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Abstract

Feature extraction techniques based on selection of highlydiscriminant Fourier filters have been developed for an au-

tomated classification of magnifying endoscope images withrespect to pit patterns of colon lesions. These are applied to

duodenal imagery for diagnosis of celiac disease. Featuresare extracted from the Fourier domain by selecting the most

discriminant features using an evolutionary algorithm. Subsequent classification is performed with various standardalgo-

rithms (KNN, SVM, Bayes classifier) and combination of several Fourier filters and classifiers which is called multiclassifier.

The obtained results are promising, due to a high specificityfor the detection of mucosal damage typical of untreated celiac

disease.

1. Introduction

Celiac disease is a complex autoimmune disorder that affects the small bowel in genetically predisposed individuals of

all age groups after introduction of gluten containing food. Commonly known as gluten intolerance, this disease has several

other names in literature, including cœliac disease, c(o)eliac sprue, non-tropical sprue, endemic sprue, gluten enteropathy or

gluten-sensitive enteropathy. Characteristic for the disease is an inflammatory reaction in the mucosa of the small intestine

caused by a dysregulated immune response triggered by ingested gluten proteins of certain cereals (wheat, rye, and barley),

especially against gliadine. During the course of the disease the mucosa looses its absorptive villi and hyperplasia ofthe

enteric crypts occurs leading to a diminished ability to absorb nutrients.

Endoscopy with biopsy is currently considered the gold standard for the diagnosis of celiac disease. Besides standard

upper endoscopy, several new endoscopic approaches for diagnosing celiac disease have been applied.



Figure 1. Negative celiac disease indication: normal mucos al state.

Figure 2. Positive celiac disease indication: villous atro phy.

The modified immersion technique described in [1] is based onthe instillation of water into the duodenal lumen for better

visualization of the villi. Furthermore magnifying endoscopy (standard endoscopy with additional magnification) hasbeen

investigated [2]. For the performance of capsule endoscopy[3] the patient swallows a small capsule equipped with a camera

that takes images of the duodenal mucosa during its passage through the intestine. All these techniques aim for detection of

total or partial villous atrophy and other specific markers.These specific markers show a high specificity for celiac disease

in adult patients if all of them are found during endoscopy: scalloping of the small bowel folds, reduction in the number or

loss of Kerkring’s folds, scalloped folds, mosaic patterns, and visualization of the underlying blood vessels [4].

Figures 1 and 2 show examples for duodenal images with positive and negative indications for celiac disease.

During endoscopy at least three duodenal biopsies are taken. Microscopic changes within these specimen are classified

according to Marsh classification [5].

The whole procedure of celiac disease diagnosis, includingduodenoscopy with biopsy, is a time-consuming and cost-

intensive process. To save costs, time, and manpower and simultaneously increase the safety of the procedure it would be

desirable to develop an approach avoiding biopsy. Recent studies [1, 6] investigating such endoscopic techniques report

reliable results. These could be further improved by analysis of the acquired visual data (digital images and video sequences)

with the assistance of computers.

In this work we apply several techniques that were developedfor Pit pattern classification of magnifying endoscopic

images to imagery obtained from small bowel endoscopy. The aim is the detection of the villous atrophy and classification

with respect to its extent (no villous atrophy, partial, or total villous atrophy).



2. Automated Classification

Computer based image classification is usually performed inthree steps. The first step is to detect image regions that show

high informational content for the particular classification problem. Since almost no classification algorithms can cope with

high-dimensional input data, we have to reduce the dimension of these image regions. Next, the discriminative information

of an image is encoded by a numerical feature vector describing the relevant information. Various techniques can be usedfor

this process. Finally, the features are used for training ofthe classification algorithm (i.e. determining the optimalparameters

for the specific classification problem). Any unknown image that is presented to the classification algorithm is then classified

according to the previously learned settings.

2.1 Image preprocessing

Many of the images used throughout our experiments are very blurry. Apart from that they often suffer from a low contrast.

This is why we decided to carry out experiments with preprocessing too.

To enhance the contrast we use an advanced contrast enhancement technique called CLAHE (Contrast Limited Adaptive

Histogram Equalization) [8]. Compared to other contrast enhancement algorithms (e.g. histogram equalization), thisalgo-

rithm operates on local image regions. For this purpose the image is subdivided into image tiles (so-called contextual regions)

and the contrast is enhanced within each of these regions. Toavoid artifacts between two adjacent tiles an interpolation al-

gorithm is employed. Apart from that, to avoid amplificationof present noise, the contrast enhancement is limited within

homogenous regions (which can be identified easily by high peaks in the histogram of the according region).

To sharpen the images we use Laplace sharpening [9]. Basically this technique computes a gradient image using convo-

lution with a suitable kernel. This gradient image is then added to the original image. Usually this algorithm is used with

a rather small kernel (e.g. 3x3). Regarding the images available this would very often result in highlighting present noise,

which is the main reason for using a 9x9 kernel throughout ourexperiments. The effect of the preprocessing steps is shown

in Figure 3.

2.2. Fourier-based Feature Extraction

For classification we employ features from the Fourier domain [10]. Multiple ring shaped filters with variable widths are

applied to the centered Fourier spectrum of each color channel (RGB) for selecting relevant subsets of the most discriminative

coefficients that keep the scatter within each class small and give a high interclass variability. Statistical measuresfor the

coefficients of each ring (mean, standard deviation) compose the feature vector. The main challenge with this method is

finding the optimal ring configuration (i.e. the number of rings which determines the length of the vector and the width of

each ring).



(a) (b) (c) (d)

Figure 3. The effect of the preprocessing steps. (a) origina l image (b) CLAHE applied (c) CLAHE
with subsequent sharpening applied (using a 3x3 kernel) (d) same as (c), but using a 9x9 sharpening
kernel.

Parameter Value
Bit mutation ratepm 5/lc
Number of generationsg 100
Crossover points 2
Crossover ratepc 0.6
Population sizen 500

Table 1. Parameters used for the evolutionary search of the r ing filters.

For this problem evolutionary optimization methods tend toprovide good results [11]. Having a dynamic number of rings

with a dynamic amount of Fourier coefficients (i.e. width of the ring), we try to minimize the classification error rate.

For this purpose the JEvolution [12] framework has been used, which is a lean and compact Java framework for Evolu-

tionary Algorithms supporting standard EA components (e.g. different genotype encodings, common mutation and recombi-

nation operators) and an interface for problem-specific code (i.e. the fitness evaluation).

As we are interested in the number of rings and width of each ring, the ring filter setting is encoded in a bit-chromosome.

The first 4 bits are used to encode the total number of rings (max. 15 rings). Additionally there are 5 bits used to encode

the width of each of the 15 rings (1 sign bit for the sign and 4 bits for the width). This results in a total chromosome length

lc of 79 bits. Rings having a negative width represent a gap of the given width. It is important to mention that the ring

widths are relative to the image width. For example, if the encoding consists of two rings of width 1 and 3 (sum is 4) and the

image width equals 256 pixel (half image width is 128), then the first ring is 32 (128/4) pixels wide and the second ring is 96

(3*128/4) pixels wide.

The parameters used to configure the JEvolution framework are summarized in Table 1. Selection is realized by binary

tournament selection without replacement. The fitness of anindividual is the number of correctly classified images deter-

mined by a leave-one-out cross validation over the total image set [13]. While ring configurations showing a high fitness

value (low classification error rates) are preserved in the evolutionary process, chromosomes with a low fitness value are

dropped.



In order to trim the classification algorithm to favor the correct classification of one of the classes (e.g. the clinically

more relevant class showing villous atrophy) we also employfitness functions that minimize the error rate of one single class

instead of optimizing the overall classification rate whichcan have low significance for unbalanced data sets.

In [11] it is shown that feature vectors including information from all color channels usually give better results. We follow

this strategy and extract feature vectors for each distinctcolor channel.

2.3. Classification

For feature vector classification we employ three common machine learning algorithms, namely the k-Nearest Neighbor

classifier (k-NN), Support Vector Machines (SVM), and a statistical Bayes classifier.

The k-NN classifier [13] is one of the simplest classificationalgorithms. Classification is done by finding thek closest

neighbors of an input feature vectorx in the feature space according to some distance metric. The unknown input vectorx is

then assigned to the class to which the majority of thek nearest neighbors belongs to.

The SVM classifier, further described in [14], aims for constructing classifying hyperplanes which are optimal for the

separation of the given feature vectors.

Bayes classification [15] is based on applying Bayes’ theorem on an independent feature model and requires only a small

amount of training data to estimate the parameters (means and variances of the variables) necessary for classification.

2.4. Multiclassification

Although we achieve good results with the classifiers mentioned above (c.f. Section 3.2) we additionally combine different

Fourier filters and classifiers into a multiclassifier that isbased on an reliability measure for each ring configuration contained

in the multiclassifier.

The idea behind the reliability measure is to determine how reliable a method is. That is, how reliable is a given classifier

with respect to the resulting image class for a given image. To compute this measure we employ the Bayesian probability

and get the reliabilityAm for each filter/classifier combinationm by using equation (1).

Am =

(

C
∑

i=1

Ni
biri

(1 − bi)(1 − ri) + biri

)

/
N

2
− 1 (1)

C denotes the number of image classes used,Ni denotes the number of images in classi, N denotes the total number of

images used,bi is the probability that an image is in classi andri is the classification rate for classi. Factoring the inner part

of the sum byNi results in a weighted reliability measurement. This is necessary since the number of images is unbalanced

across the image classes. Finally, the sum is divided byN/2 and decremented by 1 to map the reliability to a value between

-1 and 1.



Figure 4. The effect of different choices for f in the value remapping function.

To be able to control how strong the method reliability influences the result of the multiclassifier, the value is remapped

by using the following equation:

Vf (x) = sign(x)|x|ln(f)/ ln(0.5) (2)

wherex is the value to be remapped andf is the parameter which controls the shape of the remapping curve.

The effect of choosing different values forf on the shape of the remapping curve is depicted in Figure 4. Aswe can see

in this figure, choosingf = 0.5 corresponds to a linear mapping (i.e. the mapping has no effect at all).

The resulting image classci for an imagei is computed by using the following equation:

ci =

M
∑

j=1

Di,jVf (Aj) (3)

whereM is the number of combinations of filters and classifiers used,Di,j is the remapped class number, which has previ-

ously been assigned to imagei by filter/classifier combinationj (-1 for class 0 and 1 for class 1), andAj is the reliability of

filter/classifier combinationj. If ci < 0 the resulting class is assumed to be0. Forci > 0 the image is labeled as class 1.

3. Experimental Study

3.1. Settings

Experiments are conducted with an image database consisting of images from two regions of the small intestine referred

to asBulbus duodeniandPars descendens. These images were taken at the St. Anna’s Children Hospitalin Vienna during

2006 and 2007 using a standard duodenoscope without magnification. Subsequent biopsy and histological examination of the

mucosal state (according to Marsh classification) has led tothe final results for the test database shown in Table 2.Non-Celiac



No Celiac Celiac Total
Bulbus 162 30 192
Pars 150 49 199

Table 2. Number of images per class.

denotes visibility of villous structures, whileCeliac indicates that no villi could be detected.

Due to the rather limited number of images available for our experiments we employ leave-one-out cross validation [13].

That is, one image is picked from the database to form the validation data, while the remaining images are used to train the

respective classifier. This process is repeated for each image in the database ending up with the overall classification rate.

3.2. Results with standard classifiers

Tables 3 and 4 show the results we obtained using the evolutionary algorithm to find the optimal ring configurations for

the respective classifiers.RT denotes the overall classification result.R0, as defined in equation (4), indicates the method’s

specificity (True Negative Rate) which is the percentage of correctly classified images actually showing a normal mucosal

state.R1, as defined in equation (5), refers to the sensitivity (True Positive Rate) which is the percentage of correctly classified

images showing villous atrophy

R0 =
true negatives

true negatives+ false positives
(4)

R1 =
true positives

true positives+ false negatives
(5)

As already pointed out above, the image database is rather unbalanced with respect to the number of images in the image

classes. Thus we decided to carry out the evolutionary testsusing three different types of fitness criteria, denoted byCT ,

C1, andCS . The fitness criterionCT is the total classification rate,C1 is the classification rate for the Celiac class (i.e. the

sensitivity), andCS is the sum of the classification rates over all image classes.

Since we needed to find an optimalk-value for the k-NN classifier, we decided to encode thek-value into an additional

bit chromosome (when using the k-NN classifier). However, itturned out that the optimal value fork is either 1 or 2 for all

cases listed in tables 3 and 4. In case of the SVM classifier we tested to evolve the optimal SVM parameters too, but a full

grid search always yielded better overall classification results.

According to Table 3 the Bayes classifier delivers the best overall classification result for the Bulbus images of 94%. Apart

from that we can see, that no matter which fitness criteron we use, the results remain the same for each of the classifiers. The

worst overall classification results of 90% and 91% have beenobtained using the k-NN classifier due to low sensitivity. The



RT R0 R1 RT R0 R1 RT R0 R1 RT R0 R1

CT C1/CT C1/CS CS

Bulbus
k-NN 90 99 40 91 99 50 85 91 60 90 98 47
SVM 93 96 77 92 96 70 86 88 88 93 98 63
Bayes 94 97 77 93 100 57 92 93 83 94 99 63

Pars Descendens
k-NN 84 96 47 83 97 41 81 87 65 84 89 71
SVM 86 94 61 82 89 61 81 84 73 84 92 59
Bayes 85 91 65 80 89 51 73 72 78 86 95 59

Table 3. Detailed results for the single filter configuration s obtained by using an evolutionary algo-
rithm.

RT R0 R1 RT R0 R1 RT R0 R1 RT R0 R1

CT C1/CT C1/CS CS

Bulbus
k-NN 92 99 53 92 99 50 91 96 63 92 99 50
SVM 93 99 60 93 96 80 93 96 80 92 98 60
Bayes 97 99 83 91 98 50 86 86 90 93 98 67

Pars Descendens
k-NN 86 91 73 85 99 45 85 89 73 85 97 49
SVM 86 96 57 84 93 57 79 83 69 85 89 76
Bayes 88 99 55 79 90 47 71 68 80 86 95 61

Table 4. Detailed results for the single filter configuration s obtained by using a genetic algorithm
with mutation disabled ( mr = 0).

columnC1/CT denotes the best results obtained with respect to the overall classification rate using the fitness criterionC1.

Similarly, C1/CS denotes the best results obtained with respect to the sum of the specificity and sensitivity when using the

fitness criterionC1.

For the Pars Descendens images the SVM classifier and the Bayes classifier yield the best overall classification rate of 86%

when using the fitness criterionCT andCS , respectively. The k-NN classifier again delivers the worstoverall classification

result of 83% when using fitness criterionC1. Again, changing the fitness criterion has no great impact onthe classification

results. Only the results for the Bayes classifier drop significantly by at least 5% when using criterionC1.

To investigate whether the results can be improved when using no genetic mutation of the bit chromosomes at all, we also

carried out evolutionary tests with the mutation rate set to0. The results of these tests are shown in Table 4. Interestingly in

most cases the classification results have indeed been improved by disabling mutation. When using the SVM classifier the

results remain roughly the same with variations of only 1%. In the case of the k-NN classifier an improvement of 1-2% can

be observed. The highest improvement of 3% is achieved when using the Bayes classifier with criterionCT . However, when

using criterionC1 or CS the results remain the same or even drop slightly by 1-2 %.



RT R0 R1 RT R0 R1 RT R0 R1 RT R0 R1

CT C1/CT C1/CS CS

Bulbus
k-NN 91 99 50 92 99 50 88 91 70 92 99 50
Bayes 93 98 63 92 96 70 89 91 87 93 98 70

Pars Descendens
k-NN 85 99 43 85 99 41 83 89 65 84 99 41
Bayes 86 95 59 86 95 57 79 81 76 86 96 55

Table 5. Detailed results for the single filter configuration s obtained by using an evolutionary algo-
rithm (with CLAHE and sharpening applied).

RT R0 R1 RT R0 R1 RT R0 R1 RT R0 R1

CT C1/CT C1/CS CS

Bulbus
k-NN 92 96 70 93 99 63 90 92 77 93 99 63
Bayes 97 100 80 92 99 53 85 85 87 95 96 87

Pars Descendens
k-NN 85 92 65 86 91 69 86 91 69 86 92 67
Bayes 93 99 73 80 89 55 80 82 76 91 95 82

Table 6. Detailed results for the single filter configuration s obtained by using a genetic algorithm
with mutation disabled ( mr = 0) and preprocessing applied (CLAHE and sharpening).

Figures 5 and 6 show the different ring configurations used toobtain the classification results for the single tests using

Bulbus images and Pars Descendens images, respectively. Each triplet of images represents the ring filters used to obtain the

features for the R, G, and B channel of the RGB color model, respectively. From the filters shown in these figures we can see

that there exist many very different ring configurations forfilters which yield good results.

3.3 Results with preprocessing applied

As already pointed out in Section 2.1, we also carried out experiments using preprocessed images. The goal of these ex-

periments was to improve the classification results (especially the sensitivity values). As we can see from Table 5, the results

remain roughly the same when mutation is enabled. This applies for the Bulbus images as well as for the Par Descendens

images. All in all the valuesRT differ only slightly with variations between -3% and +3%. Only in some cases we were

able to achieve an improvement regardingRT as well as a major improvement regardingR1 (the sensitivity). These cases

are shown in bold in Table 5.

In the case of the Bulbus images and the k-NN classifierRT has been improved by 1% and the respective value ofR1 has

been increased by 10%. When looking at the best k-NN result with respect to the fitness criterionCS the improvement ofRT

is 3% whileR1 is increased by 10%. In both cases the specificity remains equal to the non-preprocessing results. In the case



(a) SVM (b) k-NN

(c) SVM, mr = 0 (d) k-NN, mr = 0

(e) Bayes (f) Bayes,mr = 0

(g) k-NN, C1 (h) k-NN, mr = 0, C1

(i) Bayes,C1 (j) Bayes,mr = 0, C1

(k) k-NN, CS (l) k-NN, mr = 0, CS

(m) SVM, CS (n) SVM, mr = 0, CS

(o) Bayes,CS (p) Bayes,mr = 0, CS

Figure 5. The filters used to obtain the fittest individuals fo r the single tests (Bulbus) where each
triple represents the the R, G and B channel (from left to righ t).



(a) SVM (b) k-NN

(c) SVM, mr = 0 (d) k-NN, mr = 0

(e) Bayes (f) Bayes,mr = 0

(g) k-NN, C1 (h) k-NN, mr = 0, C1

(i) Bayes,C1 (j) Bayes,mr = 0, C1

(k) k-NN, CS (l) k-NN, mr = 0, CS

(m) SVM, CS (n) SVM, mr = 0, CS

(o) Bayes,CS (p) Bayes,mr = 0, CS

Figure 6. The filters used to obtain the fittest individuals fo r the single tests (Pars Descendens) where
each triple represents the the R, G and B channel (from left to right).



of the Pars Descendens images only the Bayes classifier with respect to criterionCT was able to deliver an improvement for

RT andR1 by 6%.

Regarding the experiments with mutation disabled, the picture is a little bit different, as we can see from Table 6. Whilestill

most variations ofRT lie between -1% and +2%, there are more cases in whichRT andR1 show better results simultaneously.

Again, these cases are shown in bold in Table 6.

In the case of the Bulbus images and the k-NN classifier the best result with respect toCT has been improved by 1%

while the respective sensitivity has been increased by 13%.The same changes apply for the case when criterionCS is used.

The Bayes classifier was able to deliver an increase forRT of 2% and an improvement of 20% for the respective sensitivity.

Regarding the Pars Descendens images, the k-NN classifier again delivers better results with respect toCT andCS . While

RT is increased by 1% in both cases, the sensitivity has been improved by 24% and 18%, respectively. When using the

Bayes classifier we see a notable improvement ofRT for criterionCT , as well as for criterionCS , of 5%. The respective

sensitivities have been increased by 25% and 21%, respectively.

All in all we observe rather low sensitivity values (compared to the overall classification rate and the specificity). One

possible explanation for this behavior is the rather unbalanced image set used throughout our experiments. As a consequence,

regarding the first image class (containing images showing villous structures), the classifiers have much more samples to learn

their parameters from.

3.4. Results with multiclassification

From tables 3 and 4 we see that each method’s sensitivity is always considerably lower than its specificity. Therefore we

combined several single filter configurations found by different evolutionary configurations using different classifiers to get

a multiclassifier as described in Section 2.4.

The aim of this combination is to get higher classification results, especially higher sensitivities. But since there exists no

clear way to determine the configurations which should be combined for the multiclassifier, the ring filters have been found in

a heuristic way. For this purpose we tested several different combinations of configurations which have been found usingthe

different fitness criteria and which yielded good results for one of the image classes or the overall classification result. The

combinations shown in Table 7 turned out to be optimal with respect to the overall classification rate of the multiclassifier.

As we can see, the sensitivities of the chosen filters used forthe combination for the Bulbus images are high compared to the

sensitivities shown in tables 3 and 4.

As we can see from Table 8, the results obtained with the combination of different ring filters are indeed better. Compared

to the results in tables 3 and 4 we have an improvement of 1% in terms of the overall classification rate for Bulbus images

and an improvement of 3% for Pars Descendens images. While inthe latter case we have an improvement of 3% compared

to the Bayes result in Table 4, the improvement is not that high for the Bulbus images (1% for the Bayes result in Table 4).



RT R0 R1

Bulbus
SVM, CT 93 96 77
Bayes,CT 94 97 77
Bayes,CT , mutation disabled 97 99 83

Pars descendens
k-NN, CT , mutation disabled 83 99 35
k-NN, CT , mutation disabled 86 91 73
Bayes,CT 85 91 65
Bayes,CT , mutation disabled 88 99 55
k-NN, C1, mutation disabled 85 99 45
k-NN, CS 84 89 71

Table 7. The different configurations combined into the mult iclassifier.

RT R0 R1

Bulbus 98 100 87
Pars Descendens 91 99 65

Table 8. The percentage of correctly classified images obtai ned when using the combination of
several different ring filters.

Considering sensitivity in the Bulbus case, we have an improvement of at least 4%. However, the filter combination used for

the Pars Descendens images is outperformed by some of the single configurations in terms of sensitivity. The combination

for the Bulbus images consists of three distinct ring filters. The first two ring configurations have been found by carryingout

two evolutionary searches using the Bayes classifier with disabled (mr = 0) and enabled mutation, respectively. The third

configuration is the result of an evolutionary search using the SVM classifier with a full grid search enabled for the SVM

parameters. The ring filters according to the configurationsfound are shown in figures 7(a)- (c).

The combination for the Pars Descendens images consist of six different ring filters. The first two ring configurations have

(a) (b)

(c)

Figure 7. The filters used for the multiclassifier for the Bulb us images.



(a) (b)

(c) (d)

(e) (f)

Figure 8. The filters used for the multiclassifier for the Pars Descendens images.

RT R0 R1

Bulbus 97 99 83
Pars Descendens 94 99 78

Table 9. The percentage of correctly classified images obtai ned when using the combination of
several different ring filters (with preprocessing).

been found by performing an evolutionary search in conjunction with the k-NN classifier and a disabled mutation. The third

ring configuration is the result of the k-NN classifier with disabled mutation too, but using the fitness criterionC1. The fourth

ring configuration is also the result of the k-NN classifier but with enabled mutation and using the fitness criterionCS . The

last two ring configurations are the result of using the Bayesclassifier for the evolutionary search with disabled and enabled

mutation, respectively. The ring filters according to the configurations found are depicted in figures 8(a)-(f).

3.5 Result of multiclassification with preprocessing applied

Based on the experiments carried out with preprocessing applied to the images, we also tested to improve the multiclassifier

results presented above. Again, we heuristically determined the optimal combination of ring filters (from the configurations

shown in tables 5 and 6) since there is no clear way on how to choose the best combination.

The new results of the multiclassifier are shown in Table 9. Regarding the Bulbus images we see that the results are

lower compared to the results without preprocessing. Whilethe specificity dropped by 1% only, the sensitivity dropped by



RT R0 R1

Bulbus
Bayes,CT , mutation disabled 97 100 80
Bayes,CS 93 98 70
Bayes,CS , mutation disabled 95 96 87

Pars descendens
Bayes,CT , mutation disabled 93 99 73
k-NN, C1, mutation disabled 86 91 69
Bayes,CS , mutation disabled 91 95 82

Table 10. The different configurations combined into the mul ticlassifier using preprocessing.

4%. However, at least in the case of the Pars images we were able to improve the overall classification rate as well as the

sensitivity by 3% and 13%, respectively.

The configurations combined to obtain the new results are shown in Table 10. In the case of the Bulbus images we

combined three configurations which are all based on the Bayes classifier using criteriaCS andCT , two times with a disabled

mutation. For the Pars images we again combined three different configurations with a disabled mutation, two times basedon

the Bayes classifier using criteriaCT andCS and once based on the k-NN classifier using the criterionC1. Note that Table

10 also reveals a possible reason for the weaker performanceof the multiclassifier when preprocessing is applied: No SVM

configurations have been included contrasting to the case without preprocessing. When including such cases, we expect to

improve the multiclassifier results as well as it is the case for single k-NN and Bayes classifiers.

4. Conclusion

Our results have shown that the detection of villous atrophyin duodenal images by an automated classification using

evolved Fourier feature vectors is feasible. By combining the results of several filter/classifier methods we can further

improve both specificity and sensitivity. We have also shownthat we are able to get better results in some cases by applying

preprocessing. This partially applies to the multiclassifier too, as we have seen in the case of the Pars images.

Sensitivity consistently shows lower rates as compared to specificity - images exhibiting villous atrophy in certain regions

may also consist of regions without any visible degradationwhich results in a much more difficult classification task. Infuture

work we will focus on a more localized classification, so thatimages containing only some regions with villous atrophy are

potentially correctly classified as well.
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