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Abstract

Prostate segmentation is a challenging task, and the olgallesignificantly dfer from one imaging modality to
another. Low contrast, speckle, micro-calcifications andging artifacts like shadow poses serious challenges to
accurate prostate segmentation in transrectal ultrastRdS) images. However in magnetic resonance (MR) im-
ages, superior soft tissue contrast highlights large bditiain shape, size and texture information inside thegpate.

In contrast poor soft tissue contrast between prostate @mdunding tissues in computed tomography (CT) images
pose a challenge in accurate prostate segmentation. Tiuke aeviews the methods developed for prostate gland
segmentation TRUS, MR and CT images, the three primary ingagiodalities that aids prostate cancer diagnosis
and treatment. The objective of this work is to study the keylarities and diferences among theftkrent methods,
highlighting their strengths and weaknesses in order tistassthe choice of an appropriate segmentation method-
ology. We define a new taxonomy for prostate segmentatiabesfies that allows first to group the algorithms and
then to point out the main advantages and drawbacks of eatbgt. We provide a comprehensive description of the
existing methods in all TRUS, MR and CT modalities, hightigh their key-points and features. Finally, a discussion
on choosing the most appropriate segmentation strategg fiven imaging modality is provided. A quantitative
comparison of the results as reported in literature is alesgnted.
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1. Introduction

Statistics from Cancer Research UK show that more than(&Bpeople are diagnosed with prostate cancer every
year in Europe and 91800 worldwide [1], posing prostate cancer as a major heattblpm. The highest rate of
prostate cancer cases are diagnosed in USA, Australia, Meva#d, Western and Northern Europe, while the lowest
rates are observed in South and Central Asia [1].

Primarily transrectal ultrasound (TRUS), magnetic resaeaimaging (MRI) and computed tomography (CT)
imaging are used in diagnosis, treatment, and follow-uphefgrostate cancer. Figure 1 shows an example of a
prostate obtained in each of these imaging techniques,emivercan see that the information provided by each
modality significantly difer from each other. The use of a particular modality depemdthe clinical aim. For
instance, MR is primarily used in diagnostic and treatm@ahning for prostate diseases [2, 3], since it provides
good soft tissue contrast and enables a better lesion oetestd staging for prostate cancer. In addition, dynamic
contrast enhanced MRI (DCE-MRI) aids in identifying maban tissues from the flusion rate of the contrast agent
[4—6] and magnetic resonance spectroscopy aids in idargifyalignant tissues from the relative concentration of
different metabolites (like citrate, choline and creatine) () the other hand, TRUS is primarily used in determining
prostate volume and in prostate biopsy due to the fact thataih inexpensive, portable and real-time in nature [8].
Note from Figure 1(a) that TRUS images are characterizegbyglde, shadow artifacts and low contrast [9] where
the prostate gland can be often observed as a hypoechoicsorasanded by a hyperechoic halo [10]. Finally, CT is
generally used in prostate brachytherapy to determineltw@ment of the radioactive seeds and also to confirm the
seed location post-procedure [7]. The high attenuatiohefadioactive seed produces high intensity in CT images as
could be visualized in Figure 1(c). Note, that distinguighéxternal and internal anatomy of prostate from CT images
is difficult due to poor soft-tissue resolution. The main featuss®ciated with the élierent imaging modalities are
summarized in Table 1.

In this article we will primarily focus on methods develodedprostate gland segmentation in TRUS, MR and CT
images. Prostate segmentation from TRUS, MRI and CT plagy adte in diferent stages of clinical decision making
process. For instance prostate volume, that can be dirdetgrmined from prostate gland segmentation, aids in
diagnosis of benign prostate hyperplasia. The prostatedsoy is utilized in diferent treatments of prostate diseases,
like prostate brachytherapy, high intensity focused stirgraphy, in cryotherapy and in transurethral microwave
therapy. Moreover, both prostate volume and contour aie wdeful in the follow up of prostate brachytherapy.
In addition, prostate gland segmentation also facilitatedtimodal image fusion for tumor localization in biopsy,
minimally invasive ablative and radiation therapy. Howeweanual segmentation of the prostate is a tedious task,
prone to inter and intra observer variability. Thereforemputerized schemes are currently being investigated to
perform this task.

Three related surveys on prostate segmentation were padlisy Zhu et al. [11] in 2006, Noble et al. [12] in 2006,

and Shao et al. [8] in 2003. Zhu et al. carried out a survey onpeterized techniques developed for prostate cancer
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detection and staging, including not only prostate segatiemt but also prostate staging, computerized visuatinati
and simulation of prostate biopsy, volume estimation agisteation between US and MR modalities. Noble et al.
presented a survey on US segmentation methods developddtéaent organs (i.e. heart, breast, prostate) and for
the detection of vascular diseases. Finally, Shao et akepted a survey on prostate segmentation methodologies
developed for TRUS images. Therefore, the surveys of Ndbl.eand Zhu et al. were done on a broader perspective
and hence an exhaustive classification and discussionddaudy on prostate segmentation methods was missing,
while Shao et al. restricted their discussion to methodekdeveloped only for TRUS images.

This paper presents an up-to-date summary of the technépwesoped for prostate segmentation in TRUS, MRI
and CT modalities. We classify and review th&etient approaches found in the literature in order to showsim
larities and diferences and further to extract advantages and drawbaakstii reviewed algorithms. To have an
overall qualitative estimation of the performance of thadent methods, we have grouped the methods according to
their theoretical approach and have presented their ei@humetrics and degree of validation. Note that a quantita-
tive comparison of dferent prostate segmentation methodologiesfiicdit in absence of public data sets, publicly
available software, and standardized evaluation metrics.

In summary, we consider that the major contributions of plaiper are:

e A new classification scheme grouping the surveyed methodhebasis of the theoretical approaches to the

problem. Such classification is useful in highlighting theitarities and diferences of the reviewed approaches.

e The inclusion of prostate segmentation approaches in IR and CT modalities in a single article. This
is key aspect for finding links andfirences between thefidirent segmentation techniques, and it is even more
important with the growing popularity of multi-modal pragt segmentation. Furthermore, to the best of our

knowledge, for the first time a review on prostate segmematiethods developed in CT imaging is presented.
e A comparison of dierent segmentation methods based on their results areraksenped.
e A discussion about choosing an appropriate segmentatidimaghéor a given imaging modality is carried out.

The outline of the paper is as follows. The state-of-thezarmputer-aided prostate segmentation procedures are
classified and presented in section 2. In section 3, vatidathd quantitative evaluation of the prostate segmentatio
in TRUS, MR and CT images are provided. Discussion on seledf an déficient prostate segmentation technique

based on imaging modality is presented in section 4. Findléypaper ends with conclusion and future trends.

2. Prostate segmentation methods

In this work, we classify the prostate segmentation metlamdsrding to the theoretical computational approach
taken to solve the problem. We believe that such a classificaticcessfully points out the key algorithmic similadti

and dissimilarities, highlighting their strengths and kessses at the same time. We globally classify the methods

3



into different strategies: contour and shape based, region bagedyised and un-supervised classification methods
based, and hybrid methods. We further refine these groupsdoipe a more local classification schema. For instance,
contour and shape based methods are further classifieddigéy probabilistic filters and deformable models. The full
taxonomy proposed in this paper is shown in Figure 2 that@issents the work that follow each strategy. Note that
level sets methods appear under contour and shape baseebamiliased methods. This is due to the fact that level
sets can be guided by either boundary or region information.

We have grouped the prostate segmentation methods in fideratit groups, according to the information used to

guide the segmentation. Broadly,

e Contour and shape based methodsThese methods use prostate boungatge information to segment the
prostate. Since often edge information is unreliable in BRldd CT images and in the base and the apex region

of the MR images, prior shape information is incorporategrtwvide better results.

e Region based methods:These methods use local intensity or statistics like meahséandard deviation in
an energy minimization framework to achieve segmentatibhe methods in this category primarily varies
depending on the energy minimization framework. For examphtlas based methods a model of the prostate
is created from manually segmented training images andasittedifference between the model and a new
un-segmented image is minimized. In contrast, in regioretbdsvel sets prior mean and standard deviation
information of the prostate region from manually segmeinteahes are used to maximize the distance between
prostate and background regions depending on region bé&asgstisal moments and propagate an implicitly

defined deformable model whose energy is minimized at the bnonvergence of the two regions.

e Supervised and un-supervised classification methodsthese methods use features like intensity or higher
dimensional features like filter responses to clustef@ndassify the image into prostate and background
regions. The objective of such methods are to group simigeats together based on the feature vector.
Unlike region based methods of energy minimization frant&wa thresholding scheme is used based on some

proximity or distance measure to group similar objects tioge

e Hybrid methods: The objective of the hybrid methods is to combine informafimm contour, shape, region
andor supervised or un-supervised classification informatiosegment the prostate. These methods are more

robust to imaging artifacts and noise.

In the following subsections, the reviewed methods arerdest according to the presented taxonomy. Moreover,
for each category, the approaches are grouped and desarbertling to the imaging modalities: TRUS, MRI, and
CT. Observe that this classification allows to easily sebefdpproaches belonging to one category are useful for

segmenting the prostate in a given modality.



2.1. Contour and shape based segmentation

Contour and shape based methods exploit contour featudeshape information to segment the prostate. These
methods can be categorized into edge based methods, dist@biters and deformable model segmentation tech-
nigues. Deformable model based techniques are furthesifitatsinto active contour models, deformable meshes,
active shape models, level sets and curve based segmantEtie following subsections discuss individually each of

these categories.

2.1.1. Edge based segmentation

Extracting edges in an image using gradient filters like RteRobert, Sobel, Shen and Castan and Canny, is a
popular practice in image processing. However, in presehoeise gradient filters often detect false edges and also
the detected edges are often broken. Although computdiijangensive edge linking algorithms have to be designed
to produce connected edges, in most cases is necessary lhineoatige based algorithms with intensity based and
texture based information for accurate segmentation [13].
TRUS
Prostate segmentation based on edge information seemspgartieularly dificult in TRUS images. Traditional
edge detection filters fail to obtain accurate edges dueddatl contrast, speckle and other imaging artifacts like
shadow regions. To overcome these problems, Liu et al. [iafjgse to use a radial bass relief representation of the
prostate, which consists in superimposing the originalgenaith a zoomed negative of the same. Kwoh et al. [15]
used harmonics from the Fourier transform to reduce spsigaiges of this representation. Other approaches aim to
reduce the speckle from the original image. For instanceniAk et al. [16] used local standard deviation to identify
homogeneous and heterogeneous regions in the image in aresalution framework, and this information was
considered for detecting the prostate boundary with madigigty. In contrast, Pathak et al. [17] reduced speckle b
applying a stick filter based on the non-zero correlation@alf speckle over large distances. The intensity value of
the central pixel was replaced by the average of the intexalties in the horizontal, vertical and diagonal direcsion
of a given size. The resulting image was further smoothedguan anisotropic diusion filter. In the third stage,
some basic prior knowledge of the prostate, such as shapedudpattern, is used to detect the most probable
edges describing the prostate. Finally, patient-speaifatamic information is integrated during manual linking of
the detected edges to segment the prostate.
MRI
The use of typical edge detector operators in MR images ocagiupe many false edges due to the high soft tissue
contrast. Hence, Zwiggelaar et al. [18] used first and secoder Lindeberg directional derivatives [19], in a polar
coordinate system to identify the edges. An inverse transfaf the longest curve selected after non maximal sup-
pression of disconnected curves in the vertical directias wsed to obtain the prostate boundary. On the other hand,
Samiee et al. [20] used prior information of the prostatestta refine the prostate boundary. Average gradient values

obtained from a moving mask (guided by prior shape inforamgtivere used to trace out the prostate boundary. In
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a similar way, Flores-Tapia et al. [21] used a priori shagermation of the prostate to trace out the boundary by
the movement of a small mask on a feature space constructexdtfie product of the detail cficients of the Haar

wavelets in a multi-resolution framework.

2.1.2. Probabilistic filtering

Probabilistic filters like the Kalman filter [22], the probldtic data association filter (PDAF) [23] and particle
filters [24] have been successfully used to segment imaghsseTmethods model the boundary of an organ as a
probabilistic trajectory of a moving object where the motis governed by a dynamic model subject to a particular
uncertainty. Segmentation algorithms based on prob#bifiters are fast as no optimization framework is neces-
sary [25]. However, these methods may be sensitive to thialination and the extension to 3D segmentation is
complicated. Hence, to the best of our knowledge no methsedbban developed for 3D segmentation of the prostate
in MR and in CT images.
TRUS
Abolmaesumi et al. [25] used PDAF to segment the prostat&®ldSimages. The stick filter [17] was used to reduce
speckle and enhance the contrast. The authors argued ¢hhobtimdary of the prostate was given by a trajectory
of an object whose motion was governed by a model from a figteoEknown models at any given radius. The
models difered in uncertainty levels and structures, and switchedidst the models depending on the Markov
transitional probability [26]. The authors assumed that aleceleration could be modeled by Gaussian noise and
the model produced a noisy version of the actual positiorhefgarticle. Each trajectory was associated with a
Kalman filter and the output was combined with an interactiwdtiple model and PDAF to estimate the boundary
location. On the other hand, as the prostate in TRUS imagesaisacterized by a hypoechoic mass surrounded by
hyperechoic perimeter [10], Sahba et al. [27] used meditaifih followed by top hat and bottom hat transforms to
effectively separate bright areas from dark regions trapgiegcharacteristic feature. Binary thresholding followed
by morphological filtering produced a smooth contour of tharmary. Subsequently, a Kalman filtering followed by

a fuzzy inference produced the final prostate contour.

2.1.3. Deformable model based segmentation

Deformable model segmentation techniques are influenceékduyies from geometry, physics and mathematical
optimization. Geometry imposes constraints on the mod@bshphysical theories guide the evolution of the shape
in space, and optimization theory guides the model to fit ifslable data [28]. Deformable models are often as-
sociated with internal and external energies. Externatgiee propagate the deformable model towards the object
boundary and internal energies preserve smoothness obtttewrs during deformation. Internal and external ener-
gies associated with a deformable model are combined ahdigatin an energy minimization framework to segment
anatomical structures by warping to the edges with minimefortnation away from their mean shape. The methods

proposed in a deformable model framework may be broadlsitied into active contour models, deformable mesh,



active shape models, level sets and curve fitting.

2.1.3.1. Active contour models

The active contour model (ACM) or snake was initially deyedd by Kass et al. [29]. On initialization close to an
edge, the active contour model evolves following the dicgcof the gradient in progressive deformation and stops
at the edge. However, fiierent external energies like balloon force [30], distanoteptial force [31] and gradient

vector flow [32] have been proposed to improve the capturgeraf active contour.

TRUS

Considering low contrast in TRUS images, localization oftprostate edge to produce external energy is a real
challenge. Knoll et al. [33] used maxima of a multi-scaledigavavelet to determine prostate edges. Balloon force
was used as external force to deform a snake towards the mafithe dyadic wavelet transform to segment the
prostate in a multi-resolution framework. The form resaétcontour deformation and its initialization by template
matching are performed in a coarse to fine segmentation gsdaased on a multiscale image edge representation
containing the important edges of the image at various scdle improve on the internal force of the ACM, Ladak
et al. [34] used cubic interpolation between four pointested by the user to produce a discrete dynamic contour
(DDC) [35]. Ding et al. [36] used a cardinal spline to constrthe initial contour of the prostate from three or
more manually selected points located in the prostate yndrhe final contour produced in one slice was used
to initialize the neighboring slices. To improve on the captrange of the gradient force, Jendoubi et al. [37] used
gradient vector flow [32] computed from the gradient map inlet using sobel and laplacian of Gaussian as external
force to drive active contour towards the boundary of thesgate. Zaim et al. [38] used fikrence of Gaussian
followed by non maximal suppression to detect dot pattdraswere coherent with prostate tissue texture. An active
contour constructed from manual delineations of prostidtte dot pattern and gradient as external energy was used to

segment the prostate.

2.1.3.2. Deformable mesh

Broadly, deformable meshes could be categorized into stamstrained deformable mesh or parametric deformable
mesh. The methods included in the first category usually diaiding an initial manual segmentation in triangular
and tetrahedral facets. Subsequently, similar to an ACkhénaork, the mesh deforms under the influence of internal
and external forces to produce the desired segmentation. objective of internal forces is to maintain a smooth
surface while an external force drives the model towardbthedary of the organ. Often, the principal curvature of
the surface is used as internal energy and the gradient isfdhe most popular choices for external energy. However,
gradient is usually combined with texture to improve thensegtation results. On the other hand, in the parametric

deformable model, the deformable mesh is constructed ohdhbis of a three dimensional geometrical figure like a



sphere, ellipsoid or a cube that has a close resemblancehgittrgan. Geometrical parameters are used for internal
energy computation. Either gradient or texture or both aezlas external forces to deform the mesh.

TRUS

To maintain the prostate shape, Ghanei et al. [39] used @&st@pstrained deformable mesh in a multi-resolution

framework to achieve three dimensional segmentation gbtbstate. Principal curvature of a surface from Todd and

McLeod’s method [40] was used as the internal force. Thereatdorce was computed from the expansion and the
restoration model proposed by Rao and Ben-Arie [41]. A Ganssoise model was assumed, while an edge was
considered as a step function. An impulse response funetamgenerated and applied to the volumetric data to
generate the gradient. The gradient obtained in the progassised as the external force for mesh propagation for

segmenting the prostate.

2.1.3.3. Active shape model

In absence of prior shape information, the final segmentatsult of deformable models results often vary widely
from the shape of the anatomical structure. Cootes et g.deposed the active shape model (ASM) that worked
in the deformable model framework maintaining the printipades of shape variations of the anatomical structures
under study. Principal modes of shape variations are ifilethiby principal component analysis (PCA) of the point
distribution models (PDM) [42] aligned to a common referefi@ame with generalized Procrustes analysis. Shape
space is assumed to be Gaussian and is represented with amaparadded to weighted principal modes of variations
identified from PCA. With the initialization of the shape nabdeach landmark is searched within local vicinity to
reach a better position with respect to the edges with a mimrdisplacement constraint that maintained the shape.
Once all landmarks were displaced, scaling, rotation aadstation parameters were chosen that minimized the
distance between the deformed contour and the shape matl.sRape information incorporated in active model
makes it robust to noise and artifacts and produces impreggthentation results. In order to consistently set the
corresponding landmarks automatically, the minimum dpsar length and Hill's algorithm [43] were proposed.
The diterent methods primarily ffered in the optimization framework and the feature spacd fegemodeling the
deformation.

TRUS

Shen et al. [44] used rotational invariant Gabor featuresmded with respect to the TRUS probe to characterize the
prostate boundaries in multiple scales and multiple ogigioris. The Gabor features are further reconstructed to be
invariant to the rotation of the ultrasound probe and inocaifed in the prostate model as image attributes for guiding
the deformable segmentation. The real and imaginary pa@sbor features were used for smoothing and edge de-
tection respectively. A hierarchical deformation strgtegthen employed in which the model adaptively focuses on
the similarity of diferent Gabor features atftérent deformation stages using a multiresolution techeniqum coarse

to finer features to achieve segmentation. Similarly, Betret al. [45] enhanced the prostate edge and reduced noise



using a priori knowledge of the noise in TRUS images. An ASM\een used to produce the segmentation of the
prostate. Hodge et al. [46] used the mean of manual segnanfadtm three experts to produce the ground truth
value for prostate in TRUS images. An ASM was constructethfnreanually delineated contours after the reduction
of noise using a median filter. The authors proposed to mdeliiiv of Cootes to generate all plausible shapes by

dividing the prostate mid gland images into three regiors@aating three plausible prostate shapes for each.

MRI

Cootes et al. [42] proposed to segment prostate in MR slisggyuhe framework of ASM (they actually proposed
prostate segmentation as one of the applications of theiergeASM model). Zhu et al. [47] proposed a hybrid of
two and three dimensional ASMs to segment the prostate in KR skts. A three dimensional ASM was built that
represented the shape variance of the prostate. In eaatigterthe three dimensional ASM was updated by the final
search result of two dimensional segmentation. The auttlammed that, unlike pure 3D ASM, their hybrid ASM
had a superior performance in sparse three dimensionatdttas 3D ASM built from sparse data wadiicéent in

detecting all possible modes of shape variations.

CT

The first attempt to use ASM to segment CT images of the pestas done by Tang et al. [48], who used ASM
to segment the prostate, but also the bladder and the redtuomontrast, Feng et al. [49] used an ASM to segment
only the prostate. Deviating from traditional ASM, the ineagorrespondences were obtained by means of SIFT

features [50]. Inter and intra patient specific ASM were ttfudm manually delineated contours of the prostate.

2.1.3.4. Edge based level sets

The level sets framework introduced by Osher et al. [51] ispupar, powerful andfécient tool for medical image
segmentation. This framework was developed to study curgpggation in higher dimensions. The level set is
allowed to expand starting from a seed point in a directiommab to the curve surface that produces the segmented
contour, with a speed inversely proportional to the intigngiadient. The evolution finally stops where the intensity
difference is highest in a local neighborhood. Hence, the patjmargof the curve in a level sets framework may help
in finding an object boundary, and allows dfi@ent curve splitting and merging based on topological gean

TRUS

Considering intensity heterogeneity of the prostate glénd difficult to segment prostate with traditional level set
initialized on gray-scale images. Hence, Kachouie et &] [5ed Gaussian filtering followed by morphological
filtering to classify the mid gland image into prostate and peostate regions. An elliptical level set automatically

initialized inside the prostate region was used to segnm@nptostate using first and second order moments of a



Gaussian probability density function. The authors thesdurodified local binary patterns (LBP) to extract texture
features of the prostate gland in TRUS images [53]. Gradmagnitude information of the modified LBP map was

used as the external force to drive the elliptical level setanvergence, thereby segmenting the prostate.

2.1.3.5. Curve fitting

Parametric curves like splines, ellipses and Bezier cuakesften used to segment prostate due to a close resemblance
between the central gland of the prostate and an ellipticalec Curve parameters are used as internal force and
gradient as external force to deform the curve towards tbstate boundary.

TRUS

Hu et al. [54] used an ellipsoid, initialized from manualidehtions of the limits of the axes, to produce 3D prostate
segmentation. Ellipsoid warping using thin plate splirmmsformation was used to map the user selected six control
points to the end of the semi major axis of the ellipsoid taieas better fitting. The deformation of the ellipsoid was
influenced by the internal and external forces to producesdigenentation. In a similar way, Ding et al. [55] used a
deformable super ellipse to just obtain an initial estintdtéhe prostate contour. Subsequently, the initial paranset

of the super ellipse and gradient information of the imagesj@intly optimized to produce the final segmentation. To
reduce propagation errors, a continuity constraint baseghautoregressive model was imposed on the initialization
of the contour in new slices. Badiel et al. [56] also used diptidal curve to segment the prostate. The ellipse
was fitted through six user defined points. The deformatioth@fprostate was modeled with a sine function in the
angular direction and with a Gaussian function in the radigdction. The warping function was built using these
two functions to create an elliptical shape for the prost&mally, segmentation of the prostate was achieved by
ellipse fitting to the prostate boundary obtained by inteéngcmultiple modes PDAF [25] and reverse warping. In
contrast to these works, Saroul et al. [57] used a taperest slifpse to segment the prostate. The prostate gland was
divided into eight octants and the intensities of each dateme modeled using a Rayleigh distribution. The tapered
super ellipse was combined with the probability densitycfions of the intensities of the prostate and non prostate
region in an energy optimization framework to segment tlosiate region. Mahdavi et al. [58] used a similar tapered
ellipsoid to segment the prostate. The authors used uimtgpand warping of the image to make the shape of the
prostate elliptical. Probe center as well as the bottomtecemiddle right, and bottom right of the prostate gland
were selected by the user. The image was then transformesldoqoordinates with the center of the probe as the
coordinate center. This aided in untapering and warping®ifrhage. After initial fitting, a deformation model was
used to get the final fitting of the prostate boundary tracethtgracting multiple modes PDAF [25]. The obtained
ellipse was used to initialize other slices of the ellipsdiie process continued for all the slices to obtain a segedent

prostate in 3D.
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2.2. Region based segmentation

Predominant intensity distributions of the prostate ragio different imaging modalities have been exploited
by researchers to develop region based segmentationthlgsti Region based segmentation methods are further

categorized into atlas, graph partitioning and level sethiots.

2.2.1. Atlas

An atlas is created from a set of manual segmentations of atoiical structures registered to a common co-
ordinate frame. The atlas is then used as a reference to segmages of a new patient. Therefore, in atlas based
segmentation, the segmentation problem is treated assreggin problem, since the segmentation is based on finding
a one-to-one transformation mapping a pre-segmentediaieye to the new target image. Atlas guided segmentation
is well suited for segmentation of structures that are stafér a large population, like the human brain [59].
MRI
Klein et al. [60] followed a multi-atlas approach to segmitrat prostate. fine registration and subsequently a non
rigid registration using cubic B-spline [61] in a multi-mdstion framework was used to register the training volumes
to the test volumes. Corresponding transformation wasegbpd the label images of the training dataset. In the next
step most similar atlas scans were selected based on theimnmedssimilarity computedirom normalized mutual
information. To combine these atlas scans to into a singlensatation majority voting and STAPLE algorithm is
used to produce the final segmentation. Recently, Dowlira).62] improved on the results obtained by [60] by
introducing a pre-processing step of bias field correctigstogram equalization and anisotrpi¢tdsion smoothing.
Dowling et al. then used rigid,filne and difeomorphic demons registration to generate multiple labkthe test
image. Most similar labels were identified and fused to gatedhe final segmentation. Langerak et al. [63] proposed a
new schema for fusion of the labels in a multi atlas segmiemt&tamework. They proposed to combine segmentation
result of all the labels to produce the gold standard theetdedpel. Each of the labeled images of each of the atlas
was compared to the target label. Labels below a certaistibid was discarded and the target label is re-estimated
with labels that have already been selected. The procetisgesin an iterative manner to provide the final estimated
segmentation label.
CT
Acosta et al. [64] usedfine and non-rigid demons registration to build a probailistias of the prostate, rectum,
bladder and bones from the training images. Given a newrtegie the probabilistic atlas was registered usttige
and demons registration and the labels of the atlas wersftnaned with the same transformation vector to segment
the prostate, rectum, bladder and bones. Later, Acosta[6bglised a multi-atlas schema where similar atlases, were

ranked and their labels fused to produce segmentation qfrtistate, rectum, and bladder.
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2.2.2. Graph partition

In graph based segmentation methods pixels or group ofgatel considered as nodes while edges (gradients)
between pixels are often considered as costs. The graparig#rtitioned by minimizing a cost function and closely
related pixels are grouped inftéirent classes. Berent graph partitioning algorithms like minimum spannireg,
minimum cut, and normalized cuts may be used for such purééde
TRUS
Zougi et al. [67] built a graph partition scheme to segmeatptostate. The graph was built with nodes and edges.
Pixels were the nodes while horizontal edges that conndbtsk nodes represented edge discontinuity penalties.
User defined pixels from the object and the background weed t build two special nodes: the source and the
sink terminal. The max flow algorithm [68] gradually incredshe flow sent from the source to the sink along the
edges in the graph given their costs. Upon termination, taeimmum flow saturated the graph. The saturated edges
corresponded to the minimum cost cut giving an optimal sedation. The initial contour obtained after graph cut
segmentation was further refined in a fuzzy inference fraonkewhat determined the membership of a pixel based on

the region based statistics.

2.2.3. Region based level sets

In contrast with the traditional boundary based level getgn and Vese [69] used region based statistics in their
energy minimization criteria to propagate the level set segment the image. The method obtained superior results
in absence of strong edges and in presence of white noise siacstopping criteria was dependent on region based
statistics.
TRUS
To produce a uniform region for the prostate, Fan et al. [d]tlse value of a cubical voxel to 0 if theffirence
between the minimum and the maximum intensity values in theshwas below 2. The value was set to 1 if the
difference was greater than 2 but less than a threshold. Thigligzsiminative approach was used to extract the

prostate region and used in a region based level set frarkewvsegment the prostate in three dimensions.

2.3. Supervised and un-supervised classification basextidigs

In pattern recognition feature could be defined as a mealsugalantity that could be used to distinguish two or
more regions. More than one feature could be usedfterdntiate dferent regions and an array of these features is
known as a feature vector. The vector space associatedewithré vectors is known as feature space. Supervised and
un-supervised classification (PR) based techniques ailntaining a partition of the feature space into a set of labels
for different regions. Primarily classifier giod clustering based techniques are used for the purposssifidas use a
set of training data with labeled objects as a priori infaiinrato build a predictor to assign label to future un-labele

observations. In contrast, in clustering methods a setaifife vectors are given and the goal is to identify groups
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or clusters of similar objects on the basis of the featuréorexssociated with each. Proximity measures are used to

group data into clusters of similar types.

2.3.1. Classifier based segmentation

In classifiers based segmentation the prostate is seen adiatjgm or learning problem. Each object in a training
set is associated with a response variable (class labeh teature vector. The training set is used to build a predicto
that can assign class label to a object on the basis of thew@lasfeature vector.
TRUS
Intensity heterogeneity, unreliable texture featuresiaraing artifacts pose challenges in the feature spacerto pa
tition. Zaim [71] used texture features, spatial inforroatand gray-level values in a self organizing map neural
network to segment the prostate. In a more recent work [7R]Jatlthors used entropy and energy of symmetric,
orthonormal, and second order waveletfticeents [73] of overlapping windows in a support vector maehiSVM)
classifier. Mohammed et al. [74] used spatial and frequeoayain information from multi-resolution Gabor filters
and prior knowledge of prostate location in TRUS images @niily the prostate. Parametric and non parametric
estimation of power spectrum density of the Fourier tramsfalong with ring and wedge filter [75] of the region of
interest (ROI) were used as feature vectors to classify TRuges into prostate and non prostate region using non
linear SVM.

2.3.2. Clustering based segmentation

The goal of clustering based methods is to determine intrgm®uping in a set of un-labeled data based on some
distance measures. Each data is associated with a featiiog &ad the task is to identify groups or clusters of similar
objects on the basis of the set of feature vectors. The nupflgoups is assumed to be known and implicitly one
must select the relevant feature, distance measure antythrétam to be used.
TRUS
Richard et al. [76] used the mean shift algorithm [77] in tegtspace to determine the mean and covariance matrix
for each cluster. A probabilistic label was assigned to gaxdl determining the membership of a pixel with respect
to every cluster. Finally, a compatibility cfirient and pixel spatial information was used for probatidieelaxation

and refinement of the prostate region.

2.4. Hybrid segmentation

Combining a priori boundary, shape, region and featuremétion of the prostate gland improves segmentation
accuracy. Such methods are robust to noise and produceaugsults in presence of shape and texture variations of
the prostate. This section discusses the methods that bankgireed two or more of the methods presented in previous

sections.
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TRUS

Mid gland image of the prostate in axial slices in TRUS imaigesften characterized by a hypoechoic mass sur-
rounded by a hyperechoic halo. In order to capture this feattiu et al. [78] proposed to use radial search from the
center of the prostate to determine the edge points of thetaiteo The key boundary point was identified from the
largest variation in gray value in each line. An average shmapdel constructed from manually segmented contours
was used to refine the key points. A similar schema was addgytethn et al [79]. In this case, contrast variations
in normal vector profiles perpendicular to the PDM were usealitomatically determine salient points and produce
prostate boundaries. Salient points were determined lmadisg points that fall in shadow regions. Prior shape
information of the prostate shape aided determining thaimgspoints in shadow regions in TRUS images. Optimal
search performed through vector profiles perpendiculdrdeséalient points was used to determine prostate boundary
with a discrete deformable model in a multi-resolution,rggeminimization framework.

Modeling shape and texture features and using them to segnmanw image has been used by many researchers.
The schema primarily varied in the approach adopted for thation of the shape and the texture model. For in-
stance, Zhan et al. [80] proposed to model the texture spackabsifying into prostate and non prostate regions the
texture features captured by rotational invariant Gabterflby means of a SVM. This classified feature space was
subsequently used as an external force in a deformable rfradework to segment the prostate. In their consequent
work [81], the authors proposed to speed-up the processiby dernike moments [82] to detect edges in low and
middle resolutions and maintaining the texture classificatising Gabor features and SVM. In dfdrent way [83],
the authors also proposed to reduce the number of suppddrgday introducing a penalty term in the objective
function of the SVM, which penalizes and rejects the outlidrinally, Zhan et al. [9] proposed to combine texture
and edge information to improve the segmentation accurdeyti-resolution rotational invariant Gabor features of
the prostate and non-prostate regions were used to trainss@a kernel SVM system to classify textures of prostate
regions. In the deformable segmentation procedure, SVMised to label voxels around the surface of deformable
model as prostate or non prostate tissues. Subsequemtlgutface of deformable model is driven to the boundary
by the deformation force of labeled prostate tissues. Téje of tissue labeling and the step of label-based surface
deformation being dependent on each other, the procesrisctaut iteratively to convergence.

A similar schema was adopted by Diaz and Castaneda [84]. Amtrit stick and anisotropic filters were firstly
applied to reduce speckle in TRUS images. A DDC was produsetjucubic interpolation of four points initialized
by the user. The DDC deformed under the influence of interoialef, gradient magnitude and damping forces to
produce the contour of the prostate. Features such as itytemsan, variance, output of back projection filter, and
stick filter were used to construct the feature vectors. Tkelpwere classified into prostate and non prostate regions
using SVM. Subsequently, DDC was automatically initiatiZeom the prostate boundary and used to obtain the final
contour of the prostate. Cimset al. [10] used position and gray scale value of a progtaf®&US image in a Gaussian
mixture model of three Gaussian to cluster prostate, andonostate tissues and to identify halo around the prostate
in TRUS images. Bayes classifier was used to identify presegion. After pixel classification the ASM is initialized
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with the binary image using a global optimization methode Diptimization problem consists of finding the optimum
combination of four pose and two shape parameters, whialegpond to an approximate prostate boundary in the
binary image. A multi population genetic algorithm with fquose and ten shape parameters was used to optimize an
ASM in a multi-resolution framework to segment the prostate

Another common hybrid approach is to use both shape andsityatistribution to segment the prostate. Medina
et al. [85] used an AAM framework [86] to model the shape amdétxture space of the prostate. In this framework the
Gaussian model of the shape and intensity created from P@lsisis combined to produce a combined mean model.
The prostate was segmented exploiting the prior knowledtfgenature of the optimization space in minimizing the
difference between the target image and the mean model. Ghoke[87hused the approximation cfiients
of Haar wavelets to reduce speckle to improve on segmentatiouracies. Later, Ghose et al. [88] improved the
model further by introducing contrast invariant texturattees extracted from log Gabor quadrature filters. More
recently Ghose et al. [89] used probabilistic informatidmadgned in a Bayesian framework to build the appearance
model. Furthermore, multiple mean models of shape and agpea priors were used to improve on segmentation
accuracies. Gong et al. [90] proposed to use a deformabés eiljpse to produce a shape model of the prostate. Using
the deformable super ellipse as the prior shape model fqritetate, the end goal was to find the optimal parameter
vector that best describes the prostate in a given unsegthénage. The search was formulated as a maximum a
posterior criterion using the Bayes rule. The initial paedens were used in maximum a posteriori (MAP) framework
to obtain the optimized parameters for the ellipse.

Later, Tutar et al. [91] used the average of three manuallpekged prostate contours to construct a three dimen-
sional mesh with spherical harmonics to represent the geemsodel of the prostate. With 8 harmonics, a feature
vector of 192 element was reduced to 20 using PCA. Usersliaii the algorithm by outlining the prostate bound-
aries in mid gland axial and sagittal images. Thereforeptbblem of finding the shape parameter vector that would
segment the prostate in spatial domain was reduced to findpti@al shape parameters in parametric domain that
maximized the posterior probability density of a cost fimet which measures the degree of agreement between the
model and the prostate edge in the image. Yang et al. [92]osexpto use mjmax flow [93] to smooth the contours
of the 3D model of the prostate created from 2D manual ddimea The primary modes of shape variations were
identified with PCA and morphological filters were used toraet region based information of the prostate gland.
The shape model and region based information were then omahlim a Bayesian framework to produce an energy
function, which was minimized in a level set framework. Garret al. [94] used 8 user defined points to initialize a
3D mesh of the prostate. Two algorithms were used to deterthia final segmentation of the prostate. First, DDC
with edge as external force and the 6 central gland user defiomts as landmarks was used to deform the mesh
to segment the prostate. Next, the initial mesh was usecettethe graph and in second stage image features like
gradients were introduced to build the cost function. Hjnaraph-cut was used to determine the prostate volume.

The graph cut results were refined with DDC to improve theltesu
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MRI

Prior shape and size information of the prostate were ebquiddy Vikal et al. [95] to build an average shape model
from manually delineated contours. The authors used thenChlter to determine edges after pre-processing the
images with a stick filter to suppress noise and enhance theasd. The average shape model was used to discard
pixels that did not follow similar orientation as the mod&he obtained contour was further refined by the removal
of gaps using polynomial interpolation. The segmentedaumstobtained in the middle slices were used to initialize
slices lying above and below the central slice.

The use of a Bayesian framework to model the texture of thetar® is common in MR images. For instance,
Allen et al. [96] proposed to segment the prostate in an EMhénaork treating the three distinctive peaks in inten-
sity distribution as mixture of three Gaussians (backgdowentral region and periphery of the prostate). A shape
restricted deformable model with the clustered pixels asfarthation force was then used to segment the prostate.
Similarly, in Makni et al. [3], the intensities of the prostaegion were modeled as a mixture of Gaussians. They pro-
posed a Bayesian approach where the prior probabilityilzdpef the voxels was achieved by using a shape restricted
deformable model and Markov field modeling. The conditiqgrabability was associated with the modeled intensity
values, and the segmentation was achieved by estimatiana@ftamum label for prostate boundary pixels in a MAP
decision framework.

Although atlas based registration and segmentation ofrib&tgite has become popular in recent time, the obtained
segmentation results had to be refined with a deformable htodmprove the accuracy. Martin et al. [2] used a
hybrid registration minimizing intensity and geometry ggies for registering the atlas. The minimization of the
intensity based energy aimed at matching the template iméthethe reference image while the minimization of
the geometric energy matched the model points of the temptage to the scene points belonging to the reference
image. Finally, a shape constrained deformable model wess tosrefine the results. More recently, Martin et al. [97]
used a probabilistic atlas to impose further spatial cain#ls and segment the prostate in three dimensions.

Shape and texture modeling of the prostate were merged iwdhie of Tsai et al. [98], who used a shape and
region based level set framework to segment prostate in M&&s. One of the contours was fixed and used as
the reference system where all the other contours wineearansformed to minimize their félerence in a multi
resolution approach. PCA of the shape variability capttinegorimary modes of variations and was also incorporated
in the level set function, along with region based informatsuch as area, sum of intensities, average intensity and
variance information. The minimization of the level setasttjve function produced the segmented prostate. The
authors also suggested a coupled level set model of theapepsite rectum, and the internal obturator muscles from
MR images to segment these structures simultaneously T9@.algorithm was made robust by allowing the shapes
to overlap with each other, and the final segmentation wasath by maximizing the mutual information of the three
regions. Similarly, Liu et al. [6] used a deformable ellipsesegment prostate boundary after Otsu thresholding [100]
of the image in prostate and non prostate region. A shaperagmesd level set initialized from the elliptical fitting
of the prostate was used to further refine the results. Kinpdist processing of the gradient map of the prostate
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and the rectum produced the final segmentation. Firjani.gtLl@l] modeled the background and the foreground
pixels with Gaussian mixture Markov random field and usedrtf@mation of probability of a pixel being prostate in
building the shape model. The shape and the intensity weryj@ptimized with a graph cut based algorithm. The
authors extended their work for a 3D segmentation of thetat@$102]. Zhang et al. [103] proposed an interactive
environment for prostate segmentation. Region and edgalbeagel sets were used to segment the prostate from the
background depending on foreground and background regisechinformation provided by the user.

Gao et al. [104] represented the shapes of a training sefgsgbmuds. Particle filters were used to register clouds
of points created from prostate volumes to a common referemminimize the dference in pose. Shape priors and
local image statistics were incorporated in an energy fand¢hat was minimized to achieve prostate segmentation in
a level set framework. More recently, Toth et al. [L05] usextides of 50 Gaussian kernel of variable size to extract
prostate texture features. ASM constructed from manualindated contours of training images was automatically
initialized depending on the most probable location of thesfate boundary to achieve segmentation. Later, Toth
et al. [106] in addition to intensity values, used mean, d&dad deviation, range, skewness, and kurtosis of intensity
values in a local neighborhood to propagate ASM automdidaitialized from magnetic resonance spectroscopy
(MRS) information. MRS information was clustered usingliegied k-means clustering to identify prostate in mid
slice to initialize multi feature ASM. Khurd et al. [107] laized the center of the prostate gland with Gaussian nextur
model and expectation maximization based clustering adducing magnetic bias in the images. Thresholding on
the probabilistic map of the prostate obtained with randatker based segmentation algorithm [108] to segment the
prostate.

CT
As shown in Figure 1(c), the prostate gland in CT images shkawsniform intensity distribution and poor contrast
between the gland shape and its surrounding tissues. Hamodjning shape information with region based statistics
is a common approach when segmenting CT images, since thegbrape information restricts the deformation
to viable shapes while the region based statistics propabat deformation. For instance, Freedman et al. [109]
used manually delineated contours to form a three dimeakioesh in which the contours were interpolated using
splines. The intensity information of each slice was incoaped in a probability density function (PDF) framework.
For segmentation, each slice was intersected with the miesding a series of polygons and their corresponding
histograms, which were added and normalized to get thellliitn of each of the slices. The segmentation was
finally achieved by the minimization of the cumulative distition function of the PDF between the model and the
image slices. Similarly, Rousson et al. [110] used two shapestrained level sets for simultaneously segmenting
the prostate and the bladder. A non overlapping constraast imposed to drive the prostate and bladder apart by
assuming that the two level sets evolved independent frath ether and a penalty term was introduced whenever
the two voxels were shared. Davis et al. [111] proposed tatifyaorgan motion for adaptive radiation therapy
using deformable registration. Bowel gas was segmenteat) ubresholding and morphological filtering and then
using gradient direction to collapse the bowel. Finallyfod@able registration was used to segment the prostate. In
17



contrast, Ghosh et al. [112] used a genetic algorithm toeythe level set that segmented the prostate. The pose
and weight parameters of manually delineated contours uszd as inputs to the genetic algorithm, and the fitness
function was constructed based on texture features. Thdsginside the generated curve were grouped depending on
Laws texture values and the fithess score was generatedsddris was maximum when all the landmarks were in a
texture similar to the one of the prostate region. Subseatydine curves were ranked according to the fithess scores
and the higher ranking curves were chosen to produce childyemutation and crossover. The process continued
for several iterations until convergence. Similarly, Gost al. [113] used PCA to impose shape constraints and used
region based statistics in an energy minimization fram&wok local dfine registration of the pelvic bones was
used to localize the prostate and the bladder from prioii@paformation. A morphological filtering followed by a
modified region growing was used to obtain an initial esteradtthe segmentation of the bladder. A non overlapping
constraint created from the distance potential of the ptesind bladder was used to drive the two structures apart
during segmentation.

Finally, shape, edge and region based statistics can beaisioined for segmenting the prostate. Song et al. [114]
used an arc weighted graph [115] for incorporating shapstcaints and edge information for segmentation of the
bladder and the prostate. Prior shape knowledge was intendusing the weights of both graph nodes and directed
graph edges or arcs. A three dimensional level sets werefasadough segmentation of the bladder and manually
delineated contours of the prostate were used to constraahean shape and fit it to a CT image using rigid trans-
formation. Recently, Song et al. [116] improved the segi#on accuracy by incorporating region based intensity
distribution information and using both boundary and ragiased energy in an energy minimization framework op-
timized with graph cut. Chen et al. [117] used three leved fmtthe prostate, bladder and the rectum that deformed
under the influence of distance signed function computeh §bape statistics, gradients, PDF of the region and a
smoothness constraint to segment the three organs. ChdRaatitke [118] also used shape and intensity priors in
their level set framework. Kernel density estimation wasdufor both shape and intensity priors to construct an
energy function that was minimized using gradient descptitmization. Feng et al. [119] used profile-based gra-
dient features and the local-region based probabilityitistion function to build appearance model. ASM used the
appearance model for deformation to segment the prostaseli€hit and probability distribution function combined
feature produces more accurate and robust segmentateomgeheral gradient features for ASM. An on line learning
mechanism was used to build shape and appearance stdtisticgurately capturing intra-patient variation.

Li et al. [120] used rigid alignment of the pelvic bone stures to align the training images. Features like
appearance, context, Haar like features, histogram oftadegradients and pixel coordinates were extracted in 2D
inside a region of interest to train two location adaptivassifier. Given a new image the two classifiers were used
to produce two probabilistic map of the location of the patest The two maps were fused and a level set is used
to produce a binary classification. Finally, absolute istgnvariation between the context location (obtained from
the map) and current pixel was used in the classifier to uptiatelassifier and produce final segmentation. Liao
et al.[121] uses rigid alignment of the bone structures talize prostate. Localized multiresolution Haar wavelets
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histogram of oriented gradients, and local binary pattéeatures were extracted and salient features were selected
from a Gaussian function developed from Dice ratio. An amli@arning was used to integrate both inter and intra
patient specific information to localize prostate from avsigd function. Given a new image learn’t image similarity
function was utilized to align new patient for segmentatigth a support vector regression. Lu et al. [122] shape
and region prior level sets to segment the prostate and aiBedphsed registration was used to minimize the cross
correlation value between the image in training stage amtrirent stage to constrain the segmentation results. The
segmentation and registration framework worked itergtit@produce the final segmentation. Chen et al. [123] used
median and morphological filtering on k means clusteringlémtify bones, muscles and gas in images. Slice by slice
segmentation of the bones were performed to identify peivid coccyx bones to impose anatomical constraint in
prostate segmentation. PCA of anatomical landmarks gtteusing Fourier descriptors weer used to identify shape
variations. Finally, registration on intensity in regiofiioterest was obtained. Shape, anatomical and registratio

were all used in a Bayesian framework to achieve segmentatio

3. Validation and qualitative performance evaluation

The performance of prostate segmentation algorithms &llysevaluated comparing the output of the method with
a ground truth (gold standard) obtained from manual delioes of the prostate done by experienced radiologists.
Hodge et al. [46] advised to use the mean of the manual segtiard of diferent radiologists aridr of the same
radiologist at diferent times to reduce inter and intra observer variatiopseéparation of the ground truth value.

Analyzing the literature we have seen that the evaluatiotriosecould be categorized into qualitative and quan-
titative based metrics. In a qualitative evaluation, theamted contour is visually compared with the ground truth
value. In contrast, for quantitative evaluation, an erretween the obtained contour and the ground truth is nu-
merically computed. Typically, these error metrics coudddbassified into contour based, area based and volume
based methods. Contour based metrics rely on computing lue& the ground truth and the obtained contours are.
Typical metrics used are the Hausfiatistance (HD) [124], the mean absolute distance (MAD) [#®an distance
(MD) [27], maximum distance (MaxD) [78], and root mean sguarror (RMSQ) [47]. Area based errors are based
on computing how much the ground truth and the obtained aredap. It can be measured by the Dice similar-
ity coefficient (DSC) [125], area accuracy [56], area sensitivity][Bea specificity [84], area overlap [25], area
overlap error [44], and area error [27] metrics. Finallywoe overlap error and fierence, averageféierence [33],
overlap [91], detection, false detection, centroid diseafl09], and similarity [123] are used for computing a 3D
overlapping error. However, DSC, specificity, sensitivitycuracy and HD of voxels are also used in terms of voxels
to determine volumetric overlap [104]. The evaluation nastfor prostate segmentation is enlisted in Table 3 and 4.

Ideally a comparison of flierent state-of-the-art prostate segmentation methowsay a public dataset should
have been done to evaluate the performance of the stateeafrt methods. However, a quantitative comparison of

different methodologies is filicult in absence of public software, data sets and standatdizaluation metrics. In
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addition, the methods are developed using wide varietygdrahms with specific application requirements. Hence,

such a quantitative comparison offérent prostate segmentation methods on the same datdssbwie standardized

metrics is extremely diicult as could be observed in some recently published works(244, 58, 79, 90, 97, 104].

Nevertheless, to have an overall quantitative estimatbefunctioning of some of the state-of-the-art works in the

literature we present the reported results in Tables 5, 6dBdgor TRUS, MRI and CT imaging, respectively.

The index of the Tables is expanded below.

The name of the first author has been used as a reference &fibe p

The segmentation dimension (Dim) gives the output of a géegmentation methodology. The output can be

in two (2D) or three (3D) dimensions.

B/A indicates whether base and apex slices were consider@iDfsegmentation.
Pre-Proc indicates the type of pre-processing used in ttleade

In. indicates the use of endo-rectal coil in acquisition d® Whages.

The segmentation criteria shows in what of the reviewedycaites should be classified the analyzing segmenta-
tion algorithm. Hybrid segmentation methodologies are#ga with the type of algorithms that are combined
to produce the final segmentation (the acronyms of this rav B¥M = Deformable model, ASM= Active
shape model, AAM= Active appearance model, GA Genetic algorithm, EM= Expectation maximization,
DDC = Discrete dynamic contour, ACM Active contour model, SVM= Support vector machine, ANN

Artificial neural network, S-R Level set Shape and region based level set).

The automation (Auto) column specifies the degree of mamtefdction that was necessary. The process is

considered automatic if the degree of manual interactiohnestricted to training.
The measure column refers to the measures used by the atdlpresent their obtained results.

The last column (Validation) gives the number of images da dats (volumes) that were used to validate the

developed algorithm.

The tables are firstly analyzed according to the imaging ritydAfterwards, a brief discussion on the evaluation

procedures is given in section 4.

3.1. Open problems

We have explained in previous sections the validation ploees followed by the researchers. From the reported

results a set of of open problems are revealed.
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1. Manual delineation of the prostate contours is consiiazde the gold standard to which the result of a seg-
mentation methodology is compared. Only few authors cameiithe mean of delineated contour bffatent
experts and of the same expert affelient time to reduce inter and intra observer variabilityhef process.
Rasch et al. [126] quantified inter observer variabiliti€€d and MRI. He found that, the average ratio be-
tween the volume derived by one observer for a particulan aca patient and the average volume was 0.95,
0.97, and 1.08 for the three observers. Under such intenadrseariabilities an interesting option could be the
use of prostate phantom to validate volume informationiakthusing computer aided segmentation.

2. The unavailability of public prostate database makesiifaéive comparison of the segmentation algorithms
difficult. Moreover, the quality of results depend on the bothdt@ns and quality of contouring. Lately,
MICCAI prostate challenge datasets for MRI are being useddmparison [104]. A public datasets of prostate
images [127] could also be used for validation. The qualftghe images vary with CT, MR and TRUS
machines, as advanced machines produce images of supeaidy.qThus, it becomes almost impossible to
compare the performance of two algorithms separated byracfsgnificant number of years.

3. Lack of standardized metrics in evaluation of segmertiatsult makes the comparison of developed method-
ologies dificult as shown in Table 3 and Table 4. Mean average distancéymm distance, average distance,
area of overlap, areaftirence, volume overlap and volumetric error are just a feshefcommonly used
metrics. However, since MICCAI prostate challenge 200%]1Blausdoff distance and DSC are being in-
creasingly used.

4. Very few fully automatic methods have been developed oditeth manual initialization and sometimes manual
editing is encouraged. This may be suitable ffitlime procedures like the estimation of prostate volume, bu

unsuitable for on-line procedures like real time fusion efitimodal images [128].

4. Choosing an appropriate segmentation method

Choice of a proper segmentation methodology is dependembntexts like imaging modality, and the final
target application of the process. Hence, we have provideoshnmendation of selection of a particular segmentation
technique based on these two basis. We have divide the séontm TRUS, MRI and CT subsections and have

provided recommendations based on applications in eadtesétmodalities.

4.1. TRUS

TRUS image of a prostate has low contrast and the signal én afrrupted by speckle, shadow artifacts and
micro-calcifications [79]. There are twoftirent ways to deal with speckle. One option is to minimizesffsct
in the image using, for example, stick filters [17], that wllceducing speckle while enhancing the contrast of the
image. The second option is to take benefit of this inforrmatichich can be done modeling speckle as a Rayleigh’s
distribution [57]. Any of these options could be employed poe-processing of the image and prepare it for further
analysis.
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Prostate volume determined from segmented TRUS imagesssasvan important parameter in determining pres-
ence of benign or malignant tumor during diagnosis of ptestiseases. Three commonly used prostate volume
measurement techniques in TRUS are planimetry calculationlate ellipse volume calculation, and an ellipsoid
volume measurement technique. Segmentation of prostéB iim the axial slices in the mid gland region to de-
termine maximum area and height is useful in determiningmw@ in all these techniques. Note in Table 5 that no
one tried a pure region based approach to segment the jgroJthis is due to the fact that these algorithms frag-
ment the prostate into a large number of small regions dubedéterogeneity inside the prostate gland. Related
with edge based approaches, we noted that pure contour beetbdds like edge detection [17] are being replaced
(or expanded) with methods that combine prostate shapeegiohrbased information [9, 10, 84], providing a more
robust approach in presence of speckle and low contrasiritrast, Abolmaesumi et al. [25] and Sahba et al. [27]
proposed an interesting option of modeling the prostatéocwras a Gaussian distribution. Such assumption provides
more robustness to contour based methods in low contradfl i8@nother edge based approach frequently used for
prostate segmentation in 2D images. However, such modeldegrendent on reliable edge information and hence
may be adverselyfBected in presence of shadow artifacts [79]. Moreover, theraatic initialization and extension
to 3D is dfficult [47]. However, shape constrained deformable modale baen successfully employed bytdrent
authors [9, 91, 92] as observed in Table 5. Automatic defioraf the prostate in mid-gland images further reduces
inter observer variabilities. The method of Ghose et al] [8uld be used for the purpose it is automatic, fast and
accurate.

In prostate brachytherapies, oncologists should prepaet af parallel TRUS ultrasound images and manually
segment each 2D slice to obtain the prostate volume whidteis tised to plan the location of the seeds. Hence, fast
seimi-automatic or automatic prostate segmentation inlRessor 3D volume could be useful in such procedures.
Mahdavi et al. [58] method of fitting an ellipsoid to prostatéges is a very useful method for such a scenario as the
method has shown good volumetric overlap accuracy.

Automatic, and fast prostate segmentation from 2D US imapeften necessary in image guided prostate biopsy
or robot assisted surgery [79]. DDC and super quadrics amgputationally €icient procedures to segment the
prostate in 2D. However, the fastest segmentation of thetgi® contour had been reported using partial ASM [79]
and probabilistic filtering [25]. Considering semi-autdim@approach adopted by [25], the method developed by Yan
et al. [79] is well suited for real time segmentation of thegtate in two dimensions. Note that the speed of a given
segmentation method could be improved if the method coujshballelized and implemented in graphical processing
unit as well as if an fi-line learning of the optimization space could be adoptegraposed by Ghose et al [88].
Moreover, segmentation of prostate in TRUS videos could bdated as a tracking boundary problem to achieve
near real time segmentation.

Supervised and un-supervised classification based meltavesthe advantage of being fully automatic [71, 74],
although a training is necessary in the ones using a classHi@vever, the intensity heterogeneity and unreliable
texture of the prostate gland challenge again the developofea pure clustering or classification schema for the
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prostate. Therefore, an interesting and common optioreissle of a clustering @nd classification schema for initial
segmentation and subsequently use the obtained infonmfatidhe initialization angbr propagation of a deformable
model to produce the final segmentation [9]. Another commyloril approach is the integration of shape and
intensity information jointly optimized in an AAM framewk{85]. Off-line learning of the optimization space aids

in fast prostate segmentation. However, such methoddtaeed by large-scale contrast variances and use of texture

information in place of raw intensity improve segmentataeuracies [88].

4.2. MRI

MR images of the prostate have better soft tissue contraspared to US or CT images. However, insertion of
the endorectal coil to enhance contrast in the prostatemegiroduces intensity inhomogeneities that may adversel
affect the segmentation accuracy of algorithms dependentxah ipiensities. Viswanath et al. [129] performed an
extended review of three techniques [130], [131] and [1®P]iad to magnetic field bias field correction. The authors
concluded that bias field correction algorithm should bdiegfion specific. For example it was observed that [130]
performed best with the goal of identifying cancer and ondtieer hand bias field corrections can adversdéigc
clustering and classification based techniques of segti@mtat is to be noted that MR images with endorectal coil
are relatively simpler to segment due higher contrast ofjesaaround the prostate and well deformed shape of the
rectum.

Prostate segmentation from MR images are frequently usesfome determination, surgical planing and multi-
modal image registration. In all these applications ptestiegmentation could be done automatically or semi-
automatically. However, minimum human interaction is debito minimize human induced variations and errors.
In the last decade, deterministic and probabilistic atleere frequently used for 3D segmentation of the prostate.
Such methods are automatic, robust to intensity varighalitd to noise [60]. Martin et al. used both deterministic
atlas [2] and probabilistic atlas [97] to segment the ptestthough the obtained segmentations were refined with a
deformable model. Pair wise atlas selection schema of Digvdt al. [62] has shown greater accuracy compared to
[60, 133]. Hence, for atlases pairwise registration isdsatbmpared to average atlas based segmentation. In Table 7
we observe that Klein et al. [60] with atlas based segmeantatchieved an impressive overlap accuracy of 0.85 DSC
value when validated with 50 data sets. However, Martin efo&l] with probabilistic atlas and deformable model
based segmentation achieves similar overlap accuracygoalbcontour accuracy values when validated with 36 data
sets. Atlas based methods [60] and probabilistic modelfrijeprostate region [2] provide a more robust approach
in presence of these inhomogeneities.

Deformable models are frequently used for prostate segtient Makni et al. [3] used information coming
from an initial classification scheme to initialize a defafoie model. Note also that automatic methods are primarily
developed using classifiers, atlas and deformable modelsaslto be noted that anatomical structures around the
prostate may ffiect the prostate deformation. Modeling the anatomicatstres like bladder and rectum along with

prostate will provide additional flexibility to the segmatibn algorithm [99]. A hybrid segmentation method that
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incorporates shape and intensity priors achieves goodesggiion accuracy [98, 104]. Accuracies of segmentation
of prostate in MRI using 3D ASM depends on initialization. Stoet al. [10] provided anficient initialization
scheme in their work using Bayesian classification. In regears Toth et al. [1L06] have used clustering of spectral

data obtained in DCE MRI to initialize 3D ASM. Segmentati@caracies were improved using feature driven ASM.

43. CT

Prostate segmentation from CT images is extremely impofteupatient undergoing radiation therapy. In such
cases automatic segmentation of intra-treatment CT imfageslaptive radiation therapy of the prostate is useful. In
adaptive radiation therapy periodic inter-treatment Cages are used for localization of the tumor and a feedback
control strategy is used to correct thefdiences between planned and delivered dose distributiertalspatial
changes in the treatment volume [111]. Also, in radiatiogrdipy it is essential to ensure accurate delivery of the
target dose under organ motion. Often, gold fiducial markeos adjacent to the target in image guided radiotherapy
is used to correct day-to-day variations in the target posis these fiducial markers being radio-opaque could be
used to as a visible surrogate [134]. The fiducial marker$ratgiently used for motion estimation and to accurately
locate region of interest [135] and motion correction isfulsir segmentation of prostate in inter-treatment prigsta
images [111]. Segmentation of prostate in intra-treatr@@nimages is important for adaptive treatment planing and
often same patient image is used to model and segment thtaferosang et al. [48], Feng et al. [49], Freedman et al.
[109], [111], and Song et al. [114] have all used same pat@ritaining and segmentation.

Poor contrast between prostate and surrounding tissuessntiaé prostate segmentatiofffidult in CT images.
We observe in Table 8 that intensity homogeneity of the ptestegion in CT images has been frequently used for
designing models that exploit shape and region informatiBoor tissue contrast between the prostate gland and
the surrounding tissues inhibits methods that work on bagnéhformation, and hence, shape prior information
constraints the propagation of deformable models in alesefstrong edges. Building shape restricted level sets

propagating on intensity statistics is well suited for pats segmentation [109, 110, 113, 117, 122].

5. Conclusion and future trends

Diagnostic imaging has become an indispensable procedunedical science. Methods of imaging the patient
anatomical structures have improved the diagnosis of pajhes, creating new avenues of research in the process.
Automatic segmentation of anatomical structures froffedent imaging modalities like US, MRI and CT has become
an essential step to reduce inter and intra-observer Witsiabmproving contouring time thereafter. This paper re
viewed the methods involved with prostate segmentatiarength and limitations of the segmentation methodologies
have been discussed along with the presentation of validathd performance evaluations of the same. Finally, a
discussion on choosing an appropriate segmentation matsigpdfor a given imaging modality has been carried out.
It has been highlighted that prostate segmentation teaksighould utilize geometric, spatial, intensity, textared
imaging physics priors to improve accuracy.
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Prostate segmentation is still an open problem and withrashraent of technology for diagnosis, treatment and
follow up of prostate diseases new requirements have to e Migtimodal image fusion of at least two imaging
modalities provides valuable information. For example,filsion of MRI and TRUS imaging should aid in obtaining
more accurate samples during biopsies. However, for suchthad to work in a real scenario, automatic, accurate
and real time fusion of the two imaging modalities is necgss&nder such circumstances automatic real time
segmentation of the prostate and registration on prostetiars would improve accuracy anffieiency. Automatic
and accurate real time segmentation of the prostate mayhevad with dficient algorithms designed for graphical
processing units. Moreover, the goal of segmenting theta®# every frame could be modified with the objective
of tracking prostate in every frame. An increase in 3D pitestgmentation methods will be the trend in coming
years due to the increasing use of 3D imaging modalitiesreva@cient and accurate algorithms are necessary.
In that sense, information from dynamic contrast enhanc&l,nd MR spectroscopy will be increasingly used
as additional features for automatic segmentation. Intaufgiregistration done on prostate contour for the same

modality over a period of time may provide also valuable infation about the progression of a prostate disease.
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Figure 1: TRUS, MRI and CT provide flierent information of the prostate (the contour is outlinedrieen). TRUS and MRI images of the same
patient. (a) In TRUS imaging, the prostate is shown as a hymeenass surrounded by a hyperechoic halo. (b) T2 weightetdd&vs to see
the internal anatomy of the prostate. Note that the contrasta prostate is enhanced with endorectal coil (A). (c) @&de of a dierent prostate
showing radioactive seeds in white.
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Table 1: Advantages and disadvantages of the prostate imsgghniques.

[ Advantages

| Disadvantages

Useful in determining prostate volume
No radiation involved

Low contrast images
Difficult to detect lesions

TRUS || Inexpensive Speckle

Portable Shadow artifacts
Useful for real time imaging Cancer staging is flicult
Useful in determining prostate volume Expensive
No radiation involved Not portable

MRI High contrast for soft-tissues Difficult to implement real time imaging
Allows lesion detection
Enables functional imaging of prostate
Staging of cancer possible
Useful in determining spread of prostate cancer to bone tissuegpensive
Useful in determining €ectiveness of prostate brachytherapy Radiation involved

Not portable
CT Poor soft-tissue contrast

Difficult to detect lesions
Cancer staging is flicult
Difficult to implement real time imaging
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Table 2: Advantages and disadvantages of the reviewedgpeastgmentation approaches

Approaches | Advantages | Disadvantages |
Edge Easy to extract Edge information is unreliable and often broken
Shape Provides robustness against noise and grtbepends on strong edge information for fitting
facts
Q Probabilistic filters Robust against noise along boundary Difficult to initialize and to extend to 3D
s ACM Easy to implement, produces smooth cgnDepends on reliable edge information, good initial-
2 tours ization required, large-scale deformations produce
;% 2 spurious corners
s 3 Mesh Shape information is preserved Reliable edge information is often necessary, rigid
o = shape representation, slow in speed
5 % ASM Shape representation and variation in Gaysthaccurate in large-scale shape variations, extension
© g sian space is defined to 3D is dificult, need of training
S Contour level set Contour implicitly defined, easy extension {o Depends on reliable edge information, slow in speed
@ 3D
[a}
Curve fitting Easy to implement, fast Rigid shape structure, reliable edge information|is
necessary
Atlas Automatic, robust to contrastftierences, in-| Building atlas is not trivial and prone to registratian
corporate prior shape and intensity informga-errors, slow in speed of segmentation
c f
Q tion
154 Graph partitioning Efficient optimization, region based informa- Incorporating shape priors isfiicult, manual interac-|
o tion could be incorporated tion often necessary
Region level set Region based information more reliable thanintensity heterogeneity produces fragmented regigns,
edge, implicit contour no prior shape information, slow in speed
Clustering Prior training not required, automatic No prior shape information
E Classification Robust against noise, automatic No prior shape information, a training step is neces-
sary
z Combination of any of the above approachesviore robust to imaging artifacts and noisegs,Choice of combining information from fferent
2 produces accurate segmentations sources is complicated, often the methods are opti-
I mized for prostate segmentation and less generic
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Contour

Area

Table 3: Evaluation metrics for 2D

[ Metric | Parameters | Equation [ Used by
Hausdoft distance (HD) Given a set off HD(ALB) = max(h(Ab),h(B,A) | [17],[90]
finite points | whereh (A, B) = maxyea (Minyeg [la— bjf)
A= {al, a, ....ap} and
B = {b1, by, ...., b}
Root mean square distance (RMSD) [47

RMS D(A, B) = \/ﬁ N (A - By

Mean Distance (MD)

Mean absolute distance (MAD)

Maximum distance (MaxD)

Given signed distance
dj between each
corresponding points
i(i=12,..,N) be-

tween the algorithmic
segmented  surfacg
and ground truth.

— 1 yN -
MD = § Xj1 dj

[27], [33], [34],
[44], [45], [136],
[90], [54], [78],
[85], [9], and [48]

MAD = § XL, [di]

[17], [34], [55],
[136], [54], [78].
[137], [91], [10],
[79], [88], [98],
[97] [122] and
[106]

MaxD = max|dj]

[34], [45], [136],
[54], [78], [91],
[10], and [79]

Dice similarity codficient (DSC)

Sensitivity (SN)

Specificity (SP)

Accuracy (AC)

Overlap (OV)

Overlap Error (OE)

TP = True positive,
TN = True negative,
FP = False positive,
and FN= False Neg-
ative

— 2TP
DSC= (eprra(reren

(88], [20], [21],
[95], [6]

[34], [56], [74],

SN= rpiry [88], and [113]
SP= ity [88]
[34], [56], [74]

_ __TP+IN
AC = THrTN:FPFN

_ _TP
OV = rpren

[25], [38], [45],
[71], [85]

OE=1-0v

[44], and [27]

Surface distance (SD)

Given unsigned dis-
tance ds between
between the algo-
rithmic ~ segmented
surface and ground
truth.

SD=4 Zytds

[62], [49], [120],
[110], [109], and
[114]
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\Volume

Table 4: Evaluation metrics for 3D segmentation

[ Metric | Parameters [ Equation [ Used by
Hausdoft distance (HD) Given a set off HD(A,B) = max(h(Ab),h(B,A) | [3],[104], [106]
finite voxels | whereh (A, B) = maXaea (Minpeg |la — by|)
A= {al, ao, ....ap] and
B = {by, by, ...., by}
Dice similarity codficient (DSC) TP = True positive, [60], [3], [97],

Sensitivity (SN)

Specificity (SP)

Accuracy (Ac)

Similarity (VS)

Detection (VDe)

Detection error (VDEr)

TN = True negative,
FP = False positive,
and FN= False Neg-
ative in voxels

- 2TP
DSC= rrrey(rreN

[104], [63], [62],
[64], [49], [118],
[120]

[84], [97], [106]

SN= TFLF;N

Sp= % [84], [106]

AC= TRrTRFRTN (84]

VS = gty 1zl

VDe= iy (4]
[114]

VDEr=1-VDe

Difference (VD)

Average diference (AVD)

Overlap (VO)

Overlap error (VOE)

Error (VE)

MSV = Manually seg-
mented volume, and
ASV = Algorithmi-

cally segmented vol-
ume

_ (MSVUASV-(MSVNASV)
VD= 2XMS D

[33], [136], [9],

[96], [109]
_ 33], [46], d
AVD = MSY-ASV {54% [46], an

— MSWhASV
VO= MSWASV

[91], [94], [106]

VOE=1-VO

(9]

VE = MSwrAS\V-2MSVNASY
= MSV+ASV

(58]

Centroid distance (VCD)

Given ground truth
centroidcy, andc, al-
gorithmic segmented
volume centroid.

VCD=|cm—Cql

[110], and [109]
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Table 5: Quantitative evaluations : prostate segmentatidiRiUS imaging

Reference Year | Dim| B/A| Pre-processing| Segmentation Criteria | Auto Performance Validation
Measure | Value
Pathak [17] 2000| 2D | Yes| Stick filter Edge Based No Contour MAD | 1.5 mm 125 images
Contour HD 4 mm
Abolmaesumi[25] 2004 | 2D | No | Stick filter Probabilistic Filter No Area OV 98% 6 images
2005 2D | No | Smoothing, Probabilistic Filter No Contour MD 3.3t1.3 pixels 19 images
morphological
Sahba [27] filtering and
thresholding
Area error 2.4+1.1%
1999| 3D | Yes| Wavelet for | DM -ACM Yes Volume VD 10.97% 77 images
edge enhance
Knoll [33] ment
Contour MD 2.61 mm
Volume AVD 8.48%
2000| 2D | No | No DM - ACM No Contour MAD | 4.4(x0.63 mm)+1.8 | 117 images
pixels
Ladak [34] Contour MaxD 1_9.5(:2.5 mm)+7.8
pixels
Area AC 90.1+£3.2%
Area SN 94.5:2.7%
Ding [55] 2005( 3D | Yes| No DM - ACM No Contour MAD | 2.79:1.94 mm 6 data sets
o 2007| 2D | No | Median and| DM -ACM Yes Area OV 92% 10 images
S || Zaim[38] morphological
& filtering
° Ghanei [39] 2001| 3D | Yes| No DM - Mesh No Volume VS 89% 10 data sets|
© 2003 | 2D | No | Gabor features| DM - ASM Yes Contour MD 3.2®1.28 mm) + | 8images
3 0.87 pixels
‘% Shen [44] Area OE 3.98:0.97%
O Area error 1.66+1.68%
2004| 2D | No | Median and| DM - ASM No Contour MD 3.77&2.55 mm) + | 10images
morphological 1.3 pixels
. filering
Betrouni [45] Contour MaxD | 6.254.18 mm) +
1.8 pixels
Area OV 93%+0.9%
2006 | 3D | Yes| Median filter DM - ASM No Contour MD 0.12:0.45 mm 36 data sets|
Hodge [136] Contour MAD | 1.09:0.49 mm
Contour MaxD | 7.2742.32 mm
Volume VD 0.22:4.58%
2002| 3D | Yes| No DM - Curve Fitting No Contour MD (-)0.2£0.28 mm 5 data sets
Hu [54] Contour MAD | 1.19+0.14 mm
Contour MaxD | 7.01+1.04 mm
Volume VD 7.2+3.4%
Gong [90] 2004| 2D | Yes| No DM - Curve Fitting No Contour MD 1.36:0.58 mm 125 images
Contour HD 3.42+1.52 mm
2006( 2D | No | No DM - Curve Fitting No Area SN 97.4+:1% 17 images
Badiel [56] Area AC 93.5+1.9%
Contour MAD | 0.67+0.18 mm
Contour MaxD | 2.25:0.56 mm
Mahdavi[58] 2011| 3D | Yes| No DM - Curve Fitting No Volume VE 6.63:0.9% 21 data sets|
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Table 6: Quantitative evaluations : prostate segmentatidiRiUS imaging continued...

Reference Year | Dim| B/A| Pre-processing] Segmentation Criteria | Auto Performance Validation
Measure | Value
2005 2D | No | Median and| Classifier - ANN Yes Area OV 91% 10 images
x Zaim [71] morphological
o filtering
Mohammed [74] 2006 | 2D | No | Gabor filtering | Classifier - SVM Yes Area SN 83.30% 18 regions
Area AC 93.75%
2002| 2D | No | Meanfiltering | Edge and Average Yes Contour MD 0.4+1.3 mm 282 images
Liu [78] shape model Contour MAD | 0.9+0.9 mm
Contour MaxD | 3.8 mm
2005( 2D | Yes| No Level set and Curve Fit{ No Contour MAD | 0.64, 1.13, 0.52 and 4 images
Gong [137] -
ting 1.16 mm
2005( 2D | No | Median filter- | AAM No Area OV 96% 95 images
Medina [85] ing
Contour MD 3.58+1.49 pixels
2006| 3D | Yes| No Mesh and Average No Contour MAD | 1.26:0.41 mm 30 data sets|
Tutar [91] shape model Contour MaxD | 4.06+1.25 mm
Volume VO 83.5:4.2%
2006 | 3D | Yes| Gabor filtering | SVM, DM and Mesh Yes Contour MD 1.07&0.33 mm) + | 6 data sets
Zhan [9] 0.1 voxels
Volume VOE 4.31+0.4%
8 Volume VD 2.3%1.29%
2 2006| 3D | Yes| No Shape model and Level Yes Correct  seg-| 82% 11 data sets|
g Yang [92] set mentation
> rate
'é Cos0[10] 2008| 2D | No | No EM and ASM Yes Contour MAD | 1.65:0.67 mm 22 images
I Contour MaxD | 3.93t1.9 mm
2008| 3D | Yes| Stick filters ACM and SVM No Volume SN 80% 7 data sets
Diaz [84] Volume AC > 90%
Volume SP > 90%
Yan [79] 2010 2D | Yes| No ACM and ASM Yes Contour MAD | 2.01+1.02 mm 10 data sets
Ghose [87] 2010| 2D | No | Haarwavelets | Wavelets and AAM No Area DSC 0.95:0.1 25 images
Contour MAD | 1.48:0.36 mm
Ghose [89] 2011| 2D | No | No EM and AAM Yes Area DSC 0.97+0.01 23 data sets|
Contour MAD | 0.49+0.20 mm
2012| 2D | No | Haar Wavelets | Quadrature filter and No Area DSC 0.95+0.2 6 data sets
Ghose [88] AAM
Contour MAD | 1.26+0.51 mm
2011| 3D | Yes| No Mesh, graph cut and No Volume VO 86.36:3.78% 28 data sets
Garnier [94] DDC
Volume HD 4.79+1.62 mm
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Table 7: Quantitative evaluations : prostate segmentatiddR images

Reference Year | Dim | In. | Pre-processing| Segmentation Criteria] Auto Performance Validation
Measure | Value
3 Samiee [20] 2006| 2D | Yes| Normalization | Edge Based No Area DSC 0.905%0.0014 | 2 data sets
g Flores-Tapia [21] | 2008 | 2D | Yes| Wavelets Edge Based No Area DSC 0.93:0.005 19 images
O || Zhu [47] 2007| 3D | No | No DM - ASM No RMSD 5.48112.9 mm | 26 data sets
Klein [60] 2008| 3D | No | No Atlas Yes || Volume median DSC| 0.85 50 data sets
2010| 3D | No | No Atlas Yes || Volume DSC error 0.0.05 100 data
sets
Langerak [63] Volume SNSP error | 0.05
§ 0.99
2 2011| 3D | No | Bias field | Atlas Yes || Volume Median DSC| 0.86 50 data sets|
o correction,
Dowling [62] histogram
equalization
and smoothing
Area SD 2.00£1.3 mm
Allen [96] 2006| 3D | No | No EM and DM No Contour MAD 2.8+0.82 mm 22 data sets|
Volume VD 6.5+5.4%
Martin [2] 2008| 3D | - No Atlas and DM No Mean error 3.39:1.95 mm | 18 data sets|
Makni [3] 2009| 3D | - No DM ar_l(_i Bayes Yes || Volume HD 9.62 mm 12 data sets
Classifier Volume DSC 0.90
2009| 3D | Yes| Stick filters Edge and Shape No Contour MAD 2.0+0.6 mm 3 data sets
Vikal [95] guidance Area DSC in mid| 0.93:0.3
slice
Liu [6] 2009| 2D | Yes| No DM and Level set Yes || Area DSC 0.91+0.03 10 data sets|
Firjani [101] 2010| 2D | Yes| No Intensity and shape | Yes || Area OE 5.2+1.2% 98 images
Firjani [102] 2011| 3D | Yes| No Intensity and shape | Yes || Contour MD 0.8£0.9 mm 98 images
K 2010| 3D | No | No Probabilistic Atlas Yes || Area SD 241 mm 36 data sets
e and DM DSC 0.84
© Martin [97] RMSD 1.97
= MaxD 9.04
5 Sensitivity 0.86
2 2010| 3D | No | No Shape and Edge No || Volume DSC 0.82:0.03 15 data sets
Gao [104] guidance for level sets Volume HD 10.22:4.03 mm | 15 data sets
Volume DSC 0.84+0.03 13 data sets|
Volume HD 8.10:£1.50 mm | 13 data sets
2011| 3D | Yes| Multiple ker- | Shape and Edge Yes || Volumetric ratio 1.05:0.21 45 data sets|
Toth [105] nel Gaussian| Based
filtering
2011| 3D | Yes| No Shape and Edge Yes || Volume VO 0.7 32 data sets|
Based
Volume SN 0.81
Toth [106] Volume SP 0.99
Contour HD 7mm
Contour MAD 5mm
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Table 8: Quantitative evaluations : prostate segmentati@iliimages

Reference Year | Dim| In. | Pre-processing] Segmentation Auto Performance Validation
Criteria
Measure [ Value
a 1999 3D | - Wavelets DM - ACM Yes Contour MD 2.48 mm 86 Images
2 Volume VD 11.78%
o Knoll [33] Volume AVD 9.5%
IS
3
< Tang [48] 2004 2D | - No DM - ASM Yes Contour MD 2.44+1.24 mm 5images
8 Feng [49] 2009| 3D | - No DM - ASM No Volume DSC 90.5+4% 24 data sets|
9 Area SD 1.9+0.71 mm
2 || Costa[64] 2010 3D | No | No Atlas Yes Volume DSC 0.564+0.192 19 data sets|
x Costa [65] 2011| 3D | No | No Atlas Yes Volume DSC maximum | 0.47 approx. 24 data sets|
2005( 3D | - No S-R Mesh Median volume VD 89%, 81%, 85% 48 data sets
Volume VCD 3.17 pix & 2.94 | of 3 pa-
mm), 5.29 pix & | tients
Freedman [109] 491 mm), 4.07
pix (~ 3.78 mm)
Area SD 0.57, 1.02, 0.83
pix
2005( 3D | - No S-R Level set No Area OV 84% 16 images
FP 21%
Rousson [110] Volume VCD 5.2mm
Area SD 4.2 mm
) 2005| 3D | - No DM and registra-| Yes Volume DSC 0.82£0.06 40 dataset
Davis [111] tion
Costa [113] 2007| 3D | - No S-R Level set Yes Area SN 75% 16 data sets|
Area AC 80%
8 2010| 3D | - No ASM and appear-| No Volume DSC 92.4 24 data sets|
2 || Feng[119] ance model
o Area SD 1.47 mm
E 2009| 3D | - No ACM, Meshand | No Volume VDe 85.2% 21 data sets|
5 || Song[114] Graph Cut Volume FP 13.60%
T Area SD 1.38+:1.08 mm
Chen [117] 2009| 3D | - No S-R Level set No Volume VS 93.20% 15 dataset
Chen [118] 2009| 2D | - No S-R Level set Yes DSC 0.91+0.90 10 images
2011| 3D | - No Classifier ~ and| Yes DSC 0.908 11 data sets
Li[120] level sets
Area SD 1.40 mm
. 2011| 3D | - No Classifier  and| Yes Volume DSC 0.89:0.02 10 data sets
Liao [121] : f
registration
2011 3D | - No S-R Level setand Yes Contour MAD 1.96+0.48 mm 32 data sets|
Lu [122] registration
Contour HD 2.83:0.76 mm
2011 3D | - Median  and| Shape and| Yes Volume TP 0.84 185 data
morphological | anatomy  con- sets
Chen [123] filtering strained ir_ltens_ity
based registration
Volume FP 0.13
Area SD 1.1 mm
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