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Abstract:  A mathematical model for the pharmacokinetics of Hoechst 33342 following administration into a 

culture medium containing a population of transfected cells (HEK293 hBCRP) with a potent Breast Cancer 

Resistance Protein inhibitor, Fumitremorgin C (FTC), present is described. This non-linear compartmental 

model has seven macroscopic sub-units, with fourteen rate parameters. It describes the relationship between the 

concentration of Hoescht 33342 and FTC, initially spiked in the medium, and the observed change in 

fluorescence due to Hoescht 33342 binding to DNA. Structural identifiability analysis has been performed using 

two methods, one based on the similarity transformation/exhaustive modelling approach and the other based on 

the differential algebra approach. The analyses demonstrated that all models derived are uniquely identifiable 

for the experiments/observations available. A kinetic modelling software package, namely FACSIMILE (MPCA 

Software, UK), was used for parameter fitting and to obtain numerical solutions for the system equations. Model 

fits gave very good agreement with in-vitro data provided by AstraZeneca across a variety of experimental 

scenarios. 
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1. INTRODUCTION 

In this paper a mathematical model for the pharmacokinetics of Hoechst 33342 following administration into a 

culture medium containing a population of transfected cells (HEK293 hBCRP) is described. 

Cancer cells develop mechanisms that allow them to resist the action of anti-cancer compounds. This can reduce 

the exposure of the diseased tissue and so have consequences for the efficacy of a compound. One such 

important mechanism is efflux transport by the Breast Cancer Resistance Protein (BCRP) [1]. It is therefore 

important to know whether a novel drug is a substrate for BCRP. 

This article reports the modelling of the kinetics of an assay that uses transfected cells that express BCRP. The 

assay indirectly measures the binding potential of a drug or similar molecule to BCRP by observing the effects 

on the kinetics of Hoechst 33342 [2], a BCRP substrate. When Hoechst 33342 binds to DNA the resulting 

complex fluoresces. This allows the relative levels of Hoechst 33342 bound to DNA to be measured under 

different experimental conditions. Mathematical modelling of in vitro pharmacokinetic assays has proven useful 

elsewhere [3,4]. 

With this experimental set up it is challenging to measure the binding affinity of a drug for BCRP because the 

only known quantities in the system are the initial extracellular concentrations of Hoechst 33342 and the drug of 

interest, as well as a fluorescence time series. 

This paper describes the modelling of this system along with parameter estimates based upon experimentally 

obtained data. The intention here is to derive a compartmental model to characterise substrate binding to DNA 

and in addition account for the effect of transportation of the substrate out of the cell. Such a model, once 

validated, should permit the prediction of the dosage levels required in order to achieve the levels of absorption 

desired once bound to DNA. 

2. THE MODEL 

In the model, compartments represent different parts of the cell. Based upon what is known of the system a 

seven compartment model illustrated in Fig. 1 is used initially to describe the flow of the substrate and inhibitor 

within and out of the cell. 

Insert Figure 1 

The extracellular Hoechst 33342 (SO) diffuses into the cell (SI) and may then bind to the DNA in the nucleus 

(NS) resulting in fluorescence.  Hoechst 33342 is also transported out of the cell by a BCRP transporter (TS). 



 

 

Similarly extracellular inhibitor (IO) diffuses into the cell and is also transported out by the BCRP transporter 

(TI). 

The seven compartments and the inter-compartmental rate transfers are summarised in Table 1 (square brackets 

denoting concentration, all quantities are in term of relative fluorescence units – RFU). 

Insert Table 1 

2.1  System Equations 

The corresponding set of nonlinear ordinary differential equations characterising the proposed model was 

derived using classical mass-balance principles is given by the following: 

 

 (1) 

 

 (2) 

 

 (3) 

 

 (4) 

 

 (5) 

 

 (6) 

 

 (7) 

 

Where T0 is the total concentration of transporter molecules, N0 is the number of binding sites on the DNA, and 

n is the order of the nucleus binding reaction, which represents the number of binding sites per molecule of 

DNA. 



 

 

There is also an eighth equation, which defines the constant k, the observation gain, given by 

 (8) 

3. EXPERIMENTAL DATA 

Data were gathered at AstraZeneca, Alderley Park, UK. The multi-well plate provided 96 experiments with 

varying initial amounts of marker compound (ranging between 0.5-10μMol) and inhibitor levels (ranging 

between 0-100μMol), see Table 2 for more details. 

Insert Table 2 

Hoechst 33342 accumulation was measured using a Polarstar Optima fluorescence plate reader. Excitation filter 

= 355nm Emission filter = 460-10nm, fluorescence was measured for 120-135 cycles, 1 cycle = 1 complete 96-

well read, 30secs, Gain = 1200. Fluorescence data were captured by the Optima software for analysis. 

The measured outputs are in relative fluorescence units (RFU). The inhibitor was added at time t=0s (to 

compartment ) and the compound marker is added five minutes later at time t=300s (compartment ). 

The compound marker was added later to provide a measurement of the residual background noise fluorescence 

present during the experiments. The average background RFU for the first five minutes is subtracted 

individually from each time series (to allow for potential inhibitor independence) and the data are time shifted to 

begin at time t=300s. A sample plot of the data is shown in Fig. 2. 

Insert Figure 2 

3.1  Reduced Model 

The data provided leant themselves naturally to only modelling the marker compound as some time series were 

collected with no inhibitor present. The inhibitor compartments and corresponding rate constants were therefore 

initially set to zero, reducing the system to a four compartment system with ten parameters, illustrated in Fig. 3.  

Insert Figure 3 

The corresponding set of nonlinear ordinary differential equations characterising the reduced model with no 

inhibitor was derived using classical mass-balance principles and is given by: 

 

 (9) 
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 (13) 

It was assumed that any kinetic parameters estimated for this sub-model would then also be applicable for use in 

the full model with inhibitor present as the rate constants concerned should not be affected by the presence of 

the inhibitor. 

 

4. STEADY STATE ANALYSIS 

From the data, we can observe that the fluorescence is not reaching steady state values in the time span of the 

experiments, see Fig. 2. Albeit perhaps for the compound concentration of 10μMol; the graph may be 

suggesting that the binding is approaching a steady state value. Although the purpose of the modelling is to 

investigate the transient behaviour, a steady state analysis was performed so that it can potentially be used at a 

later stage to validate the model. It will identify the levels at which each compartment eventually settles and can 

be a useful method to obtain fundamental information on the system, the basic relationships between the 

compartments and for initial guesses for parameter estimation for subsequent fitting (i.e. saturation levels). 

Steady state analysis is performed by setting all the derivatives in the system equations to zero and solving for 

each compartment variable. Due to the complex non-linear nature of the equations, this was performed using 

symbolic mathematical packages capable of solving simultaneous equations, namely Mathematica and Maple, 

which both yielded the same solutions. 

 

4.1 Reduced Model 

The steady state analysis solution for the reduced model of form (9) – (13) is shown below. 
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Equation 15 indicates that the equations under-determine the system and there is effectively one degree of 

freedom (DOF). For a given value of , the other three compartment concentrations can be computed. 

4.2 Full Model 

The steady state analysis solution for the full model of from (1) – (8) is shown in Equations 18-24 below. 
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Similarly, Equations 19 and 22 indicate that the equations under-determine the system and there are effectively 

two DOFs. For given values of  and , the other five compartment concentrations can be computed. 

The output of main interest is obviously the observation compartment, which is the same function for the 

reduced model of form (9) – (13) and the full model of form (1) – (8) (equations 17 and 24). The steady state 

analysis shows that the ultimate level of binding to the DNA is a function of the total number of binding sites 

N0, the intracellular concentration of compound  and the substrate to DNA binding affinity, i.e. the binding 

association and dissociation rate constants,  and . Although this is a fairly intuitive result, it describes the 

exact relationship and may be useful at a later stage for parameter estimation and model validation. 

 

5. STRUCTURAL IDENTIFIABILITY ANALYSIS 

Structural identifiability arises from the inverse problem of inferring from the known, or assumed, properties of 

a biomedical or biological system a suitable model structure and estimates for the corresponding rate constants 

and other parameters. Structural identifiability analysis considers the uniqueness of the unknown model 

parameters from the input-output structure corresponding to proposed experiments to collect data for parameter 

estimation (under an assumption of the availability of perfect, noise-free data) [5-6]. This is an important, but 

often overlooked, theoretical prerequisite to experiment design, system identification and parameter estimation, 

since numerical estimates for unidentifiable parameters are effectively meaningless. If parameter estimates are 

to be used to inform about intervention or inhibition strategies, or other critical decisions, then it is essential that 

the parameters be uniquely identifiable. Such analysis is highly relevant to large-scale, highly complex systems, 

which are typical in Chemical kinetics and Systems Biology. 

Numerous techniques for performing a structural identifiability analysis on linear parametric models exist and 

this is a well-understood topic [6-7]. In comparison, there are relatively few techniques available for nonlinear 

systems (the Taylor series approach [8], similarity transformation based approaches [9,10] and differential 

algebra techniques [11,12]) and significant computational problems can arise for these, even for relatively 

simple models. However, recently a structural identifiability analysis was successfully applied to a large-scale 

nonlinear mathematical model (43 state variables and 81 parameters) of a highly complex biomedical system 

[13]. 



 

 

Structural identifiability analysis has been performed on the Hoechst 33342 pharmacokinetic models developed 

using all of the three methods cited in order to ascertain whether the unknown system parameters can be 

identified uniquely or otherwise for the observation available. 

 

5.1 Taylor series approach 

This approach is normally used for systems with impulsive inputs and can be applied to both linear and non-

linear systems. Given a compartmental model in the following general form: 

, (25) 

, (26) 

, (27) 

where p is the r dimensional vector of unknown parameters. The n dimensional vector  is the state vector, 

such that  is the initial state. The m dimensional vector  is the input vector and  is the 

observation vector. For the reduced model of form (9) – (13), these are given as: 

, 

, 

, 

 , 

, 

where  is the initial concentration of . The components of the observation vector  are expanded 

as a Taylor series about the initial condition. 

 

 (28) 



 

 

 

where 

 

. (29) 

The Taylor series coefficients  are measurable and unique for a particular output. Unfortunately, due 

to the structural complexity of the system, this method did not converge to any solutions for either the reduced 

model of form (8) – (13) or the full model of form (1) – (8) in both Mathematica or Maple. 

5.2 Similarity transformation/Exhaustive modelling approach 

Given a linear model structure, this approach generates all the linear models that have the same input/output 

behaviour. It has been successfully applied to non-linear models by mapping the state equations to a linear set 

[13,14]. Taking a compartmental model in the general form (25) – (27), this approach entails establishing an 

Observability rank criterion. This is performed by defining a function H given by 

  (30) 

Where  is the Lie derivative of h, given by 

 

 (31) 

 

Where h is the observation from Equation 27 and F the system coordinate functions from Equation 25. If the 

resultant functions , ... ,  are linearly independent then the system (25) – (27) is said to satisfy the 

Observability Rank Condition and it is possible to construct a smooth mapping from the state corresponding to a 

parameter vector , indistinguishable from p, to the state corresponding to p. The smooth map  statisfies the 

following condition: 

 (32) 



 

 

Equations can then be derived from the initial conditions , the  model structure  and the observation function 

 by using the following  

 

 (33) 

 

 (34) 

 

 (35) 

The matrix for the reduced model of form (8) – (13) has full rank for appropriate  – , which for n = 1 is the 

following 

 

 

 



 

 

 

Analysis of the resulting equations demonstrates that the reduced model of form (8) – (13) was structurally 

globally identifiable if the initial compound dose is known. This is the case as both the concentration and the 

exact extracellular volume are known. In the case that the initial dose is unknown, only five parameters can be 

shown to be globally identifiable (  ,  ,  ,  , and ) and the model is structurally 

unidentifiable. 

Similarly for the full model of form (1) – (8); as the initial doses are known, it is structurally globally 

identifiable, and if it was not the case, only a limited number of parameters are globally identifiable (nine in 

total, including the same five for the reduced model of form (9) – (13), i.e.  ,  ,  ,  ,  ,  

,  ,  , and  ). 

5.3 Differential algebra approach 

In order to verify the identifiability analysis and gauge its level of applicability, this relatively new approach 

was also applied on both models. Given a compartmental model in the general form (25) – (27) where the 

observation  is linear one can take two parameter vectors, p and , that produce the same 

output for all t, and thus produce the same derivatives of the observation for all t, i.e. 



 

 

, . (32) 

Assuming one can generate an expression  derived from the model equations (25) – (27) 

purely in terms of the observation vector  and its derivatives then consider 

. (33) 

If equating the monomials of this function produces only one solution for the unknown parameters, then the 

system is globally identifiable. This approach yielded exactly the same results for the reduced model of form (9) 

– (13) as for the similarity transformation approach; confirming the model is structurally globally identifiable 

for a known dose. The same five parameters can also be shown to be globally identifiable (  ,  ,  , 

 , and ) when the dose is unknown. The differential algebra approach has not yet successfully been 

applied to the full model of form (1) – (8). It has not yet been possible to generate the input output relationship 

 due to computational difficulties. 

The analyses demonstrate that all models derived are uniquely identifiable for the experiments/observations 

available. This permits subsequent numerical parameter estimation to be performed with greater confidence. 

 

6. DATA ANALYSIS 

6.1  Software 

Considering the number of parameters to be estimated and the complicated nature of the system equations, it 

was necessary to use an appropriate and numerically robust kinetic modelling software package. The software 

package FACSIMILE (MCPA Software, UK) was used since it provides a powerful means of solving ordinary 

differential equations encountered in biomedical engineering and can easily cope with the robust numerical 

solution given by the system equations. More importantly, it also contains a powerful parameter-fitting option, 

whereby specified parameters can be adjusted to obtain the best fit to observed data. 

6.2  Parameter Estimation 

During the optimisation process of the model parameter estimation described above, FACSIMILE measures the 

statistical goodness of the fit. This is achieved by calculating the residual sum of squares (RSS) and the standard 



 

 

deviation of the natural logarithms (SDLN) of the estimated parameters as a measure of the confidence level 

(FACSIMILE works in terms of internal parameters that are the natural logarithms of the given model 

parameters). The RSS gives the difference between the model and the experimental data, i.e. the sum of the 

square of the error at each time point. FACSIMILE outputs a combined RSS value, i.e. sums all the individual 

time series RSS together, which is given as 

 

 (34) 

 

where  is the i
th

 model output at the j
th

 sampling time ;  is the corresponding experimental 

data point; and  is an estimate for the standard error for the i
th

 output. FACSIMILE weighs each data 

set by this default value and thus negatively weighs the residuals by σ
2
, hence the RSS is effectively multiplied 

by a factor 10
4
 [16]. The RSS provides an overall measure of how close the fit is to the experimental data. 

The confidence level of the estimated parameter value is a statistical measure of how well the model and the 

data define the parameter. It is given as the standard deviation of the natural logarithms (SDLN) of the estimated 

parameters. The SDLN values are estimated using the variance-covariance matrix of the total number of 

parameters and the number of well-determined parameters and can be considered as a percentage error. 

 

7. RESULTS 

To obtain parameter estimates for the full system the data with Hoechst 33342 alone were fitted to the reduced 

model of form (9) – (13). These were then used as initial estimates to fit the full system. 

7.1 Reduced model of form (9) – (13) 

During the numerous fits undertaken, analysing the graphs showed that for 0.5μM and 10μM initial substrate 

concentration, the fits consistently underestimated the data.  Considering that each time series is a different 

experiment it was reasonable to assume that there could be some variance in the total number of binding sites on 

the nucleus.  A higher number of binding sites would allow the time series to reach higher values and give a 

better visual fit. Instead of using one parameter of N0 common to all twelve time series, five individual 



 

 

parameters were set, one for each initial substrate concentration. Table 3 provides the parameter estimates for 

the best fit obtained for the twelve data sets used where no inhibitor is present. 

Insert Table 3 

 Fig. 4 illustrates the best fit associated with Table 3, obtained for the twelve data sets used where no inhibitor is 

present. 

Insert Figure 4 

Fig. 4 is split into five separate charts (a-e), one for each initial substrate concentration. 

7.2  Full Model of form (1) – (8) 

It did not prove possible to obtain a complete set of well determined parameters within FACSIMILE for the full 

model. This was remedied by fixing the 16 independent values of N0 and T0, the order of the nucleus binding 

reaction – n, the extracellular substrate concentration – Dose, the initial intracellular inhibitor concentration – 

Initialin, and the initial extracellular inhibitor concentration – Initialout. Table 4 provides the parameter estimates 

for best fits obtained for the full model using all 32 data sets where inhibitor is present. 

Insert Table 4 

There are some discrepancies between the reduced and full model parameter estimates. It is suspected these are 

mainly due to the different order of the nucleus binding reaction – n, which affects the curvature of the fit (a 

higher value producing a more sigmoidal shaped curve). For the reduced model of form (9) – (13), FACSIMILE 

converged towards a value of n = 4.35, producing the little step at the beginning of the times series, whereas for 

the full model a value of n = 1 proved more stable.  The higher RSS value for the full model relative to the 

reduced model is believed to be due to the higher number of degrees of freedom and larger number of data sets 

used. 

Fig. 5 illustrates the best fit associated with Table 4, obtained for the full model using 32 data sets where 

inhibitor is present. 

Insert Figure 5 

Fig. 5 is split into eight separate charts (a-h), one for each initial inhibitor concentration. It can be seen from 

each one that the initial step is less prominent. 

 

 



 

 

8. DISCUSSION AND CONCLUSIONS 

The model adequately reproduces the observed time series. Though introduced into the model to improve the 

model fits the estimated values of T0 and N0 do not differ greatly between experimental conditions, which 

suggests that the conditions within each well of the multi-well plate are effectively constant. Parameters were 

estimated with a reasonable level of confidence, which can be judged by the SDLN values for each parameter. 

Given these estimates, the binding affinity of FTC for the BCRP transporter can be calculated to be  

 (35) 

This is understandable given the effect small concentrations of FTC have on the observed fluorescence-time 

profiles. 

The models adequately describe the data observed. It can be further seen that BCRP mediated cellular kinetics 

can be indirectly measured in this way. A structural identifiability analysis was performed successfully with two 

methods; the similarity transformation/exhaustive modelling approach and the differential algebra approach. 

These demonstrate that all models derived are uniquely identifiable for the experiments/observations available, 

adding greater confidence to the numerical parameter estimation carried out. 

By modelling the kinetics of the system the binding kinetics for FTC can be inferred. A more simplistic 

approach that used the change in the steady state fluorescence would only yield a concentration of FTC outside 

of the cell that would alter the observed fluorescence by a given amount and such information would be difficult 

to relate to in vivo data. The binding affinity can be compared to blood concentrations observed to assess the 

impact of BCRP on a drug’s ability to penetrate cancer cells and this aspect is currently under investigation. 
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Table Legends: 

Table 1: Description of the inter-compartmental rate transfer and compartments 

Table 2: Matrix showing number of time series for each experimental set up 

Table 3: Well-determined parameters for reduced model of form (9) – (13) with no inhibitor present 

Table 4: Well- determined parameters for full model of form (1) – (8) with inhibitor present 



 

 

 

Compartments 

 

Extracellular concentration of  

marker compound 

 

Intracellular concentration of  

marker compound 

 

Extracellular concentration of  

inhibitor compound 

 

Intracellular concentration of  

inhibitor compound 

 
Marker bound to transporter 

 
Inhibitor bound to transporter 

 

Marker bound to  

the nucleus (DNA) 

Table 1: Description of the inter-compartmental rate transfer and compartments 

 

Inter-compartmental rate transfers 

 
Marker compound cellular influx 

 
Marker compound cellular efflux 

 
Inhibitor cellular influx 

 
Inhibitor cellular efflux 

 
Marker compound nuclear binding 

 
Marker compound nuclear dissociation 

 
Marker compound transporter binding 

 
Marker compound transporter dissociation 

 
Inhibitor transporter binding 

 
Inhibitor transporter dissociation 

 
Transporter flow back to marker compound 

 
Transporter flow back to inhibitor 



 

 

 

 

  Hoeschst concentration [µM] 

  0.5 1 2 5 10 Total 
In

h
ib

it
o

r 
C

o
n

ce
n

tr
a

ti
o

n
 [

µ
M

] 

0 2 2 4 2 2 12 

0.1 2 2 4 2 2 12 

0.32 2 2 4 2 2 12 

1 2 2 4 2 2 12 

3.16 2 2 4 2 2 12 

10 2 2 4 2 2 12 

31.6 2 2 4 2 2 12 

100 2 2 4 2 2 12 

Total 16 16 32 16 16 96 

Table 2: Matrix showing number of time series for each experimental set up 

 



 

 

 

Parameters Value SDLN 

 
6.83 x 10

5
 8.6% 

 
2.27 x 10

5
 6.3% 

 
4.41 x 10

6
 5.8% 

 
2.49 x 10

4
 29.6% 

 
3.11 x 10

3
 12.6% 

 
9.91 x 10

2
 3.5% 

 
1.33 x 10

3
 3.2% 

 
1.84 x 10

3
 2.1% 

 
1.55 x 10

7
 36.3% 

 
7.44 - 

Table 3: Well-determined parameters for reduced model of form (9) – (13) with no inhibitor present 

 

 

Parameters Value SDLN 

 
2.45 x 10

-7
 s

-1
 42.7% 

 
3.23 s

-1
 6.5% 

 
6.68 x 10

-4
 s

-1
 39.3% 

 
4.43 x 10

-2
 s

-1
 42.5% 

 
1.30 x 10

-5
 s

-1
 7.3% 

 
1.05 x 10

-3
 s

-1
 10.9% 

 
1.26 x 10

-4
 s

-1
 51.5% 

 
4.35 7.8% 

 
2.91 x 10

5
 7.2% 

 
4.48 x 10

5
 9.4% 



 

 

 

Parameters Value SDLN 

 
5.22 x 10

5
 fixed 

 
1.34 x 10

6
 fixed 

 
2.91 x 10

6
 fixed 

 
2.06 x 10

6
 fixed 

 
1.55 x 10

3
 fixed 

 
3.71 x 10

3
 fixed 

 
4.79 x 10

3
 fixed 

 
8.97 x 10

3
 fixed 

 
6.16 x 10

3
 fixed 

 
6.75 x 10

3
 fixed 

 
7.25 x 10

3
 fixed 

 
5.70 x 10

3
 fixed 

 
1 fixed 

 
3.20 x 10

6
 fixed 

 
5.75 x 10

4
 fixed 

 
4.71 x 10

3
 fixed 

- - - 

Table 4: Well- determined parameters for full model of form (1) – (8) with inhibitor present 

 

 

 

 

 

Parameters Value SDLN 

 
4.69 x 10

-7
 s

-1
 3.5% 

 
4.43 x 10

-2
 s

-1
 157% 

 
2.48 x 10

-4
 s

-1
 27.6% 

 
1.36 x 10

-3
 s

-1
 71.2% 

 
1.75 x 10

-4
 s

-1
 137% 

 
7.92 x 10

-4
 s

-1
 59.2% 

 
2.36 x 10

-6
 s

-1
 136% 

 
1.81 x 10

-3
 s

-1
 46.6% 

 
5.27 x 10

-9
 s

-1
 53.8% 

 
3.15 x 10

-4
 s

-1
 138% 

 
2.56 x 10

-4
 s

-1
 79.8% 

 
2.04 x 10

-4
 s

-1
 168% 

 
6.55 x 10

5
 fixed 

 
1.43 x 10

6
 fixed 

 
7.53 x 10

5
 fixed 

 
7.57 x 10

5
 fixed 

 
48.627 - 



 

 

Figure Legends: 

Fig 1:  Model representation 

Fig 2:  Sample data plot for different initial Hoechst concentrations with no inhibitor present Fig. 3:  Reduced 

model representation 

Fig. 4:  FACSIMILE fits for reduced model of form (9) – (13) without inhibitor 

Fig. 5:  FACSIMILE fits for full model of form (1) – (8) with inhibitor 



 

 

 

 

 

Fig 1:  Model representation 

 

 

 



 

 

 

 

Fig 2:  Sample data plot for different initial Hoechst concentrations with no inhibitor present 

 

 



 

 

 

 

 

Fig. 3:  Reduced model representation 

 

 

 

 



 

 

 

Fig. 4:  FACSIMILE fits for reduced model of form (9) – (13) without inhibitor 

 



 

 

 

 

Fig. 5:  FACSIMILE fits for full model of form (1) – (8) with inhibitor 

 

 


