents a summed or volume of intensity.  

Using the sum-table notation ),(),( yxIyxs =  as defined in Equation (6), the 

double sums � yx
yxf

,
),(  and � yx

yxf
,

2 ),(  in the denominator of Equation (1) can 

be rewritten in a computationally efficient form: 
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where 

 

)1,1()1,(),1(),(),( −−−−+−+= vusvusvusvufvus  (10) 

)1,1()1,(),1(),(),( 22222 −−−−+−+= vusvusvusvufvus  (11) 

 

Note that 0, if ,0),(),( 2 === vuvusvus . The double sums in the left-hand side of 

Equations (8) and (9) are evaluated over the region of template t  bounded by 

1−+<< xNuxu  and 1−+<< yNvyv . Equation (10) is a reformulation of 

Equation (6) in terms of recursive relations enabling rapid calculation of the sum-table 

in one global sweep over the image, and similarly for Equation (11) [16].  

Once the sum-tables ),( vus  and ),(2 vus  are calculated over the whole image, 

they act as a pre-computed look-up table for Equations (8) and (9), significantly 

reducing the number of computations required to calculate the NCC at each pixel shift. 

To demonstrate the equivalence of Equation (10) with Equation (6), consider a 22 ×  

image f  and corresponding sum-table matrix S  defined:  
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Applying the recursive relation Equation (10) gives: 
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Thus geometrically, for a given ),( yx , the value of the sum-table ),( yxs  is the 

sum of all the pixels above and to the left of yx,  inclusively, corresponding to the 

double sum over the x  and y  directions that is equivalent to Equation (6). This 

operation can be seen pictorially in Figure 3, where the sum-table value at location 1 

is the sum of all the pixels in region A, and the sum table values at location 2, 3 and 4 

correspond to A + B, A + C and A + B + C + D respectively. 

More importantly, the double sums in Equation (1) are calculated using the 

simplified double sums of Equations (8) and (9) at every ),( vu . For the case of a 

200200 ×  template and a 250250 ×  search window, each shift of the template 

amounts to 3 additions/subtractions for computing the double sum in Equation (8) or 

(9), compared to 2500502 =  additions for a direct computation of � yx
yxf

,
),(  or 

� yx yxf,
2 ),( . 

 

2.3 Numerator of NCC with Sum-Tables and Basis Functions 
 

In the frequency domain under FFT, the number of computations required to 

evaluate the numerator of the NCC in Equation (1) is still relatively high. Furthermore, 

there is no direct way of reformulating the numerator in terms of sum-tables to 

significantly reduce the number of computations, as was done for the denominator 

[16]. However, if the template, t , is approximated by a set of K basis functions, then 

an approximation to the NCC can be obtained, which enables the numerator to be 

written in terms of the sum-table ),( vus  given by Equation (10). Thus, further, 
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potentially large, computational gains could be obtained over the FFT-based methods 

[19]. 

For the case of breast tissue motion tracking considered in this paper, the set of 

K basis functions will correspond to a set of K landmark points on the breast. These 

points could be either randomly placed marker points or natural patterns on the breast 

skin. The problem can then be thought of in terms of matching landmark points rather 

than pixel templates. Thus, the basis functions will all be distinct, well defined, can be 

detected automatically and are guaranteed to optimally approximate the template.  

The template ),( yxt  is rewritten as a weighted sum of K rectangular basis 

functions. The 2D compact shape of each landmark point is approximated by a 

rectangle, which is described by indices i
u

i
l xx ,  and i

u
i
l yy ,  corresponding to the lower 

and upper bounds of the rectangular areas in the x and y direction respectively. Figure 

4 shows an example of a single arbitrary-shaped landmark point in a template, which 

is approximated by a rectangle. In practice, the template is described by a matrix of 

positive integers. Each integer is a value from 0 to 255 where 0 and 255 correspond to 

black and white respectively, with values in between corresponding to varying 

intensities of grey. 

A typical description of Figure 4 would be to have high numbers greater than 

200 (light) describing the landmark with low numbers less than 100 everywhere else 

describing the background. A simple one intensity approximation to the landmark 

would be to make every pixel in the rectangle equal to the average intensity of all the 

pixels in the landmark. This approach leads to an approximation ),(~ yxt  to the 

template function ),( yxt  defined:  

�
=

=
K

i
ii yxtkyxt

1

),(),(~  (14) 

 

where, 

 

otherwise ,0            

 and  ,1),(

=
≤≤≤≤= i

u
i
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i
u

i
li yyyxxxyxt  (15) 
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and ik  is the average intensity of the ith landmark point, Ki ,...,1= . Thus, it follows 

from Equations (14) and (15) that for any ii yx ,  where i
u

i
l xxx ≤≤  and i

u
i
l yyy ≤≤  

corresponding a pixel in coordinates in the rectangle surrounding the ith landmark, 

i
ii kyxt =),(~ . 

The numerator of Equation (1) can then be written: 
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where tvyuxtvyuxt −−−=−− ),(),(' . Since ),(' vyuxt −−  has zero mean, the 

term � �
−+

=

−+

=

−−
1 1

, ),('
x yNu
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Nv

vy
vu vyuxtf  is zero [16]. Replacing ),( vyuxt −−  with 

),(~ vyuxt −−  from Equation (14) and substituting 

tvyuxtvyuxt −−−=−− ),(~),('  into Equation (16) gives an approximation for the 

numerator of the cross correlation coefficient. 
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Equation (19) follows from Equation (15) where: 

 

otherwise ,0                       

 and u ,1),(

=
+≤≤++≤≤+=−− vyyvyxxuxvyuxt i

u
i
l

i
u

i
li  (20) 

 

Equation (19) is now in a form which can utilize the sum-table formulation of 

Equation (8). Thus ),(~ vuN  is defined:  
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where � �
−+

=

−+

=

1 1

),(
x yNu

ux

Nv

vy

yxf  is given by Equation (8), which has already been evaluated 

during the denominator calculation of Equation (1), and can be reused. 

 

 

2.4 Computational Efficiency Example 
 

To demonstrate the computational efficiency of using Equation (21) to 

calculate NCC compared with the FFT and the traditional CC formulation, consider a 

4 × 7 template t  with two basis functions (K = 2) of average intensity 2 and a 6 × 9 

search window f  matrix defined: 
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In this case, the NCC of the images t  and f  in Equation (22) and (23) will be 

a 3 × 3 correlation matrix defined: 
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where 2, ... ,0  , 2, ... ,0 ,, == vuvuγ  are given by Equation (1). Using Equation (21) 

with 2  and  2  ,2 21 === kkK , the approximation )0,0(~N  to the numerator of the 

first entry 0,0γ  in Equation (24) is given by: 
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The expression � �
−+

=

−+

=

1 1

),(
x yNu

ux

Nv

vy

yxft , has already been calculated in the denominator of 

Equation (1), thus the number of computations required to evaluate Equation (25) is 2 

multiplications and 7 additions/subtractions. Similar computations are required for the 

numerators of the other 8 entries of Equation (24), giving a total of 1829 =×  

multiplications and 6379 =×  additions/subtractions.  

This example can be readily generalized to a yx NN ×  template t  with K basis 

functions and a yx MM ×  search window f  producing a 

)1()1( +−×+− yyxx NMNM  correlation matrix requiring in total, 

)1()1( +−×+− yyxx NMNMK  multiplications and 

)1()1)(13( +−×+−+ yyxx NMNMK  additions/subtractions for the 

)1()1( +−×+− yyxx NMNM  entries of ),(~ vuN , yy N-Mv0  ,0 ≤≤−≤≤ xx NMu  

given by Equation (21). The results are summarized in Table 1 which compares the 
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sum-table formulation to the FFT and direct formulation of the numerator of Equation 

(1).  

   

2.5 Basis Functions 
 

The automatic determination of the K basis functions is equivalent to 

automatically identifying the marker points in the image. This task is done by initially 

labelling each marker point region, so that each pixel in a particular region has the 

same number. In practice, this task is achieved by first thresholding the template 

image to get a matrix of 0’s and 1’s, then finding all regions inside the matrix that are 

connected by 1’s. The minimum and the maximum indices for each region are then 

utilized to form the best representation of a rectangular basis function.  

For example, consider the case where the marker points are randomly placed 

circles, as shown in Figure 5 (a). These circles are first labelled and the rectangular 

basis functions are found as shown in Figure 5 (b). As the circles are randomly 

distributed in the test images, some templates may contain overlapping circles. In 

practice, this overlap would correspond to two marker points that are sufficiently 

close together that thresholding does not separate them. However, this situation would 

have no significant effect on accuracy, as a single rectangular basis function would 

cover both circles. Partially formed circles due to the template boundary will similarly 

have no effect on accuracy as the corresponding rectangle will just have one of its 

sides on the boundary of the template image. Figure 6 illustrates these two examples 

when automatic basis detection is applied on randomly placed circles.  

 

2.6 Algorithm Summary 
 

The fast-NCC based motion tracking algorithm presented, which uses the 

concepts of sum-table and basis function for efficient calculation of the NCC operates 

in the five steps shown in Figure 7: image acquisition, template and search window 

arrangement, calculation of sum-tables and basis functions, NCC calculation and 

motion pattern representation: 
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���� Image acquisition involves using a high-resolution digital camera to capture a 

pair of images describing the given motion that is required to be tracked.  

���� Template and search window arrangement involves dividing the second image 

into smaller template images and dividing the first image into search window 

sub-images, which are of a sufficient size to guarantee that the corresponding 

template images lie within the window sub-images. The sizes of the window 

sub-images relative to the template images can be determined from an upper-

bound on expected motion. For a more accurate motion field, the template 

images in the second image are made to overlap by 50 %. 

���� The sum-tables for the first image are calculated using the recursive formulas 

of Equation (10) and (11). The basis functions in each overlapping template 

sub-image are then calculated by thresholding the image and labelling and 

identifying the boundaries and centres of landmark points or natural speckle 

patterns on the skin. 

���� The NCC is calculated using the sum-table representation given by Equations 

(8) and (9) to match every template image in second image onto the 

corresponding window sub-image in first image, thus producing a motion 

vector for each template centre.  

���� The motion vectors for each template centre provide the overall motion pattern 

representation. 

 

 

3. Results 
 

3.1 Simulated Data 
 

Breast surface motion that occurs between two successive images of an 

actuation sequence is simulated by performing translational motion of up to 50 pixels 

on binary images of randomly placed circles. Note that allowing too much motion 

between images could risk missing potentially small perturbations on the surface that 

could arise due to a tumour [1, 10]. Also the motion between images must be 

sufficiently small so as to avoid any significant scaling or rotation that could affect the 

accuracy of the NCC, which in any form only examines average translations between 
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images. However, these issues can be addressed in how a DIET implementation 

gathers the image data.  

To test the speed and accuracy of the sum-table method versus the standard 

FFT-based NCC method, template images of size 150 × 150, 180 × 180 and 200 × 

200, 230 × 230 are matched to images of size 200 × 200 and 250 × 250 respectively. 

In each case, 5, 10, 20 and 30 circles are randomly placed in each image similar to 

that shown in Figure 5 (a) and Figure 6 (a). Tables 2-5 show the average CPU times 

from 100 random simulations of the sum-table method with and without accounting 

for the time for calculating the basis functions and the CPU time of the FFT-based 

NCC. All simulations were done on Matlab using a Pentium 4 desktop with 3.0 GHz 

CPU and 1.0 GMb of RAM.  

The mean pixel error between the two methods over all simulations was ~ 0.1 

pixels with an average standard deviation of ~ 0.2 pixels. Note that unlike [19], here 

the CPU time for pre-calculating the sum-table is included in all cases. Tables 6-9 

show the comparison of CPU times for the sum-table method versus the FFT-based 

CC method, which only involves calculating the numerator of the NCC given by 

Equation 1. The results show in all cases that the sum-table method is just as accurate 

and at least an order of magnitude faster than both the FFT-based NCC and CC 

methods. 

The method was then applied on 1M pixel images, where the first image is 

shown in Figure 8. Each image contains 500 circles so that on average a 250 × 250 

image would contain ~ 30 circles. A non-uniform motion field with a maximum 

displacement of 25 pixels was simulated, as shown in Figure 9, where the motion 

vectors are scaled for ease of viewing. Note that it is assumed here that the maximum 

potential displacement between two images during a sinusoidal actuation is known in 

advance. In practice, this maximum displacement would be an upper bound on 

expected motion that could be fixed at a chosen value as there is physical control on 

the time taken between images in a sequence.     

The first image (I1) and the second image (I2) are both broken into 64 smaller 

50% overlapping 250 × 250 sub-images. The 250 × 250 sub-images in I1 are then each 

represented by a 200 × 200 template image by truncating each image by 25 pixels on 

all sides. Since a maximum displacement of 25 pixels is assumed, each 200 × 200 

template in I1 is guaranteed to lie somewhere inside the corresponding 250 × 250 

image in I2. Larger maximum displacements could be handled by either decreasing 
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the template sizes in I1 or increasing the sub-images sizes in I2. Each 200 × 200 

template image in I1 was then matched to the corresponding 250 × 250 images in I2 to 

calculate the motion using NCC. The difference in motion between the FFT-based 

and sum-table methods was on average 0.25 pixels with a standard deviation of 0.43 

pixels. However, the total CPU time for the FFT-based NCC was 37.67 s while the 

sum-table took 2.84 s including basis function calculation. Without including the 

basis function calculation, the total CPU time was 1.01 s. In this case, the sum-table 

method is about 13-37 times faster than the FFT method. 

 

 

3.2 Visco-Elastic Breast Phantom 
 

The sum-table and basis functions method presented is applied on two 1M pixel 

images of two different deformations of a visco-elastic breast phantom with randomly 

placed markings, as shown in Figure 10. For this example, 75 pixels were used as an 

upper-bound on the maximum motion between the images. Image 1 was broken into 

50% overlapping templates of size 250 × 250 with corresponding 400 × 400 search 

windows in the second image to account for up to 75 pixel movement in either the x  

or y  directions of the 250 × 250 templates. Figure 11 shows an example of the 

calculation of basis functions for a template after thresholding and Figure 12 shows 

the basis functions in Figure 11 registered onto the corresponding search window after 

finding the best template match. 

The overall motion field of the first image in Figure 10 is shown in Figure 13. 

The total mean error is 0.12 pixels for the FFT-based NCC motion field with a 

standard deviation of 0.11 pixels. This result shows that approximating the template 

with basis functions for computational efficiency does not affect accuracy.  

 

 

3.3 Human Skin 
 

Figures 14 and 15 show images of two different deformations of human skin. 

The first image in Figure 14 is the reference image and is of size 250 × 250. The 

second image in Figure 15 is the template and is of size 230 × 230. In this case, the 
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natural patterns on the skin will be used as basis functions in the sum-table method. 

To calculate the basis functions to represent the template, the image is first 

thresholded to detect the brighter pixels corresponding to speckles, as shown in Figure 

16. All regions connected by 1 pixel are then labelled and features that have less than 

10 pixels are removed. This produces 30 basis functions as shown in Figure 17.  

The sum-table method is then used to approximate the NCC and match the 

template of Figure 15 onto Figure 14. Figure 18 shows a close up of the registration of 

speckles on Figure 16 to speckles on Figure 14, which shows a close match. The 

motion vectors for the FFT-based NCC and sum-table based NCC were the same with 

the vector value (12, 19), thus reaffirming that approximating the template with basis 

functions does not cost accuracy.  

 

 

4. Discussion and Conclusions 
 

The motion calculated using the sum-table based NCC was always within 1 

pixel of the FFT-based NCC for both simulated motion and human skin motion. This 

shows that there is no compromise on accuracy when using the sum-table method. 

However, the sum-table method is at least an order of magnitude faster than the FFT 

for both NCC and CC in all cases. Depending on the size of the images, and for 20+ 

circles, the sum-table method is ~11-28 (9-20) times faster than FFT for NCC (CC) 

including basis function calculation and ~37-150 (187-271) times faster than FFT for 

NCC (CC) not including basis function calculation. 

For the case of breast surface motion tracking, given the high accuracy required 

to detect small perturbations on the surface, every landmark point must be identified 

between images for accurate interpolated motion and camera calibration. Thus, both 

the FFT and sum-table based methods require the known position of the landmarks in 

every image. The process of finding the position of a landmark point is effectively the 

same as calculating basis functions. Thus, the sum-table based NCC is effectively 37-

150 times faster than the FFT-based NCC depending on the sizes of the images 

considered.  

Note that the computational saving does not utilize the fact that the motion 

vector between two 50% overlapping sub-images does not change significantly. To 
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find the motion vector for the current template centre, the closest motion vector of a 

previously computed template centre could be used as an approximation. Since the 

motion fields of the previous and current template centres may not differ significantly, 

this approach would dramatically reduce the number of shifts required to match the 

current template to the first image and thus reduce xx NM −  and yy NM −  in Table 1. 

This bootstrapping idea could be applied over the whole image further significantly 

reducing computational requirements. Note that the FFT approach is not able to take 

advantage of such bootstrapping as the computational time is largely dependent on the 

size of the template, not the number of the shifts required to match the template to the 

image. Such a large computational saving for calculating the NCC is important for 

real time clinical application of the DIET system in breast cancer screening, or any 

other application tracking large numbers of points.    
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Method 

Number of  

Multiplications 

Number of 

additions/subtractions 

Sum-Table + 

basis functions 

)1)(1( +−+− yyxx NMNMK  )1)(1)(13( +−+−+ yyxx NMNMK  

FFT )(log2 yxyx MMMM  )(log2 yxyx MMMM  

Direct )1)(1( +−+− yyxxyx NMNMNN  )1)(1( +−+− yyxxyx NMNMNN  

 

Table 1: Number computations required for calculating numerator of the NCC given 

by Equation (1). 

 

 

CPU Time (NCC) (s) 

Density of Circles 5 10 20 30 

FFT 0.5892 0.5892 0.5892 0.5892 

Sum-Table 0.0111 0.0092 0.0103 0.0104 

Sum-Table (with basis) 0.0207 0.0226 0.0271 0.0298 

 

Table 2: Performance time measured for template of size 150150 ×  inside a 

200200 ×  search region. 

 

 

CPU Time (NCC) (s) 

Density of Circles 5 10 20 30 

FFT 0.4538 0.4538 0.4538 0.4538 

Sum-Table 0.0107 0.0113 0.0101 0.0094 

Sum-Table (with basis) 0.0256 0.0315 0.0399 0.0466 

 

Table 3: Performance time measured for template of size 180180 ×  inside a 

200200 ×  search region. 
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CPU Time (NCC) (s) 

Density of Circles 5 10 20 30 

FFT 0.6286 0.6286 0.6286 0.6286 

Sum-Table 0.0147 0.0163 0.0152 0.0149 

Sum-Table (with basis) 0.0390 0.0395 0.0507 0.0573 

 

Table 4: Performance time measured for template of size 200200 ×  inside a 

250250 ×  search region. 

 

 

CPU Time (NCC) (s) 

Density of Circles 5 10 20 30 

FFT 1.7589 1.7589 1.7589 1.7589 

Sum-Table 0.0136 0.0110 0.0116 0.0126 

Sum-Table (with basis) 0.0370 0.0455 0.0635 0.0747 

 

Table 5: Performance time measured for template of size 230230 ×  inside a 

250250 ×  search region. 

 

 

CPU Time (NCC) (s) 

Density of Circles 5 10 20 30 

FFT 0.3747 0.3747 0.3747 0.3747 

Sum-Table 0.0005 0.0014 0.0020 0.0019 

Sum-Table (with basis) 0.0100 0.0130 0.0192 0.0230 

 

Table 6: Performance time measured for template of size 150150 ×  inside a 

200200 ×  search region. 
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CPU Time (NCC) (s) 

Density of Circles 5 10 20 30 

FFT 0.3729 0.3729 0.3729 0.3729 

Sum-Table 0.0008 0.0008 0.0016 0.0017 

Sum-Table (with basis) 0.0164 0.0255 0.0306 0.0383 

 

Table 7: Performance time measured for template of size 180180 ×  inside a 

200200 ×  search region. 

 

 

CPU Time (NCC) (s) 

Density of Circles 5 10 20 30 

FFT 0.4285 0.4285 0.4285 0.4285 

Sum-Table 0.0027 0.0019 0.0016 0.0042 

Sum-Table (with basis) 0.0171 0.0252 0.0375 0.0434 

 

Table 8: Performance time measured for template of size 200200 ×  inside a 

250250 ×  search region. 

 

 

CPU Time (NCC) (s) 

Density of Circles 5 10 20 30 

FFT 0.4332 0.4332 0.4332 0.4332 

Sum-Table 0.0004 0.0007 0.0020 0.0016 

Sum-Table (with basis) 0.0210 0.0325 0.0494 0.0613 

 

Table 9: Performance time measured for template of size 230230 ×  inside a 

250250 ×  search region. 
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Figure 1: Formation of a correlation plane by directly cross-correlating a 22 ×  pixel 

template ),( yxT  with a 44 ×  pixel search window ),( yxW , resulting in a 33×  pixel 

correlation plane, where the brightest pixel, at the )2,2(  location in this example, indicates 

maxγ  corresponding to the best match. 
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Figure 2: Implementation of the numerator of NCC by using FFT algorithm. 
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Figure 3: Pictorial representation of calculating ),( yxs . 
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Figure 4: Approximating a simple landmark point in a template by a rectangle. 

 

A B 

C D 

1 

3 4 

2 
x 

y 



 - 26 - 

 

Circle Image (a)

20 40 60 80 100

20

40

60

80

100

Basis Image (b)

20 40 60 80 100

20

40

60

80

100

 
Figure 5: Template with circles converted to basis functions. 
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Figure 6: Template with overlapped and partial circles converted to basis functions. 
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Figure 7: Motion tracking procedure.  
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Figure 8: 1M pixel image with randomly placed circles. 
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Figure 9: Non-uniform motion field, scaled for ease of viewing. 



 - 30 - 

 

 
Figure 10: Two 1M pixel images of two different deformations of a visco-elastic 

breast phantom with randomly placed markings. 
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Figure 11: Template pattern from first image of Figure 10 converted into basis 

functions after being thresholding. 
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Figure 12: Template basis function pattern registered in the corresponding search 

window image. 
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Figure 13: Motion field representation of the first image in Figure 10. 
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Figure 14: One deformation of human skin. 
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Figure 15: 230230 ×  template corresponding to Figure 14. 
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Figure 16: Thresholding template to obtain brighter pixels corresponding to speckles. 
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Figure 17: Representing natural patterns on the skin as rectangular basis functions. 
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Figure 18: Registration of speckles on Figure 14 to speckles on Figure 12. 

 

 

 


