
RDFBuilder: A tool to automatically build RDF-based
interfaces for MAGE-OM microarray data sources

Alberto Anguita, Luis Martin, Miguel Garcia-Remesal, Victor Maojo

This paper presents RDFBuilder, a tool that enables RDF-based access to MAGE-ML-compliant microarray databases. We have developed 
a system that automatically transforms the MAGE-OM model and microarray data stored in the ArrayExpress database into RDF format. 
Additionally, the system automatically enables a SPARQL endpoint. This allows users to execute SPARQL queries for retrieving 
microarray data, either from specific experiments or from more than one experiment at a time. Our system optimizes response times by 
caching and reusing information from previous queries. In this paper, we describe our methods for achieving this transformation. We 
show that our approach is complemen-tary to other existing initiatives, such as Bio2RDF, for accessing and retrieving data from the 
ArrayExpress database.

1. Introduction

The unprecedented growth of biomedical data sources in
the last decade has changed the way biologists do their job.
Whereas ten years ago they gathered and analyzed data from
one or few sources – private databases were frequently man-
aged by one institution alone – nowadays, collaborative efforts
usually imply working simultaneously with several hetero-
geneous databases to extract new and valuable information.
Different areas within biomedicine have already benefited
from this distributed approach. Many current efforts focus
on integrating microarray data with other types of data – for
instance, clinical data – to find new genetic signatures for
improved diagnosis and better treatment selection. Zirn et al.
describe this process with Wilms tumor patients, obtaining
genetic biomarkers that help to determine the best treatment
for each patient [1]. However, these efforts are often ham-
pered by the complexities of working with several data sources

in different formats, or with different interfaces. Thus, data
standardization is a major issue.

To provide unified and homogeneous access to the vast
amounts of available biological data, bioinformaticians have
to deal with both semantic and syntactic heterogeneities
across different sources [2]. Over the last few years, semantic
homogenization efforts have been commonly addressed
by applying semantic web technologies [3–5]. A significant
example is the development of ontologies that act as unified
vocabularies for the biomedical domain [6,7]. To name a few
examples, the Foundational Model of Anatomy (FMA) con-
tains a symbolic representation of the phenotypic structure
of the human body [8], the Gene Ontology (GO) offers a repre-
sentation of gene and gene product attributes across species
[9], and the ACGT Master Ontology represents the domain of
cancer research [10]. All these ontologies are currently part of
the OBO Foundry [11], a consortium created with the goal of
establishing a set of principles and good practices for ontology
development. In the case of syntactic heterogeneities – i.e.,



differences in database models, query languages, and inter-
face types – the efforts focus on developing standard models
and languages for describing, storing and accessing data.
RDF [12] has been accepted as a de facto data model for this
purpose in the biomedical domain, being SPARQL the most
adopted associated query language. In this context, numer-
ous approaches for “RDFizing” existing biomedical data and
offering a common method for accessing the vast amounts
of available data have been proposed. Examples of these
approaches are YeastHub [13], an RDF structure and a web-
based application for integrating both RDF datasets and data
in tabular format into a centralized RDF repository, or Bio2RDF
[14], a project that aims to unify and convert several existing
public biomedical databases into a common RDF format.

Besides all the existing efforts to standardize data in the
biomedical domain, there also exist more specific efforts tar-
geting concrete areas and topics in the life sciences. For
instance, many standards have been created to describe data
in particular areas [15]. There are standards such as CellML
[16], for describing cellular and subcellular processes, BioPAX
[17], a data format for biological pathway data, or SBML [18], a
data format for representing models of biochemical reaction
networks. For microarray experiments, this domain-specific
standardization effort has been primarily led by the FGED
society [19]. This organization supports the development of
languages, ontologies and standards for this domain – i.e.,
MIAME, MAGE-OM, MAGE-ML and MGED Ontology. One of
these standards, the MAGE-ML language, provides a uniform
manner of expressing genomic data in XML format. This
language has been adopted by the most important microar-
ray experiment public repositories, namely, ArrayExpress [20],
GEO [21] and CIBEX [22]. By using it, all these databases
datasets can be retrieved as XML documents in MAGE-ML
form.

Developing domain-specific standards in biomedicine
helps to solve problems of data interoperability and data
exchange arising in biomedicine. On the other hand, develop-
ing too many standards may take us back to the starting point
of having to deal with incompatible formats [23,24]. MAGE-
ML is an example of this situation. This language provides
a formal and solid base for ensuring interoperability among
microarray-related repositories. On the other hand, data inte-
gration systems capable of accessing RDF based data sources
cannot handle these data. In this regard, we propose a method
for automatically providing RDF-based access to MAGE-ML
data sources. The presented method is implemented by means
of a programmatic interface and a web-based software system
that provide RDF-based access to any database compliant with
the MAGE-ML format. These software components are easily
adaptable to any FGED-compliant database, apart from Array-
Express, and can be configured in a matter of minutes. We also
describe a real-case scenario with the ArrayExpress database.

2. Computational methods and theory

The goal of our system is to provide SPARQL-based
access to the ArrayExpress public database. To do this,
we have developed a software module that transforms
ArrayExpress experiments data into a single equivalent

RDF document. This is accomplished by dynamically
exploring the MAGE-ML documents describing each exper-
iment and translating their content into an RDF-based
format. The resulting document is an RDF representa-
tion of the MAGE-OM object model (http://www.ebi.ac.uk/
microarray-as/aer/magepages/mage all.html). The generated
RDF classes and properties effectively resemble this speci-
fication. This RDF is dynamically generated from the data
structure contained in MAGE-ML documents, so the transfor-
mation algorithm incorporates no previous information about
the MAGE-OM model. This is accomplished by following a set
of transformation rules, described below:

• MAGE-OM classes are translated into RDF classes. For exam-
ple, the ArrayGroup class contained in the Array package
produces an equivalent RDF class.

• Properties relating MAGE-OM classes are translated into
RDF object properties. For example, the bioAssayFactorVal-
ues property linking BioAssay and FactorValue in Mage-OM
produces an equivalent RDF object property named
http://aewrapper#bioAssayFactorValues.

• Attributes in MAGE-OM are translated into RDF
datatype properties. For example, the arrayIden-
tifier attribute from the Array class in MAGE-OM
produces an equivalent RDF datatype property named
http://aewrapper#arrayIdentifier string.

The element names are preserved whenever possible.
Thus, the ExperimentDesign class in Mage-OM produces an
RDF class with an equivalent name. MAGE-OM package
names are added as prefixes to their respective class
names, and the http://aewrapper# namespace has been
selected for the generated models. Thus, the above MAGE-
OM class produces a class in the RDF model named
http://aewrapper#Experiment.ExperimentDesign.

The described element generation rules are not enough to
effectively construct the equivalent RDF model. The MAGE-
OM specification contains some incompatibilities with RDF
due to the possibility of name-sharing attributes to coexist
– e.g. length as an integer attribute in BioSequence, or as a float
attribute in ArrayGroup. In order to adhere to the RDF spec-
ification, a disambiguation process is carried out. Generated
datatype properties include an additional suffix correspond-
ing to the actual domain datatype. Therefore, value (the string
attribute in the class NodeValue) is translated into the RDF
datatype property named http://aewrapper#value string.

3. System description

3.1. System overview

RDFBuilder is designed to provide access to the ArrayExpress
microarray database through an RDF-based interface using the
SPARQL query language. To this end, the system automatically
translates the MAGE-ML schema of the required experiment
or set of experiments to an equivalent RDF model – MAGE-
ML entities are translated into RDF according to the method
described in the previous section. The resulting RDF model
is queried with the SPARQL query issued by the user, and



Fig. 1 – Description of the query and data translation process carried out by RDFBuilder, including communication with
ArrayExpress.

results are returned in SPARQL result format. The generated
RDF instances are, in addition, stored in a cache repository,
allowing the speed-up of subsequent data requests. The sys-
tem can be accessed in two different ways: (i) a programmatic
interface encapsulated in a JAR file and (ii) a web interface
accessible using a regular internet browser.

Together with the SPARQL query, the user must provide a
valid ArrayExpress experiment identifier or a set of keywords
to determine which experiments are to be accessed. When
keywords are provided, RDFBuilder employs the ArrayExpress
native functionality to extract a related list of experiments.
The system automatically downloads the non-cached exper-
iments and produces an equivalent RDF model from each
of them. To do this, RDFBuilder employs the MAGE Software
Toolkit that offers Java based access to MAGE-ML documents.
Through this library, the tree of elements that compose the
MAGE-ML document is extracted using simple Java meth-
ods. However, instead of creating a detailed mapping of the
available methods into a predefined set of RDF classes, we
adopt a technique that allows a more generic analysis of the
document. Using the reflection programming technique [28],
RDFBuilder dynamically resolves object types and invokes the
available methods in order to retrieve the microarray data.
The methods signatures themselves provide the name of the
MAGE-ML entities being retrieved. This way, no precompiled
set of MAGE-ML elements to retrieve is required, and evolu-
tion of the software upon updates in the MAGE-ML standard
is completely automatic.

After translating each experiment data into its correspond-
ing RDF model, a full merge is performed in order to produce a
single RDF model from all experiments. Since all experiments
stick to the same schema, this procedure is straightforward.
This RDF represents the data of interest for the user. The
final step consists on launching the original query against this
model. The obtained result is the product returned to the user.

RDFBuilder is composed of a set of libraries developed in
the Java programming language and a web interface enabling
direct access by end users. The web service tool provided as
the interface for direct query access was developed in AJAX,
according to a strong model-view-controller design pattern
[25]. The business logic is provided by a Java API containing
the implementation of the algorithms to map MAGE-ML and
translate SPARQL queries to the native microarray database
language. RDFBuilder is also able to automatically parse

the results that are retrieved by the underlying microarray
database, returning a higher semantic level SPARQL result
set. Fig. 1 illustrates the whole process.

3.2. Accessing RDFBuilder

The API is designed to resolve queries in SPARQL. The schema
for generating these queries was dynamically created from the
MAGE-OM model, as described previously, and can be down-
loaded from http://www.bioinformatics.org/RDFBuilder/wiki/.
As shown in this RDF schema, the prefix for all classes
and relations is http://aewrapper. Thus, http://aewrapper:
Experiment.Experiment should be specified to refer to the
Experiment class found in the package of the same name in
the MAGE-OM model.

Users can perform two different types of queries with RDF-
Builder, as described below.

1. Experiment-specific queries. These include a SPARQL query
together with the identifier of an existing ArrayExpress
experiment (e.g. “E-GEOD-21068”). These queries are aimed
at retrieving data solely from the specified experiment.
The provided SPARQL must conform to the RDF schema
described previously.

2. Keyword-based queries. Opposed to the experiment-specific
queries, keyword-based queries are targeted at a group of
experiments related with a set of keywords. They resort
to an ArrayExpress feature which permits to infer a set
of microarray experiments from a list of keywords. These
queries are therefore composed of a SPARQL query and the
list of keywords (e.g. “organism,’ “ratus,’ “mammary,’ and
glands”). Results from the related experiments are auto-
matically integrated and presented to the user as a single
SPARQL result set.

The SPARQL query in both types of queries is provided to
the API as a String. RDFBuilder performs the corresponding
parsing process, assisted by the Jena library [26].

The described functionality can be accessed through the
es.upm.gib.aewrapper.queryprocessing.QueryProcessor class of the
API. Its methods allow performing the two types of queries and
always return a path to the generated results file. The sample
code in Fig. 2 shows how to launch a user query using our
programmatic interface.



Fig. 2 – Example of generic Java code to use the API to
formulate a simple query.

The JavaDoc documentation attached to the API details
how to correctly invoke RDFBuilder and the causes for possi-
ble exceptions – i.e., error parsing the query, unable to access
the specified experiment, etc. The API needs a directory in
the hard drive to be configured as experiment cache. In this
directory, the API will place the downloaded experiments from
ArrayExpress, as well as the generated result files. For further
detail, please refer to the README.TXT file packed with the
library.

4. Examples

This research was initially supported by the European
Commission-funded ACGT (Advancing Clinico-Genomic Tri-
als) Integrated Project [27]. The main goal in ACGT was to
develop a platform to support clinical trials involving the inte-
gration of phenotypic and genomic data. For that purpose,
the ACGT platform incorporated a data integration layer for
homogenizing heterogeneous databases. This data integra-
tion layer adopted the ACGT Master Ontology (MO) as a global
schema for representing the underlying data. The core com-
ponent of this layer was the Semantic Mediator, a software
module capable of dynamically translating queries in terms of
the MO into heterogeneous database queries, and then inte-
grating the generated results. The final ACGT infrastructure
was proven to be viable across a variety of real world sce-
narios, all of which involved integrating microarray data to
some extent. Testing focuses on how our tool can improve
configuration, execution and performance issues in these sce-
narios.

For this experiment we chose a scenario concerning the
integration of relational and microarray databases for the
International Society of Pediatric Oncology’s SIOP 2001/GPOH
trial. There are several reasons for this choice. First of all,
the goal is to reproduce a documented research scenario,

described in Zirn et al. [1], where tumor samples hybridized
in two-color microarrays are analyzed together with rela-
tional data from the hospital database (containing phenotypic
patient information). Secondly, the changes in the scenario
component architecture clearly illustrate how RDFBuilder
contributes to improve the efficiency of the scenario in several
ways. Although converting microarray data to an RDF format
was not one of the initial ACGT goals, we found that doing so
would facilitate the whole data integration process consider-
ably.

Fig. 3 shows a comparison of the same scenario archi-
tecture. The architecture on the left is the component
architecture used in the original SIOP 2001/GPOH scenario.
Relational and microarray data clearly follow a different
retrieval path until they reach the analysis process. In addi-
tion, microarray data have a final annotation process to match
the MO terminology – which acts here as a semantic frame-
work for homogenization. Although the process lifts part of
the workload of the original scenario as described in Zirn
et al.’s. paper, full heterogeneous data integration is only
achieved with the inclusion of RDFBuilder. The architecture
on the right side makes use of our tool to generate an RDF-
compliant wrapper in the data integration layer retrieving
microarray data in a way that can be directly processed by
the Semantic Mediator. Clearly, several processes and compo-
nents are no longer needed when using RDFBuilder, further
automating data processing, and achieving better results in
the end. After the mediation process, all the data are com-
pletely homogenized by means of the MO. This way it can
be reused in other type of processes or scenarios, as well
as integrated with other data types curated by the Semantic
Mediator. Furthermore, the complete process performs better
after several uses because RDFBuilder is capable of caching
data for further use in future retrievals.

The task that takes longest to complete is the actual down-
loading of experiment data. However, the implementation
of a cache of accessed experiments helps to avoid this bot-
tleneck. The result is a speed increase in the processing of
queries with overlapping experiments (cached data validity
is checked every time it is accessed). When a user launches
the same or a related query to one already run, the system
is able to automatically identify the similarities and retrieve
results from the cache where previous data are stored. This
approach avoids retrieving the same experiment from the
ArrayExpress database twice. The API autonomously detects
when updated experiment data are available. This prevents
user queries from being answered with outdated data. Our
experiments show how this helps to reduce the response
time by approximately 80% (for an average query involving 9
microarray experiments).

5. Hardware and software specifications

The system has been completely developed in Java, so the
hardware required is any that supports and offers a Java virtual
machine. Other requirements:

- Operating system(s): platform independent.
- Programming language: Java (1.5 or higher).



Fig. 3 – A comparison of possible SIOP scenario architectures.

- License of use: LGPL.
- Any restrictions of use by non-academics: None.

6. Availability

The software can be freely downloaded as a Java library.
Detailed instructions of use are included, as well as
complete JavaDocs. The project homepage is located at
http://www.bioinformatics.org/RDFBuilder/wiki/.

The software can be tested online from any browser at
http://servet.dia.fi.upm.es:8080/ArrayExpressWrapperWeb/.

7. Discussion

In this paper we have presented RDFBuilder, a tool to auto-
matically translate MAGE-ML compliant microarray databases
into RDF. This system acts as a wrapper, enabling the exe-
cution of SPARQL queries to retrieve ArrayExpress data. The
algorithm used to build and populate the RDF representation

of ArrayExpress works in a dynamic, adaptive manner, and can
be easily extended to work with any kind of XML schema. Such
a dynamic approach might be helpful, given the huge cost of
building wrappers able to maintain the expressivity level of
the wrapper database.

RDFBuilder offers an algorithm for transparently trans-
lating the data contained in the ArrayExpress database into
RDF. The focus when designing the tool was to maintain the
expressive power provided by MAGE-ML, the native language
employed in ArrayExpress database storage. In addition, RDF-
Builder supports the retrieval of data from several experiments
in an integrated manner, without the need to specify the
actual experiments.

A related initiative aimed at providing RDF-based access
to biological databases is Bio2RDF [14]. The latter focuses
on translating public biological databases in some specific
formats (namely, XML documents, flat text files, relational
databases and HTML documents) into RDF. With respect to
public databases such as ArrayExpress, Bio2RDF retrieves
summarized information provided in HTML documents of
each instance stored in the database. While Bio2RDF is



designed to cover a large number of data repositories, it hardly
digs in the details of each of them. Conversely, our tool is
specifically designed to support this type of documents by pro-
viding an ad hoc RDF schema that covers all the complexity of
this language, and thus enables users to issue complex queries
to the ArrayExpress microarray repository. While Bio2RDF
focuses on supporting a large set of different databases, RDF-
Builder concentrates on maintaining the expressivity of the
original query systems. In addition, our tool is capable of dis-
playing query results of a set of experiments in an integrated
manner. This means that end users are relieved from having to
manually merge different results. Our approach can be reused
by any database adopting this data model (e.g. Gene Expres-
sion Omnibus [21] or the Stanford Microarray Database [29]). In
addition, by providing results in SPARQL-Results format and by
offering a SPARQL query endpoint, resulting data sets can be
integrated with any kind of RDF-compliant data. This includes
relational databases whose conversion to an RDF schema is
straightforward.

There exists a project at Google Code targeted at the trans-
lation of FGED standards to RDF, called magetab2rdf1. This
project seems to be focused, from its main Web-based refer-
ence, on the translation of MAGE-TAB documents – a tabular
representation resulting of the simplification of the MAGE-
ML standard – into RDF using existing vocabularies such as
the PROV Ontology (PROV-O), the Ontology for Biomedical
Investigations (OBI), the Open Biomedical Ontology (OBO),
the Experimental Factor Ontology (EFO) and the MGED Ontol-
ogy.

Conversely, our tool does not resort to any external vocab-
ularies or ontologies to translate the actual data. Instead,
our tool aims at translating the full MAGE-ML specification
– i.e., the database schema rather than the actual data – into
RDF, and for this purpose a new RDF model is obtained as a
literal reflect of the MAGE-OM model. Thus, it can be used
to translate MAGE-ML compliant databases into RDF. This
task, to our knowledge, cannot be accomplished by neither
magetab2rdf nor other existing tools. In addition, the method
and software presented in this paper offer various function-
alities, not yet provided by other readily available tools at the
time of writing. First, our solution enables users to directly
access ArrayExpress data through SPARQL queries, dynam-
ically retrieving the required databases and automatically
translating them into SPARQL-Results format. Access to the
ArrayExpress database is therefore completely transparent to
users – unlike the magetab2rdf, that accepts a user-provided
MAGE-TAB document and translates it into RDF – providing
them with a virtual RDF-based view of the ArrayExpress data
that can be directly queried using our programmatic interface.
Conversely, the magetab2rdf tool generates a plain RDF file
that needs to be queried using external tools and/or inter-
faces. Second, our software includes an innovative feature
for automatically integrating data from multiple ArrayExpress
experiments in a dynamic, transparent fashion. Since the
RDF models generated by our tool share a common schema,
they can be automatically integrated without any user inter-
vention. Therefore, users can simultaneously query several
experiments, or even specify a set of terms that may be bor-
rowed from different ontologies including GO, OBO, OBI, etc.
After the query is processed by our system, the software will

automatically present the user the results as if they were
retrieved from one single, integrated, database.

Our tool can be a valuable resource for biomedical
researchers to seamlessly integrate a set of target exper-
iments stored in ArrayExpress and automatically create a
single, SPARQL query-able, RDF document integrating the
data from the selected experiments. We believe that this can
save a significant amount of time to researchers who, even
using other existing tools such as magetab2rdf, would oth-
erwise have to manually gather and integrate the individual
experiments, which would have to be queried using external
tools and/or interfaces. RDFBuilder is currently being used by
biomedical researchers of the European Commission-funded
p-medicine project [30] – in which the authors currently partic-
ipate together with other 18 European and Japanese research
institutions, universities and companies – to gather, integrate
and query MAGE-ML-based microarray experiments. Thus, it
can support the creation of custom clinical trials and novel
drugs targeted at specific patients based on their clinico-
genomic profile. In addition, RDFBuilder can be used both by
end users through the provided web interface or by other tools
and frameworks, such as Bio2RDF itself. Our tool is not a sub-
stitute for this or other existing approaches for biomedical
database integration. Instead, it is a complementary approach
that enables end users and other existing tools to seamlessly
access MAGE-ML in an RDF-compliant form, thus paving the
path toward the deployment of biological integration solu-
tions.

RDFBuilder improves query performance for regular
microarray database users using of a cache memory that
stores partial schemas and results. The system is able to iden-
tify when a query or a part of a query is being reused, and
retrieve the results much faster than querying ArrayExpress
directly.

By using Java, we assure system portability to any platform.
The software is licensed under GNU GPL, so its code is avail-
able for non-profit exploitation. All the third party libraries
that have been used in the system are freeware. If a researcher
needs to use the system as a “black box,” the included pro-
grammatic interface provides easy means for communication.
The Java JAR library implementing RDFBuilder is available for
free downloading (see Section 6 for detailed information).

Heterogeneity, quantity and disparity of all available
biomedical data sources are an obstacle to progress in this
field. By enabling RDF-based access to the most widespread
format for managing microarray data, RDFBuilder becomes
part of the bioinformatics community’s global effort to homog-
enize heterogeneous biomedical data sources. RDF has come
to be the de facto standard for representing disparate data in
biomedicine. With this software, we hope to further support
biomedical research’s need for distributed data access.

8. Conclusions

Modern research in bioinformatics and medicine involves
accessing and combining huge amounts of data from different
heterogeneous sources and locations. In a generic scenario,
these data sets need to be queried, managed, curated and, in
many cases, manually integrated, bridging the heterogeneities



arising out of non standardization caused by tremendous
growth that has taken place in the last decade. In this regard,
the FGED consortium for microarray databases is working on
defining new standards. However, standardization is only the
first step in the process of giving the research community rea-
sonable access to a significant number of data sources. Tools
are required to facilitate the translation of queries, schemas
and data.

With MAGE-OM as the most widespread standard for
representing microarray data, there is an increasing need
to integrate this standard with other RDF-based biomedical
databases. In this paper, we have presented a software tool for
automatically wrapping MAGE-OM-compliant data into RDF
and providing SPARQL querying capability. Our solution, RDF-
Builder, does not require the adoption of any custom ontology
or RDF schema, since the generated RDF documents directly
reflect the MAGE-OM standard. RDFBuilder was also designed
to autonomously adapt to modifications in the MAGE-ML
standard without code reimplementation. In addition, the API
implements a cache system, which ensures access to updated
data while reducing access times for frequently retrieved
datasets. Finally, a Web-based interface has also been devel-
oped and made publicly available for tool testing, including
some example queries.

RDFBuilder has features that facilitate interoperability
with earlier approaches implemented to transform biomed-
ical data into RDF format, such as Bio2RDF. Our tool is
targeted at bioinformaticians who develop data integration
applications. In this context, RDFBuilder solves the syn-
tactic heterogeneities by offering RDF-based access to the
ArrayExpress databases. Our approach provides both data
translation services – by translating MAGE-ML documents
into RDF – and a dynamic SPARQL query endpoint, making
it suitable for a wide range of data integration approaches.
We firmly believe that RDFBuilder can significantly improve
the process of integrating microarray with other biological
data.

This work was funded by the European Commission, 
through the ACGT integrated project (FP6-2005-IST-026996), 
p-medicine (FP7-ICT-2009-270089) and INTEGRATE (FP7-ICT-
2009-270253). The authors would also like to thank Martín 
Esteban for writing some parts of the code, and to Esther 
Peinado for developing the Web interface and providing useful 
suggestions.

[1] B. Zirn, O. Hartmann, B. Samans, M. Krause, S. Wittmann, F.
Mertens, N. Graf, M. Eilers, M. Gessler, Expression profiling
of Wilms tumors reveals new candidate genes for different
clinical parameters, International Journal of Cancer 118 (8)
(2006) 1954–1962.

[2] L. Martin, A. Anguita, V. Maojo, J. Crespo, Integration of
omics data for cancer research, in: W.C.S. Cho (Ed.), An
Omics Perspective on Cancer Research, Springer, Dordrecht,
Netherlands, 2010, pp. 249–266.

[3] B.M. Good, M.D. Wilkinson, The life sciences semantic web
is full of creeps!, Briefings in Bioinformatics 7 (3) (2006)
275–286.

[4] J. Sagotsky, L. Zhang, Z. Wang, S. Martin, T. Deisboeck, Life
Sciences and the web: a new era for collaboration, Molecular
Systems Biology 4 (2008).

[5] V. Maojo, M. Garcia-Remesal, H. Billhardt, R. Alonso-Calvo, D.
Perez-Rey, F. Martin-Sanchez, Designing new methodologies
for integrating biomedical information in clinical trials,
Methods of Information in Medicine 45 (2) (2006) 180–185.

[6] D. Perez-Rey, V. Maojo, M. Garcia-Remesal, R. Alonso-Calvo,
H. Billhardt, F. Martin-Sanchez, A. Sousa, ONTOFUSION:
ontology-based integration of genomic and clinical
databases, Computers in Biology and Medicine 36 (7) (2006)
712–730.

[7] R. Alonso-Calvo, V. Maojo, H. Billhardt, F. Martin-Sanchez, M.
Garcia-Remesal, D. Perez-Rey, An agent- and ontology-based
system for integrating public gene, protein, and disease
databases, Journal of Biomedical Informatics 40 (2007) 17–29.

[8] C. Rosse, J.L.V. Mejino, A reference ontology for biomedical
informatics: the Foundational Model of Anatomy, Journal of
Biomedical Informatics 36 (6) (2003) 478–500.

[9] G.O. Consortium, The Gene Ontology (GO) project in 2006,
Nucleic Acids Research 34 (Suppl. 1) (2006) D322–D326.

[10] M. Brochhausen, A.D. Spear, C. Cocos, G. Weiler, L. Martin, A.
Anguita, H. Stenzhorn, E. Daskalaki, F. Schera, U. Schwarz, S.
Sfakianakis, S. Kiefer, M. Doerr, N. Graf, M. Tsiknakis, The
ACGT Master Ontology and its applications – towards an
ontology-driven cancer research and management system,
Journal of Biomedical Informatics 44 (2011) 8–25.

[11] B. Smith, M. Ashburner, C. Rosse, J. Bard, W. Bug, W. Ceusters,
L. Goldberg, K. Eilbeck, A. Ireland, C. Mungall, N. Leontis, P.
Rocca-Serra, A. Ruttenberg, S. Sansone, R. Scheuermann, N.
Shah, P. Whetzel, S. Lewis, The OBO Foundry: coordinated
evolution of ontologies to support biomedical data
integration, Nature Biotechnology 25 (11) (2007) 1251–1255.

[12] L. Martin, A. Anguita, A. Jimenez, J. Crespo, Enabling cross
constraint satisfaction in RDF-based heterogeneous
database integration, in: 20th IEEE International Conference
on Tools with Artificial Intelligence, 2008, pp. 341–348.

[13] K. Cheung, K. Yip, A. Smith, R. Deknikker, A. Masiar, M.
Gerstein, YeastHub: a semantic web use case for integrating
data in the life sciences domain, Bioinformatics 21 (Suppl. 1)
(2005).

[14] F. Belleau, M. Nolin, N. Tourigny, P. Rigault, J. Morissette,
Bio2RDF: towards a mashup to build bioinformatics
knowledge systems, Journal of Biomedical Informatics 41 (5)
(2008) 706–716.

[15] L. Stromback, D. Hall, P. Lambrix, A review of standards for
data exchange within systems biology, Proteomics 7 (6)
(2007) 857–867.

[16] C. Lloyd, M. Halstead, P. Nielsen, CellML: its future, present
and past, Progress in Biophysics and Molecular Biology 85
(2–3) (2004) 433–450.

[17] E. Demir, M. Cary, S. Paley, K. Fukuda, C. Lemer, I. Vastrik, G.
Wu, P. D’Eustachio, C. Schaefer, J. Luciano, F. Schacherer, I.
Martinez-Flores, Z. Hu, V. Jimenez-Jacinto, G. Joshi-Tope, K.
Kandasamy, A. Lopez-Fuentes, H. Mi, E. Pichler, I.
Rodchenkov, A. Splendiani, S. Tkachev, J. Zucker, G.
Gopinath, H. Rajasimha, R. Ramakrishnan, I. Shah, M. Syed,
N. Anwar, O. Babur, M. Blinov, E. Brauner, D. Corwin, S.
Donaldson, F. Gibbons, R. Goldberg, P. Hornbeck, A. Luna, P.
Murray-Rust, E. Neumann, O. Reubenacker, M. Samwald, M.
van Iersel, S. Wimalaratne, K. Allen, B. Braun, M.
Whirl-Carrillo, K. Cheung, K. Dahlquist, A. Finney, M.
Gillespie, E. Glass, L. Gong, R. Haw, M. Honig, O. Hubaut, D.
Kane, S. Krupa, M. Kutmon, J. Leonard, D. Marks, D. Merberg,
V. Petri, A. Pico, D. Ravenscroft, L. Ren, N. Shah, M. Sunshine,



R. Tang, R. Whaley, S. Letovksy, K. Buetow, A. Rzhetsky, V.
Schachter, B. Sobral, U. Dogrusoz, S. McWeeney, M. Aladjem,
E. Birney, J. Collado-Vides, S. Goto, M. Hucka, N. Le Novere, N.
Maltsev, A. Pandey, P. Thomas, E. Wingender, P. Karp, C.
Sander, G. Bader, The BioPAX community standard for
pathway data sharing, Nature Biotechnology 28 (9) (2010)
935–942.

[18] M. Hucka, A. Finney, H.M. Sauro, H. Bolouri, J.C. Doyle, H.
Kitano, et al., The systems biology markup language (SBML):
a medium for representation and exchange of biochemical
network models, Bioinformatics 19 (4) (2003) 524–531.

[19] P.L. Whetzel, H. Parkinson, H.C. Causton, L. Fan, J. Fostel, G.
Fragoso, L. Game, M. Heiskanen, N. Morrison, P. Rocca-Serra,
S. Sansone, C. Taylor, J. White, C.J. Stoeckert, The MGED
Ontology: a resource for semantics-based description of
microarray experiments, Bioinformatics 22 (7) (2006)
866–873.

[20] H. Parkinson, U. Sarkans, M. Shojatalab, N.
Abeygunawardena, S. Contrino, R. Coulson, A. Farne, G.
Garcia Lara, E. Holloway, M. Kapushesky, P. Lilja, G.
Mukherjee, A. Oezcimen, T. Rayner, P. Rocca-Serra, A.
Sharma, S. Sansone, A. Brazma, ArrayExpress – a public
repository for microarray gene expression data at the EBI,
Nucleic Acids Research 33 (Suppl. 1) (2005) D553–D555.

[21] T. Barrett, D. Troup, S. Wilhite, P. Ledoux, D. Rudnev, C.
Evangelista, I. Kim, A. Soboleva, M. Tomashevsky, R. Edgar,
NCBI GEO: mining tens of millions of expression profiles
database and tools update, Nucleic Acids Research 35 (2007),
Database issue, D760–D765.

[22] K. Ikeo, J. Ishi-I, T. Tamura, T. Gojobori, Y. Tateno, CIBEX:
center for information biology gene expression database,
Comptes Rendus Biologies 326 (10–11) (2003) 1079–1082.

[23] J. Quackenbush, Standardizing the standards, Molecular
Systems Biology 2 (2006) 0010.

[24] M. Antonioletti, M. Atkinson, R. Baxter, A. Borley, N.P.
Chue-Hong, B. Collins, N. Hardman, A. Hume, A. Knox, M.
Jackson, A. Krause, S. Laws, J. Magowan, N. Paton, D.
Pearson, T. Sugden, P. Watson, M. Westhead, The design and
implementation of Grid database services in OGSA-DAI,
Concurrency and Computation: Practice and Experience 17
(2–4) (2005) 357–376.

[25] E. Curry, P. Grace, Flexible self-management using the
model-view-controller pattern, IEEE Software 25 (2008)
84–90.

[26] B. McBride, Jena: a semantic Web toolkit, IEEE Internet
Computing 6 (2002) 55–59.

[27] L. Martin, A. Anguita, N. Graf, M. Tsiknakis, M. Brochhausen,
S. Ruping, A. Bucur, S. Sfakianakis, T. Sengstag, F. Buffa, H.
Stenzhorn, ACGT: advancing Clinico-genomic trials on
cancer – four years of experience, Studies in Health
Technology and Informatics 169 (2011)
734–738.

[28] B.C. Smith, Procedural reflection in programming languages,
Ph.D. thesis, Department of Electrical Engineering and
Computer Science, Massachusetts Institute of Technology,
Cambridge, MA, 1982.

[29] G. Sherlock, T. Hernandez-Boussard, A. Kasarskis, G. Binkley,
J.C. Matese, S.S. Dwight, M. Kaloper, S. Weng, H. Jin, C.A. Ball,
M.B. Eisen, P.T. Spellman, P.O. Brown, D. Botstein, J.M. Cherry,
The Stanford microarray database, Nucleic Acids Research
29 (2001) 152–155.

[30] N. Graf, A. Anguita, A. Bucur, D. Burke, B. Claerhout, P.
Coveney, A. d’Onofrio, N. Forgo, C. Hahn, J. Hintz, B. Jefferys,
S. Kiefer, K. Marias, G. McVie, C. Ohmann, A. Persidis, J.
Pukacki, S. Rossi, S. Ruping, U. Schwarz, G. Stamatakos, M.
Stanulla, H. Stenzhorn, Y. Tanaka, M. Taylor, M. Tsiknakis,
P-medicine: a solution for translational research? Paediatric
Blood & Cancer 59 (6) (2012) 1101.


