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Abstract

Feature extraction techniques based on selection of higlsgriminant Fourier filters have been developed for an au-
tomated classification of magnifying endoscope images reghect to pit patterns of colon lesions. These are appbed t
duodenal imagery for diagnosis of celiac disease. Feataresextracted from the Fourier domain by selecting the most
discriminant features using an evolutionary algorithm.bSequent classification is performed with various standdgmb-
rithms (KNN, SVM, Bayes classifier) and combination of sehrurier filters and classifiers which is called multicléftes.

The obtained results are promising, due to a high speciffoitghe detection of mucosal damage typical of untreatecel

disease.

1. Introduction

Celiac disease is a complex autoimmune disorder that affaetsmall bowel in genetically predisposed individuals of
all age groups after introduction of gluten containing fo@dmmonly known as gluten intolerance, this disease hasaev
other names in literature, including ceeliac disease, kém)eprue, non-tropical sprue, endemic sprue, gluterrepathy or
gluten-sensitive enteropathy. Characteristic for theahe is an inflammatory reaction in the mucosa of the smaltinie
caused by a dysregulated immune response triggered bytéoggisiten proteins of certain cereals (wheat, rye, anceigrl
especially against gliadine. During the course of the disdhe mucosa looses its absorptive villi and hyperplastaef
enteric crypts occurs leading to a diminished ability toabsutrients.

Endoscopy with biopsy is currently considered the gold dat for the diagnosis of celiac disease. Besides standard

upper endoscopy, several new endoscopic approaches fpradismg celiac disease have been applied.



Figure 1. Negative celiac disease indication: normal mucos al state.

Figure 2. Positive celiac disease indication: villous atro phy.

The modified immersion technique described in [1] is basetheinstillation of water into the duodenal lumen for better
visualization of the villi. Furthermore magnifying endogy (standard endoscopy with additional magnification) theen
investigated [2]. For the performance of capsule endosf2jdhe patient swallows a small capsule equipped with a came
that takes images of the duodenal mucosa during its padsageagh the intestine. All these techniques aim for detaabio
total or partial villous atrophy and other specific markérbese specific markers show a high specificity for celiacadise
in adult patients if all of them are found during endoscomall®ping of the small bowel folds, reduction in the number o
loss of Kerkring's folds, scalloped folds, mosaic pattears] visualization of the underlying blood vessels [4].

Figures 1 and 2 show examples for duodenal images with pesitid negative indications for celiac disease.

During endoscopy at least three duodenal biopsies are .tdltemoscopic changes within these specimen are classified
according to Marsh classification [5].

The whole procedure of celiac disease diagnosis, includimalenoscopy with biopsy, is a time-consuming and cost-
intensive process. To save costs, time, and manpower andtgimaously increase the safety of the procedure it would be
desirable to develop an approach avoiding biopsy. Recediest [1, 6] investigating such endoscopic techniquesrtepo
reliable results. These could be further improved by amabyfithe acquired visual data (digital images and video sages)
with the assistance of computers.

In this work we apply several techniques that were develdpedit pattern classification of magnifying endoscopic
images to imagery obtained from small bowel endoscopy. Testhe detection of the villous atrophy and classification

with respect to its extent (no villous atrophy, partial, aa villous atrophy).



2. Automated Classification

Computer based image classification is usually performétree steps. The first step is to detect image regions that sho
high informational content for the particular classificatproblem. Since almost no classification algorithms caeaeith
high-dimensional input data, we have to reduce the dimerafithese image regions. Next, the discriminative infoiorat
of an image is encoded by a numerical feature vector dengrtbe relevant information. Various techniques can be fored
this process. Finally, the features are used for training®tlassification algorithm (i.e. determining the optipatameters
for the specific classification problem). Any unknown imalgatis presented to the classification algorithm is therstiad

according to the previously learned settings.

2.1 Image preprocessing

Many of the images used throughout our experiments are ergybApart from that they often suffer from a low contrast.
This is why we decided to carry out experiments with prepssirg too.

To enhance the contrast we use an advanced contrast enhari¢eahnique called CLAHE (Contrast Limited Adaptive
Histogram Equalization) [8]. Compared to other contrastagrtement algorithms (e.g. histogram equalization),alye-
rithm operates on local image regions. For this purposentiagé is subdivided into image tiles (so-called contextegilons)
and the contrast is enhanced within each of these regionavdid artifacts between two adjacent tiles an interpotasib
gorithm is employed. Apart from that, to avoid amplificatiohpresent noise, the contrast enhancement is limited mvithi
homogenous regions (which can be identified easily by higtkp@ the histogram of the according region).

To sharpen the images we use Laplace sharpening [9]. Bigdioal technique computes a gradient image using convo-
lution with a suitable kernel. This gradient image is thedetito the original image. Usually this algorithm is usechwit
a rather small kernel (e.g. 3x3). Regarding the imagesablailthis would very often result in highlighting presentseg
which is the main reason for using a 9x9 kernel throughoueaperiments. The effect of the preprocessing steps is shown

in Figure 3.

2.2. Fourier-based Feature Extraction

For classification we employ features from the Fourier donfibd]. Multiple ring shaped filters with variable widths are
applied to the centered Fourier spectrum of each color aidRiGB) for selecting relevant subsets of the most diserative
coefficients that keep the scatter within each class smdllgare a high interclass variability. Statistical measuimsthe
coefficients of each ring (mean, standard deviation) complos feature vector. The main challenge with this method is
finding the optimal ring configuration (i.e. the number ofgsnwhich determines the length of the vector and the width of

each ring).



Figure 3. The effect of the preprocessing steps. (a) origina | image (b) CLAHE applied (c) CLAHE

with subsequent sharpening applied (using a 3x3 kernel) (d) same as (c), but using a 9x9 sharpening
kernel.

Parameter Value

Bit mutation ratep,,, 5/1.

Number of generationg | 100

Crossover points 2

Crossover ratg, 0.6

Population size, 500

Table 1. Parameters used for the evolutionary search of the r ing filters.

For this problem evolutionary optimization methods tengrtavide good results [11]. Having a dynamic number of rings
with a dynamic amount of Fourier coefficients (i.e. widthlod ring), we try to minimize the classification error rate.

For this purpose the JEvolution [12] framework has been usbith is a lean and compact Java framework for Evolu-
tionary Algorithms supporting standard EA components.(@iffierent genotype encodings, common mutation and reécomb
nation operators) and an interface for problem-specifiec¢od. the fitness evaluation).

As we are interested in the number of rings and width of eatd the ring filter setting is encoded in a bit-chromosome.
The first 4 bits are used to encode the total number of ringx.(rh& rings). Additionally there are 5 bits used to encode
the width of each of the 15 rings (1 sign bit for the sign andtd for the width). This results in a total chromosome length
l. of 79 bits. Rings having a negative width represent a gap @fgitien width. It is important to mention that the ring
widths are relative to the image width. For example, if theagting consists of two rings of width 1 and 3 (sum is 4) and the
image width equals 256 pixel (half image width is 128), tHemfirst ring is 32 (128/4) pixels wide and the second ring is 96
(3*128/4) pixels wide.

The parameters used to configure the JEvolution framewerls@mmarized in Table 1. Selection is realized by binary
tournament selection without replacement. The fitness ohdinidual is the number of correctly classified images dete
mined by a leave-one-out cross validation over the totabenset [13]. While ring configurations showing a high fitness
value (low classification error rates) are preserved in thuéionary process, chromosomes with a low fitness valee ar

dropped.



In order to trim the classification algorithm to favor the ramt classification of one of the classes (e.g. the clinjcall
more relevant class showing villous atrophy) we also emfitogss functions that minimize the error rate of one sintdex
instead of optimizing the overall classification rate whiam have low significance for unbalanced data sets.

In [11] it is shown that feature vectors including infornmatifrom all color channels usually give better results. Wvo

this strategy and extract feature vectors for each distiolctr channel.

2.3. Classification

For feature vector classification we employ three commonhinadearning algorithms, namely the k-Nearest Neighbor
classifier (k-NN), Support Vector Machines (SVM), and aistaial Bayes classifier.

The k-NN classifier [13] is one of the simplest classificatadgorithms. Classification is done by finding theslosest
neighbors of an input feature vectoin the feature space according to some distance metric. fikm@own input vector is
then assigned to the class to which the majority ofitmearest neighbors belongs to.

The SVM classifier, further described in [14], aims for cousting classifying hyperplanes which are optimal for the
separation of the given feature vectors.

Bayes classification [15] is based on applying Bayes’ thmava an independent feature model and requires only a small

amount of training data to estimate the parameters (meahgaaiances of the variables) necessary for classification.

2.4. Multiclassification

Although we achieve good results with the classifiers meeticabove (c.f. Section 3.2) we additionally combine défer
Fourier filters and classifiers into a multiclassifier thdiased on an reliability measure for each ring configuratoomained
in the multiclassifier.

The idea behind the reliability measure is to determine tediable a method is. That is, how reliable is a given clagsifie
with respect to the resulting image class for a given imagecdmpute this measure we employ the Bayesian probability

and get the reliability4,,, for each filter/classifier combination by using equation (1).

- bir; N
An = <;Ni(1—bz‘)(1—n)+bm>/3_1 (1)

C denotes the number of image classes ugéddenotes the number of images in class$v denotes the total number of
images used; is the probability that an image is in clasandr; is the classification rate for classFactoring the inner part
of the sum byN; results in a weighted reliability measurement. This is Beagy since the number of images is unbalanced
across the image classes. Finally, the sum is divide % and decremented by 1 to map the reliability to a value between

-1and 1.
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Figure 4. The effect of different choices for  f in the value remapping function.

To be able to control how strong the method reliability inflaes the result of the multiclassifier, the value is remapped
by using the following equation:

Vi(z) = sign(z)|z| ")/ n(05) o

wherex is the value to be remapped afids the parameter which controls the shape of the remappinvgcu
The effect of choosing different values f@ron the shape of the remapping curve is depicted in Figure 4vedsan see
in this figure, choosing = 0.5 corresponds to a linear mapping (i.e. the mapping has noteitall).

The resulting image clags for an image is computed by using the following equation:

M
¢i =Y Di;Vi(4)) 3)
i=1

wherelM is the number of combinations of filters and classifiers usgd, is the remapped class number, which has previ-
ously been assigned to imagby filter/classifier combinatioyi (-1 for class 0 and 1 for class 1), ard is the reliability of

filter/classifier combination. If ¢; < 0 the resulting class is assumed to be0. &or 0 the image is labeled as class 1.

3. Experimental Study
3.1. Settings

Experiments are conducted with an image database coms@dtimages from two regions of the small intestine referred
to asBulbus duodenandPars descendend hese images were taken at the St. Anna’s Children Hodpitenna during
2006 and 2007 using a standard duodenoscope without magioific Subsequent biopsy and histological examinatioheof t

mucosal state (according to Marsh classification) has léwktfinal results for the test database shown in Tabiadh-Celiac



No Celiac | Celiac || Total
Bulbus 162 30 192
Pars 150 49 199

Table 2. Number of images per class.

denotes visibility of villous structures, whitgeliacindicates that no villi could be detected.
Due to the rather limited number of images available for oqgmegiments we employ leave-one-out cross validation [13].
That is, one image is picked from the database to form theatitin data, while the remaining images are used to train the

respective classifier. This process is repeated for eacharnmethe database ending up with the overall classificatiten r

3.2. Results with standard classifiers

Tables 3 and 4 show the results we obtained using the evoariialgorithm to find the optimal ring configurations for
the respective classifier®2; denotes the overall classification resull, as defined in equation (4), indicates the method’s
specificity (True Negative Rate) which is the percentageoofectly classified images actually showing a normal mulcosa
state.R;, as defined in equation (5), refers to the sensitivity (Trogf’e Rate) which is the percentage of correctly clagbifie

images showing villous atrophy

B true negatives
~ true negatives- false positives

(4)

Ry

B true positives
~ true positivest- false negatives

(5)

Ry

As already pointed out above, the image database is rathatanced with respect to the number of images in the image
classes. Thus we decided to carry out the evolutionary tessitg) three different types of fitness criteria, denoted’y
C1, andCys. The fitness criterioil’r is the total classification rat€;; is the classification rate for the Celiac class (i.e. the
sensitivity), and’s is the sum of the classification rates over all image classes.

Since we needed to find an optinialvalue for the k-NN classifier, we decided to encodekhelue into an additional
bit chromosome (when using the k-NN classifier). Howevegrihed out that the optimal value féris either 1 or 2 for all
cases listed in tables 3 and 4. In case of the SVM classifieested to evolve the optimal SVM parameters too, but a full
grid search always yielded better overall classificaticuits.

According to Table 3 the Bayes classifier delivers the bestailclassification result for the Bulbus images of 94%. pa
from that we can see, that no matter which fitness criteronsgethe results remain the same for each of the classifiees. Th

worst overall classification results of 90% and 91% have lmdxtained using the k-NN classifier due to low sensitivityeTh



RT|R0|R1 RT|R0|R1 RT|R0|R1 RT|R0|R1
Cr C1ICr C1/Cs [OF
Bulbus
k-NN | 90 [ 99 | 40| 91 | 99 | 50| 85| 91| 60| 90 | 98 | 47
SVM | 93 | 96| 77| 92 | 96 | 70| 86 | 88| 88 | 93 | 98 | 63
Bayes| 94 | 97 | 77| 93 | 100| 57 | 92 | 93 | 83| 94 | 99 | 63
Pars Descendens
k-NN | 84 | 96 | 47 | 83 | 97 | 41| 81 | 87| 65| 84 |89 71
SVM | 86 | 94| 61| 82| 8 | 61|81 |84| 73| 84| 92| 59
Bayes| 85 | 91| 65| 80 | 89 | 51| 73 | 72| 78| 86 | 95| 59

Table 3. Detailed results for the single filter configuration s obtained by using an evolutionary algo-
rithm.

RT|R0|R1 RT|R0|R1 RT|R0|R1 RT|R0|R1
Cr C1ICr C1/Cs Cyg
Bulbus
kK-NN | 92 | 99 | 53 | 92 | 99 | 50| 91 | 96| 63| 92 | 99 | 50
SVM | 93 (99 | 60| 93 | 96| 80| 93 | 96| 80| 92 | 98 | 60
Bayes| 97 | 99 | 83| 91 | 98 | 50 | 86 | 86 | 90 | 93 | 98 | 67
Pars Descendens
k-NN | 86 | 91 | 73| 85| 99 | 45| 85| 89| 73| 85| 97 | 49
SVM | 86 | 96 | 57| 84 | 93 | 57| 79 | 83| 69| 85| 89| 76
Bayes| 88 | 99 | 55| 79 | 90| 47 | 71 | 68 | 80| 86 | 95| 61

Table 4. Detailed results for the single filter configuration s obtained by using a genetic algorithm
with mutation disabled ( mr = 0).

columnC} /Cr denotes the best results obtained with respect to the detassification rate using the fitness criterion.
Similarly, C; /Cs denotes the best results obtained with respect to the suhe a&fpecificity and sensitivity when using the
fitness criteriorC;.

For the Pars Descendens images the SVM classifier and the Biagsifier yield the best overall classification rate of 86%
when using the fitness criteriatir andC's, respectively. The k-NN classifier again delivers the woxarall classification
result of 83% when using fithess criteriéh. Again, changing the fitness criterion has no great impacherclassification
results. Only the results for the Bayes classifier drop ficanitly by at least 5% when using criterih.

To investigate whether the results can be improved whermgusirgenetic mutation of the bit chromosomes at all, we also
carried out evolutionary tests with the mutation rate sé€ t®he results of these tests are shown in Table 4. Integhgiim
most cases the classification results have indeed beenvegphy disabling mutation. When using the SVM classifier the
results remain roughly the same with variations of only 186thie case of the k-NN classifier an improvement of 1-2% can
be observed. The highest improvement of 3% is achieved wéieg the Bayes classifier with criteri@riy. However, when

using criterionC; or Cs the results remain the same or even drop slightly by 1-2 %.



RT|R0|R1 RT|R0|R1 RT|R0|R1 RT|R0|R1
Cr C1ICr C11Cs [OF
Bulbus
k-NN | 91 [ 99 | 50| 92 | 99 | 50| 88 | 91| 70| 92 | 99 | 50
Bayes| 93 | 98 | 63| 92 | 96| 70| 89 | 91 | 87| 93 | 98 | 70
Pars Descendens
k-NN | 85 | 99 | 43| 85| 99| 41| 83| 89| 65| 84| 99| 41
Bayes| 86 | 95 | 59| 86 | 95 | 57| 79 | 81| 76 | 86 | 96 | 55

Table 5. Detailed results for the single filter configuration s obtained by using an evolutionary algo-
rithm (with CLAHE and sharpening applied).

RT|R0|R1 RT|R0|R1 RT|R0|R1 RT|R0|R1
Cr C1ICr C1/Cg Cs
Bulbus
k-NN | 92 | 96 | 70 | 93 | 99 [ 63 | 90 | 92 | 77 | 93 | 99 | 63
Bayes| 97 | 100| 80 | 92 | 99 | 53 | 85 | 85| 87 | 95 | 96 | 87
Pars Descendens
k-NN | 85| 92 | 65| 86 | 91 | 69| 86 | 91 | 69 | 86 | 92 | 67
Bayes| 93 | 99 | 73| 80 | 89| 55| 80| 82| 76| 91 | 95| 82

Table 6. Detailed results for the single filter configuration s obtained by using a genetic algorithm
with mutation disabled ( mr = 0) and preprocessing applied (CLAHE and sharpening).

Figures 5 and 6 show the different ring configurations useabtain the classification results for the single tests using
Bulbus images and Pars Descendens images, respectivelytrifdet of images represents the ring filters used to alite
features for the R, G, and B channel of the RGB color modehgetively. From the filters shown in these figures we can see

that there exist many very different ring configurationsffibers which yield good results.

3.3 Results with preprocessing applied

As already pointed out in Section 2.1, we also carried ouegrments using preprocessed images. The goal of these ex-
periments was to improve the classification results (esfig¢he sensitivity values). As we can see from Table 5, dsailts
remain roughly the same when mutation is enabled. This epfdir the Bulbus images as well as for the Par Descendens
images. All in all the value®r differ only slightly with variations between -3% and +3%. I)in some cases we were
able to achieve an improvement regardiRg as well as a major improvement regardilg (the sensitivity). These cases
are shown in bold in Table 5.

In the case of the Bulbus images and the k-NN classiieihas been improved by 1% and the respective value,dias
been increased by 10%. When looking at the best k-NN restlitnespect to the fithess criteriéry the improvement oRp

is 3% while R, is increased by 10%. In both cases the specificity remainal égthe non-preprocessing results. In the case
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Figure 5. The filters used to obtain the fittest individuals fo r the single tests (Bulbus) where each

triple represents the the R, G and B channel (from left to righ t).
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Figure 6. The filters used to obtain the fittest individuals fo r the single tests (Pars Descendens) where
each triple represents the the R, G and B channel (from left to right).



of the Pars Descendens images only the Bayes classifieragifiect to criterioi's was able to deliver an improvement for
Rt andR; by 6%.

Regarding the experiments with mutation disabled, theipéds a little bit different, as we can see from Table 6. Whiik:
most variations of2 1 lie between -1% and +2%, there are more cases in wRicand 2, show better results simultaneously.
Again, these cases are shown in bold in Table 6.

In the case of the Bulbus images and the k-NN classifier therbealt with respect t&’'r has been improved by 1%
while the respective sensitivity has been increased by TI3%.same changes apply for the case when criterigis used.
The Bayes classifier was able to deliver an increas&foof 2% and an improvement of 20% for the respective sengitivit
Regarding the Pars Descendens images, the k-NN classifiér dglivers better results with respect@g andCs. While
Ry is increased by 1% in both cases, the sensitivity has beeroirag by 24% and 18%, respectively. When using the
Bayes classifier we see a notable improvemem®gffor criterion Cr, as well as for criteriorCs, of 5%. The respective
sensitivities have been increased by 25% and 21%, resphctiv

All in all we observe rather low sensitivity values (compate the overall classification rate and the specificity). One
possible explanation for this behavior is the rather unizadd image set used throughout our experiments. As a comsegju
regarding the firstimage class (containing images showilluyg structures), the classifiers have much more samplesitn

their parameters from.

3.4. Results with multiclassification

From tables 3 and 4 we see that each method'’s sensitivityisyalconsiderably lower than its specificity. Therefore we
combined several single filter configurations found by défe evolutionary configurations using different class#it get
a multiclassifier as described in Section 2.4.

The aim of this combination is to get higher classificatiosults, especially higher sensitivities. But since theristexo
clear way to determine the configurations which should belsoed for the multiclassifier, the ring filters have been fdvim
a heuristic way. For this purpose we tested several diffe@mbinations of configurations which have been found uieg
different fitness criteria and which yielded good resultsdoe of the image classes or the overall classification te$hke
combinations shown in Table 7 turned out to be optimal wipeet to the overall classification rate of the multiclassifi
As we can see, the sensitivities of the chosen filters usettiéarombination for the Bulbus images are high comparedzo th
sensitivities shown in tables 3 and 4.

As we can see from Table 8, the results obtained with the aoatibin of different ring filters are indeed better. Compared
to the results in tables 3 and 4 we have an improvement of 1%rims of the overall classification rate for Bulbus images
and an improvement of 3% for Pars Descendens images. White ilatter case we have an improvement of 3% compared

to the Bayes result in Table 4, the improvement is not that fig the Bulbus images (1% for the Bayes result in Table 4).



| Rr [ Ro | R:
Bulbus

SVM, Cr 93 | 96 | 77
Bayes,Cr 94 | 97 | 77
Bayes,Cr, mutation disabled 97 | 99 | 83
Pars descendens

k-NN, Cr, mutation disabled| 83 | 99 | 35
k-NN, C7, mutation disabled| 86 | 91 | 73
Bayes,Cr 85 | 91| 65
Bayes,Cr, mutation disabled 88 | 99 | 55
k-NN, C1, mutation disabled| 85 | 99 | 45

k-NN, Cg 84 | 89| 71
Table 7. The different configurations combined into the mult iclassifier.
Rr | Ro | Ry
Bulbus 98 | 100 | 87

Pars Descendens 91 | 99 | 65

Table 8. The percentage of correctly classified images obtai ned when using the combination of
several different ring filters.

Considering sensitivity in the Bulbus case, we have an irgmreent of at least 4%. However, the filter combination used fo
the Pars Descendens images is outperformed by some of tjile sonfigurations in terms of sensitivity. The combination
for the Bulbus images consists of three distinct ring filtdise first two ring configurations have been found by carrging
two evolutionary searches using the Bayes classifier wighlded (nr = 0) and enabled mutation, respectively. The third
configuration is the result of an evolutionary search usirg$VM classifier with a full grid search enabled for the SVM
parameters. The ring filters according to the configurationad are shown in figures 7(a)- (c).

The combination for the Pars Descendens images consist diffeirent ring filters. The first two ring configurations leav

@
n
©

Figure 7. The filters used for the multiclassifier for the Bulb us images.




Figure 8. The filters used for the multiclassifier for the Pars Descendens images.

Rr | Ry | R1
Bulbus 97 | 99 | 83
Pars Descendens 94 | 99 | 78

Table 9. The percentage of correctly classified images obtai ned when using the combination of
several different ring filters (with preprocessing).

been found by performing an evolutionary search in conjonatith the k-NN classifier and a disabled mutation. Thecthir
ring configuration is the result of the k-NN classifier witlsalbled mutation too, but using the fitness critexign The fourth
ring configuration is also the result of the k-NN classifiet With enabled mutation and using the fitness critelign The
last two ring configurations are the result of using the Bayassifier for the evolutionary search with disabled and&th

mutation, respectively. The ring filters according to thafa@urations found are depicted in figures 8(a)-(f).

3.5 Result of multiclassification with preprocessing appéd

Based on the experiments carried out with preprocessingaldp the images, we also tested to improve the multidiessi
results presented above. Again, we heuristically detegththe optimal combination of ring filters (from the configizas
shown in tables 5 and 6) since there is no clear way on how tosehtihe best combination.

The new results of the multiclassifier are shown in Table 9gareéing the Bulbus images we see that the results are

lower compared to the results without preprocessing. Whiespecificity dropped by 1% only, the sensitivity droppgd b



(R o | T
Bulbus

Bayes,Cr, mutation disabled 97 | 100 | 80
Bayes,Cys 93 | 98 | 70
Bayes,Cs, mutation disabled 95 | 96 | 87

Pars descendens
Bayes,Cr, mutation disabled 93 | 99 | 73
k-NN, C7, mutation disabled| 86 | 91 | 69
Bayes,C's, mutation disabled 91 | 95 | 82

Table 10. The different configurations combined into the mul ticlassifier using preprocessing.

4%. However, at least in the case of the Pars images we wezd@bhprove the overall classification rate as well as the
sensitivity by 3% and 13%, respectively.

The configurations combined to obtain the new results araiisho Table 10. In the case of the Bulbus images we
combined three configurations which are all based on the Balgssifier using criteri@s andCr, two times with a disabled
mutation. For the Pars images we again combined threed@iffeonfigurations with a disabled mutation, two times based
the Bayes classifier using critetia- andC's and once based on the k-NN classifier using the critefipnNote that Table
10 also reveals a possible reason for the weaker perforntdiice multiclassifier when preprocessing is applied: No SVM
configurations have been included contrasting to the catbeuti preprocessing. When including such cases, we expect t

improve the multiclassifier results as well as it is the casesiingle k-NN and Bayes classifiers.

4. Conclusion

Our results have shown that the detection of villous atrophguodenal images by an automated classification using
evolved Fourier feature vectors is feasible. By combining tesults of several filter/classifier methods we can furthe
improve both specificity and sensitivity. We have also shtivat we are able to get better results in some cases by agplyin
preprocessing. This partially applies to the multiclassitbo, as we have seen in the case of the Pars images.

Sensitivity consistently shows lower rates as comparegdoificity - images exhibiting villous atrophy in certairgiens
may also consist of regions without any visible degradatibith results in a much more difficult classification taskfuture
work we will focus on a more localized classification, so tinages containing only some regions with villous atroptey ar

potentially correctly classified as well.
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