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Abstract
OSWALD (Object-oriented Software for the Analysis of Longitudinal Data) is flexible and powerful
software written for S-PLUS for the analysis of longitudinal data with dropout for which there is
little other software available in the public domain. The implementation of OSWALD is described
through analysis of a psychiatric clinical trial that compares antidepressant effects in an elderly
depressed sample and a simulation study. In the simulation study, three different dropout
mechanisms: completely random dropout (CRD), random dropout (RD) and informative dropout
(ID), are considered and the results from using OSWALD are compared across mechanisms. The
parameter estimates for ID-simulated data show less bias with OSWALD under the ID missing data
assumption than under the CRD or RD assumptions. Under an ID mechanism, OSWALD does not
provide standard error estimates. We supplement OSWALD with a bootstrap procedure to derive the
standard errors. This report illustrates the usage of OSWALD for analyzing longitudinal data with
dropouts and how to draw appropriate conclusions based on the analytic results under different
assumptions regarding the dropout mechanism.

Keywords
OSWALD; non-ignorable missing; longitudinal data analyses; simulation

1. Introduction
Longitudinal studies follow the same group of individuals over a period of time. The response
variable for each subject in the study is observed on several occasions and the repeated
responses from each individual are correlated. Dropouts are common in longitudinal studies
and care must be taken when analyzing the data. For example, in a psychiatric study a
depression score might be followed over time. If patients whose depression were not relieved
even with some treatment tended to dropout, we would observe a benefit of the treatment over
time which would be reflected by a decline of the average depression score among patients
who remained with the study. Three dropout processes are generally considered in the
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literature: completely random dropout (CRD), random dropout (RD), and informative dropout
(ID)[1,2]. In CRD, dropout is independent of both observed and missing data. For example,
an individual may drop out of a study because of relocation, change of insurance policy, or car
accident. In RD, dropout depends on observed data but not on missing data. RD might occur
in a longitudinal psychiatric study if patients who did not observe improvement in the past
recorded depression scores thought that the treatment was not helpful and tended to discontinue
participation. It would also occur when patients who observed greatly improved depression
scores over time thought it would be not necessary to stay in the trial any more. In ID, dropout
may depend on both observed and unobserved data. For example, if individuals with
deteriorating physical health, often not quantified and recorded in practice, and related to the
depression level, tended to drop out.

For longitudinal data with dropouts, a statistical model is usually considered for the dropout
process in addition to the model for the repeatedly measured outcomes, or the complete data
model, where maximum likelihood method can be used to perform inference [1,2,3,4,5]. When
the dropout process is RD and the parameters for the dropout process are distinct from the
parameters for the complete data model, the dropout process is called ignorable for the
maximum likelihood method and statistical analysis can be based solely on the observed values
as if there were no missing values [1,2]. The widely used statistical software SAS Proc Mixed
[6] assumes this process; however, estimates of standard errors for fixed effect parameters are
usually underestimated and this leads to smaller p-values when the dropout process is not CRD
[7]. When the dropout process is ID, a model for the dropout process needs to be specified,
usually as a function of the covariates, observed responses, unobserved responses, or even
some random effects from the complete data model [2,3,4,5]. Logistic or probit regression is
often applied on an ID process. The likelihood function often involves intractable integration
and numeric approximations are required.

Besides the maximum likelihood method, inverse-probability weighted estimating equations
(IPWEE) weighs each individual with complete records by the inverse of the estimated
inclusion probability as if such an individual represents him- or herself and also a few other
individuals who had similar characteristics but dropped out earlier by chance [8,9]. However,
IPWEE is not easy to implement in practice, especially when dropouts occurred at several
occasions. Other statistical methods include conditional likelihood method and pseudo-
likelihood method that focus on the inference of certain components of the distribution of the
repeated-measured outcomes and are more ad-hoc. [10,11]

OSWALD (Object-oriented Software for the Analysis of Longitudinal Data) is a flexible and
powerful object-oriented software package developed by the Statistics Group at the University
of Lancaster for use with S-PLUS for the analysis of longitudinal data with dropout. [12,13]
In addition to CRD and RD mechanisms, OSWALD can model longitudinal data with ID when
the reason for dropout depends on the underlying unobserved value of the outcome measured
and draws inference under the likelihood framework.

Currently there is no software in the public domain other than OSWALD that can analyze
longitudinal data with potentially informative dropouts. Here we illustrate how to implement
OSWALD in practice via analysis of a dataset from a psychiatric clinical trial and a simulation
study. The dataset was first analyzed under the ID assumption and the parameter estimates
were then used to generate CRD, RD and ID datasets in order to illustrate the utility of
OSWALD. We applied OSWALD and compared the results assuming the three different
dropout mechanisms for each dataset. We also applied OSWALD to the original clinical trial
under all three dropout mechanisms and compared the results. Since OSWALD does not
provide the standard errors for the parameter estimates under informative dropout assumption,
a bootstrap procedure was implemented to derive them.
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Our aims are to emphasize how various assumptions about the dropout process affect the results
of analysis and to provide an illustration of how OSWALD is able to analyze longitudinal data
under CRD, RD and ID assumptions about the dropout process. We also demonstrate an
addition to the original program to derive the standard errors under the ID assumption in order
to make inference on parameters for the complete data model.

2. Method
In OSWALD, a linear mixed-effect model is implemented for the repeatedly measured
response and a logistic regression for the dropout process. Suppose a response variable for each
subject is measured at K timepoints: y1, y2,..., yK. For longitudinal studies in which the response
variable is a continuous measurement, a popular analytic approach is a linear mixed-effect
model that allows for the individual variability to be modeled by including random intercept
and a serial correlation term:

Yij = μij + Ui + Wi(tij) + Zij

where Yij represents the jth response from the ith subject measured at time tij; μij is the expected
value of Yij where the relationship between covariates, such as treatment, time, and the
repeatedly measured outcome variable is modeled; Ui ∼ N(0, ν2) is the random intercept shared
by the responses from subject i; Wi(tij) ∼ N (0,σ2) is the realization from the stationary
Gaussian process that reflects the serial correlation among the responses from subject i; and
Zij ∼ N(0, τ2) is the measurement error.

OSWALD is flexible enough to model the variance components in such a linear mixed model.
These variance components are 1) a random intercept common for repeated-measures from the
same subject, with variance ν2; 2) serially correlated component with variance σ2 and
autocorrelation function ρ (·) i, and 3) a measurement error with variance τ2 .

Without loss of generality, we assume that y1 is observed for all individuals. At each of the
subsequent time points, individuals are subject to dropout for various reasons such as relocation
and treatment failure. We can write {y1, y2,..., yK } = {yobs, ymis}, where yobs is the observed
part and ymis is the missing part after dropout. At each time point, OSWALD uses a logistic
regression to model the dropout:

logit Pk(y1, y2, …yk−1, yk) = θ0 + θ1yk + ∑
j=2

q
θj yk+1− j

where Pk= conditional probability of a subject dropping out at time tk given the previously
recorded history of y1, y2, ...,yk-1 and underlying unobserved value of yk; θ = (θ0,θ1,...,θq) is a
vector of (q+1) parameters relating the dropout process to the unobserved (yk) and previously
observed responses [3].

When θj = 0 for all 1 ≤ j ≤ q, the dropout mechanism is CRD; when θ1 =0 and θj may be nonzero
for 2 ≤ j ≤ q, the mechanism is RD; when θ1≠ 0, the mechanism is ID since the dropout
probability depends on the underlying value of yk .

With the dropout process modeled, OSWALD draws inference based on the likelihood function
[3]. In S-Plus, the primary OSWALD function to analyze longitudinal data with dropout under
various assumptions (CRD, RD or ID) is pcmid that takes the general form

pcmid(formula, vparms, drop.parms=NULL, drop.cov.parms, dropmodel),

where:
• formula refers to the model that predicts outcome with covariates such as

treatment group and time
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• vparms are the initial estimates of the variance parameters (ν2, τ2, φ)
• drop.parms are the initial values for the dropout parameters. The first value

is the regressor on the unobserved dropout value: if this value is non-zero,
this is an ID model; if it is zero, this is a RD model. Further values are
regressors on previous observed values.

• drop.cov.parms are the initial estimates for the covariate parameters in the
dropout model.

• dropmodel is a model (like formula) describing the covariate part of the
dropout model. If not supplied but drop.cov.parms is supplied, the constant
model ∼1 is assumed [4].

The ID model does not provide standard error estimates. We implemented a bootstrap method
to obtain these. This was done by using the internal S-PLUS function “bootstrap” on a wrapper
function containing a call to a OSWALD’s pcmid, with dropout parameters corresponding to
ID [13].

The standard pcmid output gives a summary of the model, the maximized log-likelihood,
estimates and the corresponding standard errors of the parameters for the mean structure,
estimates of the variance components and dropout process parameters. The bootstrap output
gives the standard errors of the parameter estimates for the mean structure when an ID process
is assumed in the application of pcmid.

A randomized clinical trial compared the antidepressant effects of two medications [14]. There
were 116 subjects randomized to either nortriptyline (N=54) or paroxetine (N=62) and followed
for 12 weeks. The aim of the study was to compare treatment and side effects across time.

Depression symptoms were measured weekly with the Hamilton 17-item Depression Scale
(HRS-D). Higher HRS-D scores indicate more severe depressive symptoms [15]. Figure 1
shows the bi-weekly HRS-D profiles for the two treatment groups. There was approximately
52% dropout by week 12. The sample sizes for each group are shown on the graph.

We applied OSWALD to the original randomized clinical trial data. Under the ID assumption,
OSWALD does not provide standard error estimates, so we implemented a bootstrap method.
The function and commands to perform the bootstrap to get estimates of the standard error for
the ID analyses were:

    Informative.Dropout <-

    function(NTPAXIL.balanced)

    { NTPAXIL.ldf <-as.ldframe(NTPAXIL.balanced)

     results <-pcmid(formula = y ~ as.factor(group) * (Time), 

vparms = c(10, 7, 0.4),

               data=NTPAXIL.ldf, drop.parms = c(-2, -2), 

dropout.est = T, correxp=1)
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In the simulation study, datasets were generated under each of the 3 types of dropout
mechanism using a function the authors wrote for S-PLUS. In the simulated data the parameters
for intercept and time came from the analysis of the example described earlier. However, we
added a significant group effect and removed the interaction term for ease of illustration. The
measurement error variance and the random variance terms were also increased in the simulated
data. Only the bi-weekly HRSD scores were simulated.

We used the OSWALD pcmid function mentioned earlier to run the analyses. For CRD, RD
and ID we used the vparms set at 2, 1, and 0.32 respectively. The drop.parms was 0 for all
CRD runs. For RD, the drop.parms was c(0, .25) and for ID it was c(.95, .25). The RD numbers
were chosen to generate approximately 50% dropout by week 12 as seen in the clinical trial
data.

3. Results
While applying OSWALD to the original randomized clinical trial data, the initial estimates
for the variance components in the model were estimated from the empirical variogram (see
Figure 2). The parameter estimates for complete data model, based on the CRD, RD and ID
assumptions on the dropout process, are shown in Table 1. For the analysis under ID assumption
on the dropout, 200 bootstrap samples were drawn in order to calculate the standard errors.
There is a significant time effect for all models but no significant group or group by time
interaction effects. The parameter estimates and standard errors for CRD and RD are similar,
and ID differs slightly. Based on these observations, assumptions on the dropout process do
not seem to have much impact on the estimates of parameters for the repeated-measurement
process in this dataset.

The simulation results are presented in Tables 2A, 2B and 2C where data were simulated under
CRD, RD and ID dropout processes, respectively. Under each dropout process setting, 500
datasets were simulated and OSWALD was applied on these datasets with CRD, RD or ID
assumptions. The parameter estimates, empirical standard deviations and coverages of the 95%
confidence intervals are presented. The empirical standard deviations in the parentheses were
calculated based on the corresponding parameter estimates on 500 simulated datasets. In table
2C, the datasets were simulated under an ID dropout process. In order to calculate the coverage
of the 95% CI for the OSWALD analysis under an ID assumption, 50 instead of 200 bootstrap
samples were drawn in order to reduce computation time. The simulation results suggest that
if data were generated from an ID process but analyzed under a CRD or RD assumption, the
estimates would have larger bias and the 95% confidence intervals could have worse coverage
than those from analysis by OSWALD under an ID assumption.

4. Discussion
Although missing data is a well recognized problem in practice and there are theoretical
techniques to approach it, there are few readily available software programs. OSWALD
supplies a powerful tool for the analysis of longitudinal data with dropout under a few prevalent

     return(as.vector(results$coefficients$mean))

    }

    boot.result <-bootstrap(NTPAXIL.balanced, 

Informative.Dropout, B=500, block.size=500)
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and commonly assumed mechanisms: CRD, RD and ID. The simulation study demonstrates
the effectiveness of OSWALD in this respect. When data were simulated under an ID
mechanism, analyses with OSWALD under an ID assumption have less bias and better
coverage of the 95% CI than analyses with OSWALD under a CRD or RD assumption on the
dropout process. Though in general, analysis under CRD should have the same parameter
estimates and smaller standard errors compared with analysis under RD [7], we did not see
much difference in standard errors between CRD and RD. We suspect that this is due to our
selected simulation parameters that came from estimates on a psychiatric clinical trial and
imposed large variation in the simulated datasets.

Although OSWALD is freely available, it has a few drawbacks. Initial estimates are often
difficult to identify and great care needs to be taken that the models converge to the true
maximum likelihood, although this is a problem common to most high dimensional
optimization problems. Another drawback is that OSWALD is no longer being maintained or
updated by its developers to handle newer S-PLUS versions. New user-friendly programs are
needed to handle the problem of analyzing the longitudinal data with informative dropout. In
the meantime, OSWALD is a reasonable and effective option.

OSWALD works with S-PLUS for both Windows and Unix Platforms (S-PLUS versions
2.2-2000 for Windows and 3.4-4.4 for Unix). It is written using source code in the S [4] and
C programming languages. OSWALD for Windows or Unix can be downloaded from http://
www.maths.lancs.ac.uk/Software/OSWALD. OSWALD version 3.1, 3.2 and 3.4 for S-PLUS
for Windows and OSWALD version 4.4 for Unix are available from this site.
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Figure 1.
Mean Hamilton 17-item Depression Scale Profiles by Treatment Group. Mean bi-weekly HRS-
D scores for patients randomized to either notriptyline or paroxetine.
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Figure 2.
Initial Estimates of variances based on the variogram. Variogram of the HRS-D residuals. If
the variogram levels off very quickly then φ is large; if it does not level off until very large
lags then φ is small.
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