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Abstract
Safety measures to prevent or mitigate hypoglycemia are an important component of open loop,
closed loop, and advisory mode insulin therapy control settings in type 1 diabetes. In recent work,
we introduce a method for the automatic, gradual attenuation of the insulin pump delivery rate
when a risk of hypoglycemia is detected, a method that we refer to as brakes. In the methods
presented here, we demonstrate the use of historical glucose measurement data to inform and
enhance the ability of the brakes to prevent hypoglycemia in real-time. The updated brakes are
based on a patient-specific, time-varying model that reflects the typical trajectory of glycemic
fluctuations throughout the day. Historical heightened risk of hypoglycemia throughout the day
prompts an increase in the aggressiveness of insulin attenuation as compared to the original brakes
that are based on real-time data alone. Through the use of available real-time data supplemented
with historical glucose information to assess hypoglycemic risk, we are able to better anticipate
and prevent hypoglycemia.
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1 Introduction
Hypoglycemia has been identified as the limiting factor in the optimal management of type
1 and type 2 diabetes [1]. In healthy human subjects, insulin secretion decreases and
glucagon and epinepherine (counterregulatory hormones) secretion increases so that
hypoglycemia can be avoided. In type 1 diabetes (T1DM), where insulin secretion is nearly
if not totally absent, insulin must be delivered exogenously to maintain normoglycemia.
Hypoglycemia in diabetes is most commonly the result of the combination of
overinsulinization or an increased sensitivity to insulin and a weakened or absent counter-
regulatory response to low blood glucose (BG) levels that is characteristic of patients with
type 1 diabetes. To further complicate the situation in type 1 diabetes, hypoglycemia-
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associated autonomic failure (HAAF) assumes that glucose counterregulation is further
impaired given recent hypoglycemic events.

Recent advancements in T1DM treatment technology offer the opportunity to inform the
insulin pump delivery rate with glucose measurement feedback from a continuous glucose
monitor (CGM) that provides subcutaneous glucose concentration data every 5–10 minutes.
The present work proposes a method for prevention of hypoglycemia through an algorithm
that automatically attenuates the insulin pump delivery rate. The novelty of the algorithm is
that it is informed not only with real-time glucose measurement and insulin delivery data,
but with historical information that allows us to assess hypoglycemic risk attributed to
routine events that affect glycemic fluctuation in a temporal and patient-specific way.

2 Background
Models that provide information regarding the metabolic state of the patient serve as useful
tools in the design of insulin delivery strategies for treatment of T1DM. For patients with
T1DM, transient increases (e.g. dawn phenomenon) or decreases (e.g. exercise, see [2]) in
insulin requirements are required to respond to the decrease or increase in sensitivity to
insulin in an effort to maintain normoglycemia. Most metabolic models are not equipped to
anticipate behavioral events or even some routine metabolic processes that may influence
the glycemic state of the patient or the trajectory of the patient’s glycemic state in the near
future. Arguably, even the most routine of daily behaviors, meals, challenge models to
generate accurate estimates and predictions of the patient’s metabolic state even with
certainty regarding timing and size of upcoming meals.

Insulin dosing control algorithms account for time-varying, patient-specific changes in
insulin requirements using Bayesian parameter estimation methods that identify model
parameters in real-time [3], by forecasting likely changes in insulin sensitivity parameters in
the next 1–3 hours using an integration-based parameter identification method [4], or using
run-to-run control methods to adjust the basal insulin infusion rate [5]. Other work
incorporates dawn phenomenon or diurnal cycles in simulation in an effort to build and
evaluate insulin dosing strategies that can account for routine metabolic events [6]. The
insulin delivery strategies for patients with T1DM undergoing an exercise regimen include
preventing accelerated insulin absorption, mimicking insulin secretion during exercise,
supplying additional carbohydrates during exercise, and providing patients with diabetes
education [7].

In [8], we introduce an algorithm referred to as brakes that works by automatically
attenuating the insulin delivery rate when a risk of hypoglycemia is detected based on CGM
measurement and insulin delivery information. The algorithm uses an estimate and
projection of the BG concentration obtained through a metabolic state observer. The
observer is used to formally assess risk of hypoglycemia based on a symmetrization of the
BG scale as described in [9]. In the present work, we propose a method for employing
historical CGM data to inform an assessment of hypoglycemic risk in real-time that can be
employed to enhance the brakes algorithm. This work utilizes historical information to
assess hypoglycemic risk allowing us to anticipate routine behavioral events, like exercise or
consistent overdelivery of insulin, that affect glycemic fluctuation in a temporal and patient-
specific way.

3 Methods
3.1 Blood Glucose Estimate Based on Real-Time Data

The real-time data sources that we consider are:
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1. blood glucose estimates obtained through the use of a continuous glucose monitor
(CGM) and

2. insulin delivery data obtained from the insulin pump

Using glucose sensor measurements and insulin information at time t, we assume a time-
invariant, linear model of glucose insulin kinetics and employ a Kalman filtering
methodology to estimate the BG concentration of the patient (state space model parameters
are described in [8]). Real-time data to estimate the BG level of the patient is employed in
conjunction with historical glucose measurement information to better predict impending
hypoglycemia risk.

3.2 Blood Glucose State Trajectory Based on CGM Historical Data Collection
The collection and retrospective analysis of CGM data to modify open loop insulin therapy
parameters is considered an important clinical application for CGM devices [10]. Various
effective algorithms exist for predicting the BG concentration in real-time using CGM data,
including methods based on statistical linear prediction [11], time series [12], and Kalman
filter state estimation [13]. Predictive algorithms are typically used to generate
hypoglycemia alarms [14], or to inform control algorithms (see [15] for a review). The
novelty of the algorithm introduced here is that it employs insulin information as a critical
component in estimating the BG level with the primary goal being to inform safety
algorithms that take automatic action to prevent or mitigate the severity of a hypoglycemic
event. In addition, the algorithm anticipates the potential for hypoglycemic risk based on
patient’s routine behavioral events, targeting the historical impact that these events have on
glycemic fluctuation.

Collected CGM data serves as our historical data source. The choice to collect historical
output data (subcutaneous glucose measurements) rather than historical input data (meals,
insulin, exercise) is motivated by the fact that output data allows us to focus on modeling a
patient’s reaction to a behavior rather than modeling the behavior itself. Let us assume that
we collect a set of CGM measurements every cycle-minutes k of the day for k = {1, 2, …,
floor(1440/cycle)}, where the value of “cycle” is chosen to optimize the ability of the
algorithm to detect routine fluctuations in the glucose profile that are not attributed to CGM
noise. Our goal is to determine the glucose trajectory from stage k to stage (k + floor(30/
cycle)) based on the historical CGM data. We define the time-varying linear model:

(1)

for k = {1, 2, …, floor(1440/cycle)}, where Xk represents the CGM value at stage k,

 represents the CGM value 30 minutes from k, and εk represents the error
term of the linear model at each stage k where we assume that the error terms are
independent and normally distributed. Using collected historical CGM data, we determine
β0,k and β1,k by collecting all pairs (CGM(k), CGM(k + floor(30/cycle)) and using these
pairs to build a linear model at each stage k.

Additionally, we incorporate as part of our historical model the probability of hypoglycemia
based on collected data. Let phypo(k) for k = {1, 2, …, (floor(1440/cycle))} be the
probability of hypoglycemia at each time step, defined by

(2)
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where CGM(k) represents a historical CGM measurement collected at stage k (in
accordance with ADA guidelines, any sensor value less than 70 mg/dl is considered a
hypoglycemia [16]). phypo(k) is used in the adjustment of the brake algorithm activation
threshold, as described in the following section. Together, the probability of hypoglycemia
and the model of BG trajectory encode historical information regarding the extent of and the
trajectory for decreasing BG.

3.3 Reconciling Real-Time State Estimation and History-Based CGM Trajectory for
Hypoglycemia Risk Assessment

Let BGrisk(t) be the input to the brakes algorithm detailed in [8], so that the risk of
hypoglycemia at time t, R(BGrisk(t)), is given by

(3)

where the assessment of hypoglycemic risk is based on the BG symmetrization function and
the low blood glucose index (LBGI) introduced by Kovatchev and colleagues [9]. The input
to the function is the estimate of BG (mg/dl), the output is a measure of hypoglycemic risk
between 0 (no risk) and 100 (high risk). Parameters γθ, αθ, and βθ are determined based on
the brake activation threshold value θ (mg/dl) and are computed from equations described in

[9]. The condition on the slope of BG, , is employed to ensure that the attenuation
of the insulin delivery rate is released during recovery from hypoglycemia to reduce the
potential for hyperglycemic rebound. The amount of attenuation of the insulin pump
delivery rate, φ(R(BGrisk(t))), is computed as

(4)

where Γ is a patient-specific aggressiveness parameter determined based on the patient’s
biometric parameters total daily insulin (U) and correction factor (mg/dl/U). The modified
insulin delivery rate, Jactual(t) (U/hr) is given by

(5)

where Jcommand(t) (U/hr) represents the insulin delivery rate that the pump was scheduled to
deliver; in open loop insulin therapy, this is described by the basal rate pattern of the patient.

In its original implementation,  for τ = 15 minutes, where  is the
BG estimate obtained from the state observer given CGM and insulin delivery information

up to time t (as described in [8]) and  is the linear extrapolation obtained using the
linear model of glucose-insulin kinetics with model inputs, insulin and CGM, held constant
over the τ-minute prediction horizon. The brake activation threshold θ is fixed at 120 mg/dl,
with parameters γθ, αθ, and βθ computed accordingly.

In the proposed implementation, historical data informs the BG input so that BGrisk(t) is
defined by

Hughes-Karvetski et al. Page 4

Comput Methods Programs Biomed. Author manuscript; available in PMC 2014 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(6)

where  represents our best current estimate of the BG level based on CGM and insulin
information and k* such that (k · cycle – t) for k ∈ {1, 2, …, floor(1440/cycle)} is minimized
and nonnegative. The value of θ in the historically-informed brakes implementation varies
depending on phypo and is given by

(7)

where  minutes and pthresh are parameters tuned to optimize the use of historical
hypoglycemia probability data. Parameters γθ, αθ, and βθ are set accordingly. Figure 1
shows a schematic of the brakes algorithm, informed now by historical glucose data.

3.4 In Silico Study for Model Validation
In this section, we evaluate the use of historical CGM data to improve brakes performance
through an in silico study. Our historical model is built with the value of “cycle” = 30
minutes; we choose this cycle length to optimize performance and avoid the disruption in
the model parameters that may be caused by CGM noise. We assume that insulin pump

delivery can be modified on a minute-by-minute basis. The value of  is chosen through

simulation tests to optimize brakes performance and is set to .

We simulate and collect 30 days of historical CGM data, where the data assumes the
original brakes algorithm employed in patient’s insulin pump delivery settings so that
historical data reflects the impact of brake action without historical information being
employed. Table 1 summarizes the random meal behavior assumptions with meal timing and
size drawn from a normal distribution with mean (standard deviation) given in Table 1.
Meals, particularly snacks, may be “skipped” if the realized amount of carbohydrates
associated with the meal is 0 gCHO. We assume that insulin delivery follows a typical open
loop therapy approach with boluses delivered at meal times computed based on the patient’s
current carbohydrate ratio (gCHO/U) and correction factor (mg/dl/U) with a target BG of
130 mg/dl (with possibility for reverse correction), and the patient’s basal rate delivered
otherwise.

In addition to this, we simulate an unmodeled random disturbance that is likely to result in
hypoglycemia. This disturbance is an increase in the patient’s basal rate designed to
represent an increase in the patient’s sensitivity to insulin, where the intensity of the
disturbance is represented by the value of the multiplier on the nominal basal rate. The
disturbance has probability  with random intensity  (2, .25) and random start time  (900,
15) minutes with disturbance length (60, 15) minutes. The disturbance remains constant
intensity over the disturbance length, after which the intensity decreases linearly for a period
of 12 hours.

After collecting 30 days of simulated historical data for 100 in silico adult subjects, we
employ the collected CGM data to construct the time-varying linear models for each adult
subject as described by Equation 1. In the next step, we conduct a 1680 minute (28 hour)
simulated scenario with the same random meal behavior and unmodeled random disturbance
characteristics as described in Table 1, where we apply, for comparison, the brakes
algorithm in its original and historically-informed implementations.
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4 Results and Discussion
4.1 Representative Subject Results

Each in silico subject has a unique set of pairs (β0,k, β1,k) and parameters phypo(k) for k =
{1, 2, …, 48}. These patient-specific model parameters are designed to capture the effect on
the glycemic trajectory of various behaviors that occur throughout the day with some
regularity. We test the linearity assumption by computing a mean R2 for the linear model
and by testing the hypothesis that the slope of the linear model is different than 0 (p-value
reported) for each in silico subject’s set of linear models. Results are presented in Table 2.
We analyze the independence of errors generated in the linear model fit using the Durbin -
Watson (DW) statistic with results (using the command “dwtest” in Matlab) from this
analysis indicating a mean DW value over 100 in silico subjects of 2.01 (std. dev. of mean
across all subjects .05). The normality of the residual distribution is tested using the Jarque -
Bera (JB) test, where the null hypothesis is that the sample of residuals come from a normal
distribution with unknown mean and variance, against the alternative that the sample does
not come from a normal distribution. Results of the JB test (using the command “jbtest” in
Matlab) using an α = .05 to reject the null hypothesis indicate that in a mean of 83.90% (std.
dev. of the mean 6.13%) of cases we fail to reject the null hypothesis across the linear
models for 100 subjects. These results indicate that the linear model assumption for BG
trajectory is reasonable.

For some patients, the increase in basal rate around 3pm does not have a dramatic effect on
glycemic fluctuation. For other patients, results show that they are more sensitive to
deviations from their nominal insulin sensitivity. It is the latter set of patients for which the
historical model proves particularly beneficial. Figure 2 presents the 30 days of collected
CGM history for a representative subject.

Figure 3 presents the historical model parameters that result for the same representative
subject. We observe that the increase in the activation threshold (corresponding to nonzero
phypo) occurs at around 1290 minutes after midnight (9:30pm) and continues through the end
of the day and into the morning hours, during which the change in insulin sensitivity from
our unmodeled disturbance results in additional hypoglycemic risk for this subject. A value

of 60 minutes for  allows us to anticipate the increased sensitivity by increasing the
brake activation threshold prior to the hypoglycemia onset.

Figure 4 presents, in the top plot, 3 traces for the same representative subject: the blue trace
is the patient’s CGM, the red trace is the output value obtained from the historically-
informed linear model (the input to the historically-informed brakes), and the green trace
represents the BG signal output from the Kalman filter state estimation and prediction
procedure (the input to the original brakes algorithm). The corresponding attenuation factor
φ(R(BGrisk(t))) resulting from each corresponding input employed from the top plot is
shown in the bottom plot.

A comparison of the traces beginning at 900 minutes indicates that the red trace is able to
better anticipate the increased sensitivity to insulin and the resulting lowering of BG than the
Kalman filter output shown in green because the red trace is encoded with historical
information, resulting in a more aggressive and earlier onset attenuation (seen through the
comparison of the red and green traces in the bottom plot of Figure 4). As expected, both the
red and green traces improve upon the ability of the CGM (shown in blue) to anticipate the
lowering in BG and subsequent attenuation of the insulin delivery rate.
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4.2 Population Results
Table 3 presents a collection of the population results for no attenuation, original brakes
implementation, and the new historically-informed brakes implementation. Because our goal
in the attenuation of insulin delivery rate is prevention of hypoglycemia, our results focus on
the ability of the historically-informed brakes algorithm to reduce the incidence of
hypoglycemia, particularly when the patient’s risk of hypoglycemia is associated with a
behavioral disturbance.

For a small increase in the mean BG and % time in the target range, we are able to reduce
the incidence of hypoglycemia overall and in particular in our “critical” range from 900 to
1680 minutes by nearly 25% as compared with the original brakes implementation. There is
a statistically significant increase in the minimum BG over all 100 in silico subjects when
the historically informed brakes are employed (p < .05). Additionally, we reduce the total
number of subjects experiencing hypoglycemia by 10 (from 28 to 18) when the historically-
informed brakes are employed.

5 Conclusions
The incorporation of behavioral and metabolic historical information regarding patient
behavior in an effort to improve glycemic control is becoming increasingly important as part
of the development of personalized insulin delivery control algorithms and insulin delivery
safety supervisory systems. In this work, we introduce a method for incorporating historical
glucose measurement data into an assessment of a patient’s risk of hypoglycemia in real-
time. This risk assessment informs the gradual and automatic attenuation of the insulin
delivery rate designed to prevent or mitigate hypoglycemia. Results indicate that historical
CGM data can improve the performance of the hypo-glycemia prevention method over the
use of real-time data alone.
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Fig. 1.
Schematic of the Historically-Informed Brakes
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Fig. 2.
Representative Subject Collected CGM Historical Data
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Fig. 3.
Representative Subject Historical Model Parameters; Top: β0, Middle: β1, Bottom: phypo
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Fig. 4.
Top: Blue: CGM, Green: BGrisk from Original Brakes Implementation, Red: BGrisk from
Historically-Informed Model; Bottom: Corresponding Attenuation Factor φ(R(BGrisk(t)))
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Table 2

Statistics for Linear Model Assumption in Historical In Silico CGM Data

Statistic (mean, std)

R2 .60 (.09)

p-value .05 (.06)

Prop. of p-value below .05 .98 (.02)
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Table 3

In Silico Population Results: median (IQR, [90% CI])

Results No Brakes Original Brakes New Brakes

% time in target 73.7(22.0,[61.8,100]) 99.9(6.9,[87.9,100]) 100(6.5, [88.1,100])

Mean BG (mg/dl) 107.8(14.1,[94.6,120.7]) 127.2(6.3,[121.8,133.2]) 128.8(7.7,[121.8,137.3])

Minimum BG (mg/dl) 40.3(38.6,[7.7,76.2]) 78.5(18.2,[58.4,94.9]) 80.3(16.2,[62.2,94.0])

# of subjects experiencing hypo 84 28 18

Severity of hypo event (mg/dl) 33.3 (30.8,[6.2,60.3]) 61.0 (9.1,[46.5,67.9]) 61.2(12.3,[49.3,68.1])

Time spent in hypo (min) 408.0(350.5,[0,624.5]) 0(18.5,[0,75]) 0(0,[0,63])
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