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ABSTRACT 

Diabetic Retinopathy (DR) is an important cause of visual impairment in developed countries. 

Automatic recognition of DR lesions in fundus images can contribute to the diagnosis of the 

disease. The aim of this study is to automatically detect one of these lesions, hard exudates 

(EXs), in order to help ophthalmologists in the diagnosis and follow-up of the disease. We 

propose an algorithm which includes a neural network (NN) classifier for this task. Three NN 

classifiers were investigated: multilayer perceptron (MLP), radial basis function (RBF) and 

support vector machine (SVM). Our database was composed of 117 images with variable colour, 

brightness, and quality. 50 of them (from DR patients) were used to train the NN classifiers and 

67 (40 from DR patients and 27 from healthy retinas) to test the method. Using a lesion-based 

criterion, we achieved a mean sensitivity (SEl) of 88.14% and a mean positive predictive value 

(PPVl) of 80.72% for MLP. With RBF we obtained SEl=88.49% and PPVl=77.41%, while we 

reached SEl=87.61% and PPVl=83.51% using SVM. With an image-based criterion, a mean 

sensitivity (SEi) of 100%, a mean specificity (SPi) of 92.59% and a mean accuracy (ACi) of 

97.01% were obtained with MLP. Using RBF we achieved SEi=100%, SPi=81.48% and 

ACi=92.54%. With SVM the image-based results were SEi=100%, SPi=77.78% and 

ACi=91.04%. 

 

Key Words: Hard exudate, multilayer perceptron, neural network, radial basis function, retinal 

imaging, support vector machine.  
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1 INTRODUCTION 

Diabetic retinopathy (DR) is a visual complication of diabetes, which has become the most 

common cause of visual impairment among people of working age in industrialised countries [1]. 

Laser photocoagulation can slow down the progression of DR if detected in its early stages. 

However, this is not an easy task because DR patients perceive no symptoms until visual loss 

develops. This happens in the later stages of the disease, when treatment is less effective. To 

ensure that treatment is received on time, diabetic patients need to undergo a yearly eye fundus 

examination [2]. Including digital photographs of the retina in the screening protocol is a 

sensitive and specific means for detecting early clinical signs of retinopathy in at-risk populations 

[3]. As demonstrated in [4], manual and automated analysis of digital retinal images reach 

satisfactory results in the detection of DR and diabetic macular oedema. Moreover, their 

inclusion in the exam protocol showed a high performance in the detection of patients who need 

further ophthalmological assessment [4]. 

The growing incidence of diabetes increases the number of images that need to be reviewed by 

physicians. In addition, the high cost of examinations and the lack of specialists prevent many 

patients from receiving effective treatment. Computer aided detection of retinal lesions 

associated with DR offers many potential benefits. In a screening setting, it allows the 

examination of a large number of images in less time and more objectively than current observer-

driven techniques [5]. In a clinical setting, it can be an important diagnostic aid and can reduce 

the workload of trained graders and, therefore, reduce costs [5]. 

DR signs include red lesions, such as microaneurysms (MAs), intraretinal microvascular 

abnormalities (IRMAs) and haemorrhages (HEs), and bright lesions like hard exudates (EXs) and 
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soft exudates or cotton-wool spots (CWs). Other bright lesions that can appear in fundus images 

are drusen, which are associated with age related macular degeneration (AMD) [6]. Sometimes 

they appear similar to exudates and may confound automatic systems. The small laser scars 

caused by panretinal photocoagulation also appear as bright areas in retinal images belonging to 

DR patients that have received this treatment. Therefore, their presence is an additional difficulty 

for bright lesion detection. Retinal exudates can represent the only visible sign of DR in some 

patients [6]. Moreover, it is important to distinguish among lesion types as they have different 

diagnostic importance and management implications [6]. This paper focuses on EXs detection 

and their differentiation from other bright areas in our images, specifically CWs and the optic 

disk (OD). As EXs are among common early clinical signs of DR [7], their detection would be an 

important contribution to the screening tasks and could serve as a first step towards a complete 

monitoring and grading of the disease. EXs are lipid and lipoprotein deposits, white, yellowish or 

waxy, that appear as compact patches with well-defined borders in retinal images.  

Many attempts to detect these lesions can be found in the literature. Some works [8, 9] used the 

high luminosity of EXs to separate them from the background by thresholding. In [8] a global 

threshold was used for the detection of EXs after image enhancement. The wide variability 

among images made the method dependent on user intervention to select the adequate threshold 

for each case. A similar approach was used in [9], where a combination of global and local 

thresholds was applied to segment EXs. This method, however, needed a previous definition of a 

region of interest by an operator. Edge detectors, combined with other techniques, were applied 

in [10-14]. A two stage method was applied in [10]. First, the borders of candidate EXs and HEs 

were detected. Then, colour, shape and location properties were used to separate both types of 

lesions. Other authors [11, 12] also used edge detection in combination with different techniques 
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to detect bright lesions. In [12] authors also created a model of the retina to automatically 

identify the presence of lesions in the macular region. Edge and brightness information was 

combined in [13] to identify EXs and the severity of DR. In [14] the borders of EXs were 

extracted using a mathematical morphology based method. However, these studies [8-14] did not 

explicitly address the differentiation among lesion types. 

Some works [15, 16] focused on the study of the ability of Bayesian classifiers to detect retinal 

lesions. The intensity of a set of pixels was used to train the classifier in [15]. On the contrary, 

the training set in [16] was created by extracting several features from image regions. A 

statistical classifier was also used in a previous work by our group, where Fisher’s linear 

discriminant analysis was part of a method to segment EXs [17]. The classification rule was 

automatically adapted to each image. The distinction between CWs and EXs was faced in [16, 

17], but not in [15]. 

A method for detecting EXs and CWs, and separate them from drusen was proposed in [6]. A 

kNN classifier was used in a first stage to detect candidate bright lesions. Linear discriminant 

analysis was subsequently used to differentiate among lesion types. Neural network (NN) based 

classifiers have also been used [18-20]. A multilayer perceptron (MLP) was used in [18] to 

determine the presence of bright lesions in image regions of size 20x20 pixels. In [19] candidate 

bright regions were segmented using Fuzzy C-means clustering. A support vector machine 

(SVM) was used afterwards to determine if a segmented region is an EX or another type of bright 

region. A similar approach was used in [20], where MLP and SVM NNs were analysed and 

compared. 

In this study, we examined and compared the ability of three different types of NNs to detect 

EXs in retinal images: MLPs, radial basis function (RBF) networks and SVMs. We developed an 
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automatic method that was suitable for the great variability of images that ophthalmologists 

could find in their daily practice. Therefore, it could be used as a clinical aid in the diagnosis and 

monitoring of DR. 

2 IMAGE DATABASE 

A total of 117 images with variable colour, brightness, and quality were used in this study. All 

the images were provided by the Instituto de Oftalmobiología Aplicada (IOBA) of the University 

of Valladolid, Spain. 31 of these images were captured using a TopCon TRC-NW6S non-

mydriatic retinal camera at a field-of-view (FOV) of 45º. The remaining 86 images were captured 

with a TopCon TRC-50IX mydriatic retinal camera at 50º FOV. Due to the wider FOV, the 

images taken with the TopCon TRC-50IX cover more retinal area and the image details appear 

bigger. On the other hand, images captured with the TopCon TRC-NW6S showed, generally, 

better quality and contrast. Image resolution was 576x768 pixels in 24 bit JPEG format. An 

experienced ophthalmologist manually marked all EXs in the images. These annotations have 

been considered as the reference standard to compare our results with. 

Images came from a clinical set of 106 diabetic patients who were referred to the 

ophthalmologist for further examination. Therefore, our database contained two images (right 

and left eye) from 11 patients and the remaining 95 images belonged to different subjects. 90 of 

these images belonged to patients who suffered from mild to moderate nonproliferative DR, 

according to an expert. In the remaining 27 images the ophthalmologist did not mark any EXs. 

The images from DR patients also contained CWs (in 19 images) and HEs (in 87 images). 

However, drusen were not present in any of the images. 

The 117 images were divided into a training set and a test set in a pseudo-random manner: 
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• The training set contained 50 images from DR patients, with the only restriction that two 

images from the same patient could not be included in this set. In this way, the ability of the 

training set to represent the variability of the population is greater. 1940 segmented regions 

were extracted from these images after the segmentation stage of our method. They were 

labelled as EXs or non-EXs according to the annotations of the ophthalmologist. In this 

way, we created a fully labelled groundtruth dataset to train the NNs with these 50 images. 

• The remaining 67 images (27 from healthy retinas and 40 from DR patients) form the test 

set. It has been used to validate the effectiveness of the complete algorithm by comparing 

our results with the expert-labelled images. 

3 METHODS 

The proposed method can be divided in four steps, which are explained in detail in the next 

subsections: luminosity and contrast normalization, segmentation, feature extraction and 

classification using MLP, RBF or SVM. 

3.1 Luminosity and contrast normalization  

The great variability within and between retinal images in a clinical environment makes it hard 

to distinguish retinal features and lesions in some areas. A preprocessing step is necessary to 

normalize the images and to increase the contrast between EXs and the background. 

We applied the method proposed in [21], based on the work developed in [22], to the green 

channel of the images. Being I  the observed image, the method estimates the original 

undistorted image, o
Î , as [21]: 
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where Nµ̂  is the estimated mean value inside N , Nσ̂  is the estimated standard deviation inside 

N  and t  is a threshold value. In this study, we chose 1=t . Using this value, we considered an 

adequate percentage of pixels in each square as background pixels [21]. 

The subsequent estimation of ),(ˆ yxL  and ),(ˆ yxC  requires a similar computation of the mean and 

standard deviation of the intensity values inside a neighbourhood N  centred in ),( yx . However, 

in this case, only the pixels belonging to bI  are taken into account for these calculations. 

In order to reduce the computational burden when computing background and drifts, the 

images were partitioned into square blocks. The process assumed that at least 50% of the pixels 

in each square were background pixels. This may be untrue where large retinal structures or 

lesions appear. To avoid their influence, squares with mean luminosity higher than given 

threshold were not considered for drift estimation [21]. 

To make the algorithm more robust, we also discarded squares with mean luminosity above the 
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threshold when estimating 
bI . Squares with less than 50% of background pixels were not 

considered for ),(ˆ yxL  and ),(ˆ yxC  computation either. Estimates for the removed squares were 

calculated averaging the values obtained for the surrounding squares. 

An original observed image is shown in Fig. 1(a). After the preprocessing step, we obtained the 

image of Fig. 1(b). 

------------------------------------------------------------------------------------------------------------------ 

INSERT FIGURE 1 AROUND HERE 

------------------------------------------------------------------------------------------------------------------ 

3.2 Segmentation 

In this stage we tried to find the candidate EX regions that had to be classified by the NNs in 

the next step. As EXs appear as bright regions in the preprocessed image, a first approach to 

detect candidate lesions was the extraction of the bright pixels in this image. However, even after 

the image normalization process, residual variability in the luminosity or in the pigmentation of 

the retinal background makes the utilization of an approach based on a global thresholding very 

difficult [23]. Hence, we also made use of the local properties of EXs and combined global and 

adaptive histogram thresholding methods. 

The global and local histograms of the preprocessed image showed one maximum, 

corresponding to the background. The tail on the right of this maximum corresponded to the 

bright regions we wanted to segment. We set a threshold at the grey level of this tail for which 

the histograms decreased to the 10% of the maximum. To calculate local histograms, the image 

was partitioned into square blocks of side 200 pixels (zero-padding when necessary). The locally 

and globally segmented images were combined using the AND operator.  
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The papillary region was also masked out to reduce the computational burden of the classifiers 

using the method described in [17]. The OD is a bright region in the image and the main vessels 

emanate almost vertically from it. These properties were used to detect this retinal structure in 

two stages. First the candidate OD centres are selected using a combination of mathematical 

morphology (alternative sequential filters) and regional maxima detection. In a second stage, the 

vertical blood vessels in the preprocessed image are detected using a two-dimensional matched 

filter with Gaussian cross-profile in the vertical direction [24]. Then, the Hough transform is used 

to detect vertical lines in the neighbourhood of each candidate point. The candidate with more 

pixels belonging to vertical lines passing through it is considered the OD centre [17]. The 

boundary of the OD is approximated as a circle. This approach is considered accurate enough to 

remove the OD as a candidate EX region [20]. 

Fig. 1(c) is the result of segmenting the image shown in Fig. 1(b). 

3.3 Feature extraction 

In order to classify candidate regions as EX or non-EX, we extracted a set of features from 

each region and used them as inputs to the NNs. To select an adequate set of features, we focused 

on those characteristics that ophthalmologists use to visually distinguish EXs from the retinal 

background and other retinal lesions or structures. We also tried to keep an adequate 

dimensionality of the feature set, as misclassification probability tends to increase with the 

number of features and the structure of the classifier is more difficult to interpret [25]. 

We selected 18 visually distinctive features of EXs, which include colour and shape features 

[20]:  

• Mean RGB values inside the region (1-3), obtained as an average of the RGB values of the 
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pixels that belong to the region. 

• Standard deviation of the RGB values inside the region (4-6), obtained as the standard 

deviation of the RGB values of the pixels that belong to the region. 

• Mean RGB values outside the region (7-9), obtained as an average of the RGB values of the 

pixels that belong to a rectangular area around the region (5 pixels distance). 

• Standard deviation of the RGB values outside the region (10-12), obtained as the standard 

deviation of the RGB values of the pixels that belong to a rectangular area around the region 

(5 pixels distance). 

• RGB values of the region centroid (13-15), measured as the intensity values in the three 

colour components of the centre of the region. 

• Region size (16), measured as the number of pixels inside the region. 

• Region compactness (17), measured as the ratio between the square of the perimeter and the 

area of the region (both measured in number of pixels). To obtain the perimeter, a boundary 

tracing algorithm needs to be used [26]. 

• Region edge strength (18), measured as an average of the edge values in the perimeter of the 

region. The edge values were obtained after the application of a Prewitt operator [26]. 

3.4 Classification 

Three different neural networks were investigated. For the training and testing of MLP, we 

used the NETLAB software developed within the Neural Computing Research Group of Aston 

University, UK [27]. RBF was developed using the neural network toolbox included in Matlab®. 

SVM was implemented using the SVM toolbox for Matlab
®
 developed by the Intelligent Data 

Analysis Group of Fraunhofer FIRST [28]. 
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The architecture of the three classifiers contained an input layer with 18 nodes and a single 

neuron output layer. If the output was greater than a given threshold, the region was considered 

EX. Otherwise, it was labelled non-EX. 

3.4.1 Multilayer perceptron 

Multilayer feed-forward networks, like MLPs, are an important class of NNs that can represent 

nonlinear functional mappings between a set of input variables and a set of output variables [29, 

30]. A MLP with enough units in a single hidden layer can approximate any function, provided 

the activation function of the neurons satisfies some general constraints [31, 32]. From these 

considerations, we decided to use a MLP with one hidden layer, for which the optimum number 

of hidden neurons was experimentally determined. As neuron activation function in the hidden 

layer, we chose the hyperbolic tangent sigmoid function (tan-sigmoid), an antisymmetric function 

in the interval (-1, 1). Tan-sigmoid satisfies the constraints in [31] and [32]. Moreover, it 

improves the learning speed of MLP [29]. In the output layer, we used the logistic sigmoid 

activation function, that also satisfies the aforementioned constraints and whose outputs lie in the 

range (0, 1). This choice was motivated by the fact of interpreting the outputs of the network as 

posterior probabilities [30]. 

The problem of training a NN can be formulated in terms of the minimization of an error 

function. The choice of a suitable error function and minimization algorithm can improve the 

performance of MLP. It has been demonstrated [30] that a cross-entropy error function simplifies 

the optimization process when the logistic sigmoid activation function is used in the output layer. 

Therefore, we considered this function as an appropriate choice in our study. 

Regarding the minimization algorithm, several choices are available for MLP. We selected the 
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scaled conjugate gradients algorithm, for which the error function is guaranteed not to increase 

during training [30]. Moreover, it generally shows faster convergence when compared to gradient 

descent-based techniques or even conventional conjugate gradient algorithms [30]. 

To avoid overfitting and improve generalization, we employed a weight decay regularizer [30]. 

The regularization parameter, ν , was experimentally settled. 

If the output is above 0.5 for some input vector, the probability of the image region represented 

by that input vector of being an EX is greater than that of being a non-EX. Therefore, the output 

threshold was set to 0.5. An example of the classification with MLP is shown in Fig. 1(d). 

3.4.2 Radial basis function 

RBF is also a universal approximator [29, 30]. Its architectural model comprises three layers. 

The input layer receives the feature vector and has as many neurons as the length of this vector. 

The only hidden layer in the network performs a nonlinear transformation from the input space 

into a high dimensional space, where the patterns are more likely to be linearly separable. The 

output layer is linear, and supplies the response of the network to the activation pattern [29]. 

The hidden layer activation functions must satisfy some conditions derived from Tikhonov’s 

regularization theory [33]
 
to be called radial basis functions. Among all the possibilities, we 

chose Gaussian functions because they are commonly employed in practice, as they are 

rotationally and translationally invariant [29]. They are characterized by their centre and spread 

parameter, which represents the width of the Gaussian. 

Native RBFs require as many hidden neurons as the available training points. This is 

computationally demanding and may lead to poor generalization ability. Therefore, a suboptimal 

solution must be found by means of generalized RBF networks that, usually, require less hidden 
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neurons [29]. However, their training involves learning not only the weights, but also the number 

of radial basis functions, the position of their centres and their width. To accomplish this task, we 

applied the orthogonal least squares algorithm [34]. The optimum spread and number of radial 

basis functions were experimentally determined. The output threshold was set to 0 because the 

output of RBF is positive for EXs and negative for non-EXs. 

An example of classification using RBF can be seen in Fig. 1(e). 

3.4.3 Support vector machine 

Like the previous approaches, SVMs can approximate any function [29]. As in RBFs, the input 

space is mapped into a high dimensional feature space. Then, the hyperplane that maximizes the 

margin of separation between classes is constructed. The points that lie closest to the decision 

surface are called support vectors and directly affect its location. When the classes are non-

separable, the optimal hyperplane is the one that minimizes the probability of classification error 

[28]. In this case, the problem can be solved using the method of Lagrange multipliers [29]. 

Given the training set, { }N

iii dx
1

),(
=

, find the Lagrange multipliers, { }N
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(xi,di), i=1,…,N represent the input vector-desired response pairs and K(xi,xj) is called inner-

product kernel. C is an upper bound for the Lagrange multipliers and controls the trade-off 



15 

 

between machine complexity and number of nonseparable points [29]. 

Depending on the selected inner-product kernel, we can construct different types of machines, 

including two-layer perceptrons and RBFs [29, 35]. However, there are some differences with the 

classical algorithms: 

• In the SVM two-layer perceptron, the number of hidden neurons and the weights are 

automatically determined by the number of support vectors and their values, respectively. In 

classical MLP, they have to be experimentally determined [29]. 

• For the RBF type of SVM, the number of radial basis functions and their centres are also 

automatically determined by the algorithm. In classical RBF classifiers; they have to be 

determined in advance, usually by some kind of clustering method [29, 35]. 

We employed a Gaussian kernel (i.e. a RBF type of SVM), the most common type of kernel 

used in practice [30]. Two parameters need to be optimized: the width of the Gaussian functions 

(σ) and C. The output given by the implementation of SVM we have used in this work is the 

class label of the region represented by the input feature vector. Therefore, it was not necessary to 

choose an output threshold. An example of classification with SVM is depicted in Fig. 1(f). 

4 PARAMETER OPTIMIZATION OF THE NN CLASSIFIERS 

We trained the classifiers with 970 EX and 970 non-EX regions, manually extracted after the 

segmentation of the 50 images in the training set. Each of these regions was represented by its 

corresponding 18-element feature vector. These feature vectors formed the training examples of 

the classifiers. The inputs were normalized (mean=0, standard deviation=1) and the data points 

were randomly presented to the networks [29]. Our goal was to find an optimal architecture of 

the NNs that led to a minimum prediction risk [36]. We used 10-fold cross validation to asses the 
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generalization ability of the networks as it is an estimator of the prediction risk [36]. 

For the different networks and network architectures, we measured the mean sensitivity (SE), 

specificity (SP) and accuracy (AC) obtained for the validation set. We used AC for model 

selection as it represents better the trade-off between sensitivity and specificity. 

4.1 MLP 

We had to determine the optimum number of hidden neurons for MLP and the optimum 

regularization parameter, ν . We varied the number of hidden neurons from 10 to 50 in steps of 

1. The regularization parameter was varied from 1 to 10 in steps of 0.5. The results for 2=ν , 

5.2=ν  and 3=ν  were very similar and higher than for other values of ν . We chose 3=ν  

because it increases the generalization ability of the network, as the number of effective 

parameters of the network is a decreasing function of ν  [37]. Besides, we chose a network with 

31 hidden units because AC did not significantly improve for larger architectures, as shown in 

Fig. 2. This optimum operating point is marked with the symbol ‘♦’ in Fig. 2. For this 

configuration, we obtained SE= 91.34%, SP= 92.06% and AC= 91.70% over the validation set. 

The MLP with this configuration was trained for an average number of 1000 training cycles, 

obtaining a mean RMS error on the validation set of 0.12.  

------------------------------------------------------------------------------------------------------------------ 

INSERT FIGURE 2 AROUND HERE 

------------------------------------------------------------------------------------------------------------------ 

4.2 RBF 

The optimum spread and number of radial basis functions had to be settled. The output of any 
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hidden neuron decreases as the distance between the input pattern and the centre of it 

corresponding radial basis function increases. Therefore, the centres and widths of the radial 

basis functions determine the area in the input space to which each neuron responds. To ensure 

that the whole feature space is adequately covered, we varied both parameters jointly. The 

number of RBFs ranged from 10 to 120, while the spread parameter varied from 1 to 10 in steps 

of 0.5. 

The lowest values of AC were obtained for values of the spread parameter below 3.5. The 

variation of AC with the number of RBFs was very similar for the remaining values of spread. 

Therefore, fixing 5.3=spread  the whole input space is adequately covered while, at the same 

time, each neuron responds to a different region of this input space. 

Fig. 3 shows the training results when 5.3=spread . We chose a network with 90 RBFs (point 

marked with the symbol ‘♦’ in Fig. 3) because AC did not significantly improve with more units. 

At this point, we obtained the following results for the validation set: SE= 90.31%, SP= 91.44% 

and AC= 90.88%. The implementation of the generalized RBF network used in this work adds a 

new neuron to the architecture in each cycle. Therefore, for the optimum operating point, 90 

training cycles were needed. The mean RMS error on the validation set was 0.24. 

------------------------------------------------------------------------------------------------------------------ 

INSERT FIGURE 3 AROUND HERE 

------------------------------------------------------------------------------------------------------------------ 

4.3 SVM 

We had to optimize σ and C. The parameters were independently tuned. First, we varied σ 

between 0.1 and 1 in steps of 0.1, while C was fixed to ∞  (hard margin approach [29]). Similar 
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values of SE, SP and AC were obtained for 8.02.0 ≤≤ σ . This range of values of σ , keeping 

C=∞, was tested on the unseen images. We chose 5.0=σ  because the results did not 

significantly vary for larger values. Then, fixing 5.0=σ , we varied C between 0.5 and 8, in 

steps of 0.1 (soft margin approach [29]). The results obtained in this step are depicted in Fig. 4. 

AC increases for C below 2.5 and then shows small variations. Therefore, we chose 5.2=C  as 

the optimum value, as indicated with the symbol ‘♦’ in Fig. 4. With 5.0=σ  and 5.2=C  we 

obtained SE= 90.21%, SP= 91.96% and AC= 91.08% over the validation set. The implementation 

needed an average number of 259.40 iterations to train the classifier with the optimum 

configuration. The RMS error, averaged over the validation set, was 0.36. It is worth noting that 

this error has been computed using the output of this implementation of SVM, which is equal for 

all the examples belonging to the same class. 

------------------------------------------------------------------------------------------------------------------ 

INSERT FIGURE 4 AROUND HERE 

------------------------------------------------------------------------------------------------------------------ 

5 COMPARISON OF NN CLASSIFIERS 

Each network was introduced in the classification stage and the complete algorithms were 

tested on a new set of 67 unseen images (test set).  

The performance was assessed in terms of an image-based criterion and a lesion-based 

criterion (pixel resolution) [20]. The image-based criterion accounted for the ability of the 

algorithm to separate pathological images from normal ones on the basis of the presence or 

absence of EXs. With a lesion-based criterion, we examined the number of EXs in the images 

that were correctly detected. For this lesion-based criterion, specificity is not an informative 
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measure. In a retinal image, the number of true negatives (TNs) is generally much higher than the 

number of false positives (FPs). As a consequence, even if EXs detection is inaccurate, 

specificity values would be high. The positive predictive value (PPVl), which measures the 

probability that a detected region is really an EX, was regarded as a more significant criterion to 

evaluate the performance of the system [20]. We also used the property if EXs of usually 

appearing in groups in retinal images to improve the image-based specificity (SPi) of the system 

without compromising its image-based sensitivity (SEi). We used an approach similar to that 

presented in [20]. We identified those images where less than 30 pixels (0.0068% of the total 

number of pixels in the image) had been detected as EX and considered them as belonging to 

healthy retinas. This threshold has been experimentally settled by inspection of the results 

obtained for the images in our database. 

The results obtained with the three NNs on the test set are summarized in Table 1. 

------------------------------------------------------------------------------------------------------------------ 

INSERT TABLE 1 AROUND HERE 

------------------------------------------------------------------------------------------------------------------ 

6 DISCUSSION AND CONCLUSION 

In this study, we compared the ability of three neural network based classifiers to distinguish 

EXs from retinal background in 27 healthy retinas and 40 images of retinas with DR. The 

proposed method is completely automatic once the classifiers are configured. 

Prior to classification, we preprocessed the image in order to normalize the variability in 

colour, brightness and contrast that images can show in a clinical environment. Subsequently, the 

candidate EXs regions were detected by means of a segmentation algorithm. The parameters of 
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this algorithm were chosen in order to achieve a high sensitivity (detect a high percentage of true 

EXs), even if that meant a lower specificity (detecting also some non-EXs regions). The 

following stages would increase specificity by discriminating between true EXs and FPs. 

However, the true EXs that were discarded in the segmentation stage could not be recovered. 

Hence, the selection of the segmentation threshold affects the final classification rates. If it was 

chosen at the point where the histogram decreased to the 5% of its maximum, PPVl would 

increase for the three NNs (89.47% for MLP, 85.27% for RBF and 88.48% for SVM). However, 

SEl would decrease (81.88% for MLP, 82.53% for RBF and 82.34% for SVM). Image-based 

results show a similar behaviour. SPi would increase (96.29% for the three NNs) while SEi would 

decrease (97.50% for MLP, 97.50% for RBF and 95.00% for SVM). On the contrary, if the 

segmentation threshold was moved to the point where the histogram decreased to the 15% of its 

maximum, PPVl would decrease for the three NNs (74.88% for MLP, 67.95% for RBF and 

77.04% for SVM). However, SEl would increase (90.46% for MLP, 88.57% for RBF and 89.18% 

for SVM). Regarding image-based results, SEi would equal the results in Table 1 (100% for the 

three NNs) and SPi would decrease (77.78% for MLP, 18.51% for RBF and 62.96% for SVM). 

For other values of the segmentation threshold, the results obtained followed a similar tendency. 

In the classification stage, we explored the ability of MLP, RBF and SVM to segment EXs in 

retinal images. To the best our knowledge, RBF has not been previously investigated with this 

purpose. We assessed the performance of RBF on the same database that we used for MLP and 

SVM and carried out a comparative study. In addition, the use of a cross-entropy error function 

and regularization for MLP has not been previously investigated in this context.  

We achieved similar results with the three NNs. Using a lesion-based criterion, we obtained a 

mean sensitivity (SEl) of 88.14% and a mean positive predictive value (PPVl) of 80.72% for 
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MLP. With RBF we achieved SEl=88.49% and PPVl=77.41% and with SVM the lesion-based 

results were SEl=87.61% and PPVl=83.51%. Regarding the image-based results, with MLP we 

obtained a mean sensitivity (SEi) of 100%, a mean specificity (SPi) of 92.59% and a mean 

accuracy (ACi) of 97.01%. We achieved SEi=100%, SPi=81.48% and ACi=92.54% using RBF 

and SEi=100%, SPi=77.78% and ACi=91.04% using SVM. Additionally, each NN has certain 

advantages. The complexity of MLP was significantly lower than that of RBF or SVM for a 

similar degree of accuracy (the optimal RBF needed 90 hidden neurons and the optimal SVM 

needed 678 support vectors). By contrast, the training complexity in RBF is typically lower than 

in MLP (due to the presence of nearly flat regions in the error function and the slower 

convergence that the effects of the different weights can cause) or SVM (due to the complexity 

involved in the resolution of a quadratic problem) [29]. With respect to SVM, its convergence to 

an optimum solution is guaranteed [20, 29]. 

These results can be considered satisfactory according to [38], where the authors state that an 

image-based sensitivity equal or greater than 60% maximizes cost-effectiveness in screening for 

DR. Newer evaluations, like that of the British Diabetic Association [39], require a minimum 

image-based sensitivity of 80% and image-based specificity of 95%. These sensitivity 

requirements were met with the three NNs. However, our specificity values are below these 

figures. Image-based specificity could be improved by changing the output threshold of the 

networks. For MLP, setting the output threshold to 0.7, we achieved SEi=95% and SPi=96.3%. 

Equal results were obtained with an output threshold of 0.3 for RBF. The output given by the 

implementation of SVM employed in this work is only the class label. Thus, it is not possible to 

improve image-based SPi in the same way. However, lesion-based sensitivity is reduced if these 

output thresholds are used (SEl=85.48% for MLP and SEl=75.41% for RBF). It is worth noting 
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that it would be also possible to define two output thresholds, with the limitation that patients 

presenting diagnostic values between both cut-off points will not be classified. This approach 

would lead to a decrease in the number of misclassified cases. However, a proportion of regions 

would not be classified in any of the classes, especially faint EXs or noisy background regions 

that appear very similar in retinal images. In addition, one of the advantages of defining a single 

output threshold for the MLP NN is that it allows for the interpretation of its outputs as posterior 

probabilities. For these reasons, we used a single threshold in the present study. All regions in 

our data sets could be classified, although both false positive and false negative cases were 

present. 

Previous studies [18-20] also analysed the ability of NNs to detect EXs in retinal images. Their 

results and the number of test images in their database are summarized in Table 2. Osareh [20] 

used 10-fold cross validation to optimize a MLP and a SVM classifiers. The input vectors to both 

NNs were formed by the same 18 features that were used in our work. Zhang and Chutatape [19] 

selected the parameters of a SVM classifier with 5-fold cross validation. A smaller feature set, 

comprised of five features, was used to describe EXs regions. The 30 images in their database 

were not divided into training and test sets as in the present work. The training and test sets were 

composed of bright areas extracted from the complete database of images. Only lesion-based 

statistics were reported in this study. The results presented in the study by Gardner et al. [18] 

were obtained for image patches of size 20x20 pixels. The intensities of the pixels inside the 

patches formed the inputs of this classifier. Therefore, no colour or shape features were derived 

for each region. The use of cross validation and image based-results were not reported. 

Other studies did not use NNs to detect EXs. The results obtained in some of them and their 

database specifications are also included in Table 2. Walter et al. reported both lesion-based and 
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image-based results. However, the distinction between EXs and CWs was not addressed in this 

work. Li and Chutatape [12] only reported image-based statistics. Results about the number of 

EXs detected in different areas of the retina were also provided for two images in their database. 

This permitted the grading of the severity of RD, as the presence of lesions affects vision more 

seriously if they are located in certain regions of the retina than in others. The results presented 

by Wang et al. [15] accounted for the ability of their method to detect bright lesions, not only 

EXs. No lesion-based results were reported in this study either. It is worth noting that these 

methods [12, 14, 15] did not require feature extraction. The study by Niemeijer et al. [6] is 

particularly notable for the effort made in distinguishing among lesion types. To accomplish this 

task, a large set of 86 features was studied in the final classification stage. Finally, in a previous 

work by our group [17], the three colour components of each pixel were used to classify it as 

EXs or non-EXs. The classification rule was automatically adapted to each image and, therefore, 

a different rule was obtained for every retinal photograph. The use of cross validation was not 

mentioned in [6, 12, 14, 15, 17]. 

------------------------------------------------------------------------------------------------------------------ 

INSERT TABLE 2 AROUND HERE 

------------------------------------------------------------------------------------------------------------------ 

Although our lesion-based statistics do not reach those reported in some of these works, 

comparisons should be made with caution. The lack of a public database and a common way to 

measure performance makes it impossible to objectively contrast our results with those reported 

in literature. Moreover, the use of 10-fold cross validation for model selection should be taken 

into account in these comparisons. 

Our image-based results are similar to those reported in many of the cited studies. In addition, 
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the image-based sensitivities in Table 1 show that we detected all images with signs of DR using 

the three NNs. Consequently, no patient suffering from the disease is prevented from receiving 

treatment. We also detected some FPs in the images of healthy subjects. These wrongly classified 

images usually presented yellowish artefacts and retinal background irregularities that appear 

similar to EXs. These artefacts could be removed by changing the output threshold, as discussed 

previously. However, for a computer-aided DR screening program it is more important to 

correctly classify all patients with sight-threatening DR (high sensitivity), even if it is at the 

expense of misclassifying some healthy subjects in the DR group [5]. 

We should also point out that we considered manually annotated images by expert clinicians as 

a reference standard. Although this may reflect better a screening scenario, in a clinical situation 

slit-lamp biomicroscopy performed by ophthalmologists should be considered as the reference 

standard [4, 5]. Olson et al. [4] compared slit-lamp biomicroscopy with optometrists, 

conventional photography (colour slides), manually graded digital images and automatically 

graded digital images. When detecting DR (based on the detection of MAs and HEs), their 

automatic method reached SEi=83% and SPi=71% using two-field images and SEi=79% and 

SPi=80% when only one image was used. Moreover, the automatic method used in [4] achieved a 

higher sensitivity than optometric examination (with SEi=75% for two field images, no results 

with one image were reported). However, specificity values did not reach those of other 

modalities (SPi=89% for manual examination using colour slides, SPi=79% for manual 

examination of digital images and SPi=82% for optometric examination) [5]. Our results 

correlate with these findings, where we have obtained SEi=100% for the three NNs but lower SPi 

values. 

The proposed algorithm presents some limitations that should be mentioned. In spite of the 
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normalization step, the colour and size of EXs vary even within the same eye. This makes it 

difficult to detect all of them. Failing to detect some faint EXs in an image may not be crucial for 

the diagnosis of DR because EXs usually appear in groups. However, if only a few dim EXs 

appeared in the images, our method could show a limited performance. Additionally, some 

problems may arise from the size of the database. Firstly, although some previous works use a 

training set of a size similar to ours [20], it may not be enough to represent the great variability of 

EXs. It would be desirable, upon availability of more images, to train the classifiers on a larger 

data set and verify if the same optimum points are obtained. Secondly, the test set is not large 

enough to draw general conclusions about the diagnostic value of our method. This fact would be 

especially meaningful if the method was applied in a screening program. The rate of DR cases in 

a screening data set is generally lower than the rate of healthy images [4, 7]. In our case, where 

images come from a clinical database, the number of images from DR patients exceeds the 

number of images from healthy subjects. It would be necessary to asses the performance of our 

method on a larger database of images with variable degrees of DR and that includes images with 

drusen. Finally, it is worth noting that some parameters of the method may need to be tuned 

when images with different size and quality are studied. One is the size of the square blocks 

employed for the luminosity and contrast normalization stage. It must be large enough to contain 

sufficient background pixels in each square but low enough to consider that C  and L  vary 

slowly in each square [21]. Therefore, if very different image sizes were to be used, it should be 

adequately adapted. The segmentation threshold of 10% may also be decreased for higher quality 

images in order to improve specificity while maintaining also a high sensitivity. A final 

consideration is that, as mentioned previously, the optimum operating points of the NNs may be 

different when a new training set is used. 
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Future works will be aimed at improving our results by studying the discriminatory power of 

new features [6] for this task. We will also try to detect other types of lesions associated with DR 

(CWs, HEs and MAs) in order to separate healthy subjects from those who suffer from DR more 

precisely and grade the evolution of the disease. 
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TABLE CAPTIONS 

Table 1. Performance of MLP, RBF and SVM for EXs detection using 10-fold cross validation. 

Table 2. Summary of previous studies concerning the detection of hard exudates in retinal 

images. 

 

FIGURE LEGENDS 

Fig. 1. (a) Green channel of the original retinal image. (b) Green channel of the same image after 

contrast and luminosity normalization. (c) Candidate EX regions obtained after segmentation. (d) 

Result obtained after classification with MLP. Detected EXs are marked in white and 

superimposed on a greyscale version of the original image. (e) Result obtained after classification 

with RBF. Detected EXs are marked in white and superimposed on a greyscale version of the 

original image. (f) Result obtained after classification with SVM. Detected EXs are marked in 

white and superimposed on a greyscale version of the original image. 

Fig. 2. Results of the training stage for the MLP neural network with 3=ν . The optimum point 

is marked with the symbol ‘♦’. 

Fig. 3. Results of the training stage for the RBF neural network with spread fixed to 3.5. The 

optimum point is marked with the symbol ‘♦’. 

Fig. 4. Results of the training stage for the SVM neural network with 5.0=σ . The optimum 

point is marked with the symbol ‘♦’. 
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TABLE 1 

 

 

PERFORMANCE OF MLP, RBF AND SVM FOR EXs DETECTION USING 10-FOLD 

CROSS VALIDATION 

 

Neural 

Network 

Lesion-based 

criterion 

Image-based  

criterion 

SEl (%) PPV (%)l SEi (%) SPi (%) ACi (%) 

MLP 88.14 80.72 100 92.59 97.01 

RBF 88.49 77.41 100 81.48 92.54 

SVM 87.61 83.51 100 77.78 91.04 

 

SEl=mean lesion-based sensitivity, PPVl= mean lesion-based positive predictive value, SEi=mean 

image-based sensitivity, SPi= mean image-based specificity, ACi= mean image-based accuracy. 
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TABLE 2 

 

 

SUMMARY OF PREVIOUS STUDIES CONCERNING THE DETECTION OF EXs IN 

RETINAL IMAGES 

 

Detection method 

Database 

(number of 

test images) 

Lesion–based 

results 
Image-based results 

SEl (%) PPVl (%) SEi (%) SPi (%) ACi(%) 

Osareh [20] 67 90.0 89.3 95.0 88.9 - 

Zhang and Chutatape [19] 30
1
 88.0 84.0 - - - 

Gardner et al. [18] 179 93.12 - - - - 

Walter et al. [14] 15 92.8 92.4 100 86.7 - 

Li and Chutatape [12] 35 - - 100 - 74.0 

Wang et al. [15] 154 - - 100 70.0 - 

Niemeijer et al. [6] 300 - - 95.0 86.0 - 

Sánchez et al. [17] 58 88.0 - 100 100 100 

 

SEl=mean lesion-based sensitivity, PPVl= mean lesion-based positive predictive value, SEi=mean 

image-based sensitivity, SPi= mean image-based specificity, ACi= mean image-based accuracy. 

 
1
 Number of images used to obtain the training and test sets 

2
 Obtained for patches of size 20x20 pixels 
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Fig. 1.  (a) Green channel of the original retinal image. (b) Green channel of the same image after 

contrast and luminosity normalization. (c) Candidate EX regions obtained after segmentation. (d) 
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Result obtained after classification with MLP. Detected EXs are marked in white and 

superimposed on a greyscale version of the original image. (e) Result obtained after classification 

with RBF. Detected EXs are marked in white and superimposed on a greyscale version of the 

original image. (f) Result obtained after classification with SVM. Detected EXs are marked in 

white and superimposed on a greyscale version of the original image. 
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Fig. 2.  Results of the training stage for the MLP neural network with 3=ν . The optimum point 

is marked with the symbol 

‘♦’.

 

Fig. 3.  Results of the training stage for the RBF neural network with spread fixed to 3.5. The 

optimum point is marked with the symbol ‘♦’. 
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Fig. 4.  Results of the training stage for the SVM neural network with 5.0=σ . The optimum 

point is marked with the symbol ‘♦’. 
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