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Abstract 

The cardiac muscle activation or driver function, is a major determinant of 

cardiovascular dynamics, and is often approximated by the ratio of the left ventricle 

pressure to the left ventricle volume. In an intensive care unit, the left ventricle 

pressure is usually never measured, and the left ventricle volume is only measured 

occasionally by echocardiography, so is not available real-time. This paper develops a 

method for identifying the driver function based on correlates with geometrical 

features in the aortic pressure waveform. The method is included in an overall cardio-

vascular modelling approach, and is clinically validated on a porcine model of 

pulmonary embolism. For validation a comparison is done between the optimized 

parameters for a baseline model, which uses the direct measurements of the left 

ventricle pressure and volume, and the optimized parameters from the approximated 

driver function. The parameters do not significantly change between the two 

approaches thus showing that the patient specific approach to identifying the driver 

function is valid, and has potential clinically. 

 

Keywords: Cardiac driver function; porcine model; pulmonary embolism; intensive 

care unit; cardiovascular system model 

 

 

 

 

 

 

 

 

 

 



1. Introduction 

 

Inadequate diagnosis of cardiac disease and dysfunction is prevalent in critical care 

and is a significant cause of increased length of stay and death [1]. However, 

detection, diagnosis and treatment is very difficult, with clinicians confronted by a 

wealth of confusing, contradictory numerical data. The overall goal in this research is 

to put this clinical data into a readily understood physiological context for clinicians, 

by using computational models to uncover hidden dynamics and interactions to 

improve diagnosis. 

 

In critical care, cardiac assessment commonly involves the analysis of changes in 

aortic pressure, cardiac output, ECG and gas exchange measurements relative to a 

normal or “average” patient. However complex interactions in these measurements 

can hide the underlying disease state, preventing proper treatment or detection [2]. 

Diagnosis is thus often based on potentially incomplete/flawed conceptual models and 

understanding of attending clinical staff. Hence, the primary problem is that the 

wealth of available data is not fully utilised to reveal these hidden dynamics and 

interactions. 

 

This research shifts the focus to the fundamental dynamics of the cardiovascular 

system (CVS) using computer models and patient specific parameter identification to 

create patient specific models [3, 4]. The goal is to use the parameters in these models 

to directly represent the physiological status of the patient. From this computer aided 

physiological picture, clinical diagnosis is much easier as the data now fits clinical 

expectations and hidden physiological dynamics and interactions are exposed – a 

transformation from numerical data to physiology. 

 

Recent work [5] has shown the potential for using simplified models that initially 

decouple the left and right sides of the circulation, to dramatically simplify parameter 

identification of a six chamber CVS model. A new concept of parameter identification 

was also introduced where changes in the parameters are treated as an actuation force 

into a feedback control system, where the reference output is taken to be steady state 

values of measured volume and pressure. The major advantage of the method is that 



when it converges, it must be t the global minimum, so that the correct solution is 

always found. The method was validated on the left ventricle side for a fixed 

population driver function in simulation and on two time intervals of an animal 

experiment on one pig. 

 

This paper first validates the methods on all five pigs of a porcine model of 

Pulmonary embolism [6], using a driver function which is derived directly from 

measured left ventricle pressure and volume waveforms. The results of this validation 

serve as a “gold standard” for comparison with another method that doesn’t rely on 

the left ventricle pressure and volume waveforms. This method derives information 

from correlates of specific features in the driver functions and combines with the 

aortic pressure waveform and valve timing. 

 

 

2. Methodology 

 
2.1 Cardiac model 

 

The cardiac model, is essentially a sub-model of a previously developed six chamber 

cardiac model [7, 8] with inertial effects and ventricular interaction. A schematic of 

the simplified model is shown in Figure 1. Note that this model can easily be extended 

to the right ventricle as well, but for this paper only the left side is considered. In 

Figure 1 the vena cava and pulmonary vein pressures are assumed constant and the 

model can be expressed in terms of differential equations defined: 
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where ( )e t in Equation (6) is derived from the measured left ventricle pressure and 

volume waveforms. Note that the thoracic pressure Pth in Equation (5) is set to 0 in 

this case, as the animal experiments [6] are open heart. 

 

 

 

 

 

 

Figure 1: The left ventricle-systemic system simplified model 

 

 

 

2.2 Parameter identification 

 

The parameter identification method is adapted slightly from [5] so is reproduced 

here. The unknown patient specific parameters denoted X, that are optimized for the 

left ventricle model of Equations (1)-(6), are defined: 

 

 ,, , , , ,pu es lvf ao mt av sysP E E R R RX            (7) 

 

The parameter Pvc in Equation (2) is assumed known, since it would be found from 

either identifying the right ventricle system, or by direct measurement of the central 

venous pressure, which is common in an intensive care unit. 

 

There are 6 unknown parameters in Equation (7) to be identified in the model of 

Figure 1. Therefore, the measured maximum/minimum left ventricle volume and 

aortic pressure can only uniquely identify 4 of these parameters. However, the time of 

the mitral valve closure tmt,close corresponds to the end of the atrial contraction which 

can be detected by the end of the P wave on an electrocardiogram (ECG) [9, 10]. In 

addition, the beginning of ejection can be found from the time of minimum aortic 

pressure tmin [9, 10]. The difference between these time values is known as the 

isovolumetric contraction (ivc) [9, 10] and is defined: 

 

ivc min mttT t        (8) 

mtR  

mtQ  

pulmonary 

vein 
aortic 

valve 

aoP , aoV   
avQ  

,es lvfE  

sysR  
vena 

cava 

sysQ   
vcP  

aoE  
mitral  

valve 
left 

ventricle 

lvP , lvV  

avR

 

 

puP  aorta 



Increasing the parameter Rmt in the model by a factor of two has the effect of reducing 

the period of isovolumetric contraction by a factor close to two, and vice versa. 

Therefore, an approximation to Rmt is defined: 
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Hence, if Rmt,old in Equation (9) is larger than the true value, ,ivc approxT will be smaller 

than ,ivc trueT , which will have the effect of reducing Rmt,approx and will bring it closer 

to the true value. 

A further important feature available is the maximum gradient or inflection point in 

the ascending aortic pressure wave. The parameter which has a significant effect on 

the maximum aortic pressure gradient is the resistance in the aortic valve Rav. Define: 
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where  Pao,approx and Pao,true are the simulated and “measured” aortic pressures, tmin is 

the time of minimum aortic pressure and tinflect is the time of maximum aortic pressure 

gradient. Equation (10) is an approximation to the ratio of the maximum gradients of 

Pao,approx to Pao,true and is used to avoid having to differentiate the aortic pressure 

which may be noisy. Simulation has shown that the variable   in Equation (10), 

changes inversely proportional to Rav with all other parameters held at their nominal 

values. Specifically, if Rav increases by a factor of 2, with all other parameters fixed, 

 approximately reduces by a factor of 2, with a order of magnitude less effect on the 

maximum and minimum volumes/pressures. This result motivates an approximation 

to Rav: 
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To obtain the highest accuracy and robustness, the solution proposed, is to first 

ensure that the maximum/minimum simulated volumes and aortic pressures are 

precisely matched to the measured values for given initial (but essentially arbitrary) 



estimates of Rmt and Rav. At the end of this optimization, Rmt and Rav are updated using 

Equations (9) and (11). 

Simulation has shown that increasing the parameter Ees,lvf, by a factor of 2 decreases 

the mean volume. On the other hand, increasing the parameters for Eao, Rsys and Ppu 

proportionally increase the pulse pressure difference, the mean aortic pressure and the 

stroke volume. These results motivate the following definitions: 
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Note that another reason for separating the optimization of Rmt and Rav in Equations 

(9) and (11) with the parameters in Equations (12)-(15), is that physiologically, the 

valve resistances do not change unless stenosis occurs. Stenosis usually takes months 

or years to develop so it would not be expected for these resistances to change 

significantly during a patient’s stay in the ICU, which is typically 3-7 days. However, 

to account for the possible effect of varying degrees of stenosis, the resistances Rmt 

and Rav are optimized separately between patients, but for an individual patient are 

held constant over time. In contrast, the other parameters in Equations (12)-(15) can 

change on the order of minutes to hours depending on the disease state or drugs given, 

so they are optimized regularly on the time scale of minutes to hours. 

The tests for the parameter identification method are done on five pigs from the 

porcine model of pulmonary embolism [6]. For the animal experiments, the measured 

data is from catheters [6] and the data set used is defined: 
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The overall parameter identification method is summarized in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notice that the updates in Equations (9)-(15), are similar to proportional feedback 

control. That is, these parameters can be considered to be the actuation force that 

controls the reference output, which is the data in Equation (16). The only difference 

is that instead of applying a force proportional to the difference between the reference 

and actual output, the force is proportional to the ratio of the reference to actual 

output. 

 

2.3 Driver function identification 

 

 

The driver function or time varying elastance consists of four main features as shown 

in Figure 3. The ascending inflection point corresponds to the beginning of ejection, 

Step1  Choose arbitrary set of input parameters including  Rmt and 

Rav. 

Step2  Simulate model of Equations (1)-(6) . 

Step3  Compute approximations to Ees,lvf, Ppu, Eao and Rsys from 

Equations (12)-(15). 

Step4  Simulate model Equations (1)-(6). 

Step5  If the maximum volumes and aortic pressures are matched 

within a given tolerance go to Step6, otherwise go back to 

Step3. 

Step6  Compute Rmt and Rav from Equations (9) and (11). If they 

have changed by less than 1% go to Step7 otherwise go 

back to Step3. 

Step7 Output final solution and identified parameters. 

 

Figure 2: Parameter identification algorithm for Figure 1 

 

 



the “shoulder” is the second slower ejection, the peak is the repolarization of the 

ventricle or T wave on ECG, and the descending inflection point is the end of ejection 

or beginning of filling [6, 10]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Overall shape of driver function with main features labelled including time 

points. 

 

 

The shape of the driver function in Figure 3 can change significantly, due to a change 

in heart rate or contractility, but the overall shape will still contain the main features 

in Figure 3. To track the driver function directly over time using Equation (6) requires 

continuous measurements of left ventricle pressure and volume which are not usually 

available in an ICU. 

 

However, a significant amount of information on the driver function can be derived 

from the continuous aortic pressure waveform [10]: 
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Note that the value of b̂t always occurs before the curves moves on to the shoulder, so 

the constant 0.015 is chosen empirically to ensure the shoulder is reached. This value 

was found to be reasonably constant over all pigs, and was sufficient to determine 

correlations. 

 

The remaining key unknowns in Figure 3 are: 
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The unknowns in Equation (19) can be correlated to features in the aortic pressure 

waveform. For example, Figure 4 plots 
,'

s' versu
ao ta
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e
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P

riod
for all pigs, where the 

period is used to normalize out the heart rate, and to improve the correlation. The 

values of ,'ao taP and ,'ao tdP correspond to the maximum and minimum gradients in 

the aortic pressure. The r value in Figure 4 is 0.98 showing a very strong correlation.  

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Correlation between maximum gradient in e  and maximum gradient in aoP  

 

All correlations are summarized: 
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where the lower correlations in Equation (20) are due to the values of 'tde and 

td
e being relatively constant over all pigs. The correlations in Equation (20) and the 

time points in Equations (21) can be used to reconstruct the required features of the 

driver function in Figure 3. The function used for the approximation is defined: 
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For 1( )E t , it is assumed that 1 bc t . In other words, the turning point of 1( )E t is 

assumed to be at the beginning of the shoulder. However, the approximation for bt in 

Equation (18) is only an average over all pigs and can change. Therefore, bt is 

assumed to be an unknown.  Thus, the parameters 1a , 1b and 1c can be determined 

analytically: 
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Note that the function ˆapproxe in Equation (26) does not explicitly enforce an inflection 

point at at even though the true driver function has an inflection point here. It turns 

out, that in all cases, the time of the inflection point of ˆapproxe coincides very closely 

with at , typically within 0.005 and at most 0.01 seconds. However, this result is not 

critical, as the driver function is always very close to a straight line around the 

inflection point, so the maximum slope of the driver function is always closely 

captured by ˆapproxe . Replacing ,a bt t with ,d ct t  and 1E  with 2E in Equations (27)-(28) 

gives a similar method for finding the parameters 2 2 2, ,a b c . 

 

 



3. Results 

 
To validate the methods presented, data from a data from a porcine pulmonary 

embolism experiment is used. The data is obtained from the Hemodynamics Research 

Laboratory, University of Liege, Belgium. In the experiments, a pig is injected with 

autologous blood clots every two hours to simulate pulmonary embolism [6]. The 

parameter identification method of Figure 2 is applied to this pig data using the 

measured parameters of Equation (29), for both the measured driver function of 

Equation (6) and the identified driver function from Figure 4.  

 

For each pig, mtR and avR are initially identified separately for every time period and 

then the average of all the mtR and avR values are taken to be the final identified 

values. This approach ensures that the iso-volumetric time of Equation (30) and the 

ascending aortic pressure slope are matched on average throughout the experiment, 

and enforces the physiological constraint that mtR and avR are constant over time for 

each pig. The final values of mtR and avR are then fixed in step 6 of Figure 2, and the 

remaining parameters in Equation (31) are re-identified. 

 

3.1 Measured driver function 

 

 

The maximum and minimum left ventricle volumes and aortic pressures are matched 

very accurately over all pigs with a maximum error of 5.2% in the volumes and 0.2% 

in the pressures. All model responses errors are summarized in Table 1. The mean of 

the identified parameters of four time periods for one of the pigs (pig 8) is shown in 

Table 2. The contractility ,es lvfE increases and the pulmonary vein pressure increases 

slowly as well. The systemic resistance sysR also increases a little then drops, though 

this effect is not so pronounced in pig 8. These results are consistent with 

physiological expected changes in pulmonary embolism. 

 

 

 

 

 



 

 Max/Min Vlv Max/Min Pao Max Plv Max Pao slope 
ivcT  

Max % error 5.2 0.2 4.9 24.3 11.2 

 

Table 1: Model response errors over all pigs with measured driver function 

 

 

 

Time interval 30-60 (mins) 90-150 180-240 255-270 

Elv (Hg/ml)  
1.85 1.89 2.01 2.75 

Rsys (mmHg s/ml) 
2.20 2.38 2.22 2.20 

Eao (Hg/ml) 
2.23 2.40 2.68 3.19 

Ppu (mmHg) 
4.64 4.74 5.37 5.85 

Rav (mmHg s/ml) 
0.037 0.037 0.037 0.037 

Rmt (mmHg s/ml) 
0.031 0.031 0.031 0.031 

 

Table 2: Average identified parameters for pig 8. 

 

 

 

 

3.2 Identified driver function 

 

The method of Equations (32)-(33) is now applied to identify the driver functions in 

the pig data. Figure 5 shows an example of the identified versus measured driver 

functions for four time periods in pig 8. 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Comparing the measured driver function to approximated driver function 

over 4 time intervals in pig 8. 

 

 

The mean absolute error in the approximation of the driver function compared to the 

true over all pigs was 0.15. However, importantly as shown in Figure 2, the upward 

slope and downward slope are accurately captured. The results of the parameter 

identification method of Figure 2 with the identified driver function are compared to 

the results for the measured driver function in Table 3. The mean values of 

, ,es lvf sysE R and aoE vary from 0.5-5.1 %, and the error in puP is around 10%. However, 

note that the absolute difference in the approximated values of puP are typically within 

1 mmHg of the baseline, which is more than adequate clinically. The resistances 

avR and mtR are less accurate, but the model outputs are relatively insensitive to 

changes in avR so the values of 18.6-30.1% are quite good and are expected. It is also 

known [5] that errors in mitral valve timing and isovolumetric time can have a 

significant effect on mtR , and overestimates of mtR give underestimates of puP . Mitral 

and aortic stenosis are typically simulated as 300-500% changes so 20-30% is more 

than enough to capture this disease state, but more clinical validation is needed to 

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

1

30 mins 150 mins 

210 mins 
270 mins 



understand to what accuracy these parameters are needed for adequate diagnosis. 

Figure 5 gives an example of comparing the modelled pressure volume curve and 

aortic pressure based on the approximated driver function, to the measured curves, 

showing a close match. Model response errors are also very similar to the results for 

the measured driver function in Table 1 so are not shown.  

 

 

 
,es lvfE  sysR  aoE  puP  avR  mtR  

Pig 1 2.2 0.9 5.1 11.2 27.2 29.6 

Pig 2 1.4 0.8 4.6 14.1 30.1 34.1 

Pig 7 0.7 0.5 3.4 9.8 24.3 18.7 

Pig 8 0.8 0.7 3.7 13.2 20.5 25.2 

Pig 9 0.8 1.1 2.9 10.4 18.6 20.4 

Overall 1.2 0.8 3.9 11.7 24.1 25.6 

 

 

 

4. Discussion and conclusion 

 

 
A method for identifying a time varying patient specific cardiac driver function was 

developed. The method was validated for the left ventricle on a porcine model of 

pulmonary embolism. For comparison, a baseline model was established by matching 

data using this measured driver function. The method used for matching was adapted 

from previous work but with the addition of enforcing a constraint on the resistances 

avR and mtR that they remain constant for a given pig, but can vary between pigs. This 

approach allows for the possibility of diagnosing acute mitral or aortic stenosis. The 

main physiological trends of pulmonary embolism were captured including an 

increase in contractility and systemic resistance as well as a slower overall increase in 

pulmonary vein pressure. All measured data was accurately captured including the left 

ventricle pressure which was not used in the identification. 

 

Very accurate matches were obtained to a measured driver function based on the ratio 

of the left ventricle pressure to the left ventricle volume waveforms. Identification 



was achieved using geometrical correlations between the aortic pressure and 

measured driver function with two exponential base driver functions. These curves 

represented the ascending and descending parts, and a linear model represented the 

shoulder of the driver function. In all cases the ascending maximum and descending 

minimum gradients were accurately captured as well as the height of the shoulder 

which physiologically corresponds to the twisting of the ventricle in the slower part of 

ejection. 

 

Furthermore, the method accurately captured significant changes in the driver 

function as a result of increasing heart rate. The results suggest that a robust method 

for calculating the driver function based only on the aortic pressure waveform is 

potentially available, but needs further validation on other disease states and humans. 

Importantly, when comparing the parameters identified from the approximated driver 

function with the parameters from the measured driver function, there were no 

significant changes. This results shows that removing the left ventricle pressure and 

volume profiles does not lose accuracy in the diagnostic power of the model. The 

results give confidence that a physiologically accurate model can be derived given 

data typically available in an ICU.  

 

5. References 
 

 

 

[1] D. C. Angus, W. T. Linde-Zwirble, J. Lidicker, G. Clermont, J. Carcillo, and 

M. R. Pinsky, "Epidemiology of severe sepsis in the United States: analysis of 

incidence, outcome, and associated costs of care," Critical care medicine, vol. 

29, pp. 1303-10, Jul 2001. 

[2] K. Dickstein, "Diagnosis and assessment of the heart failure patient: the 

cornerstone of effective management," European journal of heart failure, vol. 

7, pp. 303-8, Mar 16 2005. 

[3] C. Starfinger, J. G. Chase, C. E. Hann, G. M. Shaw, B. Lambermont, A. 

Ghuysen, P. Kolh, P. Dauby, and T. Desaive, "Model-based identification and 

diagnosis of a porcine model of induced endotoxic shock with hemofiltration," 

Math Biosci, vol. 216(2), pp. 132-139, 2008. 

[4] C. Starfinger, C. E. Hann, J. G. Chase, T. Desaive, A. Ghuysen, and G. M. 

Shaw, "Model-based cardiac diagnosis of pulmonary embolism," Comput 

Methods Programs Biomed, vol. 87(1), pp. 46--60, Jul 2007. 

[5] C. E. Hann, J. G. Chase, T. Desaive, C. F. Froissart, J. Revie, D. Stevenson, B. 

Lambermont, A. Ghuysen, P. Kolh, and G. M. Shaw, "Unique Parameter 



Identification for Cardiac diagnosis in Critical Care using Minimal Data Sets," 

Comput Methods Programs Biomed, in press, 2009. 

[6] A. Ghuysen, B. Lambermont, P. Kolh, V. Tchana-Sato, D. Magis, P. Gerard, 

M. Mommens, N. Janssen, T. Desaive, and V. D'Orio, "Alteration of Right 

Ventricular-Pulmonary Vascular Coupling in a Porcine Model of Progressive 

Pressure Overloading," Shock, vol. 29(2), pp. 197-204, 2007. 

[7] C. E. Hann, J. G. Chase, and G. M. Shaw, "Efficient implementation of non-

linear valve law and ventricular interaction dynamics in the minimal cardiac 

model," Comput Methods Programs Biomed, vol. 80(1), pp. 65--74, Oct 2005. 

[8] B. W. Smith, J. G. Chase, R. I. Nokes, G. M. Shaw, and G. Wake, "Minimal 

haemodynamic system model including ventricular interaction and valve 

dynamics," Medical Engineering & Physics, vol. 26(2), pp. 131-139, 2004. 

[9] A. C. Guyton and J. E. Hall, Textbook of medical physiology, 10th ed.: W.B. 

Saunders Company, Philadelphia, 2000. 

[10] R. E. Klabunde, Cardiovascular Physiology Concepts: Lippincott Williams 

and Wilkins, 2004. 

 

 


