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Abstract 

Automated and high performance carotid intima-media thickness (IMT) measurement is gaining increasing 

importance in clinical practice to assess the cardiovascular risk of patients. In this paper, we compare four 

fully automated IMT measurement techniques (CALEX, CAMES, CARES and CAUDLES) and one semi-

automated technique (FOAM). We present our experience using these algorithms, whose lumen-intima and 

media-adventitia border estimation use different methods that can be: (a) edge-based; (b) training-based; (c) 

feature-based; or (d) directional edge-flow based. Our database (DB) consisted of 665 images that 

represented a multi-ethnic group and was acquired using four OEM scanners. The performance evaluation 

protocol adopted error measures, reproducibility measures, and Figure of Merit (FoM). FOAM showed the 

best performance, with an IMT bias equal to 0.025±0.225 mm, and a FoM equal to 96.6%.  Among the four 

automated methods, CARES showed the best results with a bias of 0.032±0.279 mm, and a FoM to 95.6%, 

which was statistically comparable to that of FOAM performance in terms of accuracy and reproducibility. 

This is the first time that completely automated and user-driven techniques have been compared on a multi-

ethnic dataset, acquired using multiple original equipment manufacturer (OEM) machines with different 

gain settings, representing normal and pathologic cases. 

 
 

Index Terms—Atherosclerosis, automation, accuracy and reproducibility, benchmarking, carotid artery, 

intima-media thickness measurement, segmentation, ultrasound, validation. 
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1. INTRODUCTION AND BACKGROUND 

The carotid artery intima-media thickness (IMT) is the most widely used and accepted marker of 

atherosclerosis [1-3]. The increase of the carotid IMT was correlated to the incidence of stroke risk even in 

absence of atherosclerotic plaques [4].  

High-resolution ultrasound imaging allows the visualization of the carotid artery and, particularly, the 

carotid wall. It is therefore possible to manually measure the carotid IMT value by computing the distance 

between the lumen-intima (LI) and the media-adventitia (MA) interfaces, the so-called LI/MA borders. 

Clinically, the IMT is manually measured by the sonographer, who considers the far wall of the vessel [5]. 

It has already been proven that manual measurements are subjective, error prone, tedious and difficult to 

manage due to large variability in data sets [5]. This all accumulates to low reproducibility and low 

performance if not designed well [6, 7]. 

There has been a growing interest towards the development of computer systems aiding the clinicians in 

the IMT measurement based on ultrasound images. The most widely used and performing techniques have 

been reviewed by Molinari et al. in 2010 [5]. This review however lacks: (a) the latest automated method 

comparisons and interpretations and (b) the importance of multi-ethnic and multi-OEM data collection and 

analysis. Overall, the computer-based systems for the IMT measurement can be classified into two broad 

categories: i) user-driven and ii) completely automated. The user-driven techniques require user interaction: 

usually, the operator manually initializes the segmentation or locates the distal carotid wall in the image 

frame. On the contrary, fully automated techniques are capable of: (a) automatically identifying the carotid 

artery in the image frame and (b) automatically segmenting the distal wall. Thus, automated techniques 

offer multiple advantages:  they (a) are suitable for large database multi-centric studies; (b) facilitates the 

design of multi-OEM data comparisons; (c) lay the foundation for better accuracy and reproducibility 

studies; (d) raise the specificity of the overall system by avoiding the subjective settings; and finally (e) 

remove the laborious and tedious operator dependency. 



Submission to Computer Methods and Programs in Biomedicine 
 

4 
 

4 

However, automated techniques still underperform, in terms of accuracy and reproducibility of the IMT 

measurement, when compared to user-driven techniques. Nevertheless, to decrease the inter-operator 

variability in ultrasound IMT measurements, automated techniques are needed for atherosclerosis 

assessment by ultrasound images. 

The most performing automated technique we found was by Rossi et al. [8, 9] that showed an IMT 

measurement bias equal to 0.02±0.05 mm, against the user-driven technique of Faita et al. [10] having a 

bias of 0.01±0.01 mm on a limited data set. There are several causes that attribute to the higher bias error 

for automated methods. The main contributing factor is the noise (i.e. intensity variations due to blood 

backscattering, speckle noise, the presence of shadows in the far wall due to calcium deposits in the near 

wall, and image artifacts due to motion, blood flow, patient movement and image acquisition) [5]. Since 

2007, our group has been developing fully automated IMT measurement techniques with the aim of 

improving their clinical applicability, accuracy, reproducibility and system design towards user-

friendliness. Our group has developed techniques based on classical snakes [11], feature extraction, line 

fitting and classification [12], directional edge-flow [13], and scale-space multi-resolution analysis [14]. 

We observed that, besides the effect of noise, the performance of automated methods could be limited by 

other factors, such as the size of the carotid wall, the geometry of the artery (i.e., straight vs. curved), and 

the presence of the jugular vein (in presence of carotid artery) in the image [15], and the use of simple B-

mode images, excluding the use of tissue harmonic imaging or compound imaging features. Some brief 

examples are presented in Fig. 1.  

Figures 1.A and 1.B show a contrast CCA with respect to higher and lower resolution due to gain control 

settings. Carotid inclinations pose a challenge to automated systems and fig.1.C and fig.1.D show opposite 

slopes. Carotid scans which are not orthogonal to the axis can cause the bending of vessels in image frames 

leading to convexity and concavity which pose another challenge in automated border segmentation. 

fig.1.E and fig.1.F show these scenarios. Finally, the noise effect, which degrades the signal-to-noise ratio 

(SNR) and the contrast-to-noise ratio (CNR) of images, can add complexity to the processing system (see 
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figures 1.G and 1.H). This also includes the shadow effect due to the presence of calcium in near walls. As 

figure 1 briefly shows, our image database contained not only a large number of images, but also numerous 

images of the carotid artery in these different situations that combined make the task of automatic 

segmentations quite challenging.  

In this paper, our main aim was to compare and review the performance of four fully automated and one 

semi-automated techniques for IMT measurement and share our insight and unique carotid ultrasound 

experience. Further, our secondary aim was to validate the results on a multi-ethnic and multi-institutional 

database consisting of images from five different Institutions using four different OEM ultrasound scanners 

on normal and pathologic cases (a first time to be published on completely automated methods). Since the 

goal of this paper is mainly to compare the performances of these techniques, and not to link the resulting 

IMT values to clinical symptoms, we did not classify our image database by patient disease state. We show 

how our AtheroEdge™ system (Global Biomedical Technologies, Inc., CA, USA) is robust as a whole on 

different kinds of ultrasound datasets with different gain settings, and how our system could provide a 

useful tool for clinical use. Finally, we add some insight into the process of linking the performance of the 

various methods to the segmentation models used in the automated systems and their ability to handle noise 

characteristics. 

The paper is organized as follows: in section II we describe the image datasets we used in our study and 

the corresponding patients demographics. In section III we described the four automated methods for IMT 

measurement using our multi-institutional databases. Section IV describes the user-driven method which 

was adapted for benchmarking. Section V reports the validation procedure and the performance metrics, 

whereas section VI presents the results of these methods and their data interpretation. Section VII 

concludes the paper by providing an insight to the study from the technical and clinical point of view, and 

by highlighting the experiences learned from these scientific contributions. 
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2. IMAGE DATABASE AND PATIENTS DEMOGRAPHICS 

The images were acquired in five different geographical and ethnic populations taken at five different 

Institutions using four different OEM ultrasound scanners. Table I summarizes the database demographics 

and acquisition parameters. All the patients signed an informed consent prior of undergoing the ultrasound 

examination. Each Institution took care of obtaining approval for the data acquired by the respective 

Ethical Committee or Institutional Review Board (IRB). The five image datasets were acquired 

independently from each Institution and in different years (the years in which images were acquired are 

reported in the first row of Table I). Hence, no standardization was made among the five sets. Also, each 

sonographer adjusted the scanner settings (TGC values and gain factors) for each corresponding patient 

during acquisition. All images were discretized at 8 bits (256 gray levels) and were provided in a digital 

form. Thus, we categorize our database to be: i) multi-ethnic; ii) multi-institutional; iii) multi-OEM-

scanner; iv) consisting of healthy and pathologic arteries; vi) acquired at different positions along the 

carotid artery; and finally, vi) customized to various gain settings. 

All patients underwent ultrasound B-mode for the study of carotid arteries. The common inclusion 

criteria for performing ultrasound examination of carotid was the presence of cerebrovascular symptoms 

(either transient ischemic attack or stroke). Therefore, the database includes patients with increased 

cerebrovascular and cardiovascular risk. Patients with potentially confounding condition (i.e. suspected 

embolism from a cardiac source, follow-up after carotid endarterectomy, intra-cerebral aneurysms and 

brain tumors) or with posterior cerebrovascular symptoms were excluded from the dataset. We also did not 

include in the database images of arteries having either a distal or proximal plaque. The techniques we 

tested in this paper were all developed with the aim of improving the IMT measurement; therefore, they 

were not tuned in order to process plaque images. 

An expert vascular radiologist (G.L.) manually segmented all the images by tracing the lumen-intima 

(LI) and media-adventitia (MA) profiles using ImgTracer™ (Global Biomedical Technologies, Inc., CA, 

USA) [16]. The manual segmentations were considered as ground truth (GT) for computing the system 
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performance of the segmentation techniques described below. 

3. DESCRIPTION OF THE FULLY-AUTOMATED SEGMENTATION TECHNIQUES 

In this section, we briefly summarize the completely automated segmentation strategies, a class of 

AtheroEdge™ system (Global Biomedical Technologies, Inc., CA, USA).  

Our fundamental paradigm consists of two cascaded stages: first, the carotid artery recognition 

(recognition phase or stage-I) in a fixed image frame and second, the distal (far) wall segmentation (LI and 

MA border estimation or stage-II).      

The preprocessing steps that were common to all the automated methods were: 

• Automated cropping: the ultrasound image contains writings and a black surrounding frame that 

interfere in the automated system design. We, therefore, cropped the images in order to maintain only 

the image region containing the ultrasound data. This procedure was completely automated and can be 

applied to images of any type (i.e., DICOM, JPEG, TIFF, BMP) [17]. The image region containing the 

ultrasound data was defined on the basis of the DICOM headers or, if not present, of the image 

gradients [22]. 

• Speckle reduction: speckle noise is typical of ultrasound images and it is modeled as a multiplicative 

noise. Thus, a specific set of filters were designed and used. Since this paper is not focused on image 

despeckling, we adopted the filter suggested by Loizou et al., who compared the performance of 

different speckle crunchers on carotid ultrasound images [18]. We attenuated the speckle noise by 

using the first-order linear filter lmsv [18], a denoising process that is based on comparing the local 

standard deviation with the standard deviation of the entire image and adjusting the pixel intensities 

accordingly. 

Table II provides a brief summary of the various methods used for stage-I and stage-II of all four 

automatic techniques and for the semi-automatic technique. 
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3.1 Completely Automated Layers EXtraction (CALEX) 

CALEX is a completely automated procedure for carotid layers extraction which is based on an 

integrated approach consisting of feature extraction, line fitting, and classification.  

Stage-I of CALEX is based on feature extraction leading to far adventitia border  (ADF) detection (the so 

called CCA recognition), while stage-II uses classification leading to LI/MA segmentation.  

The CALEX system is based on the hypothesis that the far wall has the largest intensity. The local intensity 

maxima of each column were processed by a linear discriminator to detect which points were located on the 

CCA wall. These points were called “seed points”. Seed points were linked to form line segments. A 

procedure was applied to remove short or false line segments by computing the validation probability 

� 

P Dvalid | si( )  of a segment si: 

� 

P Dvalid | si( ) = exp −ψ Dvalid | si( ){ } (1) 

where Dvalid denotes the event that a specific line segment is valid. The energy function 

 

ψ ⋅( ) depended on 

two properties of the line segment si, namely the support g1(si) and width stability g2(s2), so that 

� 

ψ Dvalid | si( ) = ω1g1(si) + ω2g2(si). (2) 

The line segments were then linked to form profiles by computing the connectability probability 

€ 

P Dconn | si ,s j( )  (eq. (3)), which was based on the energy function depending on the proximity 

� 

h1 si,s j( )  

and alignment 

� 

h2 si,s j( ) between the two line segments: 

� 

P Dconn | si,s j( ) = exp −ψ Dconn | si,s j( ){ }
ψ Dconn | si,s j( ) = ω3h1(si,s j ) + ω4h2(si,s j ).

 
(3) 

(4) 

where Dconn is the event that two line segments can be connected. In eq. (2) and eq. (4), ω1, ω2, ω3, ω4 were 

weights determined by the training data. Details on the line segment features: support, width stability, 

proximity and alignment can be found in [12]. A sample output of stage-I of CALEX is shown in Fig. 2.A, 

where the far wall adventitia border is automatically traced. 
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Stage-II consisted of a fuzzy K-Means classifier, which took the pixel intensities of each image column 

as input and clustered the pixels into three groups [15]. The pixel at the interface between the first and 

second group was taken as the LI point, while the interface between the second and third group was taken 

as the MA point. Figure 2.B shows the results of the CALEX segmentation. A complete description and 

performance evaluation of CALEX was recently published [12, 15]. Our key hypothesis in this technique 

takes into consideration that the far wall shows the highest intensity in the image, which is captured by the 

seed spotting methodology. Finally, the training-based system allows extracting the lines using the features 

and support regions. We will discuss the pros-and-cons of CALEX, its extension and its robustness with 

respect to noise in Section VII. 

 

3.2 Completely Automated Robust Edge Snapper (CARES) 

CARES is an extension of CALEX and combines the power of feature extraction and edge estimation. 

Stage-I uses the same methodology as CALEX (feature extraction starting from seeds) while stage-II is a 

robust edge operator based on the First Order Absolute Moment - FOAM [10]. CARES 3.0 (our third 

generation system) is superior to CALEX stand alone. The main change in this model was the usage of 

FOAM (stage-II) [19] which replaces the fuzzy K-means. 

The FOAM operator is equivalent to a ridge map with values close to zero in homogeneous regions and 

with high values in proximity of an intensity transition. It was defined as: 

� 

e x,y( ) = I1 x,y( ) − I2 x − x ',y − y'( ) ⊗G x,y,σ r( ) dx'dy '∫∫  (5) 

Once the profile of the far adventitia has been traced, 

� 

I1 x,y( )  and 

� 

I2 x,y( ) are computed by low-pass 

filtering the input image 

€ 

I x, y( )  by a Gaussian kernel with standard deviations equal to 

 

σ 1  and 

 

σ 2, 

respectively [10]. The use of two different aperture values is equivalent to a gradient-of-Gaussians (GoG) 

filter, which is a high-pass filter enhancing the intensity edges. The regularization term 

� 

G x,y,σ r( )  is a 

Gaussian filter with standard deviation equal to 

� 

σ r . Gemignani et al. optimized the Gaussian kernel 



Submission to Computer Methods and Programs in Biomedicine 
 

10 
 

10 

parameters by linking them to the image resolution [20]; thus, we adjusted the Gaussian kernel sizes 

according to the conversion factors of Table I. 

The intensity peaks of the FOAM profiles were then determined by using a heuristic procedure. Starting 

from the position of the far adventitia, the first absolute intensity maximum presenting a value comprised in 

the 90th percentile of the intensity distribution of that column was marked as the MA interface. The closest 

maximum in the direction of the decreasing row index (i.e., towards the top or proximal end of the image) 

was marked as the LI interface. This procedure was repeated column-by-column. If one of the two maxima 

was not found, the column was discarded. A subsequent outlier removal step cleansed disconnected 

columns and regularized the profiles. CARES 3.0 further added the check that validates the ADF profile to 

avoid penetration into the jugular vein (JV) region. Figures 2.C and 2.D report the output of stage-I and 

stage-II of CARES, respectively. 

The recent application of CARES in the clinical world has been demonstrated [21]. CARES 3.0 merges 

together the power of a robust ADF detection and of a robust LI/MA detection based on FOAM. Further 

details of the pros-and cons will be presented in Section VII. 

 

3.3 Completely Automated Multi-resolution Edge Snapper (CAMES) 

CAMES is derived from the concept of scale-space, where the scale is the far wall thickness. This is 

based on a multi-resolution approach. Putting this in the framework of the two-cascaded stages, stage-I 

consisted of multi-resolution far adventitia border detection (CCA recognition) and stage-II consisted of the 

LI/MA border estimation based on FOAM.  

The scale-space paradigm was used in a multi-resolution infrastructure to take advantage of the Gaussian 

scale to fit the far wall media layer. This was accomplished by down-sampling the despeckled image. The 

scale of the Gaussian kernel was empirically computed from the database where the knowledge derived 

was extracted from the ground truth or gold standard. This was an extension of Suri’s work using a scale-

space approach for filtering angiographic volumes in an MR framework [22], but here we extended it to a 
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multi-resolution paradigm. We kept FOAM as stage-II, because of its good performance in the LI/MA 

boundaries extraction. 

The detailed steps of stage-I were: 

a) Fine to coarse down-sampling of the image by a factor of two for artery wall scale reduction using a bi-

cubic interpolation as discussed by Zhen et al. [23]. This step was introduced in order to prepare the image 

in the optimal scale for adventitia recognition. In this down-sampled scale, if we consider an image with a 

pixel density of 20 pixel/mm, a wall with 1 mm of thickness is represented by 10 pixels. 

b) Filtering by a first-order Gaussian derivative filter. The first-order Gaussian filter is equivalent to a 

high-pass filter when its size is matched to the wall size in the down-sampled scale. We considered a 

nominal IMT value equal to 1 mm, a choice which will be discussed in Section V, thus the kernel size of 

the filter was adapted for each of the five image sets according to Table I [22];  

c) Automated far adventitia delineation. We processed each image column and searched for the largest 

bright region along the column. Since the wall size is matched to the filter (previous step), this region 

corresponds to the far wall. We took the deepest point of this region as the ADF marker. 

d) The obtained ADF profile was finally up-sampled by a factor of two and overlaid on the original image.  

Figure 2.E shows the up-sampled and filtered image along with CAMES stage-I output. 

CAMES presented the same stage-II as CARES (i.e., it adopted the FOAM operator). Figure 2.F shows 

the CAMES segmentation. CAMES 3.0 is our latest generation of this technique, which incorporated 

several improvements over time such as CCA/JV checks, automated FOAM parameter estimation and 

optimization strategy.  

 

3.4 Carotid Automated Double-Line Extraction System based on Edge-Flow (CAUDLES-EF) 

The concept of CAUDLES segmentation is based on the edge information derived based on ultrasound 

texture and edge energies. This means once the region of interest is computed, the LI/MA border 

segmentation uses edge-flow based on texture and edge energy. In the concept of AtheroEdge™ system, 
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CAUDLES can be put as a two stage fundamental framework: stage-I uses the scale-space multi-resolution 

approach for far adventitia border estimation, using the same stage-I as CAMES. The stage-II uses the 

Edge-Flow algorithm, as originally proposed by Ma and Manjunath [24]. The Edge-Flow integrates image 

attributes into a single framework for boundary detection. The Edge-Flow vector 

� 

F s,θ( )  was defined as: 

� 

F s,θ( ) = F E s,θ( );P s,θ( );P s,θ + π( )[ ]  (6) 

where:  

• 

� 

E s,θ( )  was the edge energy at location s along the orientation θ; 

• 

� 

P s,θ( )  represented the probability of finding the image edge boundary if the corresponding Edge-

Flow “flows” in the direction θ; 

• 

� 

P s,θ + π( ) represented the probability of finding the image edge boundary if the Edge-Flow “flows” 

backwards, i.e., in the direction 

� 

θ + π . 

In our framework, we defined the intensity and texture Edge-Flow. The intensity Edge-Flow was 

computed as the gradient in different directions θ after Gaussian filtering. The texture Edge-Flow was 

extracted from the Gabor decomposition, which splits the image in multiple oriented spatial frequency 

channels. Then the channel envelopes (amplitude and phase) were used to form the feature maps. A 

detailed description of the mathematical aspects of the adopted Edge-Flow algorithm is provided in [25]. 

Stage-I and II of CAUDLES are reported in Figures 2.G and 2.H, respectively. CAUDLES has the 

advantage of being a totally automated classification scheme that is independent on the morphology of the 

vessel and on the pixel density of the image.  

4. DESCRIPTION OF THE USER-DRIVEN TECHNIQUE 

The definition of the user-driven IMT measurement required the placement of a ROI window along the 

far wall of the common carotid artery. Thus, the ROI placement is an equivalent representation to stage-I in 

our fundamental framework of a two-stage system. Stage-II of the LI/MA segmentation consisted of using 
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a First-Order Absolute Moment (FOAM) [10, 20]. Thus the user-driven technique was confined to the ROI 

window selected by the user.  

The technical aspects of this operator have been presented in the previous section. Figure 3 shows the 

final segmentation obtained by user-driven FOAM. We used this edge operator because it possesses 

advantages over traditional edge-based or gradient-based systems and because we sustain that it represents 

the gold standard of semi-automatic techniques. First, FOAM adopts three Gaussian kernels implementing 

the equivalent of a regularized Gradient-of-Gaussians filter. This filter is very stable and produces an 

output that is almost flat (zero) in homogenous regions and rises to a maximum in correspondence of 

intensity transitions. Secondly, unlike many gradient-based algorithms, FOAM is robust with respect to 

noise because of the Gaussian filters (see eq. (5)) that implement a smoothing filter and ensure a good noise 

rejection. Thirdly, it can be implemented in quasi real-time: in our implementation it required less than 1 s 

to process an image once the ROI had been traced by the user. 

5. VALIDATION DESIGN AND PERFORMANCE METRIC 

The performance system of the AtheroEdge™ class of algorithms consisted of two stages: (a) LI/MA 

curve smoothing or spike removal, and (b) IMT measurement.  

We gave a mathematical definition of spikes in order to be able to automatically detect them and smooth 

them out. We considered that if the glitch was a higher than half of the average thickened artery wall size, 

this should be smoothed out. Since the average wall thickness in presence of atherosclerosis is about 1 mm 

[26], a spike was defined as a glitch in the LI or MA profile having an amplitude of 10 pixels or greater, 

equivalent to about 0.625 mm (assuming that the pixel density was 16 pixels/mm). This value is purely 

indicative, and this assumption was used in our system only for establishing an approximate value for 

dimensioning distances. 

Each spike was detected and removed by substituting it with an average of the neighboring points, so 

called local averaging. The glitch free profiles were then interpolated by cubic spline and thereafter used 
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for distance measurements. 

Our performance metric consisted of distance computation using Polyline Distance Metric (PDM) [27]. It 

has already been shown that this metric is insensitive to the number of points constituting the profiles [27], 

so it was a suitable metric for comparing the tracings of different techniques. Further, it is a simple and 

straightforward calculus-based computation. We used this measure for evaluating the performances for 

both stages I and II. 

For stage-I, we computed the PDM between the automated tracings of the ADF profile and the GT LI and 

GT MA profiles. Also, we measured the ADF variability of this distance in each image in order to show 

which stage-I technique gave forth a more reliable ADF profile. We called this measure as ADF variability, 

because it indicated if the ADF profile had a distance that was nearly constant all along the LI/MA 

boundaries of the CCA. The lower the ADF variability, the more constant the distance between the ADF and 

the ground truth LI/MA profiles was. 

In stage-II, given the computer-estimated LI and MA tracings, the IMT was defined as the PDM between 

the LI and the MA profiles. The ground truth IMT was similarly calculated as the PDM between the GT LI 

and GT MA profiles. We then computed the overall IMT bias, absolute error and squared error for each 

technique [28]. We used the mean IMT bias as a figure of accuracy measure while its standard deviation 

was used as a measure of reproducibility. 

We also analyzed the classification performance obtainable by automated and semi-automated methods. 

We computed the last quintile value of the GT IMT distribution, which was equal to 0.911 mm. We used 

this value to compute the techniques’ performance. If a subject had an IMT value higher than 0.911 mm we 

considered it as having a high cardiovascular risk, whereas if a subject had an IMT lower than 0.911 mm 

we considered it as having a lower cardiovascular risk. We then computed the number of patients correctly 

classified as having either high or low risk for each of the four automated techniques and for FOAM (the 

semi-automated technique). For each technique we computed the number of true positive (TP), false 
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positives (FP), true negative (TN), and false negatives (FN). Finally, we computed the following 

performance indicators: 

• Sensitivity = TP / (TP + FN) 

• Specificity = TN / (TN + FP) 

• PPV = TP / (TP + FP) 

• NPV = TN / (TN + FN) 

• DA = (TP + TN) / (TP + TN + FP + FN)[29] 
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6. RESULTS AND DATA INTERPRETATIONS 

This section presents the performance of the automated and semi-automated methods w.r.t. ground truth 

(GT) borders traced by the vascular radiologist, considered as the gold standard. Table III summarizes the 

benchmarking results for the stage-I using the strategies of CALEX (feature extraction and fitting) and 

CAMES (scale-space multi-resolution approach). Both these paradigms recognized the artery in all 665 

images, showing a recognition ability to be 100%. This validated our hypothesis that the far wall intensity 

distribution was the highest. This also validated that our scale used in the multi-resolution approach was 

empirically chosen correctly. The recognition was evaluated by measuring how close the ADF was to GT 

LI/MA border tracings. We observed that CALEX ADF tracings were statistically closer to the GT LI/MA 

boundaries compared to the CAMES ADF (Student’s t-test, p < 10-23) (Table III, columns 2 and 3). 

However, ADF tracings using CAMES showed statistically lower thickness variability with respect to the 

LI (p < 0.02) and MA (p < 0.001) boundaries (Table III, columns 4 and 5). This means that CALEX traced 

ADF profiles that were, on an average, closer to the LI/MA interfaces compared to CAMES, but the ADF 

profiles by CAMES were overall less variable with respect to GT LI/MA. Overall, we found in our 

experience that CAMES showed a more satisfactory output in terms of reproducibility of stage-I when 

compared to CALEX. 

We evaluated the mean IMT of the computer-based methods w.r.t. GT and created a solid measure called 

the Figure of Merit (FoM), which was defined as the percent ratio between the average IMT computed by 

the automated computer-based techniques and the one obtained from manual tracings [30]. This 

measurement is a good and simple factor, which gives an immediate idea of the overall robustness and the 

performance of the automated techniques. Table IV presents the mean IMT for the computer-based 

methods (column 3) vs. GT (column 4) for the five different techniques (listed in column 1). The second 

column shows the number of images that were correctly processed, while the fifth column shows the FoM. 

A general observation is that all the five different methods gave forth very similar results, having an 

accuracy difference of about 0.1 mm between them, and a reproducibility difference of about 0.02 mm. 
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This accuracy can be more appreciated by having a closer look at the FoM. CARES showed the highest 

FoM (95.6%) while CAUDLES, the lowest (85.3%).  

Error statistics between computer-based IMT and GT IMT values can be seen in Table V using three 

different metrics: IMT bias (column 2), IMT absolute error (column 3) and squared error (column 4). The 

best results between the automated techniques were observed by CARES with an IMT bias of -0.032±0.279 

mm, while the 2nd best was CAMES having a bias of -0.045±0.270 mm. FOAM (i.e., the user-driven 

method) showed the least bias of -0.025±0.225 mm. Although the bias of the computer-based method 

(CARES) was 28% higher compared to the user-driven method, they were on an average 0.007 mm apart 

(~ about 1 pixel), which can be said to be very accurate seeing that we did not have any user-interaction 

and that the data were taken from multi-ethnic groups, representing multi-centers, using multiple OEMs 

having different gain settings, and covering both healthy and pathologic cases. 

Figures 4 and 5 show the correlation plots and the Bland-Altmann plots of all the five different 

techniques. CAMES (Fig. 4.C and 5.C) showed consistent plots with their performance numbers, but also 

had a very low number of outliers (i.e. very biased IMT estimations). The CAUDLES correlation plot (Fig. 

4.D) and Bland-Altmann plot (Fig. 5.D) showed expected results, but the reproducibility was lower 

compared to other computer-based techniques, due to reasons we will discuss in Section VII. As expected, 

the IMT bias is coherent with the correlation and Bland-Altmann plots; we however do observe that the 

techniques present a handful of outliers out of the 665 cases that are noticeable. This can be seen in Fig. 4 

(A-E). A similar outlier pattern or deviation exists in the Bland-Altmann plots and can be seen in Fig. 5 (A-

E) slightly below the dotted lines. But they are very small in number bearing close to the central cluster 

where over 95% of the patient images are concentrated. On close analysis, we observed that these outliers 

are predominantly due to noise of different types, as we will discuss in the next Section. There is a slight 

contribution in the database that has higher computer-estimated IMT values (lowest quartile) compared to 

the GT IMT values, which constitute about 2-5% of the cases. 

Figure 6 shows the distribution of the IMT bias calculated for each of the five techniques. The computed 
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values of the IMT bias were binned in intervals having a width of 0.1 mm. The horizontal axis of the 

histogram shows the class center values while the vertical axis represents the cumulative frequency. The 

black lines portray the cumulative functions of the distributions. It can be observed that every technique has 

a slight tendency towards underestimation of the IMT value. For example, considering CARES, we found 

that less than 10% of the images showed an IMT bias higher than 0.2 mm (about 20% of the nominal IMT 

value), which means about 60 images out of 665 images. We observed that 55 out of these 60 images were 

coming from the Hong Kong dataset and were affected by high noise levels in the lumen. Three images had 

shadow cones caused by calcium deposits and two had a very discontinuous and interrupted representation 

of the intima layer, probably due to a suboptimal insonation angle. 

As far as inter-operator variability goes, we did pilot studies between the manual tracings by our vascular 

radiologist and the manual tracings of another expert in the field. Using a Wilcoxon signed rank test, we 

found that the difference between the two IMT measurements was statistically significant (p=6⋅10-9). 

Testing our four automated techniques and the semi-automated technique against the manual tracings of the 

vascular radiologist (GT), we found that with all the techniques, the difference between the IMT 

measurements was also statistically significant. CARES showed the highest p value (p=0.0014) and 

CAUDLES showed the lowest value (p=1⋅10-12). These results are interesting, but since an in-depth 

discussion of this veers from the main goal of this paper, we will further discuss this elsewhere. 

Finally, Table VI shows the performance classification of the five different techniques. It can be noticed 

that CAMES showed the highest sensitivity among all techniques, with a value of 47.5%. Specificity of 

CAMES was 91.6%, which was comparable to that of the semi-automated method FOAM (91.7%). Then, 

CAMES showed PPV of 50.5% and NPV of 90.6%. Diagnostic accuracy was 85%. From a clinical point of 

view, the specificity was higher for all techniques with respect to sensitivity. This means that such 

techniques could be effectively used to stratify the cardiovascular risk, because specificity higher than 90% 

means that if the automated techniques classify a patient has having low risk, this indication is statistically 

very reliable. Interestingly, however, the PPV was around 50% for the semi-automated technique also, thus 



Submission to Computer Methods and Programs in Biomedicine 
 

19 
 

19 

indicating the need for further developments in the design of even more performing systems. 

 

7. LESSONS LEARNED, DISCUSSION AND CONCLUSIONS 

We have compared four completely automated technique we previously developed and one semi-

automatic technique developed by others for IMT measurement on a large multi-ethnic and multi-

institutional database of 665 B-Mode ultrasound images, coming from five different institutions and 

acquired by numerous operators. Therefore, all the results herein presented were relative to patients with 

either cardiovascular or cerebrovascular symptoms. 

We proposed two different strategies in the class of AtheroEdge™ algorithms for stage-I: the first one 

(CALEX) adopted an integrated approach for feature extraction and line fitting technique, whereas the 

second (CAMES) was based on multi-resolution analysis. Both techniques recognized the CCA in 100% of 

the images. Table III summarizes the average distances between the computer tracings of the ADF and the 

manual LI/MA profiles. CALEX traced ADF profiles statistically closer than those of CAMES for LI 

(0.79±0.77 mm against 1.51±0.59 mm) and MA (0.48±0.59 mm against 0.77±0.44 mm). However, 

CAMES adventitia tracings had great stability in terms of distances from LI (0.22±0.24 mm) and MA 

(0.22±0.23 mm), whereas those from CALEX had a higher variability (0.26±0.25 mm for LI and 0.25±0.26 

mm for MA). Hence, our two stage-I strategies performed differently: CALEX was more accurate in 

tracing the ADF profile, but CAMES was more reproducible. This was due to the different modeling of the 

adventitia layer made by the two techniques. CALEX modeled the ADF as a connection of line segments. 

This ensured an accurate detection of the brightest features of the adventitia, but sometime gave forth an 

ADF profile that had some fluctuations with respect to the LI/MA boundaries. Conversely, the CAMES 

strategy generated very smooth profiles, but sometimes biased towards the end of the adventitia (i.e. 

towards the bottom of the image). Stage-II, and therefore the final IMT results, depends directly on the 

output of stage-I, a fact which underlines the importance of the use of a robust and versatile technique for 



Submission to Computer Methods and Programs in Biomedicine 
 

20 
 

20 

CCA recognition. Both of our methods were able to process 100% of the images with a good accuracy, 

laying down an important foundation for an accurate LI/MA segmentation. As shown by Fig. 2, different 

techniques produced ADF tracings of different lengths. This was due to the fact that different techniques 

adapted different criteria for far adventitia determination [31]; this resulted in estimation of different far 

adventitia lengths. Since the ADF profile was input to stage-II, the length of the ADF brought to different 

zones in which the LI/MA profiles were traced. 

Table V summarizes the overall performances of our four automatic methods and one semi-automatic 

method in terms of IMT measurement. Between all of the automatic methods, CARES showed the best 

performance with the highest accuracy and close to the highest repeatability, with an IMT bias equal to -

0.032±0.279 mm. CAMES was the automatic technique that showed the highest repeatability with a 

standard deviation equal to 0.270 mm, but presented a lower accuracy, showing a mean IMT bias value 

equal to -0.045 mm. The stability of CAMES tracings were ensured by the multi-resolution framework, 

which detected the ADF in a down-sampled domain and ensured optimal representation of the carotid walls. 

This also enabled avoiding the jugular vein. Stage-II, which was based on FOAM, was well integrated with 

the multi-resolution method and allowed for stable LI/MA tracings in all conditions of image noise and 

carotid morphology. 

 The user-driven method, FOAM, was the technique that showed the overall best performance both in 

terms of accuracy and repeatability. In fact, the IMT bias was equal to -0.025±0.225 mm. The reason for 

this result, which is not surprising, was that the user exploited their expertise and chose the optimal ROI for 

IMT measurement, by avoiding image regions with high local noise or artifacts. Since FOAM was an edge-

based operator, implicitly, the user chose a ROI in correspondence of neat and high LI/MA gradients. This 

ensured a lower bias and a higher reproducibility of the measurement. 

CAUDLES showed a rather low accuracy, with an IMT bias at least twice as large as the other 

techniques. In a previous study [13], we tested CAUDLES on 300 images (first two columns of Table I) out 

of the 665 we are considering in this work, and we obtained an IMT bias of 0.043±0.097 mm, 
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corresponding to a FoM of 94.8%. On this dataset, CAUDLES performance decreased due to the high level 

of noise affecting many images coming from Hong Kong (6th column of Table I). This noise source was 

absent in the first 300 images of the dataset (without the Hong Kong Data set), and the CAUDLES 

performance was limited by this noise. 

We tested five methods because in our previous experience, we observed that different techniques had 

different performances in presence of diverse noise sources. A first observation concerns the number of 

images that were correctly processed. FOAM processed all the images in the dataset, since it was manually 

driven by an expert (Table IV). Among the automated techniques, only CALEX correctly processed all 

100% (665 images), while CARES performed correctly on 97.3% (647 images), CAMES on 98.8% (657 

images), and CAUDLES on 94.7% (630 images). The unsuccessful cases were due to the following 

reasons: 

• In CARES: by the FOAM operator of stage-II. When the ADF profile (output of stage-I) was traced in 

correspondence of a poor LI gradient, the LI peak could not be identified and overshot the detection. 

This happened in 18 images out of 665 accounting for a small failure rate of 2.7%. 

• In CAMES: by stage-I (3 images out of 665) and by stage-II (5 images out of 665). In 3 images, the 

multi-scale approach could not correctly identify the far carotid adventitia. In 5 images, FOAM 

segmentation did not give satisfactory results due to poor gradient and thereby LI tracings nearly 

became impossible (same issue as CARES). This accounted for a very small failure rate of 1.2%. 

• In CAUDLES: classification was highly sensitive to blood scattering noise and non-orthogonal 

scanning thereby causing CAUDLES to not separate the far wall layers from the artery lumen (this 

problem happened in 35 images, mainly Hong Kong data set).  

However, the problematic images of CARES were different from those of CAMES and CAUDLES. This 

observation was in agreement with our previous studies where we documented the different problems 

caused by noise characteristics to the segmentation techniques [32]. Despite the fact that CARES gave the 
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overall best performance, CALEX was the most versatile automated strategy, since it processed all 100% of 

the images in the database. 

Our experience shows that the user-driven method FOAM was very slightly better than automated 

methods: -0.025±0.225 vs. -0.050±0.285 or -0.032±0.279 (see Table V). The main reason was the visual 

selection of the ROI box by the user. Thus the location and size of the ROI box was completely controlled 

by the user. Our automated techniques were equipped by an intelligent procedure in order to mimic the 

experience of the users. Hence, the ability of the user to guide the placement of the ROI box was replaced 

by our automated methods with very little decrease on IMT measurement accuracy (0.007 mm, Table V) 

and reproducibility. The intelligent procedures included speckle reduction, the selection of the ROI in the 

entire CCA, and the ability to join the contours that were sometimes broken by shadow effects. Our intense 

experience of carefully analyzing the database and IMT techniques showed that automatic IMT 

measurements were not too far from clinical acceptance and usage. 

We also analyzed the error conditions for each segmentation technique. We found that CALEX showed 

a higher IMT bias in images with a high level of blood backscattering. Such disturbance decreased the 

performance of the fuzzy K-means classifier (stage-II) and the LI boundary became inaccurate. CARES and 

CAMES were more robust towards blood backscattering, but sometimes generated a discontinuous LI 

interface. In fact, when the insonation plane was suboptimal, the intima layer was poorly represented. This 

originated a weak edge on the FOAM map, which sometimes could not be detected by the peak detection 

heuristic. This problem did not affect the semi-automated FOAM, since the user-traced ROI usually 

avoided the image regions where this problem was present. CAUDLES showed a scope of improvement in 

the images with poor contrast between the lumen and LI or between the media and adventitia. The edge-

flow strategy sometimes could not correctly separate the LI from the lumen or the media from the 

adventitia, thus precluding an accurate segmentation. None of the images, however, showed errors 

dependent on the image morphology. Therefore, all were robust with respect to the different carotid 

appearance. 



Submission to Computer Methods and Programs in Biomedicine 
 

23 
 

23 

Hence, by summarizing, in the presence of high blood backscattering, CARES or CAMES were to be 

preferred, whereas when the LI interface was not well defined, CALEX was the best choice among the 

automated methods.  

Since the images in our database came from five different institutions, different image resolutions were 

present. We found that CAMES demonstrated the best performance in the case of a medium or high 

resolution image, while CALEX proved to have high performance levels also in low resolution images. 

This can also be seen in [34] where we tested CALEX on a database of 885 low resolution images. 

We did not take into consideration the varying carotid size in our image database, since this issue is not 

extremely pertinent with the goal of this specific paper. However, we are currently validating the fact that 

the automatic IMT measurements remain accurate despite various carotid diameters, and in [35] we show 

that there is no dependency of our methodology with the diameter size of the carotid artery.  

All these five methods were developed for IMT measurement. Therefore, they are applicable on 

carotids without plaques. If the atherosclerotic process is originating a plaque, these methods are applicable 

only if the plaque is not protruding into the vessel lumen. In presence of a deformation of the wall caused 

by the plaque, these methods might lead to unsuitable segmentations. Stenotic Plaque images (following 

NASCET or NCST criteria [33]) were manually filtered and not part of the data base and are not part of 

this research study. This will be presented elsewhere.  

In 2010, our team showed that improvement in accuracy and reproducibility of IMT estimation could 

be obtained by fusing the LI/MA segmentations of different strategies [32]. The concept of this fusion 

motivated the desire to invent better strategies, which can then be combined to make a super hybrid 

approach. 

The automated segmentation strategies we chose to benchmark were all developed by our group (except 

FOAM, which was proposed by Faita et al. [10]).  This choice came from the need of processing arteries 

with different resolution, intensity, noise level, scale, morphology, and pathology.  
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Other research groups proposed automated methods: Golemati et al. [34] used the Hough transform for 

detecting and segmenting the carotid artery in the image frame; Rossi et al. [8, 9] used a combination of 

template matching, sustain attack filters, and multi-scale anisotropic barycenter (which is an extension of 

FOAM); Rocha et al. [35, 36] applied the random sample consensus (RANSAC) algorithm to perform the 

carotid localization and then used a level-set to segment the distal wall. All the above referenced 

approaches were tested on images coming from a single scanner, single ethnic representation, and very 

small databases. The techniques we compared in this study were all specifically designed in order to be 

robust with respect to the scanner gain settings and to the image pixel density. 

The main advantage of automatic methods is that they do not require human interaction, and they can 

therefore be used to process large databases, removing subjectivity from the process. Secondly, they 

provide a platform for understanding the error measures and reproducibility while handling large data sets; 

and finally and foremost, they are less tedious and require hardly any operator dependency. Our system as a 

whole is very robust and could be very useful in clinical usage, thanks to its automation, simple usage, and 

complete assessment (automatic CCA recognition, LI/MA segmentation and performance evaluation). 

Though we are at a very negligible difference away from user-driven results, our goal is to continue the 

development of automatic techniques so as to reach levels of very high reproducibility on diverse real 

world databases by providing a clinical tool in daily practice. 
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Tables and Captions 
 
Table 1 
 

 
The image databases that were used in previous studies have been referenced in the second line (CF - 

conversion factor). The years in which the images were acquired have been reported in the first line. 

 
 

PATIENT DEMOGRAPHICS AND ULTRASOUND ACQUISITION PARAMETERS.  

 Torino 

(’02-’09) 

Nicosia 

(‘02) 

Cagliari 

(’09) 

Porto 

(’08) 

Hong Kong 

(’10-’11) 

Number of images 200 100 42 23 300 

CF (mm/px) 0.0625 

[5, 12] 

0.0600  

[6, 7] 

0.0789 

[16] 

0.0900 

[35, 36] 
0.0585 

Patients 150 100 21 23 50 

Age (years) 69 ± 16 

(50-83) 

54 ± 24 

(25-95) 

68 ± 8 

(59-81) 
[Not pub.] 

60±5 

(54-67) 

Scanner ATLHDI5

000 

ATLHDI30

00 

Esaote 

MyLab 70 

ATLHDI50

00 

Siemens 

Antares 



Submission to Computer Methods and Programs in Biomedicine 
 

31 
 

31 

Table 2 
 

SUMMARY OF THE METHODS USED FOR STAGE-I AND STAGE-II 

 CALEX CAMES CARES CAUDLES User-Driven 

Stage-I 
Feature 

extraction 
Multi-resolution Feature extraction Multi-resolution User defines ROI 

Stage-II 
K-means 

classification 

First order 

absolute moment 

First order 

absolute moment 

Directional edge 

flow algorithm 

First order 

absolute moment 
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Table 3 
 

AVERAGE DISTANCES AND VARIABILITY BETWEEN THE FAR ADVENTITIA  

(ADF ) TRACINGS AND THE MANUAL LI/MA BOUNDARIES FOR STAGE-I 

 ADF – MA 

(mm) 

ADF – LI 

(mm) 

ADF – MA Variability 

(mm) 

ADF – LI Variability 

(mm) 

CALEX 0.48±0.59 0.79±0.77 0.26±0.25 0.25±0.26 

CAMES 0.77±0.44 1.51±0.59 0.22±0.24 0.22±0.23 

 

 

  



Submission to Computer Methods and Programs in Biomedicine 
 

33 
 

33 

Table 4 
 

COMPARISON OF IMTS FROM 5 DIFFERENT TECHNIQUES WITH RESPECT TO 

GROUND-TRUTH AND THEIR RELATIVE FIGURE-OF-MERIT 

 N IMT (mm) GT IMT (mm) FoM 

CALEX 665 0.811±0.292 0.760±0.289 93.3% 

CARES 647 0.779±0.264 0.746±0.271 95.6% 

CAMES 657 0.806±0.294 0.761±0.287 94.0% 

CAUDLES 630 0.873±0.323 0.761±0.282 85.3% 

FOAM 665 0.786±0.251 0.760±0.289 96.6% 
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Table 5 
 

PERFORMANCE: IMT MEASUREMENT ERRORS FOR THE FIVE TECHNIQUES 

 N IMT bias (mm) Absolute IMT 

Error (mm) 

Squared IMT 

error (mm2) 

CALEX 665 -0.050±0.285 0.191±0.217 0.084±0.225 

CARES 647 -0.032±0.279 0.172±0.222 0.079±0.421 

CAMES 657 -0.045±0.270 0.154±0.227 0.075±0.481 

CAUDLES 630 -0.111±0.318 0.224±0.252 0.113±0.292 

FOAM 665 -0.025±0.225 0.150±0.169 0.051±0.132 

 
 
 
Table 6 
 

CLASSIFICATION PERFORMANCE FOR THE 5 TECHNIQUES. PPV INDICATES THE 

POSITIVE PREDICTIVE VALUE, NPV THE NEGATIVE PREDICTIVE VALUE, AND DA 

THE DIAGNOSTIC ACCURACY. 

Technique Sensitivity Specificity PPV NPV DA 

CALEX  (auto) 0.387 0.850 0.341 0.874 0.773 

CARES  (auto) 0.298 0.895 0.352 0.869 0.799 

CAMES (auto) 0.475 0.916 0.505 0.906 0.849 

CAUDLES (auto) 0.462 0.832 0.358 0.884 0.770 

FOAM (semi) 0.423 0.917 0.505 0.888 0.835 
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Figures and Legends 
 
Figure 1 
 

 
 

Fig. 1. Samples of carotid morphology variability and of image challenges. A) Straight carotid and high-

resolution image; B) Straight carotid but low-resolution image; C) Inclined (slope-up) carotid; D) Inclined 

(slope-down) carotid; E) Convex carotid; F) Concave carotid; G) Low noise image; H) High noise image. 
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Figure 2 
 

 

Fig. 2. Samples of stage-I (left column) and stage-II (right column) for the four automated techniques. A-B) 

CALEX. C-D) CARES. E-F) CAMES. G-H) CAUDLES. ADF is the tracing of the far adventitia. LI and 

MA are the lumen-intima and media-adventitia layers tracings. 
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Figure 3 

 

Fig. 3. FOAM segmentation of the carotid image taken in Fig. 2. The dotted white rectangle represents the 

user-driven ROI. 
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Figure 4 

 

Fig. 4. Correlation plots between the computer measured IMT values and the Ground-Truth (GT) values. 

The dashed lines represent the regression line. A) CALEX. B) CARES. C) CAMES. D) CAUDLES. E) 

FOAM. 
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Figure 5 

 

 

Fig. 5. Bland-Altmann plots showing the relationship between the computer measured IMT and the 

Ground-Truth (GT) values. All techniques show good performance. A) CALEX. B) CARES. C) CAMES. 

D) CAUDLES. E) FOAM. 
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Figure 6 

 

 

Fig. 6. Historgam of the IMT measurement bias for the five techniques (A-E). The black line represents the 

cumulative frequency. A) CALEX. B) CARES. C) CAMES. D) CAUDLES. E) FOAM. 

 


