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Abstract

A newly established method for optimizing logistic models via a minorization-
majorization procedure is applied to the problem of diagnosing acute coronary
syndromes (ACS). The method provides a principled approach to the selection of
covariates which would otherwise require the use of a suboptimal method owing to
the size of the covariate set. A strategy for building models is proposed and two
models optimized for performance and for simplicity are derived via ten-fold cross-
validation. These models confirm that a relatively small set of covariates including
clinical and electrocardiographic features can be used successfully in this task.

The performance of the models is comparable with previously published models
using less principled selection methods. The models prove to be portable when tested
on data gathered from three other sites. Whilst diagnostic accuracy and calibration
diminishes slightly for these new settings, it remains satisfactory overall.

The prospect of building predictive models that are as simple as possible for a
required level of performance is valuable if data-driven decision aids are to gain wide
acceptance in the clinical situation owing to the need to minimize the time taken
to gather and enter data at the bedside.
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1 Introduction

The selection of covariates for use in building predictive models has occupied
statisticians and the machine learning community for many years. Exhaustive
search is an obvious approach but is, of course, combinatorial in the number of
covariates and soon becomes computationally impractical should this exceed
about 20. Instead, forward selection adds new variables, one by one, choosing
the one which most improves some measure of quality such as goodness-of-fit
or predictive performance, at each stage. A popular variant on this performs
a test at each step to determine if any existing variable can safely be removed
without overly damaging performance. In contrast, backward elimination be-
gins with all variables included and drops the least deleterious at each stage.
Such a strategy is computationally more demanding than the forward algo-
rithm. Neither approach is guaranteed to find a good subset, let alone one
that is optimal. Indeed, even if both methods find identical sets, this may still
be suboptimal. Branch and bound techniques provide an alternative, and are
typically used to select the best subset of, or up to, a particular size. They
have the advantage that an exhaustive search is conducted leading to an op-
timal solution. Of course, if the total number of subsets to be examined is
large, exhaustive search becomes infeasible. A number of suboptimal selec-
tion methods is also discussed in [1]. Of these, [2] found that the so-called
Sequential Forward Floating Search [3] method produced the best results,
performing close to optimal and demanding lower computational resources
than other methods. This method is a bottom-up search procedure, where the
term floating identifies that the number of features changes dynamically, with
one feature included and/or excluded, at each iteration. A fairly comprehen-
sive treatment of the question of subset selection [4] describes a number of
other methods at some length and touches on the more recent focus on “data-
driven” approaches, whereby a modified (regularized) objective function that
in some way penalizes the inclusion of terms that have low value is optimized
e.g. via a maximum likelihood procedure. In particular, the “kernel machines”
community has highlighted the role of regularization in this respect [5]. Here
the sparsity inducing properties of certain regularizers is exploited to derive
models that have low complexity whilst simultaneously achieving their goal
of high predictive accuracy. This has worked well for dichotomies where a
“yes/no” response is required but has been less successful when an estimate
of probability is required or when the task is polychotomous.

By exploiting results from optimization theory known as optimization transfer
or minorization-majorization (MM) algorithms [6, 7], it has recently been pos-
sible to extend sparsity-inducing regularization to the problem of multinomial
logistic regression [8] resulting in an algorithm that is no more computation-
ally demanding than conventional iterative schemes. This offers a principled
alternative to the widely used, sub-optimal step-wise regression procedures
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provided in a number of packages.

Our earlier work on the diagnosis of chest pain has demonstrated that rela-
tively few covariates available at presentation can be combined through lo-
gistic regression or artificial neural networks to provide highly accurate diag-
nosis of acute myocardial infarction (AMI) [9] and acute coronary syndromes
(ACS) [10, 11] but those models were constructed through a priori examina-
tion of the likelihood ratios of the various covariates. We recognize that this
may not always lead to the best performing model and therefore we explore
the more principled approach laid out here for the diagnosis of ACS.

1.1 Clinical Motivation

The diagnosis of acute coronary syndromes rests on clinical history, changes on
the electrocardiogram (ECG) and cardiac marker protein data. Each of these
evolves following presentation and is modified by treatment. Marker protein
measurements provide definitive diagnostic and prognostic information but
take several hours after the onset of symptoms to become positive. This has
led to the development of protocols in chest pain units in many centres to
manage patients in the early hours after the onset of symptoms, and before a
definitive diagnosis can be made [12, 13]. A large proportion of patients who
present to emergency departments with chest pain has non-cardiac diagnoses,
and most of these would be, most appropriately, discharged directly home. In
practice, a small, but significant, proportion of patients is sent home inappro-
priately [14] leading to potentially serious clinical errors and litigation. On the
other hand, many relatively low-risk patients are inappropriately admitted to
telemetry and high dependency units to rule out acute cardiac ischaemia [15].
In the centres used for that study, around 2% of patients were inappropri-
ately discharged from emergency departments, while about 30% of patients
presenting with acute chest pain were admitted with possible acute coronary
syndrome but ultimately had the diagnosis ruled out.

Better use of clinical and ECG information available at presentation can im-
prove identification of patients with evolving ACS. This has the potential
to improve clinical care, since many triage and treatment decisions have to
be made early, and could also optimize the use of resources, including chest
pain units. Studies confirming that clinical, as well as ECG, factors are highly
discriminatory for evolving ACS have strengthened research in this area re-
cently [16, 17]. Various statistical and computer-based methods have been
used to analyze clinical and ECG data from chest pain patients with a view
to improving identification of high-risk patients at presentation. These meth-
ods include logistic regression [15, 9] classification trees [18, 19], and artificial
neural networks (ANNs) [11, 20]. Each of these methods has advantages and
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disadvantages although, suitably optimized, they can all provide accurate clas-
sification of low- and high-risk patients from data available at presentation.

In an earlier study [9] we found that a simple logistic model including only
ECG data performed almost as well as a more extensive model incorporating
clinical data items. The aim of that study was to develop a predictive model
for AMI. Later we found that a logistic model to predict ACS placed additional
importance on clinical factors [10]. The performance of this model was upheld
when applied to subjects from other hospitals.

The authors of [15] have described a simple logistic regression model using
mainly ECG data, the Acute Cardiac Ischaemia-Time Insensitive Predictive
Instrument (ACI-TIPI), to identify patients with acute cardiac ischaemia. Use
of ACI-TIPI in ten U.S. hospitals, increased the rate of discharge while de-
creasing inappropriate admission to high-dependency beds. Other studies have
also demonstrated the potential for decision aids to improve admission and
discharge practices for patients with acute chest pain [21, 22].

There has been little published on the specific topic of feature selection for
the diagnosis of ACS/AMI. Baxt and colleagues [23] describe the develop-
ment of an ANN for the diagnosis of AMI in the presence of missing data
values. The technique reduces an initial set of 89 potential covariates to 40.
The method used is not described in detail but is by ”auditioning” subsets.
This is unlikely to be exhaustive, given the combinatorial number of all pos-
sible subsets, hence suboptimal. Indeed, owing to the non-linear nature of the
ANN, it is hard to see how else one might proceed other than by exhaustive
testing. A later paper [20] widens the diagnosis to cardiac ischemia using the
same sample and methodology. The results given there make use of cardiac
marker data and deliver AUROC of 0.98 even with approximately 5% miss-
ing data – broadly in line with our results – although differences in study
population and methodology make direct comparison impossible. In [24], the
express problem of reducing the size of the covariate set (comprising ECG
and clinical data) for ACS diagnosis is addressed via backward selection in
logistic regression. Again direct comparison with our work is impossible but
the results could yield a potentially useful system for guiding early discharge
in low prevalence populations. In a later paper [25] backward selection was
again used in a logistic model but covariate selection in the ANN was ad hoc,
including or excluding ECG or clinical data. Unlike our earlier work [10, 11],
these papers found substantial performance differences between the ANN and
logistic models. For AMI screening [26] used methods of selecting the covariate
set for an ANN based on forward/backward selection for logistic regression or
via univariate statistical analysis but do not describe their inclusion/exclusion
criteria. There is a danger inherent in using (generalised) linear methods for
covariate selection for downstream use in ANNs - ANNs exploit, where they
exist, non-linear relationships between covariates (e.g. interactions and higher-
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order correlations) and reducing the covariate set in these ways excludes such
relationships from the analysis. Paper [26] also used principal components
analysis (PCA) as did [27]. Being linear, PCA also suffers from this problem
and, while reducing the size of the input layer in ANNs still requires a full set
of covariates to operate on. It is more properly a feature extraction technique
rather than a covariate selection technique.

In order to gain widespread acceptance, a model should be easy to use in the
emergency room, it should discriminate between low- and high-risk patients
with a high degree of accuracy, be well calibrated, perform robustly with data
from different institutions, and operate in a way that is clinically meaningful.
To date, no algorithm has been described that fully satisfies these criteria.

The objective of this paper is to describe a method that permits the devel-
opment of a simple system that goes some way towards meeting the above
criteria. In particular, a principled approach to the reduction of the number
of covariates required to make a prediction whilst maintaining an acceptable
level of performance is introduced. This is integrated into a scheme for model
development and validation leading to a system whose performance is compa-
rable in terms of diagnostic ability and calibration to other published models
but is less reliant on ad hoc selection criteria.

2 Methods and Theory

Logistic regression is a well-known technique for modelling the probability of
an outcome, conditional on a particular set of evidence – the covariates – and
has been widely applied in medical and clinical decision making. The outcome
of the logistic regression optimization procedure is the maximum likelihood
estimate of a set of coefficients that weight the individual covariates.

When the sample data are linearly separable 1 it is possible to make the like-
lihood function arbitrarily large so that one or more coefficients increases in
magnitude without bound. This provides a motivation for penalizing the “size”
of the coefficients and the use of quadratic (or weight-decay) regularization
is well established in this context. Here, a term proportional to the sum of
the squares of the coefficients is subtracted from the log-likelihood function so
that maximization of the sum is a trade off between the size of the coefficients
and the fit to the data. The uniqueness of the maximum is unaffected by the
incorporation of the penalty and a simple modification of the the conventional
iterative solution schemes is all that is required.

1 They can be classified without error by the insertion of a hyper-planar decision
boundary.
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The introduction of a quadratic penalty into the optimization can be inter-
preted in the Bayesian framework as placing a prior distribution of Gaussian
form on the values of the coefficients. This quadratic penalty solves the prob-
lem of separability and also suggests a method for selecting variables – those
with relatively small coefficient magnitudes after optimization can be dis-
carded – and this has been widely applied. While it is desirable that coeffi-
cients should be kept small if possible, the quadratic penalty tends rather to
discourage large values and permits many small values to remain. This means
that these may, collectively, contribute substantially to the result. If, instead
of using a Gaussian penalty, a prior distribution with a sharp peak is used, this
will have the effect of penalizing non-zero coefficients much more strongly so
that the pay-off for setting small coefficients exactly to zero is relatively much
greater. A log-likelihood penalty comprising the sum of absolute values of the
coefficients, among others, has precisely this property and is the one used here.
Again, the introduction of this penalty has no effect on the uniqueness of the
maximum.

The “sparsity-inducing” property of this penalty is well-studied and has been
used widely in the field of “kernel machines” – the Support Vector Machine
and its variants in particular [5]. However, its introduction leads to a tech-
nical difficulty in the numerical optimization of the modified log-likelihood
function that arises because the absolute value function has a discontinuous
first derivative at the origin. The use of mathematical programming techniques
for solving many problems in kernel machine learning overcomes this drawback
for the class of problems mentioned above but these tend to require sophisti-
cated algorithms and in many cases only provide binary decisions rather than
probability estimates.

The use of the MM formulation overcomes this problem and permits the use of
the absolute value penalty in conjunction with the log-likelihood for the logis-
tic regression model. MM algorithms work by taking a difficult optimization
problem and solving a nearby problem that happens to have the same solution.
In the case of maximization, they rely on finding a surrogate function that mi-

norizes the actual objective function – the value of the surrogate is everywhere
less than or equal to the actual function and is tangent to it at the current es-
timate of the coefficient vector. Then, by majorizing the surrogate – finding its
current maximum value – it can be shown that stepping to this value results in
an increase in the value of the original objective function. A viable surrogate
function for the log-likelihood function for dichotomous data was given in [28]
and was extended to the multinomial situation in [6]. Iteration then results in
convergence to the unique maximum. In [29] the MM method was applied to
the least absolute deviation regression problem, leading to a viable surrogate
for the absolute value penalty. By combining these ideas [8] provides an itera-
tive algorithm for the maximization of the log-likelihood function with sparsity
inducing penalty in the multinomial case – this is the method used here in
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its binomial form. The resulting algorithm requires no more computational
resource than the iteratively re-weighted least-squares method conventionally
used for solving the logistic regression problem. The authors of [8] have pro-
vided a fairly comprehensive, downloadable package [30], however, it is easily
programmed in the MatlabTM environment [31], which is the approach adopted
here.

Performance is measured in a number of ways, via the receiver operating char-
acteristic (ROC) curve and its associated area (AUROC) [32] which provides
a convenient, threshold-free method of assessing discriminatory ability, and by
three other measures as recommended in [33, 34]:

Discrimination A measure of the ability of a classifier to select between
diagnoses (here represented by the normalized Brier score). A “perfect”
discriminator would have a normalized Brier score of unity.

Sharpness A measure of the confidence a classifier has in its predictions,
rewarding “confident” diagnoses (close to one or zero) without regard to
the quality of discrimination. Values close to unity are, again, desirable.

Reliability A measure of the difference between how well a classifier claims it
can perform (sharpness) and how well it actually does perform (discrimina-
tion). The ideal value is zero with negative values indicating overconfidence
and positive values, diffidence.

The calibration of the models – the match between predicted and observed
proportions of patients with ACS – is then examined. We do this directly
but also, as recommended in [35] to reveal whether or not any difference in
the observed and expected proportions is related to their magnitude. Again,
these measures of performance do not rely on a specific choice of threshold
and permit an assessment of overall model quality.

Finally, because a classifier will be used to make a decision in practice, a
strategy suited to the problem at hand must be chosen. Here we use a sim-
ple, “forced choice” scheme and choose a threshold such that sensitivity ≈

specificity – often referred to as the “optimal” threshold 2 . This is justified
here since we seek only to summarize performance in a commonly understood
way. In an operational situation it might be better to specify an acceptable
level of specificity or positive predictive value (PPV) and set the threshold on
that basis or, indeed, to opt for a risk-weighted scheme or introduce a reject
option. We do not consider Bayes decision theory further here.

2 Owing to its optimality in the case of equi-probable, Gaussian distributed data
sources.
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2.1 Study Design and Setting

Clinical and ECG data were collected at presentation in the Emergency De-
partments of four participating United Kingdom teaching hospitals – The
Royal Infirmary of Edinburgh (Hospital 1), The Western General Hospital, Ed-
inburgh (Hospital 2), The Northern General Hospital, Sheffield (Hospital 3),
and The Leicester Royal Infirmary (Hospital 4). Consecutive patients present-
ing with acute chest pain were recruited. All four hospitals are urban teaching
hospitals. Hospitals 1 and 2 are in the same city and serve a population of just
over 500,000. The Accident and Emergency Department of Hospital 1 receives
around 90,000 patients per year. During the four-month period (August to De-
cember 1995) of data collection from this hospital, 4.2% of presentations were
with acute, non-traumatic chest pain. Hospital 2, serving the same population
as Hospital 1, receives medical emergencies through an acute assessment unit.
It receives 25,000 patients per year, and during the period of data collection
(February to August 1996), 10.1% of patients presented with chest pain. This
high rate reflects the presence of a regional cardiac unit in Hospital 2, and the
high proportion of patients diagnosed with ACS reflects the fact that many
chest pain patients with less acute presentations in the city are seen in chest
pain clinics and in a General Practice Assessment Unit. The demographics of
chest pain presentations to Hospital 3 have been described previously [17] –
the hospital serves a population of 530,000, and has 75,000 Emergency De-
partment attendances per year, 4% of which are due to acute chest pain. Chest
pain data from this hospital were collected over three months September to
December in 1992. A small sample of patients was collected from Hospital 4.

Data from 1,253 consecutive patients presenting to Hospital 1 were used to
derive our models. These were tested on prospectively collected data from
1,268 patients attending Hospital 2, 626 patients presenting to Hospital 3 and
152 patients presenting to Hospital 4.

The methods used for data collection have been described previously [9]. Train-
ing data for the models were obtained from 1,253 consecutive patients aged
18 years or over, presenting with non-traumatic chest pain to Hospital 1.
The study included both patients who were admitted and those who were dis-
charged. The attending doctors in the emergency department recorded clinical
and ECG data on a purpose-designed proforma. Three researchers – Consul-
tant Physician, Cardiology Registrar and Research Nurse, assigned the final
diagnosis for all patients independently. This diagnosis made use of follow-
up ECGs, cardiac markers, other investigations and clinical history obtained
from the patient’s follow-up notes. For patients discharged directly from the
emergency department, or for those with incomplete follow-up, the patient
or their General Practitioner was contacted for information about diagnosis
or continuing symptoms one month after initial attendance. Further data to
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test the models was obtained from the emergency medical units at Hospi-
tal 2 (N = 1, 268), Hospital 3 (N = 626) and Hospital 4 (N = 152). The
methods for data collection and diagnosis were as described above. Informed
consent was obtained from all patients participating in the study, which was
approved by the Medical Ethics Committees of the participating centres. In
each hospital, patients were recruited 24 hours per day, and for seven days a
week.

2.2 Methods of Measurement

All patients admitted to hospital had serial cardiac marker measurements in
line with local protocols. The rate of missed diagnosis of ACS in those dis-
charged was very low (less than 2%). Creatine kinase (CK) of greater than
180 U/L for women and 200 U/L for men was regarded as abnormal, as was
CK-MB activity of greater than 5% of total CK activity, or a CK-MB mass
of greater than 8 g/L. Troponin T or I was measured by standard radioim-
munoassay (Boehringer) in patients admitted or regarded as being at high
risk of ACS, and a value of greater than 0.1 g/L was regarded as abnor-
mal [36]. ACS was diagnosed in all patients who had positive cardiac markers.
Diagnosis of myocardial infarction was made on the basis of clinical history,
serial ECGs and cardiac markers in line with current recommendations [37].
ST-segment elevation myocardial infarction (STEMI) was diagnosed when ST
segment elevation exceeding 1 mm or pathological Q waves developed in two
or more regional ECG leads. Non-ST-segment elevation myocardial infarction
(non-STEMI) was diagnosed when positive cardiac markers were accompa-
nied by changes (ST depression, T wave inversion) on sequential ECGs. Acute
coronary syndrome without myocardial infarction was diagnosed when ECG
changes not diagnostic of STEMI occurred in the absence of elevated markers,
where elevated cardiac markers were not accompanied by ECG changes [38],
where the patient had an unstable course necessitating acute cardiological in-
tervention, when ST elevation exceeding 1.5 mm was present on stress testing,
or when the patient suffered an adverse cardiac event (death, myocardial in-
farction, or need for urgent intervention) within 30 days of the initial event.
Overall, stress testing was carried out on 15% of patients in the study.

2.3 Modelling Procedure

The training sample comprises all individuals from Hospital 1. Of the 40 co-
variates used in building logistic models for this task, 38 are nominal (binary-
valued) variables listed in Table 1 and sorted in descending order of log-
likelihood for ACS. The remaining pair are interval valued: patient age (years)
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Covariate LCL LLR UCL

Hypoperfusion 1.2 1.6 2.0

ST Depression 1.5 1.6 1.7

ST Elevation 1.4 1.5 1.6

New Q Waves 1.1 1.4 1.7

T Wave Inversion 1.1 1.1 1.1

Added Heart Sounds -0.092 0.93 1.9

Crackles 0.84 0.88 0.91

Nausea/Vomiting 0.49 0.51 0.54

Right Arm Pain 0.35 0.36 0.38

Sweating 0.32 0.32 0.32

Diabetes 0.23 0.27 0.30

Worse With Movement 0.24 0.24 0.25

Left Arm Pain 0.21 0.21 0.21

Rhythm (AF/SVT) 0.14 0.20 0.26

Hypertension 0.18 0.19 0.21

Pain Described As ”Tight” 0.18 0.18 0.18

Ex Smoker 0.15 0.16 0.17

Previous Angina 0.15 0.15 0.15

Retrosternal Chest Pain 0.14 0.14 0.15

Previous MI 0.11 0.12 0.12

Syncope 0.017 0.091 0.17

Hyperlipidaemia 0.0003 0.089 0.18

Family History IHD 0.058 0.068 0.077

Bundle Branch Block 0.013 0.051 0.09

Short Of Breath 0.027 0.031 0.035

Chest Pain Major Symptom 0.016 0.016 0.016

Pain Radiates To Back -0.021 0.004 0.029

Sex 0.0 0.0015 0.003

Smoker -0.037 -0.032 -0.027

Old MI On ECG -0.13 -0.11 -0.085

Old Ischaemia On ECG -0.40 -0.36 -0.32

Pain In Left Chest -0.40 -0.38 -0.37

Pain In Right Chest -0.45 -0.41 -0.37

Pain Described As ”Sharp” -0.58 -0.56 -0.54

Intermittent Pain -0.91 -0.79 -0.68

Pain Affected By Posture -1.1 -1.0 -0.97

Worse With Breathing -1.7 -1.5 -1.3

Chest Wall Tenderness – −∞ –

Table 1
Nominal covariates ranked by log-likelihood for ACS with lower and upper 95%
confidence limits (LCL, UCL, respectively). The value −∞ associated with “Chest
Wall Tenderness” arises because, in this sample, no patient diagnosed with ACS
presented with this symptom.

ACS not ACS

Age (years)

Duration (hours)

LCL Mean UCL

65.68 65.72 65.75

10.29 10.36 10.43

LCL Mean UCL

52.82 52.86 52.90

21.47 21.56 21.65

Table 2
Summary of statistics for interval-valued variables.

and duration of pain since onset of symptoms (hours) and are summarized in
Table 2

To determine the optimal value of regularization parameter, ρ, a range of 50
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Covariate M1 Coefficients M2 Coefficients

ST Depression 4.351 3.642

ST Elevation 3.939 3.389

T Wave Inversion 3.779 3.140

New Q Waves 1.304 0.239

Crackles 0.785 0.483

Nausea/Vomiting 0.593 0.147

Hypoperfusion 0.544 –

Smoker 0.461 –

Right Arm Pain 0.421 0.096

Sex 0.333 –

Pain Described As ”Tight” 0.316 0.060

Sweating 0.253 0.208

Retrosternal Chest Pain 0.169 –

Ex Smoker 0.088 –

Left Arm Pain 0.033 –

Age (years) 0.031 0.012

Diabetes 0.026 –

Previous Angina 0.003 –

Old MI On ECG -0.046 –

Hypertension -0.080 –

Hyperlipidaemia -0.097 –

Pain In Left Chest -0.170 -0.298

Shortness Of Breath -0.259 -0.067

Pain In Right Chest -0.315 –

Pain Described As ”Sharp” -0.379 -0.404

Previous MI -0.450 -0.094

Pain Affected By Posture -0.489 -0.420

Old Ischaemia On ECG -0.878 -0.411

Intermittent Pain -1.148 -0.034

Pain Worse With Breathing -1.339 -0.730

Chest Wall Tenderness -1.509 –

Constant -4.808 -2.706

Table 3
Selected covariates in M1 and M2 and their coefficients.

logarithmically-spaced values was used to estimate logistic models. At each
value, 10-fold cross validation was undertaken to reduce bias in the estimate
of predictive performance. At each value of ρ an ROC curve was constructed
whose area was computed. The variation of AUROC with ρ is shown in the
left panel of Figure 1. The right panel shows the three other measures of per-
formance, discrimination, sharpness and reliability, computed simultaneously.

The task is now to determine the “best” single value of ρ. An obvious choice is
the one corresponding to the maximum value of AUROC. However, it should
be borne in mind that the higher the value of ρ, the larger the number of
coefficients that will be zeroed thus eliminating the corresponding covariate.
We use two strategies.

M1 – Largest AUROC Here the value of ρ corresponding to the maximum
value of AUROC (AUROC = 0.9712) is selected. This is indicated by the
leftmost vertical in Figure 1 and yields ρ1 = 1.3. The measures of discrimi-
nation, sharpness and reliability are virtually unaffected by this choice.

M2 – Smallest Subset Here the user decides on an acceptable level of cross
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Fig. 1. Performance measures under 10-fold cross-validation: left panel – AUROC,
right panel – discrimination, sharpness & reliability. The verticals indicate ρ1 (left)
and ρ2 (right).

validated performance (AUROC = 0.9650 in this example) and then chooses
the largest value of ρ that achieves it. This is indicated by the rightmost
vertical in Figure 1 and yields ρ2 = 5.8. Clearly, there is little degradation
in the three other performance measures at this value and so it appears to
be an acceptable choice.

Now the entire training sample is used to train the two models, M1 and M2

with ρ1 and ρ2, respectively. For illustration, in Figure 2, the coefficient values
for M2 are plotted in descending order of magnitude. It is clear that approx-
imately one-half of them have negligible values. To quantify this, only those
coefficients whose magnitude exceeds 0.5% of the coefficient with maximum
magnitude are selected for the final model. The variables to which these corre-
spond are listed for both models in Table 3 sorted from most positive to most
negative. A constant is also retained in each model. There is no discernible
difference between the performance of the models containing the negligible
coefficients and the reduced models that omit them.

For final validation, the ROC curve is computed for each reduced model, M1

and M2 (see the top left panels of Figures 3 and 4, respectively) along with
the other associated performance measures (Tables 4 and 5, respectively).
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Fig. 2. Coefficient values for M2 ranked in descending order of magnitude. Filled
circles indicate the coefficients of the selected covariates.

It should be noted that the prior probability of ACS in each hospital is dif-
ferent from that of the training sample therefore each model has its outputs
adjusted via a simple application of Bayes’ Theorem to take this into account.
In practice, local estimates of ACS prevalence will be known, e.g. from audit.

3 Results and Discussion

First we focus on the “threshold-free” performance measures which permit
comparison of the models as a whole (provided their ROC curves do not
substantially intersect). Figure 3 shows the ROC curves for each hospital for
M1 and figure 4 does likewise for M2. It is clear from this that there is
no more than a 1% loss in AUROC in the transition to the smaller model.
Indeed, this is also true for the conventional logistic regression estimate (not
shown) whose AUROCs match those of M1 to within 1%. In addition, the
shapes of the curves remain virtually unchanged from model to model. Tables 4
and 5 reveal a similar picture in the measures of discrimination, sharpness and
reliability, although here, sharpness and reliability can vary by 2–3%.

Figures 5 and 6 show the calibration, by decile, of the observed proportion of
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Fig. 3. ROC curves for M1 applied to each hospital in the study.
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Fig. 4. ROC curves for M2 applied to each hospital in the study.
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AUROC SE Discrimination Sharpness Reliability

Hospital 1 0.98 0.005 0.95 0.94 0.011

Hospital 2 0.93 0.008 0.91 0.93 -0.019

Hospital 3 0.95 0.009 0.92 0.93 -0.010

Hospital 4 0.97 0.014 0.94 0.91 0.024

Table 4
M1 threshold-free diagnostic performance measures.

AUROC SE Discrimination Sharpness Reliability

Hospital 1 0.97 0.006 0.95 0.92 0.029

Hospital 2 0.93 0.008 0.91 0.90 0.006

Hospital 3 0.94 0.010 0.92 0.91 0.010

Hospital 4 0.97 0.014 0.93 0.88 0.050

Table 5
M2 threshold-free diagnostic performance measures.

Lower 95% CL Upper 95% CL

Hospital 1 0.073 0.097

Hospital 2 0.06 0.082

Hospital 3 0.037 0.062

Hospital 4 0.042 0.091

Table 6
M1 goodness of Fit – 95% CIs on residual mean-square. Small values (relative to
unity) indicate a good fit.

the risk group versus the expected proportion predicted by the model outputs
for each hospital. Ideally these points would fall upon the diagonal and [39]
suggests a goodness-of-fit test based on residual sum-of-squares but for com-
parability across hospitals, we use the residual mean-square. A good fit is
supported by small (compared with unity) values. Tables 6 and 7 provide 95%
CLs for these values and support the hypothesis that both models provide a
good fit.

An alternative recommendation for assessing calibration is to plot the differ-
ence of the values against their mean [35]. For good calibration, these would lie
on the abscissa, any significant slope indicating that the calibration depends
on the size of the values. Figures 7 and 8 therefore support the notion of good
calibration since all but two values lie within the 95% CI (Hospitals 2 & 3)
for M1 and likewise for M2 (Hospitals 1 & 3). In addition, the least-squares
regression line is computed and plotted in each case. A regression line with
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Fig. 5. Calibration data by percentile for M1 applied to each hospital in the study.
Ideally these would fall on the diagonal.

Lower 95% CL Upper 95% CL

Hospital 1 0.072 0.096

Hospital 2 0.065 0.087

Hospital 3 0.043 0.068

Hospital 4 0.044 0.09

Table 7
M2 goodness of Fit – 95% CIs on residual mean-square. Small values (relative to
unity) indicate a good fit.

non-zero slope indicates a lack of calibration. However, the strength of the
association may not be significant. A negative slope indicates an overestimate
of small proportions and an underestimate of large ones and is characteristic
of model overfitting.

For M1 this is mildly evident for Hospital 4 while for Hospital 1, the opposite
is true. Hospital 3 demonstrates a slight overall bias. For M2 the situation
apparently worsens: a negative slope for Hospitals 2–4 is now quite visible.
Analysis of the 95% CLs for the correlation coefficients 3 (not shown) indicates

3 Computed via 1000-fold bootstrap.
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Fig. 6. Calibration data by percentile for M2 applied to each hospital in the study.
Ideally these would fall on the diagonal.

Sensitivity Specificity Accuracy PPV NPV Threshold

Hospital 1 0.94 0.93 0.94 0.90 0.96 0.23

Hospital 2 0.87 0.86 0.87 0.84 0.89 0.26

Hospital 3 0.90 0.90 0.90 0.89 0.90 0.34

Hospital 4 0.92 0.92 0.93 0.94 0.90 0.42

Table 8
M1 diagnostic performance at the “optimal” threshold (sensitivity = specificity).

that that the slopes are unlikely to differ from zero for M1 but are inconclusive
for M2. Since these are computed from only ten values, any judgement should
be viewed with care.

Tables 8 and 9 summarize performance at the “optimal” threshold where
sensitivity approximately matches specificity. Once again, the performance
changes from the full model (not shown) to M1 are no more than 1–2%. For
Hospital 1–3 this is also reflected but for Hospital 4 there appears to be a
degradation overall in the region of 5–7%. Notice, however, that the ROC
curve is flat in this region probably caused by the relatively small sample for
this hospital and so the value is not reliable.
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Fig. 7. Difference versus mean of calibration data for M1 applied to each hospital
in the study. Ideally these would lie on the abscissa.

Sensitivity Specificity Accuracy PPV NPV Threshold

Hospital 1 0.93 0.92 0.93 0.88 0.95 0.19

Hospital 2 0.86 0.88 0.84 0.80 0.90 0.19

Hospital 3 0.89 0.89 0.90 0.89 0.90 0.26

Hospital 4 0.86 0.88 0.84 0.87 0.85 0.30

Table 9
M2 diagnostic performance at the “optimal” threshold (sensitivity = specificity).

It is clear from the results above that the method of covariate selection is
effective in building predictive logistic models for the diagnosis of ACS. The
work confirms that both clinical and ECG data are important in making an
accurate diagnosis and, furthermore, that these can be identified automatically
according to a principled optimization procedure. The described methodology
permits the designer a degree of freedom in determining whether accuracy
or simplicity is of most value. Two models were derived to demonstrate this
and, in terms of predictive ability, any differences in their performance was
marginal. The models produced proved to be robust when used prospectively
on data gathered from different settings and all appeared to be well calibrated.
Poor calibration has been cited in the past as a potential disadvantage of e.g.
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Fig. 8. Difference versus mean of calibration data for M2 applied to each hospital
in the study. Ideally these would lie on the abscissa.

neural network models for diagnosing acute cardiac ischaemia [40].

In an earlier study we applied a conventional logistic modelling approach and
used the prior likelihood ratios of covariates as a method of term selection [10].
This worked well and the performance reported here is comparable to those
models 4 . It is interesting that the terms selected by the present method match,
quite closely, those of the earlier models. This is especially true of those of
highest magnitude.

4 Conclusions and Recommendations

A model-building strategy making use of the MM optimization procedure has
been proposed that permits optimization of a logistic model with a sparsity-
inducing penalty. Two models are derived via ten-fold cross-validation: M1

that optimizes predictive performance (as measured by AUROC) and M2

that maintains a desired level of predictive performance using fewest covari-
ates. Both models performed well against a variety of measures (diagnostic

4 In that study interval-valued data were converted to a set of binary-valued design
variables, so the comparison is not direct.
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accuracy, calibration, sharpness and reliability) on data gathered from three
other hospitals and had comparable performance to earlier published models –
logistic and neural network – derived for this task. The results provide further
confirmation that the automatic diagnosis of ACS can be made using a small
number of covariates comprising both ECG and clinical information.

We have not included marker protein data in our study. Such data are difficult
to collect systematically in samples of this size and, since they are used in
the definition of the final diagnosis, incorporation into the set of explanatory
variables would lead to misleading results. The potential benefit of using the
model as proposed is not only that it would help rule in ACS quickly, but
that it would assist with requests for investigations, including cardiac marker
proteins. Many patients are discharged without investigation and one of the
major benefits of this sort of decision aid would be to improve safety for
early discharge. While cardiac markers would be useful for the model – indeed
in [41] clinically useful, predictive values for diagnosis of AMI at two hours post
admission were obtained using an ANN trained with serial measurements of
either myoglobin or Troponin I – in clinical practice many patients do not have
these measured. However, given the well-documented short- and long-term
prognostic value of information derived from measurements of troponins and
other proteins, future studies should examine how such measurements might
be used alongside ECG and clinical data in developing a decision support
system.

We are also unable to determine how the use of these models would influence
diagnostic performance in practice. However, it is fair to say that any com-
putational clinical decision aid should be easy to use to increase its chance
of adoption. In particular, in the setting of a busy emergency department,
it is important to minimize the time spent gathering and entering data at
the bedside. We believe that the method proposed here offers a convincing,
theoretically justified way of reducing model complexity, wherever possible,
potentially enhancing useability of the final system by reducing the number
of items to be input.
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