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Abstract

An important question in Systems Biology is the design of experiments that enable discrimination

between two (or more) competing chemical pathway models or biological mechanisms. In this

paper analysis is performed between two different models describing the kinetic mechanism of

a three-substrate three-product reaction, namely the MurC reaction in the cytoplasmic phase of

peptidoglycan biosynthesis. One model involves ordered substrate binding and ordered release of the

three products; the competing model also assumes ordered substrate binding, but with fast release

of the three products. The two versions are shown to be distinguishable; however, if standard quasi

steady-state assumptions are made distinguishability can not be determined. Once model structure

uniqueness is ensured the experimenter must determine if it is possible to successfully recover rate

constant values given the experiment observations, a process known as structural identifiability.

Structural identifiability analysis is carried out for both models to determine which of the unknown

reaction parameters can be determined uniquely, or otherwise, from the ideal system outputs.

This structural analysis forms an integrated step towards the modelling of the full pathway of the

cytoplasmic phase of peptidoglycan biosynthesis.
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Parameter identification
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1. Introduction

In the biological sciences it is becoming increasingly common to collect data in high-throughput

experiments on several scales: genomic, proteomic, or metabolic (Snoep and Westerhoff [30], Sauer

et al. [27]). These data hold the promise of identifying the mechanisms of interactions that com-

prise large-scale regulatory biochemical networks. An important step in this work is the design of

experiments to allow discrimination between two (or more) competing pathway models or biologi-

cal mechanisms. Structural indistinguishability provides a formal approach to distinguish between

competing model mechanisms (Kholodenko et al. [19]).

In Systems Biology mathematical models that are generated invariably include large numbers

of state variables with numerous model parameters, many of which are unknown, or cannot be

directly measured. With such highly complex systems there are often few direct measurements

that can be made and limited access for input perturbation to elucidate system dynamics. These

limitations cause problems when investigating the existence of hidden pathways or attempting to

estimate unknown parameters. Identifiability analysis provides a formal approach to determine

what additional inputs and/or measurements are necessary in order to reduce, or remove, these

limitations and permit the derivation of models that can be used for practical purposes with greater

confidence (Snoep and Westerhoff [30], Sauer et al. [27], Kholodenko et al. [19]).

Structural indistinguishability for system models is concerned with determining the uniqueness

between possible candidates for the model (or mechanism) structure (Evans et al. [13]). The

analysis is concerned with whether the underlying possibilities for the parameterised mathematical

model can be distinguished using the inputs (perturbations or interventions) and observations (or

measurements) available for the biological system under investigation.

In chemical kinetics it is key to characterise reaction mechanisms, however there are often

several different process models that are consistent with the available data. These mechanisms may

be described by the same mathematical representation (see Érdi and Tóth [9], Espenson [10]) but

without formal analysis of the mathematical model a reaction mechanism’s validity is only disproved

by showing inconsistency with available data. Whilst this problem has been recognised [5, 6],

structural indistinguishability is not routinely applied to chemical kinetics experiments and model
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development. For linear systems structural indistinguishability analysis is generally exhaustive

with all competing mechanisms generated from a given one (see Godfrey and Chapman [16]). For

nonlinear systems, approaches are generally only for pairs of candidate models, though in some cases

a parameterised family of such candidates can be generated. There has been limited application

of structural indistinguishability analysis to the chemical kinetic models. In Schnell et al. [28] the

issues of distinguishability with respect to biochemical kinetics was considered via application of

structural indistinguishability to classical models for a single-enzyme, single-substrate reaction. In

addition, simple kinetic models are incorporated into studies of structural analysis methods, often

with Michaelis-Menten type reparameterisation (see Saccomani et al. [25], Bellu et al. [3]; however,

to the authors’ knowledge this is the first time indistinguishability and identifiability have been

applied to a full (three-substrate/three-product) enzyme kinetic model.

Structural identifiability arises in the inverse problem of inferring from the known, or assumed,

properties of a biological system, estimates for the corresponding rate constants and other parame-

ters; as such it can be considered as a special case of the structural indistinguishability problem.

Structural identifiability analysis considers the uniqueness of the unknown model parameters from

the input-output structure corresponding to proposed experiments to collect data for parameter

estimation. This is an important, but often overlooked, prerequisite to experiment design, system

identification and parameter estimation, since estimates for structurally unidentifiable parameters

are effectively meaningless. If parameter estimates are to be used to inform intervention or inhibition

strategies, or other critical decisions, then it is essential that the parameters be uniquely identi-

fiable. Numerous techniques for performing a structural identifiability analysis on linear parametric

models exist (see Godfrey and DiStefano III [17], Walter [34]). In comparison, there are relatively

few techniques available for nonlinear systems such as the Taylor series approach (Pohjanpalo [23]),

similarity transformation based approaches (Tunali and Tarn [31], Vajda et al. [32], Evans et al.

[12]) and differential algebra techniques (Ljung and Glad [20], Saccomani, Audoly, and D’Angio

[26]). Unfortunately for systems with a complex structure significant computational problems can

arise even for relatively low dimensional models. At present there has been relatively little work on

techniques for large-scale, highly complex systems, which are typical in Systems Biology. As shall be
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shown, the analytic identifiability approaches can generate computationally intractable solutions;

therefore, an alternative numerical approach that uses the sensitivity of the observation functions

to changes in the parameters is implemented to suggest the local identifiability of the parameters

and associated model (Fisher [15], Jacquez [18]).

The purpose of this paper is to explore the possible effectiveness of using structural indistingui-

shability and identifiability techniques in model discrimination within Systems Biology networks,

using MurC as a case study; to this end, a structural indistinguishability analysis is performed bet-

ween two different models describing the kinetic mechanism of the MurC (Ter-ter) reaction in the

cytoplasmic phase of bacterial peptidoglycan biosynthesis (BPB). One model assumes the kinetic

mechanism proposed by Emanuele et al. [8], which involves step-by-step release of the three pro-

ducts; the competing model assumes that the release of the products is simultaneous. A structural

identifiability analysis is also carried out for both models to ensure that the model output uniquely

determines the unknown parameters.

2. The Models

Prior to describing the mathematical models of the Ter-ter enzyme reaction, it is necessary to

review the basic biology and context of the MurC reaction. The cell wall of many bacteria is com-

posed of peptidoglycan, which is made up of a combination of peptide bonds and carbohydrates.

Peptidoglycan serves a structural role in the bacterial cell wall, giving rigidity, as well as counte-

racting the osmotic pressure of the cytoplasm (El Zoeiby et al. [7]). The BPB pathway (shown in

Fig. 1) is a significant target in the development of antibacterial agents (Walsh [33]). A detailed

understanding of the biosynthesis pathway is essential for the development of new strategies for

antibacterial action to compensate for the emergence of clinical resistance to penicillin antibiotics

in S. aureus, S. pneuminiae and Gram-negative pathogens such as P. aeruginosa (Marmor et al.

[21], Anderson et al. [1]), and the emergence of vancomycin resistance in Enterococci, together with

the lack of new classes of antibacterial agent. Although this pathway is quite well known, charac-

terisation, especially of the later lipid linked steps, has been hampered by difficulties in making the

natural substrates and there remain some uncertainties within the wider reaction network. As such
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this pathway is ideal for a feasibility study of the effectiveness of structural indistinguishability and

identifiability in mechanism discrimination, model formulation and experiment design (Snoep and

Westerhoff [30], Sauer et al. [27]).

Within the biosynthetic pathway for bacterial peptidoglycan there is already a reasonable (but

not complete) understanding of the cytoplasmic pathways. Whilst a basic pathway scheme is

recognised for this region, there are still a number of steps within the pathway where competing

reaction schemes may exist (e.g., multiple isoforms of an enzyme within the same cell) and also

where feedback inhibition may play an important (but not yet fully understood) role. The study

of the cytoplasmic phase of the biosynthetic process comprises a comprehensive understanding of

the MurA to MurF reactions of the full pathway (see Fig. 1). In this paper the focus is on MurC.

The MurC reaction to be modelled is a three-substrates, three-products enzyme catalysed reac-

tion. It is assumed that the kinetic mechanism is as proposed by Emanuele et al. [8], see Fig. 2,

which involves step-by-step release of the three products, with a competing model that assumes

that the release of the products is simultaneous. Note however that the mathematical model does

not apply to MurC alone, but to any general three-substrates three-products ordered mechanism

(potentially MurD, E, and F, if they are ordered).

2.1. Model 1: Ordered release of products

From Emanuele et al. [8] it is known that the third substrate (L-Ala) binds before the reaction

starts. Thus the reaction can be written as the following set of chemical steps:

E + S1

k1
−⇀↽−
r1

C1

C1 + S2

k2
−⇀↽−
r2

C2

C2 + S3

k3
−⇀↽−
r3

C3

k4
−⇀↽−
r4

C4

k5
−⇀↽−
r5

C5 + P

C5

k6
−⇀↽−
r6

C6 + Q

C6

k7
−⇀↽−
r7

E + R

where:
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1. Enzyme (E), E

2. Substrate 1 (ATP), S1

3. Substrate 2 (UNAM), S2

4. Substrate 3 (L-Ala), S3

5. Complex E-ATP, C1

6. Binary Complex E-ATP-UNAM, C2

7. Ternary Complex E-ATP-UNAM-L-Ala, C3

8. Complex E-ADP-UNAMA-Pi, C4

9. There are three products: ADP (R), UNAMA and Pi

Note that the order of the release of the products is not determined in this scheme, it is only known

that ADP releases at the end, the release order of the other two products (UNAMA and Pi) is not

known and therefore they have been generically called P and Q. The complexes ERP and ER are

C5 and C6, respectively.

2.2. Model 2: Fast release of products

The second model assumes that the release of the products is fast (instantaneous and simulta-

neous). The corresponding set of chemical steps is as follows:

E + S1

k1
−⇀↽−
r1

C1

C1 + S2

k2
−⇀↽−
r2

C2

C2 + S3

k3
−⇀↽−
r3

C3

k4
−⇀↽−
r4

C4

k5
−⇀↽−
r5

E + P + Q + R

2.2.1. Equations

The time evolution of the reaction is obtained by applying the Law of Mass Action to yield a

set of 13 coupled nonlinear ordinary differential equations with 14 parameters for Model 1 and 11

coupled nonlinear differential equations with 10 parameters for Model 2. The system equations for

both models are defined below.
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These are the core equations for both models

S′

1(t) = −k1E(t)S1(t) + r1C1(t),

C ′

1(t) = k1E(t)S1(t) − r1C1(t) − k2C1(t)S2(t) + r2C2(t),

S′

2(t) = −k2C1(t)S2(t) + r2C2(t),

C ′

2(t) = k2C1(t)S2(t) − r2C2(t) − k3C2(t)S3(t) + r3C3(t),

S′

3(t) = −k3C2(t)S3(t) + r3C3(t)

C ′

3(t) = k3C2(t)S3(t) − r3C3(t) − k4C3(t) + r4C4(t)

Model 1 core equations plus:

E′(t) = −k1E(t)S1(t) + r1C1(t) + k7C6(t) − r7E(t)R(t),

C ′

4(t) = k4C3(t) − r4C4(t) − k5C4(t) + r5C5(t)P (t),

C ′

5(t) = k5C4(t) − r5C5(t)P (t) − k6C5(t) + r6C6(t)Q(t),

C ′

6(t) = k6C5(t) − r6C6(t)Q(t) − k7C6(t) + r7E(t)R(t),

P ′(t) = k5C4(t) − r5C5(t)P (t),

Q′(t) = k6C5(t) − r6C6(t)Q(t),

R′(t) = k7C6(t) − r7E(t)R(t).

Model 2 core equations plus:

E′(t) = −k1ES1(t) + r1C1(t) + k5C4(t) − r5EPQR(t),

C4(t)
′ = k4C3(t) − r4C4(t) − k5C4(t) + r5EPQR(t),

P ′(t) = k5C4(t) − r5EPQR(t),

Q′(t) = k5C4(t) − r5EPQR(t),

R′(t) = k5C4(t) − r5EPQR(t).
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2.2.2. Experimental Observations

In biochemical progress curve experiments, concentrations are measured by the absorbance of

light at one or more wavelengths (see Fersht [14], Nölting [22]). If the molar absorptivities of the

measured components at these wavelengths are known, then biochemists use Beer’s law to determine

the concentrations.

Thus, in matrix notation,

yyy = εεεxxx (1)

where yyy is the vector of observed absorbances at different wavelengths, xxx is the vector of concentra-

tions of species absorbing at these wavelengths, and εεε is a matrix of molar absorptivities. In these

experiments, the kinetic parameters are determined from expressions for the species concentrations

as a function of time. The concentration of the substrate or product is recorded in time after the

initial fast transient and for a sufficiently long period to allow the reaction to approach equilibrium.

While they are less common now, progress curve experiments were widely used in the early period of

enzyme kinetics when Victor Henri was active in the field (early 20th Century). It is assumed that

progress curves are available and therefore can be related to the models presented in the previous

section.

3. Methods

3.1. Structural Indistinguishability

Since an indistinguishability analysis can be seen as a generalisation of the identifiability pro-

blem, it can be studied by modifying existing approaches for identifiability. Here a modification of

the Taylor series approach for identifiability is used.

Consider two uncontrolled systems of the form:
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Σ(ppp)





ẋ̇ẋx(t,ppp) = fff(xxx(t,ppp), ppp), xxx(0, ppp) = xxx0(ppp)

yyy(t,ppp) = hhh(xxx(t,ppp), ppp)
(2)

Σ̃(p̃pp)





˙̃xxx(t, p̃pp) = f̃ff(x̃xx(t, p̃pp), p̃pp), x̃xx(0, p̃pp) = x̃xx0(p̃pp)

ỹyy(t, p̃pp) = h̃hh(x̃xx(t, p̃pp), p̃pp)
(3)

where p ∈ Ω ⊆ R
q and p̃pp ∈ Ω̃ ⊆ R

q̃, both open subsets consisting of the admissible parameter

vectors for the two systems respectively; fff(·, ppp) and hhh(·, ppp) are analytic on M(ppp), an open and

connected subset of R
n such that xxx0(ppp) ∈ M(ppp); f̃̃f̃f(·, ppp) and h̃̃h̃h(·, ppp) are analytic on M(p̃̃p̃p), an open

and connected subset of R
ñ such that x̃̃x̃x0(p̃) ∈ M(p̃̃p̃p); ppp and p̃̃p̃p are constant parameter vectors; Ω and

Ω̃ are the sets of admissible parameter vectors for the two models (2) and (3), respectively; xxx(t,ppp)

and x̃̃x̃x(t, p̃̃p̃p) are the state variables for each model, which are the different species concentrations

whose values are governed by the system of differential equations comprising the model, (2) and

(3), respectively. These kinetics, and hence the solutions xxx(t,ppp) and x̃̃x̃x(t, p̃̃p̃p), are dependent on the

particular parameter vectors ppp ∈ Ω and p̃̃p̃p ∈ Ω̃ used in the models.

The indistinguishability problem arises because, in general, it is not possible to measure all

reactants in a given chemical reaction. An experiment that is used to collect measurements of the

process gives rise to an output structure for the model, the resulting output, or measurement vectors

are yyy(t,ppp) = (y1(t,ppp), . . . , yr(t,ppp))T and ỹ̃ỹy(t, p̃̃p̃p) = (y1(t, p̃̃p̃p), . . . , yr(t, p̃̃p̃p))T , respectively, and it is

these vectors that are compared with the collected experimental data during subsequent parameter

estimation. Suppose that there exists a ppp ∈ Ω and a p̃̃p̃p ∈ Ω̃ such that yyy(t,ppp) = ỹ̃ỹy(t, p̃̃p̃p) for all t ≥ 0.

Then it is not possible to distinguish between the model given by (2) with parameter vector ppp

(i.e., Σ(ppp)) and the model given by (3) with parameter vector p̃̃p̃p (i.e., Σ̃(p̃̃p̃p)) from their outputs.

Therefore, even with perfect data (continuous measurements that are noise-free and error-free) it

is not possible to distinguish between the reaction schemes modelled by Σ(ppp) and Σ̃(p̃̃p̃p) from the

proposed experiment. In this case the models Σ(ppp) and Σ̃(p̃̃p̃p) are said to be indistinguishable, written

as Σ(ppp) ∼ Σ̃(p̃̃p̃p). The models are therefore structurally indistinguishable (Σ ∼ Σ̃) if for almost all

ppp,there exists a p̃̃p̃p such that (Σ ∼ Σ̃) and for almost all p̃̃p̃p such that Σ̃(p̃̃p̃p) ∼ Σ(ppp).
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3.2. Structural Identifiability

Prior to discussing the methods of determining identifiability, it is necessary to formally define

identifiability of a single parameter and the relationship between parameter identifiability and

model structure identifiability. A review of identifiability techniques can be found in Godfrey and

DiStefano III [17]. For a generic parameter vector (ppp) which is a member of the set of all admissible

parameter vectors Ω, the individual parameter, pi, is referred to as locally identifiable if there exists

a neighbourhood of vectors around ppp, N(ppp), such that, if p̃̃p̃p ∈ N(ppp) ⊆ Ω and

yyy(t,ppp) = yyy(t, p̃̃p̃p) ∀ t ≥ 0, (4)

then pi = p̃i. If the neighbourhood of the locally defined set equates to the set of all admissible

vectors (N(ppp) = Ω) then the parameter pi is said to be globally identifiable. Finally, if the parameter

pi is not locally identifiable, then it is unidentifiable and the experiment that this input-output

relation corresponds to cannot be used to distinguish between pi and p̃i.

The identifiability of an individual parameter determines the identifiability of the model struc-

ture; the following definitions succinctly describe this relationship [11]:

Definition 1. A model is said to be structurally globally identifiable (SGI) if, for generic p ∈ Ω, all
of the parameters pi (in ppp) are globally identifiable.

Definition 2. (SLI). A model is said to be structurally locally identifiable (SLI) if, for generic p ∈ Ω,
all of the parameters pi (in ppp) are locally identifiable and at least one is not globally identifiable.

Definition 3. A model is said to be structurally unidentifiable (SUI) if, for generic p ∈ Ω, any of
the parameters pi (in ppp) is unidentifiable.

For a more complete definition, please refer to the papers by Chappell et al. [4] and Evans et al.

[12]. There are several techniques available to determine the identifiability of nonlinear systems

(e.g. differential algebra methods [25] or the Similarity Transformation approach [12]); however,

the Taylor series approach of Pohjanpalo [23] can be used for experiments which can produce

time series data. The basis of the Taylor series approach is that the components of the output or

observation function yi(t,ppp) and its successive time derivatives are evaluated at some known time

point (usually an initial condition), i.e.

y(t,ppp) = y(0, ppp) + y(1)(0, ppp)t + ... + y(n)(0, ppp) tn

n! + ...
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where

y(n)(0, ppp) = dn

dtn y(0, ppp).

These derivatives are thus expressed solely in terms of the system parameters ppp (and p̃̃p̃p for the

indistinguishability case). Since the coefficients in the Taylor series expansion are unique and, in

principle, measurable, the identifiability problem reduces to determining the number of solutions

for the system parameters in a set of algebraic equations that are, in general, non-linear in the

parameters. Failure to obtain a result using this approach does not necessarily imply that the

reaction schemes are distinguishable, and further tests may be required.

3.3. Quasi-Steady State Assumptions

In Model 1 there are 13 state variables corresponding to the concentrations of the enzyme (E),

three substrates (S1, S2, S3), three products (P,Q,R) and complexes (C1, C2, C3, C4, C5, C6). In

Model 2 there are 11 state variables corresponding to the concentrations of the enzyme (E), the

three substrates (S1, S2, S3), three products (P,Q,R) and complexes (C1, C2, C3 and C4). After

simplifying the models, by assuming the rate the complexes are formed are significantly faster than

other reactions, the right-hand side of both sets of model equations is given by a set of 6 differential

equations (all of them are defined by the same function) for the substrates and products. The

quasi-steady-state equations for the two models are:

QSS Model 1 : Let

f(S1, S2, S3, P,Q,R) =
A

B
(5)
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where

A = E0(r1r2r3r4r5r6r7PQR − k1k2k3k4k5k6k7S1S2S3)

B = k4k5k6k7r1r2 + k5k6k7r1r2r3 + k6k7r1r2r3r4 + k1k4k5k6k7r2S1 + k1k5k6k7r2r3S1

+ k1k6k7r2r3r4S1 + k1k2k4k5k6k7S1S2 + k1k2k5k6k7r3S1S2 + k1k2k6k7r3r4S1S2

+ k3k4k5k6k7r1S3 + k1k3k4k5k6k7S1S3 + k2k3k4k5k6k7S2S3 + k1k2k3k4k5k6S1S2S3

+ k1k2k3k4k5k7S1S2S3 + k1k2k3k4k6k7S1S2S3 + k1k2k3k5k6k7S1S2S3

+ k1k2k3k6k7r4S1S2S3 + k1k2k3k4k5r6QS1S2S3 + r7(k6 + r6Q)R(r1r2(k4k5 + r3(k5 + r4))

+ k3k4k5(r1 + k2S2)S3) + r5P (k7r1r2r3r4 + r1r2r3r4r7R + k1k7r2r3r4S1 + k1k2k7r3r4S1S2

+ k1k2k3k4k7S1S2S3 + k1k2k3k7r4S1S2S3 + r6Q(r1r2r3r4 + k1S1(r2r3r4 + k2S2(r3r4 + k3(k4 + r4)S3))

+ r7R(k4r1r2 + r1r2r3 + r1r2r4 + r1r3r4 + r2r3r4 + k3r1(k4 + r4)S3 + k2S2(r3r4 + k3(k4 + r4)S3))))

the reduced system consists of six equations, each with right-hand side given by f :

S′

i = f(S1, S2, S3, P,Q,R)

and

P ′ = Q′ = R′ = −f(S1, S2, S3, P,Q,R).

QSS Model 2 : Let

g(S1, S2, S3, P,Q,R) =
C

D
(6)

where

C = E0(r1r2r3r4r5PQR − k1k2k3k4k5S1S2S3)

D = k4k5r1r2 + k5r1r2r3 + r1r2r3r4 + k3k4k5r1S3 + k2k3k4k5S2S3 + r5PQR(k4r1r2 + r1r2r3

+ r1r2r4 + r1r3r4 + r2r3r4 + k3r1(k4 + r4)S3 + k2S2(r3r4 + k3(k4 + r4)S3)) + k1S1(k4k5r2 + k5r2r3

+ r2r3r4 + k3k4k5S3 + k2S2(k4k5 + r3(k5 + r4) + k3(k4 + k5 + r4)S3))

with the QSS system described by six equations, given by g (S1, S2 and S3) or −g (P,Q and R).
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The quasi-steady assumption is a particular case of a simplification which relies on conservation

laws; finding all conservation laws applicable for Model 1 and 2 it was possible to find reduced

versions of both models. Using this method it is possible to choose to keep certain variables, for

example only substrates, or only complexes.

3.4. Numerical Identifiability

For complex systems the symbolic analysis, as described in Section 3.2 is often difficult to

perform manually, and as is the case for the two models presented (Section 2), intractable to

symbolic computational. In such cases an alternative method is presented by Pohjanpalo [24]

which employs the derivatives of the observations functions to determine the local identifiability of

the unknown parameter vector by generating a potentially infinite Jacobian matrix, evaluated at a

known time point (t0) i.e.

J = (Jij(t0)) =




∂y1(t0,ppp)
∂p1

· · ·
∂y1(t0,ppp)

∂pq

...
. . .

...

∂ym(t0,ppp)
∂p1

· · ·
∂ym(t0,ppp)

∂pq

∂y
(1)
1 (t0,ppp)
∂p1

· · ·
∂y

(1)
1 (t0,ppp)
∂pq

...
. . .

...

∂y
(n)
1 (t0,ppp)
∂p1

· · ·
∂y

(n)
1 (t0,ppp)
∂pq

...
. . .

...




(7)

where yi is the ith observation, pj the jth element of the parameter vector p, and the superscript

(n) donates the nth derivative. For the nonlinear models presented above (Sections 2.1 and 2.2)

due to the number of parameters to be estimated and the complexity of the model, the Jacobian

matrix, as defined by (7) could not be calculated to sufficient dimensions to obtain an appropriate

rank measure.1

A less general approach that is applicable to large complex systems is to use numerical methods

1To determine the rank a minimum of the 10th Taylor series co-efficient is required for the fast model and 14th for
the ordered release model; however, evaluating at time t = 0 results in zero initial conditions for all but the enzyme
and substrates, therefore higher order co-efficients are required.
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to estimate the sensitivity matrix, where the sensitivity matrix is defined as the matrix of first

derivatives, with respect to the parameter vector ppp, of the observation at each measurement time-

point

S = (Sij) =

(
∂yi(ttt,ppp)

∂pj

)
=




∂y1(t1,ppp)
∂p1

· · ·
∂y1(t1,ppp)

∂pn

...
. . .

...

∂ym(tr,ppp)
∂p1

· · ·
∂ym(tr,ppp)

∂pn




(8)

where tr is the rth observation sample. The sensitivity matrix can be estimated using finite-

differencing methods; however, a more robust and accurate result can be obtained with Automatic

Differentiation. The local identifiability of the system can be determined from the rank of the

numerical sensitivity matrix by the following rules:

• if rank(S) = number of parameters, consistently, then the model is structurally identifiable,

else

• if rank(S) < number of parameters, the model is unidentifiable.

If the model is unidentifiable the unidentifiable parameters are indicated by the dependent columns

of the sensitivity matrix.

4. Results

4.1. Structural Indistinguishability Analysis

Using the Taylor series approach it can be shown that in order for the outputs to be equal at

least one of the parameters would genuinely need to be zero and therefore it can be safely concluded

that the two models are distinguishable. This is the case if S1 and P1 are measured simultaneously,

or other combinations of the products P,Q and R. Due to the complexity of the resulting equations

it is not possible to provide a detailed list of these results; however, a worked example can be found

in Appendix A.

For the reduced quasi steady-state model, as described in Section 3.3, it was not possible to

perform the required symbolic manipulation to offer any information with respect to the model’s

indistinguishability due to the increased equation complexity.
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4.2. Structural Identifiability Analysis

A purely analytical structural identifiability analysis using the Taylor series approach was car-

ried out for both models to ensure that the model output (i.e. continuous, perfect and noise-free

data) uniquely determines the unknown parameters. The two models yield the following parameter

vectors:

• 14 parameters for Ordered Model (Section 2.1), popopo = (k1, . . . , k7, r1, . . . , r7)
T .

• 10 parameters for Fast Model (Section 2.2), pfpfpf = (k1, . . . , k5, r1, . . . , r5)
T .

The results from all the symbolic identifiability analysis can be found in Table 1. It was found

that by measuring only one of the substrates and one of the products it is possible to identify all

parameters of Model 2, if it is assumed that the penultimate step is irreversible (i.e. r5 = 0); if this

is assumption is not made it is not possible to determine the identifiability of the model. If only

one substrate is measured it is still possible to identify a number of the model parameters, from

Table 1, 7 parameters are identifiable for Model 1, 5 for model 2. Similarly for Model 1, assuming

that release of UNAMA and Pi are irreversible (i.e. r5 = r6 = 0), all of the remaining parameters

can be uniquely determined when measuring one substrate and one product. All parameters not

listed in Table 1 must therefore be considered undetermined with regard to their identifiability, as,

if it were possible to compute additional Taylor series co-efficients, it may yield the identifiability

of the remaining parameters.

Identifiability analyses for the two models were also performed for other combinations of mea-

surements: all three products, all three substrates, etc. but measuring S1, P1 proved to be the

minimal number of feasible observations required in order to identify uniquely the maximum num-

ber of model parameters.

This analysis was also performed on the reduced versions of the models (QSS and using conser-

vation equations) but computational problems were again encountered due to the complex form of

the simplified equations. The results did not improve when attempting to include more measure-

ments, this was due to the fact that for the QSS version all six equations are the same and the
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system is reduced to just one system equation. Therefore if more measurements are added then

effectively this does not result in the addition of any additional information for the analysis.

4.3. Kinetic Constants and Parameter Models

Identifiability results for the QSS models appear to be unpromising with even the second Taylor

series co-efficient being intractable to algebraic manipulation by symbolic computation. However,

although several parameters of the full model can be identified this does not imply that this in-

formation can be used for the QSS case. It is possible to reparameterise the QSS model by using

chemical kinetic constants which relate substance reaction rates (e.g. Michaelis-Menten) to rate

constants (e.g. ki, ri)), see Segel [29]. Reparameterising in terms of kinetics constants introduces an

additional set of mathematical relationships into already intractable system equations; therefore,

to simplify the QSS model the equations can be reparameterised to incorporate the rate constants

into macro parameters by replacing the rate constant co-efficients of (5) and (6) with a single ma-

cro parameters (e.g. K1 = r1r2r3r4r5r6r7 in the numerator of (5)). If these macro parameters

are identifiable and there is a unique mapping between rate constants and macro parameters the

identifiability of the underlying forward and reverse rate constants can be determined.

The process of performing the identifiability of the QSS model can be simplified by noting the

replication inherent in the system equations. As an example consider the ordered release model

(Model 1, (5)), if the first substrate is measured the following relationships can be used to eliminate

variables

S2(t) = S1(t) − (S1(0) − S2(0))

S3(t) = S1(t) − (S1(0) − S3(0))

P (t) = S1(0) − S1(t)

Q(t) = S1(0) − S1(t)

R(t) = S1(0) − S1(t)

Substituting these conservation laws into the functions f and g, ((5) and (6), respectively, results
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in a function of S1(t) only, i.e.

S′

1(t,KKK) = F (S1(t),KKK), (9)

where KKK is a vector of the macro parameters Ki. If an alternative vector is considered (K̃̃K̃K) for the

system to be identifiable, when measuring only S1, it is the case that

S′

1(t,KKK) = F (S1(t),KKK) = F (S1(t), K̃̃K̃K) = S′

1(t, K̃̃K̃K). (10)

As F is a rational function it can be re-arrange to give a univariate polynomial (in S1(t)), which

can be equated to zero. For this equation to be equal to zero on an open interval of time it must

be the case that the coefficients are identically zero. For the ordered model this results in nine

non-zero coefficients, indicating that a maximum of nine rate constants of the QSS model can be

identifiable, five less than the required fourteen, whilst for the fast QSS Model only 9 parameters

where shown to be identifiable.

The relationship between macro parameters and rate constant can be determined by examining

the rank of the macro-rate constant Jacobian matrix, i.e.

J = (Jij) =

(
∂Ki

∂pj

)
=




∂K1

k1
· · · ∂K1

∂rn

...
. . .

...

∂Km

∂k1
· · · ∂Km

∂rn




. (11)

where Ki is the ith element of the macro parameter vector KKK and pj is the jth element of the rate

constant vector ppp. For the ordered model the rank of this matrix is thirteen, one less than the

required number of parameters, and 9 for the fast model, also one less than the total rate constant.

In both QSS models there is therefore a loss of information with regards to the macro parameter

reparameterisation which should be considered when designing the experiment. Therefore, this has

important biological implications since it is the quasi steady-state reparameterisation that is often

used in order to understand the enzymes that catalyse chemical reactions, it is fundamental to have

quantitative measurement of the rate of the catalysed reaction.
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4.4. Numerical Identifiability Analysis

In order to conduct the numerical identifiability analysis it must be possible to simulate the

output of the system equations, this requires a parameter vector (p0 ∈ R
q) around which the

sensitivity can be assessed. As initial estimates were not available from the literature, the initial

values were taken from experimental measurement of MurB, a complex also synthesised within the

peptidoglycan reaction scheme (see Figure 1). Due to the inaccuracy inherent in this approach a

Monte-Carlo approach was used, extracting a set of parameter values from a log normal distribution

p0 × 10−3 ≤ p0 ≤ p0 × 103, where p0 is the mean value specified in Table 2. This range covers the

rate constants specified by Brown et al. [2] for MurA (see Figure 1).

Even with a large parameter space the results from a numeric identifiability analysis must

still considered ‘local’, as it can not be guaranteed that uniqueness exists for the entire theoretical

parameter space (i.e. on R
+), unlike the symbolic identifiability analysis shown. The time-points for

the measurements were taken as those achievable by typical stop-flow analysis (sampling frequency

of 1000 Hz); however, a range of sampling frequencies where tried (500-10,000 Hz), with no difference

in the numerical identifiability from those shown in Table 3.

The results of the numerical identifiability analysis can be seen in Table 3, where the minimum

and maximum rank of the sensitivity matrix (8) is shown for one thousand different sets of initial

parameters drawn from the parameter space, as defined in Table 2. As in the analytical identifia-

bility analysis it is evident that measuring both product (Pi, variable P or Q) and substrate (ATP,

variable S1) together yields a greater number of identifiable parameters than measuring either in

isolation; in fact, if both are measured the system is locally identifiable for the entire parameter

space defined. However, the numerical analysis offers an improvement upon the analytical results

in relation to performing parameter estimation when the product or substrate are measured se-

parately. In the structural analysis no results are complete regarding the identifiability of any of

the parameters measuring product (P ) alone, and a minimal set of parameters is categorised for

substrate only measurements. The numerical analysis suggests that for the ordered release model,

in a worst case scenario, five parameters are unidentifiable if the ATP substrate (S1) is measured,

with four being unidentifiable if the first product is observed (P ). Similar results are seen for the
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fast release model, with the maximum of four parameters remaining unidentifiable. For the ordered

release model the unidentifiable parameters appear consistently from the reverse rate constants,

(r4, . . . , r7), irrespective of the observed state. However, if the fast release structure is assumed,

measuring ATP consistently results in the reverse rate constants being unidentifiable (r4 and r5);

measuring Pi in isolation, yields the forward rate constants (k2 and k3) as unidentifiable.

Numerical identifiability analysis was also performed on the two QSS models. The results are

shown in the last two rows of Table 3 and three parameters were seen to be consistently numerically

identifiable for the ordered model, and two for the fast release model. Both of these numbers are

significantly below (nine for both models) the maximum possible number of identifiable parameters.

5. Conclusions

In this paper the application of a range of indistinguishability and identifiability analysis, both

symbolic and numeric, have been applied to a kinetic reaction scheme. This analysis has highlighted

the inherent difficulties in designing experiment protocols for such a complex non-linear system.

However, using the proposed models for the MurC phase of the BPB pathway as an example,

the benefits of performing this analysis have been shown. Through structural indistinguishability

it has been shown that it is theoretically possible to discriminate between candidate mechanisms

in order to ascertain the most feasible and appropriate model to describe the chemical process.

Integral to the applicability of the analysis is the determination of necessary, and feasible, measu-

rements/experiments required in order to achieve distinguishability. From this analysis it can be

concluded that the common assumption of considering fast release of products as equivalent to a

one-by-one step mechanism may not be accurate as these processes are intrinsically different (dis-

tinguishable) and in theory by observing a substrate and product simultaneously distinguishable.

Once it has been determined that the candidate models are distinguishable it is necessary to

ensure the rate constants of the reaction are identifiable a priori, given the available experimental

measurements. For the MurC reaction the minimal number of feasible observations required in order

to identify, uniquely, the maximum number of model parameters proved to be the first substrate

and one of the products of the reaction. However, using purely symbolic analysis it is not possible
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to determine if all the parameters of both models are uniquely identifiable, but combining numeric

and symbolic methods suggests that measuring the substrate and product in isolation will yield a

model that is unidentifiable, whilst measuring these simultaneously will ensure that all parameters,

and therefore the model in its entirety, will be at least locally identifiable. These results have

implications in experiment design as it has been shown that relatively few measurable species are

needed to be able to identify a great deal of the underlying parameters involved and therefore this

reduces the amount of necessary experiments that may need to be performed.

An important issue addressed in this work are the difficulties encountered when extracting

rate constant information from steady-state experiments. Unlike the models generated for the

pre-steady state experiments, i.e. the full fast and ordered release models, the quasi steady-state

models are intractable to symbolic analysis, with respect to the models indistinguishability or

identifiability. Numerical results suggests that a small number of rate constants are identifiable but

without the support of the symbolic results it is difficult to confidently identify which parameters

the results relate to. Experimenters should therefore realise that multi-substrate reactions cannot

be adequately described by velocity equations derived from rapid equilibrium assumptions alone as

the distribution of enzyme species depends on the rate constants of all steps.
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A. Indistinguishability Example

Due to the complexity of the models presented for describing the MurC reaction it is not possible

to provide full details of all of the analysis. Therefore, two worked examples are shown describing the

use of the Taylor series method to determine model indistinguishability and parameter identifiability.

The system of equations for Model 1 (Ordered complex release) can be described by the following:

E′(t) = −k1E(t)S1(t) + r1C1(t) + k7C6(t) − r7E(t)R(t)

S′

1(t) = −k1E(t)S1(t) + r1C1(t)

S′

2(t) = −k2C1(t)S2(t) + r2C2(t)

S′

3(t) = −k3S3(t)C2(t) + r3C3(t)

C ′

1(t) = k1E(t)S1(t) − r1C1(t) − k2C1(t)S2(t) + r2C2(t)

C ′

2(t) = k2C1(t)S2(t) − r2C2(t) − k3S3(t)C2(t) + r3C3(t)

C ′

3(t) = k3S3(t)C2(t) − r3C3(t) − k4C3(t) + r4C4(t) (12)

C ′

4(t) = k4C3(t) − r4C4(t) − k5C4(t) + r5C5(t)P (t)

C ′

5(t) = k5C4(t) − r5C5(t)P (t) − k6C5(t) + r6C6(t)Q(t)

C ′

6(t) = k6C5(t) − r6C6(t)Q(t) − k7C6(t) + r7E(t)R(t)

P ′(t) = k5C4(t) − r5C5(t)P (t)

Q′(t) = k6C5(t) − r6C6(t)Q(t)

R′(t) = k7C6(t) − r7E(t)R(t)
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with the following initial conditions:

S1(0) = S10;S2(0) = S20;S3(0) = S30;C1(0) = 0;C2(0) = 0;C3(0) = 0;

C4(0) = 0;C5(0) = 0;C6(0) = 0;P (0) = 0;Q(0) = 0;R(0) = 0;E(0) = E0.

Model 2 (Fast release) can be described by:

Ẽ′(t) = −k̃1Ẽ(t)S̃1(t) + r̃1C̃1(t) + k̃5C̃4(t) − r̃5Ẽ(t)P̃ (t)Q̃(t)R̃(t)

S̃′

1(t) = −k̃1Ẽ(t)S̃1(t) + r̃1C̃1(t)

S̃2
′

(t) = −k̃2C̃1(t)S̃2(t) + r̃2C̃2(t)

S̃3
′

(t) = −k̃3S̃3(t)C̃2(t) + r̃3C̃3(t)

C̃1
′

(t) = k̃1Ẽ(t)S̃1(t) − r̃1C̃1(t) − k̃2C̃1(t)S̃2(t) + r̃2C̃2(t)

C̃2
′

(t) = k̃2C̃1(t)S̃2(t) − r̃2C̃2(t) − k̃3S̃3(t)C̃2(t) + r̃3C̃3(t) (13)

C̃3
′

(t) = k̃3S̃3(t)C̃2(t) − r̃3C̃3(t) − k̃4C̃3(t) + r̃4C̃4(t)

C̃4
′

(t) = k̃4C̃3(t) − r̃4C̃4(t) − k̃5C̃4(t) + r̃5Ẽ(t)P̃ (t)Q̃(t)R̃(t)

P̃ ′(t) = k̃5C̃4(t) − r̃5Ẽ(t)P̃ (t)Q̃(t)R̃(t)

Q̃′(t) = k̃5C̃4(t) − r̃5Ẽ(t)P̃ (t)Q̃(t)R̃(t)

R̃′(t) = k̃5C̃4(t) − r̃5Ẽ(t)P̃ (t)Q̃(t)R̃(t)

with the following initial conditions:

S̃1(0) = S10; S̃2(0) = S20; S̃3(0) = S30; C̃1(0) = 0; C̃2(0) = 0;

C̃3(0) = 0; C̃4(0) = 0; P̃ (0) = 0; Q̃(0) = 0; Ẽ(0) = E0; R̃(0) = 0;

If both the first substrate (S1) and first product (P ) are measured the observation functions for the

two systems are

y(t)y(t)y(t) = (S1(t), P (t))T

ỹ(t)ỹ(t)ỹ(t) = (S̃1(t), P̃ (t))T
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For the models to be indistinguishable all terms in the Taylor series expansions for each system

must be equal. Looking at the first term, evaluated at time t = 0 yields

y(0)y(0)y(0) = (S10, 0)T

ỹ(0)ỹ(0)ỹ(0) = (S10, 0)T

Evaluating the second Taylor series term

y1(0)y1(0)y1(0) = (−E0k1S10, 0)T

ỹ1(0)ỹ1(0)ỹ1(0) = (−E0k̃1S10, 0)T

and therefore k̃1 = k1. For the third Taylor series co-efficient, with k1 substituted for k̃1

y2(0)y2(0)y2(0) = (E0k1S10(E0k1 + r1 + k1S10), 0)T

ỹ2(0)ỹ2(0)ỹ2(0) = (E0k1S10(E0k1 + r̃1 + k1S10), 0)T

resulting in r̃1 = r1. This process continues until the eighth Taylor series co-efficient, where for the

models to be indistinguishable the following must hold

E0k
2
1k2k3k

2
4k

2
5S

2
10S20(−6E0k1 + r2 + k2S20)S30 = 0. (14)

Therefore, for the eighth terms to be equal, with a generic parameter vector, at least one of the

forward rate constants (k1, k2, k3, k4 and k5) must be zero, which for the reaction to take place, is

not possible, thus indicating the models must, in theory, be distinguishable.

B. Identifiability Example

To determine the identifiability of the Model 2 (Fast release) when both the first substrate and

product (S1 and P1) are measured simultaneously. The model is defined by (13); however, as the

same model is being compared the observation function is given by y(t,ppp)y(t,ppp)y(t,ppp) = (S1(t,ppp),P(t,ppp))T .

In order to generate the generic solutions, two parameter sets are created (ppp and p̃̃p̃p):



27

ppp = (k1, r1, k2, r2, k3, r3, k4, r4, k5, r5)
T ,

and

p̃̃p̃p = (k̃1, r̃1, k̃2, r̃2, k̃3, r̃3, k̃4, r̃4, k̃5, r̃5)
T .

As with the indistinguishability method seen above, successive Taylor series coefficients are

calculated to yield a set of equations relating the model parameters, from which the identifiability

classification (global or local) of each parameter can be determined. For example, the second Taylor

series for y(ppp, t0) are

ỹ1(0, ppp)ỹ1(0, ppp)ỹ1(0, ppp) = (−E0k1S10, 0)T

ỹ1(0, p̃̃p̃p)ỹ1(0, p̃̃p̃p)ỹ1(0, p̃̃p̃p) = (−E0k̃1S10, 0)T

showing k1 to be identifiable. For the third Taylor series term, with k̃1 substituted for the known

k1

ỹ2(0, ppp)ỹ2(0, ppp)ỹ2(0, ppp) = (E0k1S10(E0k1 + r1 + k1S10), 0)T

ỹ2(0, p̃̃p̃p)ỹ2(0, p̃̃p̃p)ỹ2(0, p̃̃p̃p) = (E0k1S10(E0k1 + r̃1 + k1S10), 0)T .

Indicating that the first rate constant r1 is identifiable.

This process is repeated using increasing derivatives of the observation function (y(ppp, t) and

y(p̃̃p̃p, t)) until either all parameters, or as in the case for this model, computer resource limits the

generation of further co-efficients. The eighth Taylor series coefficient giving the result as seen in

Table 1, e.g. k1 = k̃1, r1 = r̃1, k2 = k̃2, r2 = r̃2, k3 = k̃3, r3 = r̃3, k4 = k̃4, r4 = r̃4 and k5 = k̃5,

with the identifiability of rate constant r5 unknown. The two subsequent Taylor series terms

can be evaluated symbolically but the identifiability of the last reverse rate constant r5 remains

undetermined. The tenth derivative can not be evaluated due to memory resource allocation.
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Figure 1: The biosynthetic pathway for bacterial peptidoglycan
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Figure 2: Kinetic Mechanism of Uridine Diphosphate-N-acetylmuramate:L-Alanine Ligase (MurC)
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Table 1: identifiability results, only identifiable parameters are shown; all other parameters remain undetermined.
The number in brackets indicates the number of Taylor series coefficients evaluated to achieve this result.

Observation S1 P P, S1

Model 1 k1, r1, k2, r2, - (9) k1, r1, k2, r2,
k3, r3, k4 (9) k3, r3, k4, r4,

k5, k6, k7, r7 (9)
Model 2 k1, r1, k2, r2, - (7) k1, r1, k2, r2,

k3 (8) k3, r3, k4, r4, k5 (8)
QSS 1 - (2) - (2) - (2)
QSS 2 - (4) - (4) - (4)
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Table 2: mean parameter values for Monte-Carlo simulations and parameter range over which the initial value for
the simulation are sampled.

Parameter Value Range Parameter Value Range

(units) (units)

k1(µM−1s−1) 2.5E-01 2.5E-4 to 2.5E2 r1(s−1) 2.6E01 2.6E-3 to 2.6E4

k2(µM−1s−1) 2.4E01 2.4E-3 to 2.4E4 r2(s−1) 2.6E01 2.6E-3 to 2.6E4

k3(µM−1s−1) 7.5E-01 7.5E-4 to 7.5E2 r3(s−1) 1.9E01 1.9E-3 to 1.9E4

k4, k5 (s−1) 1.1E01 1.1E-2 to 1.1E4 r4, r5(s−1) 2.6E01 2.6E-3 to 2.6E4

k6, k7(µM−1s−1) 2.5E-01 2.5E-4 to 2.5E2 r6, r7(s−1) 2.6E01 2.6E-3 to 2.6E4
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Table 3: numerical identifiability results; rank of the sensitivity matrix for the two models (Model 1 - ordered, Model
2 - fast) and three observations (P - Product Pi or UNAMA, S1 - Substrate ATP).

Observation S1 P P, S1

Model 1 9-13 10-11 14

Model 2 6-8 6-8 10

QSS 1 3 3 3

QSS 2 2 2 2


