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A B S T R A C T 

Systems biology techniques are a topic of recent interest within the neurological field. Com­
putational intelligence (CI) addresses this holistic perspective by means of consensus or 
ensemble techniques ultimately capable of uncovering new and relevant findings. In this 
paper, we propose the application of a CI approach based on ensemble Bayesian network 
classifiers and multivariate feature subset selection to induce probabilistic dependences that 
could match or unveil biological relationships. The research focuses on the analysis of high-

Keywords: throughput Alzheimer's disease (AD) transcript profiling. The analysis is conducted from two 
Bayesian network classifiers perspectives. First, we compare the expression profiles of hippocampus subregion entorhi-
Interaction networks n a l cortex (EC) samples of AD patients and controls. Second, we use the ensemble approach 
Alzheimer's disease to study four types of samples: EC and dentate gyrus (DG) samples from both patients and 
High-throughput data controls. Results disclose transcript interaction networks with remarkable structures and 

genes not directly related to AD by previous studies. The ensemble is able to identify a vari­
ety of transcripts that play key roles in other neurological pathologies. Classical statistical 
assessment by means of non-parametric tests confirms the relevance of the majority of the 
transcripts. The ensemble approach pinpoints key metabolic mechanisms that could lead 
to new findings in the pathogenesis and development of AD. 

1. Introduction 

Computational intelligence (CI) techniques have proven able 
to help physicians to analyze gene activities within com­
plex diseases. Following this breakthrough research, CI-driven 
systems biology has recently gained interest within the neuro­
logical community as a tool for unveiling new findings and/or 
proposing new working hypotheses [1]. Up to now, one of the 
biggest challenges in this field has been to look for key genetic 
mechanisms and compounds in complex neurodegenerative 
pathologies. In actual fact, tools to address biological rela­
tionships and interactions are currently at the cutting edge 
[2]. 

Many approaches have been put on trial [3] in order 
to understand such complex relations, ranging from pure 
Bayesian networks [4] to statistical validations by multiple 
random simulation [5], new graphical models to match gene 
interactions [6] or biological validation of previously reported 
interactions [7]. The main thrust of all this research is to 
assume that a gene transcript behaves like a random variable 
and that the behavior of the entire system can be represented 
by a joint probability distribution. The regulatory interactions 
between the transcripts across that distribution are expected 
to produce corresponding probabilistic dependences within 
their expression levels [8]. 

Within this framework, most research looks for differen­
tially expressed genes to build models. However, fewer papers 



explicitly focus on the statistical information provided by 
comparing different sample types. In such a supervised-class 
experimental design, the phenotype statistical distribution 
may report interactions among genes based on their behav­
ior across the different conditions [3]. It is possible to assign 
confidence levels to interactions based on the frequency of 
their appearance in an induced pool of Bayesian classifiers. 
Depending on the confidence level, the expert can set up dif­
ferent interaction networks, ranging from very simple to dense 
forest-like structures. 

The techniques to produce this hierarchy of ensemble net­
works are borrowed from the field of machine learning and 
statistics. First, Bayesian classifiers use no a priori biological 
information and consider only the phenotype distribution. 
Second, a feature subset selection procedure is used to reduce 
the dimensionality from thousands to only hundreds of can­
didate genes [9]. And, third, results produced by non-parametric 
bootstrap - dataset sampled with replacement - are conserva­
tive. In scenarios where the number of samples is very low, 
it is crucial to aim for a low ratio of false positive findings. 
Last, ensemble or consensus techniques reinforce the search 
of robust and reliable gene interactions [10,11]. 

Throughout this paper, we use this ensemble approach to 
investigate a gene expression dataset of Alzheimer's disease 
(AD). The analysis focuses on gaining an understanding of dys-
regulation in the hippocampal entorhinal cortex (EC), as well 
as on the multiple comparison of the hippocampal entorhinal 
cortex and dentate gyrus (DG). The aim behind this research 
is to formulate working hypotheses about why there is such 
a big difference in the extent of the damage to the above hip­
pocampal structures between elderly AD patients and healthy 
controls. 

The paper is organized as follows. Section 2 presents 
the dataset, the experimental design and the induction of 
ensemble Bayesian networks, respectively. Section 3 shows 
the experimental parameters and running results for both 
analytical comparisons. Section 4 gives an in-depth biologi­
cal discussion of the most important findings, corroborating 
previous knowledge and stating new hypotheses based on the 
reported results. Lastly, Section 5 explains the conclusions and 
ideas for future work. Supplementary content is available with 
extended information on all the results and interaction net­
works. 

2. Materials and methods 

2.1. Microarray data 

The available data contain gene expression profiles from six 
AD and six control brain samples. The samples were obtained 
at autopsy, and there are two different cohorts: one from the 
DG region and another from the EC subregion of the hippocam­
pus. 

The microarray technology used to retrieve gene activity 
was an Affymetrix HG-U133A genechip array. A single sample 
is hybridized for each array, thereby outputting a total of 24 
hybridized arrays. The acquired microarray dataset was scaled 
to a value of 500, and probes with a 375' ratio in the GADPH and 
actin gene greater than 7 were excluded from the study. A total 

of 7610 probes that passed the last Affymetrix detection algo­
rithm filter were retained as valid probes for the subsequent 
data analysis (MAS 5 and GeneSpring5.0.3 were the tools used 
for the process). For more details on each of these steps and 
the actual dataset, see the original paper [12]. Throughout this 
paper, we will use the term transcript as the product measured 
by each probe of the microarray. Similarly, the term gene will 
refer to the associated gene from which that transcript is syn­
thesized. The terms were matched by the Ensembl BioMart tool, 
using the Ensembl Genes Release 62 dataset. 

2.2. Experimental design 

Experimental design refers to the way that the different gene 
profiles are configured in a supervised classification problem. 
To get all the possible options, we considered a list of biological 
facts supported by the original study: 

• EC appears to be a prime target for AD, as it is highly vul­
nerable to the effects of ischemia and anoxia; 

• DG is the neighboring subregion of the EC most resistant to 
AD; 

• differences in entorhinal function between controls and AD 
patients are age and time independent. 

All these statements reveal two different biologically 
important scenarios: (a) the comparison of the EC gene pro­
files between AD patients and controls; and (b) a multiclass 
study with other combinations of samples and individuals. 

Therefore, two different data mining analyses were con­
ducted: EC-AD us EC-Control (see Section 3.2.1) with 12 
samples in a dichotomic supervised classification problem; 
and EC-AD us EC-Control us DG-AD us DG-Control (see Section 
3.2.2) with all 24 samples in a four-class (or multiclass) 
supervised classification problem. This experimental design 
substantially differs from the design used by [12]. The analysis 
pipelines were also different in terms of running scheme and 
mathematical approaches. Therefore, final results showed a 
limited degree of coincidence between both studies. 

2.3. Ensemble Bayesian networks of highly reliable 
dependences 

The data analysis methodology combines a resampling 
method with an inner feature selection technique and a 
Bayesian fe-dependence classifier to output a gene interac­
tion network formed by arcs above a set confidence level. This 
chained process can be used as a tool to unveil or corroborate 
biological hypotheses [13]. 

The method for building the ensemble Bayesian networks 
was originally proposed in [10]. It is based on searching robust 
arcs from the whole set of arcs configured by a pool of Bayesian 
networks classifiers (BNC). Briefly, we can define the number 
of occurrences o¡¡ as the number of times a given arc ly - where 
X; and Xj are head and tail nodes, respectively - has been 
induced across B datasets. These B datasets correspond to the 
B bootstrapped datasets from the original dataset. For each 
resampled dataset an intermediate feature subset selection 
process is also tackled to select the most relevant genes. 



After the induction of all the BNCs, it is possible to define an 
occurrence threshold t of reliability. Using that threshold, arcs 
with occurrences equal to or greater than t are retained. This 
set of retained arcs is denoted as Lt. By inspecting Lt, it is also 
possible to state which set of variables or features is covered 
by all arcs. This feature set comprises the relevant features 
subset and is denoted by S(Lt). 

Interestingly, by changing t, we can build a hierarchy of 
models, ranging from a model with just one arc and hence 
two features, to a model that includes almost all the detected 
arcs or conditional dependences. Since the method looks for 
BNCs, arcs that form cycles are removed. Cycles of more than 
two variables are unfeasible due to the formulation of the BNC 
in use. Finally, given a t value, the expert is reported with the 
correspondent network structure. It is therefore possible to 
control the scope of the study and to isolate findings that could 
constitute future working hypotheses. 

2.4. Differential expression measures 

To supplement the results of the ensemble networks, two dif­
ferent definitions of fold-change (FC) were used to compare the 
expressions of the identified relevant transcripts. These two 
FCs are the classical expression ratio or FCr and the expression 
difference or FCd. Thus, FCr is defined as the ratio between 
the median value of the transcript expressions within the 
disease and the control samples, whereas FCd compares the 
same values but removing the median control expression from 
the median disease expression. We here propose the use of 
two different univariate hypothesis tests to check the signifi­
cance of the transcripts previously detected as relevant by the 
ensemble of networks. 

In dichotomic studies, it is common to assess significance 
using p-values in a t-test. Unfortunately, this is not such a good 
approach when there are few samples and normal distribution 
assumptions cannot be guaranteed. The alternative proposed 
here is to use a non-parametric test: the Wilcoxon rank sum 
test for equal medians. 

The Wilcoxon test is only applicable with two samples, but 
we require a four-factor test to analyze the results of the mul-
ticlass experimental design. In this case, we used Friedman 
test for multiple treatments of a series of subjects [14]. The 
Friedman test is able to jointly compare the activity of each 
transcript evaluated in the four different class configurations. 
This is the best test for investigating the significance of the 
differences between the four phenotypes in the multiclass 
problem. 

3 . Results 

3.1. Running parameters 

The data analysis method introduced in Section 2.3 includes 
a set of running parameters to be fixed: the feature subset 
selection, the BNC to be induced and the number of times that 
the bootstrap loop is performed, B. Also, and especially in the 
gene expression context, all these parameters are expected to 
setup a scenario with an affordable runtime. 

For the subset selection step, we used correlation-based 
feature subset selection [9] or CFS. CFS finds low redundancy 
feature subsets, which are also highly correlated to the super­
vised class variable. The CFS search strategy was configured 
as a forward greedy hill-climbing search that starts from an 
empty set of features. This search strategy guarantees that 
the cardinality dimension of the output subsets is not high. 

After reducing the dataset using CFS, a feDB classifier is 
induced using a fe value of 4 [15]. Thanks to this Bayesian classi­
fier and the fixed fe value the graphical models are both flexible 
(capable of inducing many diverse structures) and not sparse 
when inducing the dependence structures. Since the number 
of available instances is particularly low, experiments had to 
be as robust as possible. Therefore, the number of times the 
main bootstrap loop is performed was set to B = 10,000 times 
for both data mining analyses. In addition, this high sampling 
rate prevents trapping in local optima. 

Bayesian classifiers typically deal with discrete variables. 
Hence, a process was run to discretize the original continuous 
data. On the basis of its biological activity, we assume that a 
gene does not have many different activity states. A general 
criterion in microarray analysis is that this number of states 
is three: an up-regulated, a down-regulated and a baseline or 
null activity. Taking up this idea, we considered equal width 
discretization [16] in three different bins to be the best method 
for parsing the continuous values into discrete states. Any bias 
included by the discretization is not expected to affect the real 
gene profiling behavior [17,18]. 

3.2. Ensemble interaction networks 

As discussed in Section 2.3, the practitioner must set an 
occurrence threshold t to output both the list of interaction 
networks and the associated list of highly relevant features. 
The number of times two variables are jointly selected and 
included as head and tail of the same conditional depen­
dence is strongly influenced by the running parameters in 
use. Hence, the empirical distribution of the computed values 
is completely unknown. This distribution is formed by a X-
axis reflecting the number of occurrences an arc was included, 
whereas Y-axis shows how many arcs reach such threshold. 
Experimentally, the distribution of the results is right-skewed 
with extreme values on the right tail of the plot. These are pre­
cisely the most relevant values: a small set of arcs with very 
high occurrence values. In order to retain only these extreme 
links, we retrieve the 0.999 quantile from the empirical distri­
bution. The associated threshold levels for such quantile are 
detailed for both tackled analyses (see Sections 3.2.1 and 3.2.2). 
Both full transcript networks are available as supplementary 
content. 

3.2.1. EC-AD us EC-Control 
The total number of different arcs was 135,880. The most fre­
quent dependence identified from the above arcs was between 
probes 200099_s_at and 201358_s_at (transcripts RPS3A and 
COPB1), with 2666 occurrences. Filtering these values to the 
0.999 quantile, we got a threshold level of 577 (t= 576.44). A 
total number of 63 probes and 136 conditional dependences 
were retained for this level (see Supplementary Tables 1 and 2 
for the full probe/gene list). 
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Fig. 1 - Results for the EC comparison between controls and AD patients. The reliability threshold is set to 1000 out of 
10,000 main iterations. The network includes 23 transcripts and 35 conditional dependences. Arc labels represent the 
number of times the associated arc and nodes have been found together across the 10,000 models. Unfilled nodes map root 
nodes in the structure, whereas shaded nodes denote child nodes. 

The full interaction network described by the 136 arcs 
is available as supplementary content. To illustrate the core 
network and the most important transcripts, Fig. 1 shows 
the subnetwork that corresponds to a t level of 1000 -
with 35 conditional dependences and 23 probes. Notice that 
Fig. 1 illustrates two disconnected graphs for this threshold. 
These two structures are connected in the original t=577 
network. 

3.2.2. EC-AD us EC-Control us DG-AD us DG-Control 
More than 500,000 arcs were configured. Of these, 28,355 arcs 
were repeatedly presented in more than five runs. The depen­
dence between 200872_at and 201170_s_at (transcripts S100A10 
and BHLHE40) was present in 1875 out of all 10,000 models. 
Following the extreme quantile selection criterion (0.999), the 
threshold level was set into 703 (t= 702.87). This retrieved a 
total of 28 arcs comprising 22 probes (listed in Supplementary 
Table 3). Fig. 2 shows the most robust interaction 

network structure. As in the previous analysis, the confidence 
threshold for Fig. 2 has been raised to 1000, including 9 
transcripts and 12 highly reliable conditional dependences. 

4. Discussion 

Throughout this section we will discuss the findings reported 
by the ensemble approach for both analyses. The discussion 
focuses on transcripts whose relevance within the neurode­
generative domain has been previously proven. Similarly, new 
possibly relevant transcripts are also explored in search of new 
working hypotheses. 

4.1. EC-AD us EC-Control 

This comparison focuses on checking how neuronal death in 
the EC of AD patients changes the transcript profiling with 
respect to control samples. To do this, we firstly discuss the 



Table 1 - Of the 63 probes reported by the ensemble in 
the EC comparison, 17 map disease-related genes and 
10 out of the 17 are related to neurological pathologies 
(upper part). 

Gene 

BHLHE40 

ERCC1 

HUWE1 

ATRX 

PARK7 

RAB3GAP1 

VPS13B 

HIP1R 

COMT 

TPP1 

BIN1 

TPI1 

IL6R 

KRT10 

HLA-DPB1 

PPARGC1A 

UROD 

Disease 

Bipolar disorder 
Cerebral oculofacioskeletal syndrome 4 
X-linked mental retardation 
Alpha-thalassemia myelodysplasia syndrome 
Parkinson's disease 
Warburg micro syndrome 1 
Cohen syndrome 
Huntington's disease 
Panic disorder, susceptibility to schizophrenia 
Late-infantile neuronal ceroid lipofuscinosis 

Centronuclear myopathy 
Hemolytic anemia 
Multiple myeloma 
Epidermolytic hyperkeratosis 
Beryllium disease 
Familiar lipodystrophy 
Porphyria cutanea tarda 

transcripts that are somehow linked with human diseases. 
Significantly, 17 out of the 63 probes found by the network 
ensemble are related to or are triggers of several diseases. 
More interestingly, 10 out of these 17 probes are probes related 
to neurological disorders. Table 1 lists both sets of associated 
genes. 

To discuss the possible rationale behind the presence of 
these genes, Table 2 presents the p-values obtained from the 
Wilcoxon rank sum test comparing the expression profiles. 
Notice that only transcripts illustrated in Fig. 1 are listed. A 
total of 18 out of 23 transcripts exhibit statistically significant 
differences at a = 0.05. Moreover, the first 10 transcripts have a 
p-value lower than 0.01. These results corroborate the key role 
played by these transcripts, previously reported by the multi­
variate ensemble structure. The first ten transcripts are sorted 
in three groups with increasing p-values. In addition, by using 
the Genotator text-mining database [19], 7 out of the 23 tran­
scripts are traced to have key roles in the reported literature 
of AD: RPS3A, BTRC, TM2D1, PARK7, COX5B, TPP1 and HSPA8. 
There follows a brief biological discussion of some important 
links between the transcripts and the condition. 

4.1.1. AD pathogenesis and/or metabolism 
One of the most relevant transcripts in terms of both net­
work connections and p-value is RPS3A. This gene has highly 
reliable dependences on almost all the genes reported by the 
network at a confidence level of 1000. This topological posi­
tion may have a direct correspondence in biology. Ribosomes 
consist of a small 40S subunit and a large 60S subunit that, 
together, are composed of 80 structurally distinct proteins. 
The RPS3A gene encodes a S3AE ribosomal protein that is a 
component of the 40S subunit. Grupe et al. [20] performed 
an association study of candidate genes on chromosome 10 
for triggering late-onset Alzheimer's disease (LOAD). They 
conducted two rounds of analyses with a total of 779 LOAD 
samples and 629 controls. The study analyzed 1412 SNPs 
with 677 putative functional mutations. Results reported just 
five relevant mutations. Of these, marker rs498055, located 
in a gene homologous to RPS3A, was significantly associ­
ated with AD with an allelic p-value of 0.0001. This study 
implicates RPS3A gene in the pathogenesis of this disorder. 
Looking at the fold-change values in Table 2, we can corrob­
orate that its activity in the AD entorhinal cortex is greatly 
underexpressed compared with the control samples: a 4.9521 
logRatio decrease. Also there is a significant variance in its 
expression level across the control samples, whereas AD sam­
ples have a low constant expression (see Supplementary Fig. 

MED8 transcript is part of the 20 subunits of the media­
tor complex, which is required to activate mRNA production. 
MED8 presents interactions with proteins of key relevance 
in the central nervous system, like ARRB2, which plays a 
role in the regulation of synaptic receptors by inhibiting 
beta-adrenergic receptor function. Another target protein 
is CCNC or cyclin C, whose expression has been proven 
to be involved in the pathogenesis of Alzheimer's disease 
[21]. 

TM2D1 is a beta-amyloid peptide-binding protein. Beta-
amyloid peptide has a toxic effect on neurons, including death, 
morphological and physiological alterations (among others) 
and the consequent loss of cognitive abilities observed in AD 
[22]. TM2D1 interacts with APP amyloid beta (A4) precursor 
protein, which is a cell surface receptor and transmembrane 
precursor protein that is cleaved by secretases to form a num­
ber of peptides. Some of these peptides form the amyloid 
protein plaques found in the brains of patients with Alzheimer 
disease. 

CYB5A LYPLA1 CCNI UROD HUWE1 

1068 

SYT17 

Fig. 2 - Core results for the four-class supervised problem data analysis: EC-AD us EC-Control us DG-AD us DG-Control. 
Individual labels represent the occurrence level of each arc (t is set to 1000 times out of the 10,000 bootstrap samplings). 
Unfilled nodes map root nodes in the structure, whereas shaded nodes denote child nodes. 



Table 2 - Fold-change expressions of the transcripts found to have highest relevancies in the entorhinal cortex 
comparison between AD patients and controls. Fold-change is expressed in three complementary ways, 
(FCr), logarithmic transformation of the ratio (log2 

namely, ratio 
FCr) and difference (FCd). The p-value in the last column shows the 

output of a Wilcoxon rank sum test to compare the expression levels. Transcripts are listed in increasing p-value order. 1 

UROD 

HIP1R 

BEND5 

ATRX 

RPS3A 

BHLHE40 

BTRC 

MED8 

TM2D1 

PARK7 

HNRNPA3 

MBD4 

MRPL20 

HUWE1 

ERCC1 

C0X5B 

PTTG1IP 

TPP1 

C0PB1 

BNIP3 

MAPRE1 

HSPA8 

CBX3 

FCr 

0.2884 

0.3416 

0.7262 

0.7919 

0.0323 

0.5713 

1.3652 

0.0431 

0.2419 

0.7135 

0.0592 

0.1782 

0.0105 

0.0624 

0.1833 

0.8077 

1.5275 

1.4906 

0.3177 

0.5631 

1.1517 

0.6991 

0.8795 

log2 FCr 

-1.7938 

-1.5497 

-0.4615 

-0.3366 

-4.9521 

-0.8077 

0.4491 

-4.5350 

-2.0476 

-0.4871 

-4.0774 

-2.4884 

-6.5684 

-4.0013 

-2.4479 

-0.3081 

0.6112 

0.5759 

-1.6544 

-0.8286 

0.2037 

-0.5164 

-0.1852 

FCd 

-860.7 

-777.7 

-125.3 

-492.8 

-8889 

-846.4 

63.6 

-515.8 

-622.0 

-3116 

-628.9 

-378.9 

-1300.6 

-2427.8 

-409.3 

-1026.6 

951.5 

603.1 

-1475.3 

-1861.2 

67.7 

-1783.3 

-140.9 

p-Value 

0.0022 

0.0022 

0.0022 

0.0022 

0.0043 

0.0043 

0.0043 

0.0087 

0.0087 

0.0087 

0.0152 

0.0152 

0.0260 

0.0260 

0.0260 

0.0260 

0.0260 

0.0411 

0.0649 

0.0649 

0.2403 

0.3095 

0.3939 

4.1.2. Circadian rhythm 
One of the symptoms in severe AD is the asynchronity of 
the circadian rhythm [23]. Of our list of genes, BHLHE40, also 
known as DEC1, plays a role in the finer regulation and robust­
ness of the molecular clock components CLOCK/BMAL1 [24]. 
Previous research pointed to CLOCK gene regulation in the 
correct setup of the circadian rhythm of the metabolism. In 
our experiments, the gene profiling of BHLHE40 shows an 
underexpression in AD samples, a fact that may be linked 
with the dysfunction of CLOCK and, therefore, of the circadian 
rhythm. Another transcript find to be relevant, BTRC, asso­
ciates with beta-catenin destruction motifs by activating the 
NF-kappaB pathway and inhibiting the beta-catenin pathway. 
Such inhibition has already been studied as an alteration of 
the circadian clock gene expression in mice [25]. 

These findings match the hypotheses of [26], stating that 
amyloid beta production follows the circadian rhythm, rising 
when a person is awake and falling during sleep. [26] also sug­
gests that excessive sleep debt could cause a chronic build-up 
of amyloid beta protein, which could hypothetically lead to 
AD. 

4.1.3. Other central nervous system diseases 
To the best of our knowledge the other 5 transcripts have 
not been previously related to AD. However, they might play 
roles in the central nervous system metabolism since they 
are all related (or have domain interactions) to several other 
neurological diseases. Among them, HIP1R is named after 
the Huntingtin-interacting protein, or, mutations in ATRX are 
associated with the X-linked mental retardation syndrome. 
For PARK7, it has been widely studied because its defects 
are the cause of autosomal recessive early-onset Parkinson's 
disease. 

4.2. EC-AD us EC-Control us DG-AD us DG-Control 

The aim of this second analysis is to locate relevant transcripts 
and/or relationships that are differentially expressed in all 
four tissues under study. Results in Section 3.2.2 reported a 
simpler network structure (see Fig. 2) than in the case of sin­
gle EC comparison. Even so, there are some similarities: the 
presence of the HUWE1, UROD and BHLHE40 transcripts. 

As in the previous analysis, Table 3 lists the p-values for 
three sets of hypothesis tests applied to the set of transcripts 
found in Fig. 2. The first column, labeled as PATusCON, con­
trasts the expression profiles of patient and control samples 
no matters what the type of tissue is. The second column, 
ECusDG, groups the profiles by tissue type. In both cases, the 
Wilcoxon test is used to retrieve the associated p-values. The 
column labeled MULTICLASS lists the p-value output by the 
Friedman hypothesis test, comparing all four types of tissue-
patient profiles as in the ensemble network analysis. 

Let us examine the values of the Friedman test in Table 3, as 
they were computed in a similar manner to the ensemble net­
work. Hence, there are a total of 7 out of 9 transcripts that show 
statistical significance at a = 0.05. This supports the findings 
from the networks and adds even more robustness to the data 
analysis. We also used Genotator text-mining database [19] 
to check the already published relation between these genes 
and AD: 3 out of the 9 transcripts seem to have key roles in AD: 
S100A10, CYB5A and CCNI. There follows a brief discussion of 
the biological foundations between some of these transcripts 
and the condition. 

4.2.1. AD pathogenesis and/or metabolism 
In the network topology of Fig. 2, S100A10 forms a central 
node. This is the only transcript that is not conditionally 



Table 3 - Log2 fold-change expressions and p-values of the transcripts found to have highest relevancies in the multiple 
class comparison. The first two columns list values output by grouping the EC and DG expressions and computing the 
changes comparing the activities of patients against controls (PATvsCON). The third and fourth columns list values 
output by grouping the patient and control expressions and computing the changes comparing the activities of both 
classes in EC and DG (ECvsDG). Finally, the multiclass column presents the p-values of a Friedman test for multiple 
comparison of all four expressions. Transcripts are listed in increasing order of Friedman test p-value. 

S100A10 

MCM6 

LYPLA1 

UROD 

HUWE1 

BHLHE40 

CYB5A 

SYT17 

CCNI 

dependent on any 

log2 FCr 

1.4880 

-0.3244 

-0.5938 

-1.8375 

-4.6466 

-0.6219 

-0.1370 

0.0253 

-0.1761 

PATvsCON 

other, and its links are 

p-Value 

<0.0002 

0.0051 

0.0006 

<0.0001 

<0.0002 

0.2602 

0.1410 

0.8852 

0.4357 

within the high-

log2 FCr 

-0.2879 

0.0509 

0.0996 

-0.3531 

-0.5201 

0.4674 

-0.1907 

-0.7766 

0.3873 

ECvsDG 

5. Conclusions 

p-Value 

0.0120 

0.5444 

0.5444 

0.0226 

0.8852 

0.1124 

0.0262 

0.0783 

0.7950 

MULTICLASS 

p-Value 

<0.0008 

0.0074 

0.0081 

0.0169 

0.0186 

0.0203 

0.0293 

0.1447 

0.2214 

est level occurrences set. S100A10 plays a pivotal role in the 
dynamic modulation of serotonergic IB receptor function, and 
is involved in the pathogenesis of major depressive disor­
der (MDD) and the therapeutic mechanisms of antidepressant 
action [27]. In our data, the expression profile shows a clear 
dysregulation between AD and control samples in both DG 
and EC. A recent study [28] identifies another S100 family 
member (S100A7) as a novel biomarker of AD involved in 
the attenuation of beta amyloid neuropathology in mice. The 
findings of [28] suggest that S100A7 expression in the brain 
promotes a-secretase activity in the AD brain, precluding the 
generation of amyloidogenic 0-amyloid peptides. This over-
expression matches our expression profiles for S100A10 (see 
Supplementary Fig. 2). The quantitative p-value reported by 
the Friedman test also corroborates the key role identified by 
the ensemble network. 

4.2.2. Circadian rhythm 
BHLHE40 has previously been proposed as a key transcript 
in the circadian dysregulation symptom of AD patients, and 
hence in the beta-amyloid production. Its expression profile 
shows that only in the EC tissue is a differential expression 
detected. For the DG, the expression levels are similar in both 
AD and control samples, where variance is higher in the con­
trol tissue (see Supplementary Fig. 2). This expression profile 
makes full sense in the light of recent research on the impor­
tance of EC only in the regulation of the circadian rhythm of 
the hypothalamic-pituitary-adrenal (HPA) axis [29]. 

4.2.3. Other central nervous system diseases 
UROD shows a clear underexpression in both the DG and EC 
of AD samples. The decrease in UROD concentration alters 
the production of heme and, hence, hemoglobin. Hemoglobin 
is distributed in AD patients in a brain region-dependent 
manner, where the highest levels are to be found in the 
hippocampus [30]. Our finding may corroborate previous 
hypotheses that hemoglobin levels are inversely related to 
the AD condition [31-33]. We also find the HUWE1 transcript, 
which is directly related to the X-linked mental retarda­
tion syndrome [34]. It regulates neural differentiation and 
proliferation. 

Systems biology is breaking new ground in search of answers 
to the complex and devastating neurodegenerative disease 
domain. Of these diseases, Alzheimer's disease is one of the 
best known, affecting millions of elderly people worldwide. 
Computational intelligence techniques are now developing 
promising approaches and reporting results that build bridges 
between disciplines [35]. 

In this study, we focused on a data mining approach that 
is able to retrieve key transcripts in high-throughput gene 
expression analysis. Since the number of samples in this kind 
of analysis is still very low, reliable approaches are required to 
dispel the so-called curse of dimensionality. To do this, we tack­
led two different supervised classification problems based on 
Alzheimer's disease microarray data. First, we compared the 
gene expression profiles of patient and control samples col­
lected from the entorhinal cortex. Second, we compared all 
these samples with the respective dentate gyrus hippocampal 
subregions. 

The computational intelligence approach on trial makes 
use of three different and complementary machine learning 
approaches: bootstrap resampling, multivariate filter subset 
selection and a Bayesian network classifier. As the output, 
this combination provides the researcher with a highly reli­
able ensemble gene-interaction network. Precisely, the aim of 
this research is to propose these findings as possible targets 
for deeper and more detailed studies. 

The reported results suggest interesting findings. New 
potential relationships have been pinpointed, including the 
role of BHLHE40 in the regulation of the circadian rhythm in AD 
patients. Several other findings are a potential source of work­
ing hypotheses. Of these, we have discussed AD pathogenesis, 
transcription regulation and products related to other neuro­
logical conditions. In actual fact, ensemble network findings 
corroborate previous findings in AD: the importance of the 
RPS3A gene within AD pathogenesis or the inverse relation­
ship of hemoglobin levels to the AD condition. 

Practitioners in the field are aware that some of these rela­
tionships may be numerical artifacts. The need for multiple 
and independent validations of these statistical findings is 
crucial. However, the production cost of all these hypotheses 



is really low, whereas their contr ibut ions could be eno rmous 

in t e rms of key insights for future research. Hence, more 

moni tor ing and validation will, as in any kind of biomedical 

research, be needed . 
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