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dUnité de Traitement de Signaux Biomédicaux, 59000 Lille, France
eHautes Etudes d’Ingénieur, 13 rue de Toul, 59000 Lille, France

fLaboratoire d’Automatique, Génie Informatique et Signal (LAGIS FRE CNRS 3303),
59650 Villeneuve d’ascq, France

gLAMIH (FRE CNRS 3304), Université de Valenciennes, France
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Abstract

Adaptive Filtering by Optimal Projection (AFOP) is an automatic method

for reducing ocular and muscular artifacts on electro-encephalographic (EEG)

recordings. This paper presents two additions to this method: an improve-

ment of the stability of ocular artifact filtering and an adaptation of the

method for filtering electrode artifacts. With these improvements, it is pos-

sible to reduce almost all the current types of artifacts, while preserving brain

signals, particularly those characterising epilepsy. This generalised method

consists in dividing the signal into several time-frequency windows, and in
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applying different spatial filters to each. Two steps are required to define

one of these spatial filters: the first step consists in defining artifact spatial

projection using the Common Spatial Pattern (CSP) method and the second

consists in defining EEG spatial projection via regression. For this second

step, a progressive orthogonalisation process is proposed to improve stability.

This method has been tested on long-duration EEG recordings of epileptic

patients. A neurologist quantified the ratio of removed artifacts and the ratio

of preserved EEG. Among the 330 artifacted pages used for evaluation, read-

ability was judged better for 78% of pages, equal for 20% of pages, and worse

for 2%. Artifact amplitudes was reduced by 80% on average. At the same

time, brain sources were preserved in amplitude from 70% to 95% depending

on the type of waves (alpha, theta, delta, spikes, . . . ). A blind comparison

with manual Independent Component Analysis (ICA) was also realised. The

results show that this method is competitive and usefull for routine clinical

practice.

Keywords:

EEG, Automatic filtering, Muscle artifacts, Ocular artifacts, Electrode

artifacts, Epilepsy, CSP

1. Introduction

The electroencephalogram (EEG) is a fundamental examination in neu-

rology. It is especially important in epileptology since it enables screening

for paroxysmal activities. Particularly, analysis of signals recorded during

seizures, provides information concerning the localistion and characterisation

of the epileptic disorder usefull for planing medical or surgical treatment.
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Figure 1: Frequency band decomposition of (A) artifacts and (B) brain signals

Unfortunately, parasitic signals called artifacts can easily be contaminate

EEG activity compromising interpretation. These artifacts can be broken

down into three categories:

• Muscular artifacts correspond to the electro-myographic potentials gen-

erated by muscles, mainly in the jaw and forehead. Recorded in the

beta band, these artifacts can be diffuse, but are more generally found

in the frontal and temporal areas (Fig. 1-A).

• Ocular artifacts resulting from the mechanical movement of the eyes

or the eyelids contaminate mainly the delta band (Fig. 1-A), again

in the frontal and temporal areas. They may be symmetrical or anti-

symmetrical between the two hemispheres depending on their origin

(eye blink, horizontal/vertical eye movement)
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• Electrode artifacts are also slow waves found mainly in the delta band.

These artifacts are created by electrode or wire movements, skin gal-

vanic resistant variation or heart beats. Their amplitude can be very

high and they are often recorded by only one lead. As a rule, muscle

artifacts come with electrode artifacts triggered by the facial movement

resulting from the muscle contraction (Fig. 1-A time: 1s to 2s).

There is also the sector artifact, generally removed by a notch filter, and

the electro-cardiographic artifact, which though uncommon can be filtered

using the method described by Wang et al.[1] [2].

The purpose of this paper is to present a filter designed to:

• reduce the most common and problematic types of artifacts (ocular,

muscular and electrode-relateds);

• preserve the brain rhythms and particularly those characterising epilepsy

(spike, spike-waves and slow waves) (Fig. 1-B);

• avoid any requirement for manual intervention.

This paper starts by describing the background of artifact filtering. Next,

the method and theoretical aspects of the filtering are described. Finally, the

results are presented and blindly compared to those obtained with Indepen-

dent Component Analysis (ICA).

2. Background

2.1. Earlier work on artifact filtering

As shown in Figure 1, the frequencies of pathological graphic-elements

overlap those of artifacts, thus making it impossible to use frequency filters
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(e.g. lowpass, highpass, wavelets, . . . ) to separate them. Consequently,

research in this field has been oriented towards spatial filters.

The first methods were based on Principal Component Analysis [3] and

on regression (for review see [4]). Then, much progress was made with the

development of ICA that seems to give better results [5]. In order to filter

artifacts, each ICA component has to be identified as an artifact source or as

a brain source. One of the major problems of ICA is that the identification

is often performed manually by a specialist. This step can tedious and time-

consuming. Much research has been devoted to automating this procedure

[6][7], or to adapt the ICA base to better fit artifact and brain sources [8].

Most artifact filtering methods aim to filter only one type of artifact

(ocular, muscular, cardiac) and only a very few of them have been tested in

presence of pathological activity (slow waves, spikes, etc.). Combing filters

often results in a deletion of a major part of the cerebral rhythm especially

pathological signals. P. Levans et al. [9] presented a rigorous study on

this subject examining all types of artifacts. They describe a method that

identifies each component with a Bayesian classifier. Applying this method

to seizure recordings demonstrates that it often improves readability, but at

the cost of great reduction in the brain signal without complete removal of

all artifacts when they are numerous.

2.2. Recent contributions

In the same context, we developed the Adaptive Filtering by Optimal

Projection (AFOP) method [10] and observed its good performance in a

preliminary study of short-duration recordings in epileptic patients. Nev-

ertheless, since the subjects were asked not to move, these short duration
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recordings were less affected by artifacts than long-duration recordings. In

addition, no seizures were studied.

Consequently, the AFOP in its present form has two limitations:

• Electrode-related artifacts cannot be filtered and in the presence of

those artifacts, the the filter effect could be random;

• stability could be a problem when filtering ocular artifacts.

The following paper reports two improvements that address these limita-

tions: the first one called the Dual AFOP method (DAFOP) is designed to

filter electrode artifacts; the second one called progressive orthogonalisation,

is designed to stabilise the method. In addition, compared with our earlier

report [10], we have provided a more general presentation of the method,

making the introduction of these two improvements more logical.

3. Filtering method

3.1. Summarizing the overal process

The overall process is a combination of spatial filtering and frequency

filtering.

Each of the spatial filters is a combination of at least one of the following

three processes:

• A process to remove muscular artifacts based on the AFOP method[10].

• A process to remove ocular artifacts also based on the AFOP method[10]

as well as on the progressive orthogonalisation process, introduced in

this paper for stabilisation (sec. 3.5).
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• A process to remove electrode artifacts which is based on DAFOP dual

frequency method, introduced in this paper.

The entire recording is the rebuilt by summing the spatially filtered win-

dows.

The AFOP method[10] consists in determining the spatial distribution of

artifacts using to a learning period (sec. 3.4.1).

The DAFOP method consists in optimising the frequency pattern of each

component to better fit brain signals (sec. 3.4.1) and artifacts (sec. 3.4.2).

The overall method is illustrated in Figure 2. The overall method is based

on spatial filtering which must first be defined.

3.2. Spatial filtering

Spatial filterings consists in creating some linear combinations of the sig-

nals from the various channels in order to reduce the amount of artifacts.

Considering V (dimension n×t), the signal matrix where lines correspond

to n channels and columns to t time samples, the linear combinations can

be represented by a filtering matrix F (dimension n×n) which is an oblique

projector (i.e. FF = F) [10]. The filtered signal can be obtained by:

V′ = FV (1)

with V′ representing the filtered signals.

The projection matrices are diagonalisable and the eigenvalues are all 1

or 0. The diagonalisation can be written F = MDM−1 = W−1DW with D

(n × n) a diagonal matrix composed by 1 on the first n1 diagonal elements

and by 0 on the last n0. M (n × n) is the matrix of the right eigenvectors
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and W = M−1 (n × n) is the matrix of left eigenvectors. By analogy with

blind source separation theory[11][5], W is called a separation matrix, M is

called a mixing matrix and the matrix S = MV (n × t) is called a source

matrix.

A filtering matrix is defined in an unique way by two eigenspaces E1

and E0 of respective dimension n1 and n0 (n1 + n0 = n). The subspace E1

(corresponding to eigenvalue 1) is the image of F (E1 = {x ∈ <n\Fx = x})

and the subspace E0 (corresponding to eigenvalue 0) is the nullspace (E0 =

{x ∈ <n\Fx = 0}).

The first n1 column vectors of M are a base of the subspace E1 and the

last n0 are a base of E0. In the same way, the first n1 line vectors of W are

a base of the subspace E⊥0 (orthogonal subspace of E0) and the last n0 line

vectors of W are a base of the subspace E⊥1 .

E1 is then called the mixing subspace of sources of interest (in the case of

EEG, it represents the distribution of brain sources on the various electrodes),

E0 is called the mixing subspace of artifacts, E⊥1 is called the separation

subspace of artifacts and E⊥0 is called the separation subspace of sources of

interest. The filtering matrix can thus be constructed using any base M0 of

E0 or WT
1 of E⊥0 and any base M1 of E1 or WT

0 of E⊥1 and applying one of

the following formulas:
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F = M1(W1M1)
−1W1

= In −M0(W0M0)
−1W0

=

 W1

W0

−1D
 W1

W0


=
(

M1 M0

)
D
(

M1 M0

)−1
(2)

Only this first formula was used in [10] since the AFOP process auto-

matically defines W1 and M1. In order to simplify the introduction of the

stabilisation process (sec. 3.5.5), a more general approach can be achieved by

constructing the filtering matrix using subspaces instead of matrices. Con-

sequently, any one of those formulas can be used depending of the subspaces

involved.

3.3. Time-frequency decomposition

One of the limitations of spatial filtering is that sources cannot be com-

pletely separated if the number of sources is greater than the number of

channels. It is obvious in practice that there are many more sources than

channels even though most of the signal power may be contained in only a

few components. One way to increase the number of components is to use

the specific properties of sources which exhibit both frequential and temporal

parsimony. Indeed, artifacts and brain rhythms are never activated over the

entire recording. In addition, they are confined to a small part of the Fourier

spectrum (Fig. 1).

In order to take this parsimony effect into account, the EEG’s multiple

channels can be broken down into several time-frequency windows Vφ.
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A time-frequency window corresponds to the signal of a time window fil-

tered by a band pass filter of a frequency window. It should also be noted

that the entire process can work within the framework of Fourier analysis,

all steps of the AFOP/DAFOP method giving exactly the same results be-

cause of the linear properties and the Parceval relation. In this case, a time

frequency windows would correspond to the signal of a frequency window

filtered by a band pass filter of a time window.

The purose of the time-frequency decomposition process is to apply a

different spatial filter Fφ on each of these time-frequency windows. The

entire filtered EEG will then correspond to the sum of all these windows

filtered with their specific filtering matrix. This process is equivalent to the

frequency band decomposition described in [10]).

The frequency windows used for this decomposition are set to the tra-

ditional bands used for electroencephalography (except for beta which is

divided) (∆ : 0 − 4Hz, θ : 4 − 8Hz, α : 8 − 13Hz, β1 : 13Hz − 20Hz, β2 :

20Hz−45Hz). These windows are chosen to best isolate either brain rhythms

or artifacts.

It is recommended to achieve this decomposition by applying a Perfect

Reconstruction Filter Bank [12]. The important point is that the entire EEG

has to correspond exactly to the sum of all these time-frequency windows.

A zero-phase filter (e.g. forward-backward filter, Fourier filter or centred

Finite Impulse Response filter) should be applied to perfectly comply with

this requirement. The method used in this paper corresponds to a cascade

of 6-order low-pass butterworth filters with a forward-backward process.

The aim is now to construct each of those spatial filters Fφ which will be
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applied independently on the time-frequency windows Vφ. A combination

of AFOP and DAFOP methods are used to generate thes filtering matrices,

depending of the type of artifacts to be filtered in the window.

3.4. The AFOP/DAFOP method

Both methods AFOP and DAFOP, consist in a two-step construction of

the filtering matrix Fφ for a window Vφ: the first step defines Eφ
0 and the

second Eφ
1 .

3.4.1. Common Spatial Pattern: learning E0

The first step is to define two training windows: Vimp (n × Timp) and

Vart (n × Tart). Vimp is defined to contain mostly signals of interest and

Vart is defined to contain mostly artifacts. Those two windows are used to

determine the brain source separation, which is equivalent to the artifact

distribution. This artifact distribution will then be considered as constant

for the current window Vφ (n× T φ).

The subspace is determined by the identifying components whose variance

increases the least between Vimp and Vart. The two methods, AFOP and

DAFOP, differ by the way they chose these windows depending on the type

of artifact to filter:

a. The AFOP method[10]:. If the artifact distribution (e.g. eyes or mus-

cles) is considered constant over time, Vimp,Vart and V can be chosen to

correspond to the different time windows. The eyes and the head muscles

have a constant location in the head, imposing a corresponding artifact dis-

tributions. This artifact distribustion can be learned by asking the subject to

perform a protocol [10] composed of a set of standard movements (eye blinks,
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eye movements, jaw contractions, forehead contractions, smiles). According

to our trials, this set of movements seemed enough to filter almost all types

of artifacts except electrode artifacts.

The brain and artifact sources could be considered static since the brain

and the muscles are always in the same location. Some sources might however

not be activated during the rest period of the learning step. For example,

sources of paroxysms may not appear in this period. Consequently, only the

artifact distribution space will be considered as constant.

b. The DAFOP method:. If the artifacts have specific frequential spectrum

difference compared to important sources and if the artifact spatial distribu-

tion is the same for all frequencies, (e.g. electrode artifacts), Vimp,Vart and

Vφ can be chosen to correspond to different frequency windows.

The AFOP method can be used for the filtering of artifacts with a con-

stant distribution. This is the case for ocular and muscular artifacts but not

for electrode artifacts. Indeed, for example, a wire movement can appear

on any electrode at any time. However, these artifacts are characterised by

their very low frequencies even compared to delta rhythms. Particularly, the

spectral power is near null for frequencies exceeding 4Hz (Fig. 1-A).

To filter these artifacts, a Common Spatial Pattern (CSP) process can

be carried out between two frequency bands [13], [14] empirically defined.

On the current sliding time window, the signals of the band 0.5 - 2 Hz are

compared to the signals of the band 4 - 8 Hz. The components having the

greatest variance ratio between those two frequency bands are considered as

electrode artifact sources.
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c. Resolution. Once the two windows are defined, the aim is to find com-

ponents whose variance increases the least between Vimp and Vart. This

problem can be solved by CSP processing.

This consists in computing the two covariance matrices Cimp =
VimpVimp

T

Timp

and Cart = VartVart
T

Tart
. The subspace E⊥0 corresponds to the components

w with the smallest variance ratio r(w) between Vart and Vimp (r(w) =

||wVart||2
||wVimp||2 ). E⊥0 is then the subspace generated by the first n1 eigenvec-

tors ([w1,w2, . . . ,wn1 ] = WT
1 ) corresponding to the smallest eigenvalues of

Cimp
−1Cart. The diagonalisation of Cimp

−1Cart can be written:

Cimp
−1Cart = WTDCSPM

T (3)

with DCSP being the diagonal matrix of eigen values λi (i = 1 . . . n), W = W1

W0

 being the transpose matrix of eigen vectors and M = W−1 =(
M1 M0

)
being the inverse matrix. It can be shown that the eigenval-

ues λi correspond to the component variance ratios r(wi) between the two

periods.

There is the property that the subspace E⊥0 of bases WT
1 and the subspace

E⊥1 of bases WT
0 are orthogonal for both scalar products < Cimp., . > and

< Cart., . >. Similarly, the subspace E0 of bases M0 and the subspace E1

of bases M1 are orthogonal for both scalar products < Cimp
−1., . > and

< Cart
−1., . >.

There are two possibilities to determine the dimensions n1 and n0 =

n− n1. First, if the number of sources to isolate artifact n1 is unknown (e.g.

for muscular artifacts), it can be automatically determined by selecting only
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eigenvectors wi whose eigenvalues λi are below a threshold tCSP . Second,

if these sources can be specifically localised (e.g. for ocular artifacts), the

dimension n0 = n− n1 can be set to a constant number of artifact sources.

3.4.2. Regression: determining E1

Once the subspace E⊥0 is defined, the subspace Eφ
1 is determined by find-

ing the best distribution of sources of interest by a least squares method

on the sliding window φ [10] of the signal matrix Vφ. Another way to

consider this step is to conserve most signals exhibiting a distribution not

exactly identified as artifact. This best distribution is defined by Mφ
1 =

argminM1

∑
i ||V

φ
i −M1W1V

φ
i ||2 (Vφ

i means the ith column of Vφ) and can

be computed with:

Mφ
1 = CφWT

1 (W1C
φWT

1 )−1 (4)

Where Cφ = VφVφT

Tφ
is the covariance matrix. Consequently, Fφ =

Mφ
1W1. It can be noticed that if the period Vφ corresponds to one of the

period Vimp or Vart, then Mφ
1 = M1 of eq. 3 in both cases. This can be

explained by the fact that this step of regression consists in defining Eφ
1 as

the Cφ−1

-orthogonal subspace of E0.

Eφ
1 = E

⊥
Cφ

−1

0 (5)

3.5. Stabilisation by progressive orthogonalisation

3.5.1. Stability problem

There can be a stability problem if the artifact distribution is slightly

different from that occurring during the learning period. This problem is
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common when the sources of interest have a small magnitude compared to

the artifact sources. The regression step focuses on a small artifact residue

in the estimation of sources of interest. The components wearing this ar-

tifact residue are highly amplified in order to rebuild them, resulting in an

over-amplification of the signal of interest present in these components. For

the EEG, this problem often occurs with ocular artifacts on the ? band.

The covariance matrix can be easily misevaluated due to the low frequency

and low amplitude of brain signals, producing incorrect signals on frontal

electrodes (e.g. Fig. 4-C).

3.5.2. Detection of instability

This instability can be detected by a small minimum angle between the

two subspaces Eφ
1 and E0. To get an idea of the meaning of angles between

two subspaces A and B with dimensions nA and nB, it must be understood

that there are min(nA, nB) angles between these subspaces. If all these angles

are null, this is equivalent to one of these subspaces being included in the

other, and if at least one angle is null it is equivalent to A ∩ B 6= {0}. The

following equalities can be described:

θ = MinAngle(A,B)

=
π

2
−MaxAngle(A,B⊥)

= arcsin
1

‖FA,B‖2

(6)

with FA,B the oblique projector of null subspace B and image A. The ‖F‖2
corresponds to the usual norm for matrix defined as ‖F‖2 = maxx

‖Fx‖2
‖x‖2 .
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A small angle between Eφ
1 and E0 corresponds to a high norm of the

filtering matrix Fφ. This means that a signal with a small amplitude can be

highly amplified and some instability is probable.

3.5.3. Principal component projection

To reduce this problem, the degrees of freedom can be reduced during

the regression step. The process consists in applying Principal Component

Analysis (PCA) to the current window φ. The subspace E0 is slightly dis-

placed by an orthogonal projection on the principal component subspace

(Eφ,k
0 = P⊥

PCAφk
(E0) with P⊥

PCAφk
being the application of orthogonal projec-

tion on the k-first principal components). The regression step then takes

place strictly within this principal component subspace (called EPCAk).

For the last components of the PCA, it is not possible to distinguish what

is artifact and what is cerebral. The choice is made to keep those components

by adding them to Eφ
1 . This process is then exactly equivalent to the process:

project E0 on the principal component subspace and perform the regression

step on the original base:

Eφ,k
1 =

(
P⊥
PCAφk

(E0)
)⊥

Cφ
−1

(7)

3.5.4. The number of principal components k

The number of principal components (k) declines from n until the mini-

mum angle between the two subspaces (Eφ,k
0 and Eφ,k

1 ) would be greater than

a threshold (e.g. 20◦ for EEG).

At the beginning, (i.e. k = n) this method is equivalent to the standard

AFOP[10]. If there is no stability problem, there is a high probability that
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the minimum angle would be greater than the threshold and the orthogonal-

isation process would not start[10].

In the worst case, k reaches n0. Then, Eφ,n0

0 corresponds to the sub-

space generated by the n0 first principal components (EPCAn0 ) and Eφ,n0

1

corresponds to the subspace generated by the n1 last principal components.

Consequently, Eφ,n0

1 would be the orthogonal subspace of Eφ,n0

0 , the mini-

mum angle would be equal to π/2 and the algorithm stops. The filtering

matrix is then the orthogonal projector that removes the first n0 PCA com-

ponents and keeps the last n1. This is why this process is called progressive

orthogonalisation.

3.5.5. Precise algorithm

Here is the algorithm of progressive orthogonalisation:

Input: Vφ the signal matrix of the current sliding window t, E0 the artifact

mixing subspace learned with section 3.4.1

Output: The Fφ projector matrix for the window t

1. PCA: Compute the covariance matrix and its diagonalisation Cφ =

QφDCφQ
φ−1

(with DCφ diagonal matrix of eigen values sorted in de-

creasing order)

2. Set k = n

3. Define EPCAk as the subspace generated by the k first column vectors

of Qφ

4. Define Eφ,k
0 as the orthogonal projection of E0 on EPCAk (Eφ,k

0 =

P⊥
PCAφk

(E0))

5. Define Eφ,k
1 as the Cφ−1

-orthogonal subspace of Eφ,k
0 (Regression)
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6. If the minimum angle between Eφ,k
0 and Eφ,k

1 is less than a threshold,

set k = k − 1 and go to (3)

7. Define Fφ,k as the oblique projector of nullspace Eφ,k
0 and image Eφ,k

1

(Eq. 2).

3.5.6. Discussion

This process is an intermediary between the original AFOP solution and

the solution of conducting a PCA and removing the principal components.

The AFOP solution ensures minimum removal of brain signal but with the

risk of some instability. Whereas the PCA solution removes more signal and

probably more brain signal but without the risk of instability due to the

orthogonality and the fact that ||F || = 1. Any intermediary between those

two solutions has the two constants:

• the number of removed components is the same;

• the two subspaces E0 and E1 are Cφ−1

-orthogonal which means that

the rebuilt channels are the results from a least squares optimisation

over the original signal.

The method automatically determines wether it should be closer to the

AFOP solution or to the PCA solution. The PCA solution can be reached

only when the artifacts are very high compared to signals of interest. In

this case, the principal components are mainly composed of artifacts and the

solution of removing them makes sense even if it would be suboptimal.

The mathematical demonstration of the statistical improvement of this

orthogonalisation process remains a challenge. Consequently, a synthetic

signal is presented to show the efficiency.
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3.5.7. Synthetic signal

Let us consider a known mixing matrix M (eq. 8) and two signal matrices

with five sources Simp and Sart containing 10,000 temporal samples each. The

first two sources represent artifacts and the last three represent brain sources.

The brain sources Simp are generated with centred Gaussian law of standard

deviation 1 and the artifact sources Sart are generated with centred Gaussian

law of standard deviation [2 3]. The two raw signal matrices are then defined:

the rest period (Vimp = MSimp) and the artifact period (Vart = MSart) using

the mixing matrix:

M =



1 0 1 0 3

1 1 −1 0 2

1 0 0 1 1

1 1 0 1 1

1 0 0 −1 0


(8)

With these matrices, the first step of AFOP gives the estimation of E0

(the subspace generated by the first two columns of M). Then, a second

mixing matrix Mφ is taken (eq. 9). The first two columns have the same

mixing with small differences but the three others representing brain signals

have a completely different mixing.

Mφ =



1.2 0 1 2 −1

0.9 1 2 −1 0

1 0.1 0 1 1

1 1 0 −1 1

1 0.1 −1 2 2


(9)
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Another signal matrix of five sources Sφ with 10,000 temporal samples

is generated by Gaussian law with standard deviation 2. and 6. for artifact

sources and 4., 1. and 1. for cerebral ones. The channel signal matrix is then

Vφ = MφSφ

The theoretical filtering matrix is given by Fφ = MφDMφ−1 with D

the diagonal matrix with values [0 0 1 1 1] on the diagonal. The estimated

filtering matrix Fφ
AFOP corresponds to the matrix obtained with the standard

AFOP method and the estimated filtering matrix Fφ,3
AFOP corresponds to the

matrix obtained with the AFOP method and progressive orthogonalisation

with k = 3. Figure 3 illustrates the improvement of the stabilisation process

on an extraction of these signals. It can be noticed that without stabilisation

small perturbations have created an important error on the filtering signals,

but this error is greatly reduced with the stabilisation process. To prove this

improvement, the normalised mean squared differences is computed (eq. 10).

Q(X, Y ) =

∑
i,j (Xi,j − Yi,j)2∑

i,j X
2
i,j

(10)

This difference is computed without stabilisation: Q(FφVφ,Fφ
AFOPVt) =

85%, and with stabilisation: Q(FφVφ,Fφ,3
AFOPVt) = 15%. The improvement

is obvious.

3.6. Overall process

Each artifact does not appear on all frequency bands. Thus, for a specific

frequency window, there is no need to use the filter of all types of artifacts.

Consequently, the electrode artifact filter can be used only on windows 0-4Hz

and 4-8Hz, the ocular artifact filter can be used on windows 0-4Hz, 4-8Hz
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and 8-13Hz and the muscle artifact filter can be used on windows 8-13Hz, 13-

20Hz, and 20−45Hz. The stabilisation process can be used on all frequency

windows but it is mostly useful for the window 0-4Hz.

For the frequency windows 0-4Hz and 4-8Hz, both AFOP and DAFOP

method have to be used to filter ocular and electrode artifacts. Applying

the two different filtering matrices successively is not recommended since the

product of two projection matrices is not a projection matrix. It is better

to first remove ocular components via AFOP and then to apply DAFOP on

only the remaining sources. Figure 2 illustrates all the details concerning

filter combination.

4. Clinical evaluation

In this section, a first example illustrates the interest of each step (Fig.

4) of the global AFOP/DAFOP method. Subsequently, an evaluation of the

performance of this method was carried out by quantifying the visual analy-

sis performed by a neurologist. Finally, the results are compared with those

obtained with manual ICA. Readers can also visualise a complete filtered

recording with the corresponding video on the author’s website [http://www.samuelboudet.com/VideoEEG].

The dataset was supplied by the Hospital Group of the Catholic Institute

of Lille (GHICL). Each recording was acquired with a 10/20 system with 19

electrodes from Nihon Khoden and Nicolet devices. A pre-process consisting

of an average reference, a notch filter at 50Hz for the sector, a high pass filter

at 0.5Hz, and a low pass filter at 45Hz was carried out before filtering.
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4.1. Illustration of all steps

Figure 4 represents an example where the filtering was particularly effi-

cient. It illustrates the interest of the each iprovement of the method (Fig. 4-

B to E). This period contains alpha rhythm mainly on O1 and O2 as well as

a spike-wave on second 3. The spike-wave was hidden by important ocular

artifacts and it was very difficult even for a specialist to detect the spike-wave

behind this artifact.

In this example, the standard AFOP method (Fig. 4-B) enabled the im-

provement of readability by removing most ocular artifacts while retaining

the cerebral rhythms (alpha and spike-wave). It can be noticed however that

a muscular artifact appeared on the frontal leads. The frequency window

decomposition (Fig. 4-C) enabled the removal of this muscular artifact but

there was a stability problem that prevented the removal of ocular artifacts.

The orthogonalisation process (Fig. 4-D) removed this problem but there

remained a tight slow artifact in the frontal electrodes. Eventually, the elec-

trode artifact filter (Fig. 4-E) removed these last signs of slow artifacts. The

brain signal appears to be entirely preserved. It can be noticed however that

the spike (second 2.5) was possibly slightly reduced.

4.2. Method evaluation

In this study, a first evaluation was performed based on the evaluation of a

neurologist’s expertise which better corresponds to routine use. With no prior

knowledge of the filtering results, the neurologist selected 330 artifacted pages

of 20s from 26 hours of recordings from 10 patients (see sec. 2.1). On each

page, the neurologist noted what types of waves were present, as well as their

importance (3 levels: small, mean, and important). Both artifact and brain
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signals were noted. Next, a visual inspection was performed on the filtered

recording, and for each signal the neurologist quantified its elimination: 0 =

no reduction, 1 = small reduction (< 30%), 2 = mean reduction (between

30% and 70%), 3 = important reduction (> 70%), 4 = complete elimination.

The same notation was made for artifact and brain signals. Consequently,

the ideal case would be 0 on brain signals and 4 for artifacts. The notation

system is illustrated in Figures 5 and 6.

On the first example (Fig. 5(I)), spike-waves appeared between seconds

3 and 7. A mean muscular artifact can be observed in the frontal area as

well as important ocular artifacts. This example is very representative of the

mean result of the method: The spike-waves were only slightly reduced, the

fast rhythms preceding the paroxysm (time: 3.8s) were perfectly visible, and

the background rhythm was not modified. By contrast, the artifacts were

highly reduced; there remained only a few ocular artifacts in the frontal area,

as well as small muscular artifacts in frontal and temporal areas.

Figure 5(II) represents a period where the filtering was very efficient. An

important muscular artifact in the temporal area was hiding pathological

theta waves (seconds 0 to 4 in F7 and T3). After filtering, the muscular

artifact was completely removed and the theta waves were emphasised. It

can be noticed that there were also some small ocular artifacts (e.g. second

1) which were completely removed, and an important electrode artifact on

O1 which was greatly reduced. The background rhythm, mainly composed

of alpha, was unchanged.

Figure 5(III) shows a limitation of the method. A small delta slow wave

appeared on F8 (second 2) and it was completely removed by the filter.
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Nevertheless, the alpha rhythm was still entirely preserved. There was also

a small muscular artifact that was completely removed.

Figure 6(I) corresponds to an epileptic seizure. Several muscular, ocular

and electrode artifacts were almost completely filtered out. The spikes were

entirely preserved (electrodes F8, T4, T6). Delta waves appeared likewise

between and were only slightly reduced.

Figure 6(II) represents the beginning of another epilepsy seizure period

which was highly artifacted. The main parts of all artifacts were removed.

Only the electrode artifact (second 5) remained due to its uncommonly high

frequency. Regarding the cerebral signal, it was mainly composed of delta

and theta rhythms which were entirely preserved by the filtering.

Table 1: Amount of removed artifact per 20s page (0: no improvement, 1: small reduction

(< 30%), 2: mean reduction (between 30% and 70%), 3: important reduction (> 70%), 4:

complete elimination.

Table 2: Amount of removed EEG per 20s page (0: no difference, 1: small reduction

(< 30%), 2: mean reduction (between 30% and 70%), 3: important reduction (> 70%), 4:

cannot be recognised

The overall results of this study are presented in Tables 1 and 2. As an
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example, it can be read as follows: among the 131 pages with small ocular

artifacts, there was a complete elimination of this artifact in 71% of them, a

small residue on 27% of them, . . . Likewise, among the 203 pages with alpha

rhythm, there is no attenuation of alpha on 87% of them, . . .

4.3. Comparison with ICA

Today, ICA is probably the most widely accepted reference method for

EEG artifact reduction. However, despite the large number of articles deal-

ing with artifact reduction with ICA, we were unable to find any publication

presenting a method which is simultaneously automated, reproducible and

efficient for all artifacts. We thus decided to compare our results with man-

ual ICA. It can be assumed that any method that aims at automating the

ICA has at best the same results as the manual ICA method. Consequently,

comparison with the AFOP/DAFOP method would be pertinent. Examin-

ing three methods, JADE [15], Infomax [16] and fastICA [17], we concluded

that the method Infomax gave the best results. Consequently, a blind com-

parison between AFOP/DAFOP and Infomax was conducted by an expert

neurologist.

52 artifacted pages among the previous 330 pages were selected for this

comparison. This selection was done in order to best cover the variety of

possible EEG rhythms and artifacts, and without viewing the results of each

method. First, a neurologist (expert A) interpreted the rhythms and the ar-

tifacts of each raw page. Then, both AFOP/DAFOP and ICA filtering were

applied. For the ICA filtering, the components were manually identified by

two expert engineers (experts B and C) taking into account the neurologist’s

interpretation. The default parameters were those of the EEGLab[18] and
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20s windows were used for this filtering. Several tests were often conducted

in order to obtain the best result for the component identification step. The

number of remaining components varied from 4 to 16 with a mean of 11,

among the 18 possible. Then, for each page, the neurologist (expert A)

scored the results of the two methods using the previously defined grid. The

neurologist also noted which method was considered best for readability im-

provement. The results of the two methods were presented in random order

in order to avoid expert subjectivity.

Table 3 sums up the results of this expertise. The two-sided sign test was

applied to determine the significance of the difference between the methods

for the elimination of each artifact type, for each cerebral rhythm, and in

general. The Holm-Bonferroni correction (α = 0.1) for hypothesis rejection

was applied in order to take into account the fact that several tests were

conducted.

Four examples were chosen to illustrates these results. The first example

(Figure 4-F) shows the result of the manual ICA on the previously studied

period. In this example the manual ICA preserved the cerebral waves, pos-

sibly slightly more than AFOP/DAFOP. However, the muscular artifact was

not filtered out at all and there were still some ocular artifacts, contrary to

the AFOP/DAFOP method.

Figure 7 represents an eye closing period of a patient with left fronto-

temporal epilepsy. An important alpha rhythm can be observed in channels

O1 and O2, and pathological delta slow waves appeared in channels F7, T3,

and T5. The pathological slow waves were partially hidden by a muscle arti-

fact. In this case, the proposed method was very efficient and the entire EEG
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Table 3: Results of the expert’s blind comparison between AFOP/DAFOP process and

ICA (infomax) filtering

signal was preserved while all the muscular artifacts were eliminated. The

manual ICA methodwas unable to completely remove the muscular artifact

and the alpha rhythm was greatly reduced. Nevertheless, the delta rhythm

was entirely preserved.

Figure 8 represents a paroxysm period (second 4 - 5) with a small ocular

artifact (on FP1 and FP2 second 1) and an electrode artifact in second 6.

The proposed method filtered well the artifact but a reduction of the spike-
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wave can be observed in the frontal area. Here, the manual ICA gave better

results since the brain signal was entirely preserved. This is due to the fact

that only two components were removed by ICA whereas a fixed amount of

components were removed by the AFOP/DAFOP method, even if there was

no artifact.

5. Discussion

5.1. Clinical evaluation

After the examination of the 330 pages (Tables 1 and 2) , the readability

was judged better for 78% of pages, equal for 20% of pages and worse for

2%. On 12 of the pages, an element was revealed that was not identifiable

before filtering, particularly during seizures, whereas there were only 3 pages

in which an element was completely removed and in which the interpretation

was degraded.

According to the results presented in Table 1, on 95% of the pages the

cerebral signals were preserved with more than 70% of their amplitude. In

the same way, Table 2 shows that for 90% of pages, the artifacts were removed

by more than 70% providing evidence of the efficiency of the method.

As can be observed in various samples, the alpha rhythm was always very

well preserved (no modification can be seen in 87% of pages) (e.g. Fig. 4-

E, 5(III)-B, 7-B and 9-B). The theta rhythm was also well preserved even

though a small reduction was often visible (the reduction was low or null

in 98% of cases) (e.g. Fig. 5(II)-B, 6(II)-B). The delta rhythm was well

preserved most of the time (e.g. Fig. 6(I)-B, 6(II)-B, 7-B) despite a regular

small extenuation.
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It can be noticed that the lower the frequency of an EEG rhythm, the

more difficult its preservation, particularly over the frontal area. Six of the 73

examined pages with delta showed important reductions of this rhythm (e.g.

Fig. 5(III)-B), which could skew the clinical analysis. Nevertheless, for the

other 90%, even if there was a reduction, the interpretation was unchanged.

Most of the times, the spike-waves were slightly decreased, but in all cases,

they remained entirely identifiable (e.g. Fig. 4-E, 5(I)-B, 8-B). The decrease

was generally in the frontal area. The spikes were on average reduced by 30%,

whereas the waves were reduced by 20%. On the two recordings containing

isolated spikes, the spikes were always well preserved (e.g. Fig. 5(I)-B) (low

or null reduction in 90% of cases, and mean reduction in the last 10%).

Regarding the artifacts, they were all well filtered with the exception

of the chewing artifact which was decreased only by 50%. The chewing

artifact is particularly fussy because it leads to a fast electrode artifact, very

important on all channels and with an unstable location.

The ocular artifacts were filtered on average at 80% (e.g. Fig. 4-E, 5(I)-B,

6(I)-B, 6(II)-B, 8-B, 9-B). Nonetheless, some instability phenomena persisted

when the ocular artifacts were important. Such instability might create a

rhythm that could be wrongly interpreted as pathological. Most of time,

the progressive orthogonalisation process reduced this phenomenon, but in

some unusual rhythms remained in exceptional cases (3 pages among the 251

analysed pages with ocular artifacts).

The method was particularly efficient in filtering muscular artifacts (e.g.

Fig. 7-B, 8-B, 8(I)-B, 8(II)-B, 9(I)-B, 9(II)-B) even when they were very

important (reduction of 70% in 96% of cases). Concerning the electrode
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artifacts, they were completely filtered out in 70% of cases (e.g. Fig. 7-B,

8(II)-B, 9(II)-B). This filtering was however not effective when the artifact

remained below a threshold, in which case there was no filtering at all. When

the artifact came from an electrode or wire movement, it was strongly filtered

most of time and when it came from a head movement, it propagated more

and was just decreased in amplitude.

Further validation, particularly concerning epilepsy seizures, is of course

necessary. With this aim, an expert committee has been created to perform

a blind analysis with with a large volume of recordings. However, this first

study can be considered as a representative sample of the results.

It would be possible to use the EEG filtering in contexts other than

epilepsy. Some trials have been performed in dementia [19]. About 100

short-duration recordings have been reviewed by a neurologist and the results

seem similar to those found in epilepsy. Some trials have also been carried

out during sleep. It is possible to efficiently filter muscle and ocular artifacts,

but unfortunately the electrode artifact filter can easily remove some slow

rhythms during slow sleep. Further improvements will be required to have a

suitable filter in this context.

5.2. Comparison with ICA

The results obtained with the present method were then compared with

manual ICA in order to compare its performance with the best results achiev-

able with ICA. Components were selected knowing exactly how the evaluator

would interpret the various signals as artefact or brain signal. Consequently,

it can be assumed that this identification step was very close to optimal and

that any method which could blindly automate this step would produce, at
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best, the same results. Infomax was tested with specific parameters. Other

good solutions may exist but Infomax was considered to be one of the best

ICA methods and therefore tested alone.

From a general point of view, global comparison of each page did not

show one method superior to the other. Analysis of the details of the rhythms

showed that the AFOP/DAFOP method was significantly better for muscular

artifact filtering. It also seemed to be better for the preservation of alpha

rhythms but the significance is not validated by the Holm-Bonferroni method.

The ICA seemed to be a bit better for the preservation of pathological slow

rhythms, but the difference did not reach significance. The AFOP/DAFOP

method seemed to be better because it took into account the compilation of

both brain signals and artifacts, but any assessment of performance would

depend on the priority of the application: artefact removal or preservation

of pathological signals.

The better results observed with the AFOP/DAFOP method for muscu-

lar artifact filtering and alpha rhythm preservation were probably due to the

frequency window decomposition. This decomposition could also be used to

improve ICA results but the separation criteria might not necessarily be effi-

cient on a limited frequency window. Moreover, the component identification

step would be even more difficult.

For a truly objective comparison, the filtering should be carried out by

the authors of the ICA methods with several evaluating experts and a larger

number of pages. These early trials are nevertheless sufficient to demonstrate

the competitive performance level of the AFOP/DAFOP method.
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5.3. Practical aspects

A first advantage of this method is its automation, and the possibility

of filtering hours of recording without manual intervention. Nevertheless, a

learning period is still required to learn the artifact distribution. Our first

trials show that it would be possible to consider that the artifact distribution

is constant enough for all subjects, but for now it is recommended to perform

a learning period at the beginning of each recordings.

A second advantage is the very short processing time (< 0.2s for a 25s

page on Matlab using a dual core 2GHz processor). Thus, this filter can be

used for real time exploitation and can also be applied when the recordings

are visualised (in the routine practice, a neurologist analyses about three 20s

pages per second). Parameters can be then individuality adapted for pages

of interest with no lag time.

Another advantage is that the method does not require the addition of

the ocular electrodes not widely used for clinical recordings.

At the present time, one limitation could be the constant number of

removed components over the entire recording, meaning the method filters

signals even if there is no artifact. Consequently, there is a small but real

reduction of brain signals on pages with no artifacts. This might be avoided.

Regarding the programs, the authors will try to promote the method

with the EEG device producer. Thus, for neurologists, this method could be

available in the near future for use directly on the monitor. For researchers,

a free version of the Matlab programs will be discussed with the producer.

For now, future users should contact the authors to obtain the programs.
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6. Conclusion

This paper presents a robust method to filter most of types of artifacts

found in EEG recordings. To sum up, the AFOP/DAFOP method consists of

comparing two distinct time-frequency windows and performing a regression

on a third with potentially a dimension reduction by PCA in order to stabilise

the process. It is interesting to notice that the same process can be used to

filter a very large variety of artifacts, and many applications can be imagined

(e.g. [14]). There are three possible uses of this method to filter artifacts by

function of their types:

• the first one [10] consists of working within a given frequency window,

comparing two time windows for the first step, and performing a re-

gression on a third time window for the second step. The method must

be used when the spatial projection of either signals of interest or arti-

fact is constant. In this paper this method is used to filter ocular and

muscular artifacts;

• the second one is the dual frequency method of the first. It consists

of working within a given time window and comparing two frequency

windows for the first step and filtering a third frequency window for

the second step. It can be used if there is a prior knowledge about

the frequencies of signals and when there is an important difference

of variance ratio between two frequency bands. In this paper, this

method is used to filter electrode artifacts, but it can also be used to

filter muscular artifacts. Some trials have been performed, and results

are encouraging;
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• the third one described in [1][2], consists of filtering periodic signal

synchronised with an other like ECG artifact.

A study has been performed using real cases of long duration recordings

which often cause difficult interpretation problems due to the presence of

artifacts. Compared with ICA-based methods, the results were promising.

One of the best improvements was the use of time-frequency windows which

can also be performed with ICA.

Various investigating neurologists found this filtering method noteworthy,

on the one hand because of its efficiency for most artifact types, and on

the other hand because of its sensitivity to both normal and pathological

cerebral rhythms. It was specifically noted that it does not significantly

distort paroxysmal activities: spikes, spike-waves. . .

The main drawback concerns preservation of the delta band where a

marked decrease in amplitude can sometimes be observed, apparently more

so than with infomax filtering. Conversely, artifact residue can occasionally

lead to the production of slow rhythms in the frontal area which might be in-

correctly interpreted as pathological if a neurologist analyses only the filtered

EEG. These problems are however relatively uncommon.

The contribution of this method is obvious in the field of epileptology

where filtering uncovers paroxysmal activities, particularly at the beginning

of a seizure. Three points facilitating the clinician’s diagnostic process can

be emphasised: the method is automatic, the processing time is short and

no additional electrodes are required. Such details have importance because

they often represent limitations for the clinical use of EEG filters.
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We continue to improve the method, particularly concerning perfect preser-

vation of the delta band rhythm and removal of non-existing rhythms on the

frontal electrodes when filtering eyes. An interesting improvement could

be to use filtering only when necessary, which would require combining the

method with artifact detection (e.g. [20]). This would reduce the probabil-

ity of removing EEG rhythms. We are also working on the deletion of the

learning period that can be a bit restrictive if the protocol is not carried out

at the beginning of a recording.

In other contexts, this method might also be used as a pre-process for

Fourier transformation or non-linear analysis and might improve certain ap-

plications such as anticipated detection of epilepsy seizures, brain-computer

interfaces, neurofeedback, or sleep analysis. Another prospect would be the

application of this method to ambulatory recordings where the expected in-

crease in artifacts creates a challenging filtering problem.

A patent [13] is pending for this method, and an expert committee has

been created to carry out a complete evaluation of the method for possible

clinical use.
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Figure 2: Overall method for filtering all types of artifacts
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(a) Original artifacted signals (b) Application of theoretical filtering

matrix FφVφ

(c) Application of standard AFOP pro-

cess FφAFOPV
φ

(d) Application of AFOP and progressive

orthogonalisation process Fφ,3AFOPV
φ

Figure 3: Comparison of filtering result for synthetical samples
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Figure 4: Example of filtering with all methods: spike-wave and important ocular artifact:

(A) original signals, (B) filtering with AFOP, (C) filtering with AFOP on frequency band

decomposition, (D) filtering with stabilised AFOP on frequency band decomposition, (E)

filtering by the complete method, (F) filtering by manual ICA (Infomax - 8 remaining

components)
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Figure 5: Filtering examples with signal elimination quantification by neurologist between

(A) original EEG and (B) filtered EEG.
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Figure 6: Filtering examples of epilepsy seizures with signal elimination quantification by

neurologist between (A) original EEG and (B) filtered EEG.
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Figure 7: Example of filtering: alpha rhythm and delta pathological slow waves covered by

a muscle artifact; (A) original signals, (B) filtering by the complete method, (C) filtering

by manual ICA (infomax- 13 remaining components.)

Figure 8: Example of filtering: Spike-waves and small ocular artifact; (A) original signals

(B) filtering by the complete method (C) filtering by manual ICA (infomax- 16 remaining

components.)
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