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Abstract
Follicular lymphoma (FL) is the second most common type of non-Hodgkin’s lymphoma. Manual
histological grading of FL is subject to remarkable inter-and intra-reader variations. A promising
approach to grading is the development of a computer-assisted system that improves consistency
and precision. Correlating information from adjacent slides with different stain types requires
establishing spatial correspondences between the digitized section pair through a precise nonrigid
image registration. However, the dissimilar appearances of the different stain types challenges
existing registration methods.

This study proposes a method for the automatic nonrigid registration of histological section
images with different stain types. This method is based on matching high level features that are
representative of small anatomical structures. This choice of feature provides a rich matching
environment, but also results in a high mismatch probability. Matching confidence is increased by
establishing local groups of coherent features through geometric reasoning. The proposed method
is validated on a set of FL images representing different disease stages. Statistical analysis
demonstrates that given a proper feature set the accuracy of automatic registration is comparable
to manual registration.
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1. Introduction
Histopathological examination is a crucial step in cancer prognosis. Pathological analysis of
biopsy samples is necessary to characterize the tumor for treatment planning. Cancer
prognosis that relies on this qualitative visual examination may have significant inter- and
intra-reader variability due to due to several factors, such as experience or fatigue at the time
of examination (1; 2). Poor reproducibility of histological grading may lead to inappropriate
clinical decisions on the timing and type of therapy, and may result in under- or over-
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treatment of patients with serious clinical consequences. A computer system capable of
extracting quantitative, and thereby more precise and objective prognostic clues, may
provide more accurate and consistent evaluations. For this reason we are developing a
computer-assisted grading system for one particular cancer type, Follicular Lymphoma (FL)
(3; 4).

FL is the second most common type of non-Hodgkin’s lymphoma that consists of a group of
cancers developing from the lymphatic system. The word of “follicular” is derived from
round-shaped biological structures, namely “follicles”, which are visible under microscope.
In current clinical practice, the risk stratification and subsequent choice of therapy for FL
mainly depends on the histological grading process that involves computing the average
number of centroblasts (CBs), i.e., malignant follicle center cells, as recommended by World
Health Organization (5; 6; 7). Due to the large number of follicles usually exhibited in
biopsy samples, only ten follicle regions equivalent to a microscopic high power field (HPF)
of 0.159mm2 are randomly sampled to make this process feasible in practice. Performing CB
count over a limited number of follicles can introduce a considerable sampling bias as the
selected follicles may not be representative of other sample regions, especially in
heterogeneous tumors (2).

With sampling regions identified, centroblasts are then manually counted in HPFs of the
selected follicle regions. FL cases are classified into three histological grades based on the
centroblast average count: grade I (0–5 CB/HPF), grade II (6–15 CB/HPF) and grade III
(>15 CB/HPF) (5). Grade I is usually associated with indolent disease and not treated, while
Grade III is associated with aggressive disease and treated aggressively. A multi-site study
reported only 61% ~ 73% grading agreement across expert pathologists (1). In addition to
this inter-observer variation, the manual counting of centroblasts is very time-consuming,
especially when a large number of biological samples need to be examined.

In the current follicle grading processes, pathologists usually resort to using pairs of adjacent
slides dyed with different stains to enhance visual contrasts. For example,
immunohistochemical (IHC) stains, e.g., CD3 and CD20, provide a clear visual contrast for
the follicle structures at low magnifications, e.g. 2×, 4× and 8×. By comparison,
Hematoxylin and Eosin (H&E) stain enhance the contrast of the cytological components,
and provide better cellular-level detail at higher magnifications, e.g. 20× and 40×. Two
representative sample image regions from IHC and H&E stained images captured at 2×
magnification are shown in Fig. 1, where follicle boundaries are clearly visible in the IHC
(CD3 stain in this specific example) stained image, but are not clearly discernible in the
H&E stained counterpart. The proposed computer-assisted system mimics the manual
grading procedure, working jointly with pairs of images with IHC and H&E stains. The
flowchart of this hybrid FL grading system is presented in Fig. 2.

One of the key steps in this system is to map the spatial coordinates of the detected follicle
positions from the IHC stained image to the H&E counterpart image where the centroblast
detection will occur. In order for the IHC image analysis to be able to interact with the H&E
analysis process, an image registration algorithm is required that allows the output of IHC
follicle detection to be fed into the H&E centroblast detection stage. In this paper, such a
methodology and its implementation on clinical cases are reported.

Image registration for biological applications has been studied extensively (8; 9; 10; 11; 12;
13; 14; 15; 16; 17; 18; 19). Registration can be considered as an optimization problem,
posed as finding the optimal transformation  between two images I1 and I2 to maximize a
defined similarity measure such as mutual information (20). Registration may also be
formulated as a problem of feature matching: finding correspondence between sets of
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representative features using descriptors and spatial relations (21). The space of
transformations includes rigid, that deals with only rotation and translation, and nonrigid,
that compensates for deformations such as bending, stretching, shearing and warping (22;
23; 14). Like most optimization processes, a good initialization is critical for a global
optimum outcome. In many cases, a good rigid registration serves as an ideal initialization
for non-rigid registration (13). For large images with conspicuous deformations, hierarchical
multi-resolution registration methods have also been widely used in medical imaging
applications (24; 25).

The key challenge for the registration of sectioned histopathological images is to
compensate for distortion introduced by slide preparation. The input slide pairs are cut with
a 5 μm thickness from adjacent locations so that the morphological structures vary
minimally between image pairs. However, there are discernible global and local
deformations between these neighboring tissue sections due to the slide preparation
procedure (i.e., sectioning, fixation, embedding, and staining). The preparation process can
introduce a variety of nonrigid deformations including bending, shearing, stretching, and
tearing. At micron resolutions, even minor deformations become conspicuous and may
prove problematic when accuracy is critical to the end application. In order to compensate
for such deformations, a nonrigid registration is essential and success depends on
establishing a large number of precise spatial correspondences throughout the extent of the
image.

An additional challenge for the registration of histopathological images exists when the
images to be registered are stained with different stain types, and consequently have
dissimilar appearances. An approach based on intensity values requires the ability to resolve
similarity between intensity signals using a measure such as mutual information. Such
similarity is not necessarily guaranteed for combinations of stain pairs, since for some stain
combinations only complex high-order perceptual qualities will be consistent. If the images
do exhibit a significant visual similarity, then an approach exists that uses correlation
sharpness as a means for classifying local similarity between intensity information (26).
However, in the case of follicular lymphoma images with H&E and IHC staining, content at
local scales appears as a uniform texture of cellular components, certainly not an ideal
condition for intensity comparison between distinct sections. Another approach exists that
uses a segmentation of tissue types as input to a registration process (13). The registration
reconciles differences in the segmentation by calculating a displacement field that is used for
nonrigid registration. Again, this approach is not reasonable in the case of follicular
lymphoma, where the content is textural and segmentation is the original problem that a
registration is intended to aid.

To address these challenges, this paper proposes a registration approach based on the
matching of small salient anatomical features. Small features such as blood vessels appear
universally in most tissues and have a common appearance in many stains, making their
extraction and matching feasible. These features are used to establish spatial
correspondences and register the images in two stages: first rigidly, to roughly align the
images, then nonrigidly, to correct for elastic distortions introduced by preparation. The first
stage uses a previously established mismatch-tolerant voting procedure (17). With the rough
alignment of the images calculated, the second stage establishes coherent local networks of
matched features between the images to enhance the confidence of matching and reduce the
probability of mismatch and provide a set of spatial correspondences that is satisfactory for
nonrigid registration.

The outline of the remaining paper is organized as follows. Section 2 describes the proposed
algorithm for registering multi-stained consecutive histopathological FL images. Two
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components, including the feature extraction and the actual transformation, are presented. In
Section 3, extensive experimental results and the validation processes are presented.
Conclusions are presented in Section 4.

2. Methods
To address the challenges of comparing content from consecutive slides stained with
different stain types, nonrigid distortion, and feature-rich content, a two stage algorithm is
proposed that consists of rigid initialization followed by nonrigid refinement. Both stages
operate by matching high level features, image regions that correspond to distinct and
anatomically significant features such as blood vessels, other ductal structures, or small
voids within the tissue area. These matches serve as the control points for calculating spatial
transformations to register the image pair. Rigid initialization estimates the rigid alignment
of the image pair from the loose consensus of correspondences between anatomical features,
following the method presented in (17). The nonrigid stage refines the initialization, by
establishing a more accurate set of feature correspondences at a local scale. Initialization
reduces the search for matching in the refinement stage, resulting in a lower likelihood of
erroneous matches and less computation.

2.1. Data
The input images of FL tissue slides are digitized using a Scope XT digitizer (Aperio, San
Diego, CA) at 40× magnification. Tissue slides are collected from the Department of
Pathology, The Ohio State University in accordance with an IRB (Institutional Review
Board) approved protocol. Slides are prepared by slicing the biopsy specimen in 5
micrometer sections. Adjacent sections are stained pairwise, one of each pair with CD3 and
the other with H&E. In this study five pairs of whole-slide biopsy specimens associated with
multiple FL patients having different grades of the disease were used.

2.2. Measure for Evaluating Image Registration
For images with the same stain type, an ideal registration would be expected to match the
areas of corresponding follicles with perfect overlap, natural morphological differences
aside. However, this expectation does not apply to the scenario of images with different
stain types, as the difference in appearance of corresponding follicles in each stain type
results in significantly different follicle boundaries. In general, the follicles in CD3-stained
images appear smaller than their H&E counterparts due to the preparation process (the tissue
is boiled or microwaved), and so when correctly registered the CD3 follicles only cover the
interior “kernel” regions of those follicle regoins in the H&E images. As illustrated in Fig. 3,
this fact implies a possible ambiguity in evaluating registration accuracy from a ground truth
perspective in that a decision cannot be made on which result is more optimal. However,
since the aim is to identify regions of interest in the H&E image, this ambiguity will not
compromise accuracy evaluation from the perspective of follicular lymphoma grading.
Therefore, we propose the performance measure as the ratio between the overlap area of the
registered CD3 and H&E follicles and the area of the CD3 follicle as follows:

(1)

where SCD3 and SH&E are follicle regions detected in the CD3 and H&E images and  is the
transformation between the two images.

This quantity is measured for multiple manually marked follicles in each image as described
in Section 3.
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2.3. Feature Extraction
Extraction of high level features is a simple process as for most types of stains these features
correspond to large contiguous regions of pixels with a common color characteristic. For
each stain type, a particular color segmentation followed by morphological operations for
cleanup usually suffices. Morphological opening is performed to reduce small noisy features
resulting from the color segmentation, and morphological closing follows to fill in small
gaps. The computational cost of these operations can be significantly reduced by performing
the extraction on down-sampled versions of the original images without compromising the
quality of the final nonrigid result. Fig. 4 demonstrates sample input and output of the
extraction process.

Given the base image B, and float image F, we extract their respective feature sets  = {bi}
and  = {fj} according to the process described above. Each feature has associated with it a

set of descriptors used for the matching processes,  and ,
where x⃗ = (x, y) is the feature centroid, s the feature area in pixels, e the feature eccentricity,
and φ the feature semimajor axis orientation.

2.4. Feature Matching
Both the initialization and refinement stages use feature matching schemes to establish
correspondences between the base and float images. The following describes the
conventions used for feature matching in both stages. Matches between individual features
are referred to as match candidates if their size and eccentricity descriptors are consistent.
That is, given the feature sets , , a match candidate (bi, fj) is established if the descriptors

of size  and eccentricity  are consistent within given percent difference thresholds
εs, εe

(2)

If the base and float images are already roughly aligned then φ-consistency may also be
enforced in the identification of match candidates.

Both stages also use feature matches to generate model rigid transformations (θ̃, T ̃x, T ̃y) as
part of their matching schemes. Generating a model rigid transformation requires, at
minimum, a pair of match candidates. To identify models originating from coherent pairs of
match candidates, geometric consistency criteria are used to ensure consistent intra-image
distances between feature centroids and also consistent feature orientations. For a pair of
match candidates to form a candidate pair, {(bi, fj), (bk, fl)}, the intra-image centroid-to-
centroid distances between features bi, bk and fj, fl are required to be consistent within the
percent difference threshold εx⃗. Additionally, for the initialization stage, the orientations of
the feature semimajor axes must be consistent with the model transformation angle θ̃
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(3)

The model transformation (θ̃, T ̃x, T ̃y) for the candidate pair {(bi, fj), (bk, fl)} is calculated by

first solving for the angle , corrected
to the interval [−π, π]. The translation components T ̃x, T ̃y are calculated using θ̃ and least
squares.

The match candidate and candidate pair concepts are illustrated in in Fig. 5.

2.5. Rigid Initialization
Determining an estimate for rigid registration from a set of feature matches requires a
method that is robust to erroneous matchings. This is especially true in microscope images
where many features are indistinguishable, and a substantial amount of mismatches are
inevitable. The fundamental idea of the method presented in (17) is the recognition that any
candidate pair {(bi, fj), (bk, fl)} defines a model rigid transformation (θ̃, T ̃x, T ̃y), and for
carefully chosen candidate matches and candidate pairs, a large portion of the concomitant
model transformations will concentrate around the desired parameters in the Euclidean
transformation space. Careful choice of matches and match pairs is achieved with a set of
consistency criteria enforced at two levels: between feature descriptors for matches between
individual base and float features, and geometrically between pairs of such matches. With a
set of model transformations identified from consistent candidate pairs, a histogram voting
scheme is used to estimate the initialization parameters (θ, Tx, Ty).

The details of rigid initialization are previously published in (17). Sample voting results
from a follicular lymphoma image pair are presented in Fig. 6. The associated parameter
values are presented in Table 1.

2.6. Nonrigid Refinement
The challenge in nonrigid registration is the sensitivity of computed non-rigid
transformations to errors in matching, a consequence of the freedom of such transformations
to accommodate distortion. In computing a relatively constrained transformation such as a
rigid transformation, the effect of mismatches can be mitigated through the constraints of the
transformation and least squares. For most common nonrigid transformation types the effect
of a mismatched feature is certainly strong locally, and depending upon the number of
matches used may also affect the registration quality globally.

For this reason the standard for establishing matches to compute a non-rigid transformation
must be strict to achieve a low probability of mismatch. In the rigid stage, feature
comparisons are made globally to accommodate the possibly gross misalignment of the
image pair. The rigid transformation is inferred from the modes of the collection of model
transformations resulting from the set of all possible candidate pairs (which inevitably
includes a large proportion of mismatches). Due to the presence of mismatches from model
transformations surrounding these modes these candidate pairs are not appropriate input for
computing the transformation of the nonrigid stage. However, the rigid initialization
provides a starting point that can reduce the search area for a stricter feature matching
procedure that can reduce the likelihood of mismatching and also computation.
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Given the rigid initialization, the problem of matching individual features with high
confidence can be formulated as a pattern matching problem. Instead of comparing
individual features solely via their descriptors, the spatial patterns formed by the collection
of features within their neighborhood can be compared to increase the matching confidence.
Features that match with a high degree of confidence will have similar spatial patterns of
neighboring features with consistent descriptors. Since these neighborhood comparisons are
made at a local scale nonrigid distortion is usually mild and local rigidity can be assumed.

Procedurally, the nonrigid matching scheme is as follows: Given feature sets  and , for
each base feature bi, the surrounding features in the Rb-neighborhood are identified. Match

candidates for bi are located in the float image within the -neighborhood centered at ,

and are matched to bi based on size , eccentricity , and orientation  (orientation can be
used as criteria now that the images are rigidly aligned). For each match candidate fj, the

surrounding features are identified within the Rf-neighborhood of , and match candidates
other than (bi, fj) are identified. From these other match candidates, candidate pairs are
formed with (bi, fj), and pairs with model rotation angle |θ̃| > τ are eliminated. The model for
each of the remaining candidate pairs is used to transform the two neighborhoods, and the
number of base features in Rb that fall within δ of an s, e, φ-consistent float feature are
counted. A match (bi, fj) is established if the maximum count exceeds the pattern match
threshold ν and . This process is illustrated in Fig. 7 and summarized in Algorithm
Table 1.

Parameters for the nonrigid matching procedure have clear interpretations and can be
selected by examining the features for a particular dataset. Neighborhood size Rb is chosen
to capture small local networks of features, and depends on the density of features and scan
magnification. The match candidate search neighborhood, S, is selected to account for error
in the rigid alignment. The match neighborhood size, δ, is chosen to account for physical
distortion and noise due to feature extraction including natural morphological differences.
Parameter values for the dataset used in this paper are presented in Section 3.

2.7. The polynomial transformation
The collection of point correspondences generated by nonrigid matching provides the
information needed to form a mapping that transforms the float image into conformation
with the base. A variety of nonrigid mappings are used in practice, differing in
computational burden, robustness to erroneous correspondences, and existence of inverse
form (22; 23; 14).

The desired transformation qualities include not only the capability to correct nonrigid
distortions, but also robustness to match errors, closed inverse form, and computationally
reasonable calculation and application. Of the commonly used nonrigid mapping types such
as thin-plate spline, local weighted mean, affine, polynomial, and piece-wise variations,
polynomial offers a good compromise between warp complexity and the aforementioned
qualities. Thin plate spline provides a minimum energy solution which is appealing for
problems involving physical deformation, however perfect conformity at correspondence
locations can potentially cause large distortion in other areas and excess error if an
erroneous correspondence exists. The lack of an explicit inverse form means the transformed
image is calculated in a forward direction, likely leaving holes in the transformed result.
Methods such as gradient search can be used to overcome the inverse problem, but at the
cost of added computation, which can become astronomical when applied to each pixel in a
gigapixel image. Kernel-based methods such as local weighted mean require a uniform
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distribution of correspondences. Given the heterogeneity of tissue features this distribution
cannot always be guaranteed.

Polynomial warping admits an inverse form, is fast in application, and is capable of
satisfactorily correcting the mild distortion encountered in sectioned images. Polynomial
warping parameters can be calculated using least squares or its variants which can mitigate
the effect of matching errors. Affine mapping offers similar benefits but is more limited in
the complexity of the warping it can represent.

Second degree polynomials are used for the results in this paper. Specifically, for a point (x,
y) in the base image, the coordinate (x′, y′) of its correspondence in the float image is

(4)

Since each pair of matched correspondences provide two equations, we need at least six
pairs of correspondences to solve for the coefficients in (4).

2.8. Experimental Procedures
To demonstrate the effectiveness of the automatic nonrigid registration method, the feature
extraction and registration algorithms were applied to the five image pairs described in
Section 2.1. Magnification was reduced from 40× to 4× using Aperio’s ImageScope
software, resulting in images roughly 10, 000 × 7500 pixels in size. For feature extraction,
the same parameters for color segmentation and morphological operations were used for all
image pairs. The automatic registration parameters, presented in Table 1, were also identical
for all image pairs. For comparison, manual rigid and manual nonrigid registrations were
also performed to the five image pairs, using eight manually selected control point pairs per
image pair. A simple Euclidean transformation was used for the rigid registrations. A second
degree polynomial transformation was used for the nonrigid registrations.

All computations were carried out on a dual core 2.6 GHz AMD Opteron system with 8
Gigabytes of RAM. Software was developed using a combination of Matlab, and Matlab’s
C/C++ interface MEX. With the RGB images loaded into memory, the entire process
executes in two minutes for a single image pair. Less than one second of that is devoted to
the nonrigid matching procedure.

Visual inspection of the feature extraction results revealed that features in two of the five
image pairs are not uniformly distributed, being concentrated almost entirely in one half of
the tissue area in each case. In regions where features are sparse, nonrigid refinement
matches are hard to establish since it is difficult to identify coherent networks of features at
a local scale. This can result in spatially clustered control points, and depending on the
severity of distortion between the slides, a transformation that is significantly biased to the
feature-rich areas of the tissue. The validation analysis that follows is carried out separately
on these challenging image pairs and the feature regular image pairs, to illustrate the
importance of feature input and the expected outcome if a sufficient feature set can be
identified.

2.9. Validation
The procedure for registration validation was motivated by the application of automated FL
grading. The goal in this application is to correctly register follicle regions so that follicle
segmentations from the CD3 image can be used to direct grading analysis in the counterpart
H&E image. To evaluate registration performance in the context of this application, the
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overlap of manually identified follicle regions was compared for different registration
methods.

For each H&E/CD3 image pair, five corresponding test follicle pairs were selected. The
boundaries of each of these test follicle pairs were then marked by five different observers.
The same test follicle pairs were marked by each observer, generating a total of 25 follicle
pair markings per observer. The overlap ratio demonstrated in Figure 3 was then computed
for every follicle test pair marking using the manual rigid, manual nonrigid, and automatic
nonrigid registrations for each image pair. We denote these overlap ratios for observer i,
image pair j, and follicle test pair k as Rigidi(j, k), Manuali(j, k), and Autoi(j, k)
respectively. The feature regular image pairs are the set j ∈ {1, 2, 3} and the challenge
image pairs are the set j ∈ {4, 5}.

This validation aims to illustrate two points: 1. that nonrigid registration is beneficial in
terms of follicle overlap and 2. that the automatic nonrigid registration is comparable to a
reasonable manual nonrigid registration. We address these points with three statistical
analyses: the boxplot graphical analysis, significance testing by paired t-test, and the Bland-
Altman graphical analysis.

The boxplot is a graphical analysis that presents the distributions of the overlap ratios for
feature image pairs, separated by both registration method and observer. The median, inner-
quartile range, and outliers are plotted for each observer-method set, {Methodi(j, k)}, ∀(j, k)
∈ {1, 2, 3} × {1, …, 5}, for some i.

To demonstrate the similarities of manual nonrigid registrations, significance testing was
performed on these observer-method sets using the paired t-test. For each observer i, the
overlap ratios were paired by method for all follicles in the feature regular image pairs,
{(Manuali(j, k), Autoi(j, k))}∀(j, k) ∈ {1, 2, 3} × {1, …, 5}. The t-statistic was calculated
for these method-pair sets,

(5)

where D ̄i and  are the mean and variance

The t-statistic ti was compared against the Student’s t distribution to compute the p-value pi.

To further illustrate the similarities between automatic and manual non-rigid registrations, a
Bland-Altman graphical analysis was performed. The Bland-Altman analysis is commonly
used in biostatistics to examine the extent of agreement between to distinct measurement
methods (27). It is included here because it illustrates the performance of the automatic and
manual methods well. We note, however, that comparing the overall performance of two
registration methods is fundamentally different from the assessment of the agreement of
measurement methods. In the case of measurement assessment, agreement between
individual samples is critical, since the measurements intended to provide the same
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information about some underlying physical state. In registration, follicle overlaps may
disagree individually between methods, but the collection of overlaps may still indicate
comparable performance.

For each observer i, the difference dj,k and mean μj,k were computed

(6)

(7)

and the mean and difference tuples (μj,k, dj,k) were plotted for all follicles in the feature
regular image pairs. Along with the mean and difference tuples, the average-difference and
95% confidence intervals are plotted to provide information on the mean performance of the
methods and their range of agreement.

Finally, a simple analysis is performed to demonstrate the spatial variation of registration
quality in the challenge image pairs. For each follicle k, the overlap ratios Autoi(j, k), j ∈ {4,
5} are averaged over observer i.

3. Results
The boxplot is presented in Figure 8. The corresponding means and standard deviations of
the observer-method sets are presented in Table 2. Comparing manual rigid and manual
nonrigid registrations, the nonrigid registration improves the mean overlap ratio for all
markings except those of observer two, demonstrating the benefit of correcting nonrigid
distortion. Mean overlap ratios for automatic nonrigid registration are comparable to manual
nonrigid, with slight improvements noted for the markings of three observers.

The p-values for the t-statistics of the method-pair sets are presented in Table 3. These p-
values range from 0.79 to 0.93 indicating no statistically significant difference between the
manual and automatic methods.

The Bland-Altman plot is presented in Figure 9. Tuples plotted above zero indicate better
performance for the automatic method. The average-difference is nearly zero for all
observers. Most tuples are clustered tightly in the center right of their plot, indicating a high
average overlap and small difference for the manual and automatic methods. Each observer
has at least one outlier tuple with a difference beyond the 95% confidence limits. For each
outlier tuple indicating superior performance for the manual registration, there is a
complementary tuple indicating superior performance for the automatic method.

The overlap results from the challenge image pairs illustrate the impact of feature input to
the automatic nonrigid registration. Where the test follicle pairs were chosen uniformly
throughout the extent of the tissue, the features in the challenge image pairs were not
uniformly distributed, resulting in a transformation that is biased to feature-rich areas. The
overlap ratios of Table 4 demonstrate this point, where test follicles located in feature rich
regions show comparable quality and others apparently suffer from a lack of proximal
feature matches.
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4. Conclusion and Discussion
This paper presents a method for the nonrigid registration of distinctly stained follicular
lymphoma section images. As a key step for fusing the information extracted from images of
two different stains, i.e., IHC and H&E, computerized registration serves as a bridge that
allows for the combination of valuable information otherwise unique in each resource in a
meaningful way. In this particular study, the registration step makes it possible to recognize
salient features from both stained images and map the follicle boundaries detected in IHC
images to appropriate locations in H&E images. As a consequence, further grading analysis
can proceed with H&E counterparts where cellular level analysis is favorable. In the end, by
providing accurate follicle boundaries on the H&E images, the registration contributes to
more precise CB count, the essential step in the FL grading process

The automatic matching method presented in this paper offers a solution for applications
such as microscopy imaging, where a large number of nondescript features are to be
matched with high-fidelity. Matching such features individually is a high probability-of-
error endeavor, and matching errors can result in poor conformation between the registered
image pair due to the freedom of nonrigid transformations. Here, confidence in matches
between individual features is enhanced by verifying the existence of coherent networks of
features in the surrounding areas.

In terms of registration accuracy, the quality of transformations derived from automatic
matching depends on the ability to extract features throughout the extent of the tissue area.
When excluding the image pairs where extracted features are sparse and highly spatially
clustered, the registrations based on automatic matching are indistinguishable from those
based on the manual nonrigid method. This suggests that the registration framework could
benefit from a more sophisticated feature extraction process. However, in practice, poorly
registered follicles located in feature sparse areas could possibly be avoided by analyzing the
spatial distribution of feature matches and their proximities to each follicle.
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Figure 1.
Sample image regions from CD3 and H&E stained FL slides captured at 2× magnification.
(a) and (b) correspond to adjacent sections from the same specimen and demonstrate local
and global deformations and the difficulty of identifying follicles from H&E-stained slides.
Sample regions corresponding to the same follicle are highlighted in red.
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Figure 2.
Flowchart of the computer-aided FL grading system.
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Figure 3.
Overlap ratio score. The corresponding boundaries of a follicle from the CD3 image (a) and
it H&E counterpart (b). As shown in (c), different registration results can produce a perfect
overlap ratio score due to the differences in follicle appearance between the CD3 and H&E
stains. In (c) The red line indicates the H&E follicle boundary, and the green and blue lines
indicate different manual registrations of the CD3 follicle boundary to the H&E.
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Figure 4.
Feature extraction. This figure contains high-level feature extraction results from a typical
H&E image (left). Extracted features, shown in a binary image(right), represent regions such
as blood vessels recognized by the use of a combination of color segmentation and
morphological operations. Descriptions of centroid location, size, eccentricity, and major-
axis orientation are calculated for each feature.
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Figure 5.
Rigid feature matching. Features are matched between the base and float images based on
size and eccentricity to form match candidates (bi, fj ), (bk, fl). Intra-image distance between
pairs of match candidates are compared to identify candidate pairs. A model rigid
transformation, (θ̃, T ̃x, T ̃y), is defined for candidate pairs with consistent distances.
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Figure 6.
Sample histogram voting result for rigid initialization of follicular lymphoma image pair.
Manual parameter results are shown in red and automatic results in green.
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Figure 7.
Nonrigid feature matching. (a) Locations of feature bi (red) and surrounding features in -

neighborhood (blue). (b) Match candidate fj (red) and surrounding features in the -
neighborhood (blue). Green lines in (a) and (b) indicate the pairings that generate a model

local rigid transformation. (c) The float features of  (red x’s) are transformed onto 
features (blue dots). In this case, the number of base features with a consistent transformed
float feature within its δ-neighborhood (green circle) is three.
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Figure 8.
Boxplots of overlap ratios for observer-methods sets from feature regular image pairs.
Outlier overlap ratios from poorly registered follicles are indicated by red cross markers.
Mean performance is comparable between manual nonrigid and automatic non-rigid
registrations.
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Figure 9.
Bland-Altman analysis of manual and automatic nonrigid registrations. Average difference
is indicated in red. The 95% confidence limits are indicated in green.
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Table 1

Summary of parameter values used in the tests and validation.

Rigid Nonrigid

Parameter Description Value Parameter Description Value

Size similarity (εs) 0.1 Base neighborhood (Rb) 1000

Eccentricity tolerance (εe) 0.1 Float neighborhood (Rf) 1100

Distance tolerance (εx⃗) 0.1 Search neighborhood (S) 250

Orientation tolerance (εφ) 5° Match neighborhood (δ) 30

Voting interval for θ(ωθ) 0.5° θ̃ angle tolerance (τ) 5°

Voting interval for T(ωT) 30 Pattern match minimum (ν) 4
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Table 2

Mean overlap ratios and standard deviations for observer-method sets of feature regular image pairs.

Observer i Rigidi Manuali Autoi

mean ± s.d. mean ± s.d. mean ± s.d.

1 0.8943 ± 0.0930 0.9373 ± 0.0889 0.9306 ± 0.1152

2 0.9223 ± 0.0667 0.9190 ± 0.0950 0.9213 ± 0.0718

3 0.9428 ± 0.0838 0.9520 ± 0.0617 0.9562 ± 0.0477

4 0.9167 ± 0.0850 0.9278 ± 0.0969 0.9316 ± 0.0727

5 0.9247 ± 0.0732 0.9384 ± 0.0691 0.9351 ± 0.0614
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Algorithm 1

Nonrigid Feature Matching

1: input: Feature sets  and , neighborhood sizes Rb, Rf, S, and δ, angle tolerance τ, and vote minimum ν

2: initialize matches  = {}

3: apply rigid transform (θ, T) to float features and correct orientations

4: for each bi ∈ 

5:

 identify 

6:

 identify 

7:  initialize match candidates  = {}

8:  for each fj ∈ 

9:

  compare , and 

10:   if (bi, fj) s, e, φ-consistent then  =  ∪ {(bi, fj)}

11:  end

12:  for each (bi, fj)∈ 

13:

  identify 

14:

  identify match candidates  between 

15:   identify match pairs  between (bi, fj ), 

16:   for each {( bi, fj), (bk, fl)} ∈ 

17:    compute model transformation (θ̃, T ̃x, T ̃y)

18:    if |θ̃| ≤ τ then

19:

    apply rigid transform (θ̃, T ̃x, T ̃y) to 

20:

    count  within δ of consistent fn ∈ (θ̃, T ̃)-transformed 

21:   end

22:   c(j) = max count

23:  end

24:
 if max c ≥ ν AND  then

25:

   

26:     =  ∪ (bi, fmatch)

27: end

28: output: 
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