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Abstract
The measurement of the size of lesions in follow-up CT examinations of cancer patients is
important to evaluate the success of treatment. This paper presents an automatic algorithm for
identifying and segmenting lymph nodes in CT images across longitudinal time points. Firstly, a
two-step image registration method is proposed to locate the lymph nodes including coarse
registration based on body region detection and fine registration based on a double-template
matching algorithm. Then, to make the initial segmentation approximate the boundaries of lymph
nodes, the initial image registration result is refined with intensity and edge information. Finally, a
snake model is used to evolve the refined initial curve and obtain segmentation results. Our
algorithm was tested on 26 lymph nodes at multiple time points from 14 patients. The image at the
earlier time point was used as the baseline image to be used in evaluating the follow-up image,
resulting in 76 total test cases. Of the 76 test cases, we made a 76 (100%) successful detection and
38/40 (95%) correct clinical assessment according to Response Evaluation Criteria in Solid
Tumors (RECIST). The quantitative evaluation based on several metrics, such as average
Hausdorff distance, indicates that our algorithm is produces good results. In addition, the proposed
algorithm is fast with an average computing time 2.58s. The proposed segmentation algorithm for
lymph nodes is fast and can achieve high segmentation accuracy, which may be useful to automate
the tracking and evaluation of cancer therapy.
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1. Introduction
Computed tomography (CT) is commonly used for detection, diagnosis, and staging of
cancers. Lymph node detection and segmentation is particularly important for cancer staging
and treatment monitoring, as lymph nodes are commonly affected in cancer. Lymph nodes
nearby primary cancer regions are routinely assessed by clinicians to monitor disease
progress and effectiveness of the cancer treatment. In longitudinal CT scans, the change in
size of lymph nodes over time is critical to assess the status of the stability or progression of
disease [1].

Quantitative assessment of cancer lesions is a core task for evaluating treatment response.
Current criteria for response assessment such as RECIST (Response Evaluation Criteria in
Solid Tumours) [1, 2] and IWC (International Workshop Criteria) [3] depend heavily on
cancer lesion measurement. On the other hand, measuring cancer lesions is time-consuming
and not coveted by radiologists, some of whom even contend should be the responsibility of
oncologists [4, 5]. Though these measurements are crucial to clinical decision making, they
are often not performed completely, and insufficient reporting of measurements is a
common occurrence [6]. Approaches to improve quantitative imaging practices are needed,
given their importance in cancer response assessment [4, 5].

A particularly challenging aspect of quantitative imaging assessment is locating the
previously-reported lesions on follow-up imaging studies. An automated method to locate
the corresponding lesions on follow-up studies and to segment them automatically could
greatly improve not only the quality of quantitative imaging practice but also the efficiency
of quantitative imaging assessment. In addition, automated methods could improve the
ability of imaging to inform cancer care. Since lymph nodes are a frequent site of cancer
lesions and account for many of the cases where multiple lesions need to be measured, our
focus is automated assessment of cancer lesions in lymph nodes.

Automated segmentation of cancer lesions in lymph nodes is challenging. Lymph nodes are
generally intermediate in signal intensity. Since parts of a lymph node boundary may be
obscured due to partial volume effect, diffuse edges, sharing boundaries with surrounding
tissues of similar intensities and potentially inhomogeneous density-values, it is difficult to
reliably segment lymph nodes automatically. Rogowska et al. [7] evaluated five elementary
segmentation techniques, such as watershed technique and thresholding, for lymph node
segmentation and concluded that a high degree of model knowledge is needed for a reliable
segmentation. One of the first attempts was a three-dimensional (3D) active surface
approach by Honea and Snyder [8], based on image gradients and shape constraints.
Unfortunately, the approach was only evaluated on synthetic images, not clinical data.
Dornheim et al. [9, 10] presented a stable 3D mass-spring model for lymph node
segmentation in CT datasets. This model allowed for the first time to incorporate the three
characteristic features of lymph nodes (gray value range, contour information and shape
knowledge) into one single 3D model. The stable mass-spring model was extended by
Dornheim et al. [11] for enlarged and mostly well separated necrotic lymph nodes. Due to
the size preserving property, the performance of the mass spring model is highly affected by
the size of the target structures. Thus, a size invariant mass spring model [12] was
introduced to address the prior limitation. The fast marching technique [13] needed heavy
user interaction (barriers, etc.). Maleike et al. [14] proposed a semi-automatic shape model
guided deformable surface model for segmenting enlarged lymph nodes in CT images,
which was integrated into an application together with a tool for manual correction of the
segmentation. Barbu et al. [15] presented a learning based method for the detection and
segmentation of axillary lymph nodes. None of the aforementioned methods automatically
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segment lesions on longitudinal CT images, where the same lesions need to be consistently
identified and segmented on each follow-up imaging study.

Several lymph node segmentation methods for longitudinal CT images have been previously
described. Yu et al. [16] presented an automatic tracking of lymph nodes in follow-up
thoracic CT images, where the tracking performance of using affine and non-rigid
registration was compared. The free-form deformation (FFD) is superior to give a better
precision. Moltz et al. [17] presented a general framework for automatic detection of
matching lesions in follow-up CT, which is not specialized for a certain lesion type and does
not need any organ-specific registration or segmentation. Yan et al. presented a marker-
controlled watershed algorithm to semi-automatically segment lymph nodes in sequential
CT images [18], where a lymph node was first identified by manually drawing a circle
around it. Then, by incorporating information about the lymph node identified on the
baseline scan with the matching result from the follow-up images, Yan et al. [19] developed
a similar method to automatically determine the internal and external markers. Xu et al. [20]
presented a method based on adaptive region-growing and clustering to automatically and
reproducibly identify and segment abnormal lymph nodes in serial CT exams. Yu’s method
[16] and Moltz’s framework [17] only provided the location of lesions, not the
segmentation. The mark-controlled watershed algorithm [18] is semi-automatic, not
automatic. The automatic method [19] and [20] is time-consuming due to the non-rigid
image registration.

This paper presents an automatic and fast lymph node segmentation algorithm for serial CT
images. The candidate slices from follow up imaging studies, which contain the same lymph
node in the baseline images, are selected by using an affine registration, maximizing the
normalized mutual information (NMI) implemented in the 3D rigid registration tool of the
Image Registration Toolkit (IRTK)1 [21]. Then the slice, with minimum mean square error
(MSE) between each of the registered candidate slices and the baseline scan, is taken as the
corresponding slice in the follow up scan. The details of this registration-based approach
have been previously described [20]. Fig.1 shows the flowchart of the proposed algorithm,
which we have initially developed in 2D. Based on the outline of lymph nodes created by
radiologists in the baseline image, the automatic two-step registration in follow-up images is
used to provide the initial evolving curve from the baseline image to locate and circumscribe
the lesion in the follow-up images. Then, the initial evolving curve is refined with intensity
and edge information to make the initial curve close to the boundaries of lymph nodes.
Finally, the snake model is adopted to obtain the output result. Compared with our previous
work [20], the proposed algorithm mainly has two differences: (1) FFD was replaced with
the two-step registration to improve the segmentation speed; (2) snake model was adopted,
instead of region-growing and clustering, to obtain smooth segmentation results.

2. Image registration
After obtaining the outlines of lymph nodes created by radiologists in the baseline image, a
two-step registration in follow-up images is presented to speed the image registration,
including the coarse registration and the fine template matching.

2.1 Coarse registration
In general, the position of each lymph node in longitudinal CT images is similar at each time
point, and the intensity difference between body and background is usually moderately
large. Fig.2 shows one example, namely serial CT images in a patient at four different

1http://www.doc.ic.ac.uk/~dr/software/
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imaging dates. Thus, in our algorithm we perform an initial coarse registration as follows:
(1) Detect the body in the image with a pixel value threshold, (2) remove non-body regions
connected with body region with a morphological operation, (3) fill hollow regions within
body region, and (4) calculate the centroid, major orientation, and minor axis length of the
body region, which are used to eliminate the influence of the translation, rotation and scale
in subsequent steps. Fig.3 shows a demonstration of the calculation of the rigid registration
parameters, which are used for the rigid registration between the baseline image and the
follow-up images (Fig.5).

Fig.5 indicates that the coarse registration (blue circle) makes the initial lymph node position
(red circle) close to the real object region, but the precision of rigid registration is not high.
To improve the registration precision, the template matching is adopted.

2.2 Template matching
Since the coarse registration brings the initial object contour close to the position of the
lymph node in the follow-up images, the region to be searched using template matching can
be restricted in a small neighborhood centered at the initial position of the lymph node to
improve the matching precision and reduce the computing time. The key parameter for the
template matching is the size of the template. The size should be small when the change of
the surrounding background of the lymph node is large in the follow-up images, while the
size should be large when the change of the surrounding background is small. For different
cases, the change of the surrounding background is also different. Thus, it is not possible to
use a template of fixed size.

Fig.4 shows the influence of the template size, where both of the small and large template
contain the lymph node. The large template contained more background region, where the
white background region in the lower left corner should not be contained because it greatly
changed in the follow-up images, such as Fig.2(c). For Fig.8, a large template is more
suitable than a small template because the change of the background near the lymph node is
small.

In our experience for all of the test cases in section 5, object loss (no intersecting region
between the estimated and real lymph nodes) happens when one template with a constant
size is adopted. To make the template matching robust and precise, we present a template

matching algorithm with two different sizes. Let an image patch  located at (x, y) ε Ω
on the image I be the set of all image values belonging to a spatially discretized local w × h
neighborhood of I centered at (x, y), where Ω denotes the image domain. The width (w) and
height (h) of the local neighborhood is defined as w = w0 + r and h = h0 + r (r εN), where w0
and h0 are the width and height of the smallest rectangle containing the initial lymph node in
the baseline image, respectively. In this paper, r is set to 5 and 20 for small and large
template, respectively (optimization of this and other parameters in the method are discussed
in section 5.3). Then, the template matching formula is

(1)

(1) where ∥·∥1 denotes 1-norm, namely the sum of the absolute values of the difference
between two image patches.

In the small searching region (41 × 41 in this paper), two templates with different sizes are
utilized to locate the lymph node in the follow-up images. Let dk = {dk (i)|i = 1, 2,…,m}be
the kth (1 or 2) sorted template matching degree in ascending order, where m = 41 × 41 is
the number of pixels in the searching region. The location corresponding to the minimum
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template matching degree is taken as the candidate lymph node location. Thus, we can
obtain two candidate locations. To select among these two candidate locations and to
evaluate the template matching results, the difference between the first and the ith matching
degree is calculated:

(2)

(2) Since the searching neighborhood is the same for two templates, the small template has a
higher probability to find similar regions than the large template. We assume that the 1st and
2nd templates are corresponding to the small and large templates, respectively. To make the
evaluation more comparable, the value of i in (2) for small template should be larger. Based
on empirical studies i in (2), it is set to 15 and 10 for small and large template, respectively.

An example of the template matching result is shown in Fig.5. After the template matching,
the initial lymph node position is closer to the real object region than the coarse registration
result (blue circle in Fig.5).

3. Initialization refinement
When the change of lymph nodes in longitudinal images is large, such as the size and shape,
the rigid image registration cannot provide a very fine initialization. The snake model is
likely to get trapped in a local optimal solution when the initial evolving curve is far away
from object contour. To facilitate the following snake model, the fine registration results are
further improved to make the initial lymph node contour closer to the real object boundaries.
The initialization refinement is restricted in a narrow band generated with the fine
registration contour. The narrow band generation method in [22] is used.

In addition, the local object region containing lymph node is smoothed to reduce the
influence of noise on initialization refinement. The non-local means (NL-means) method
[23] was adopted, because it can preserve edge information well. The NL-means method can
be summarized as:

(3)

(3) where u and v denote an original noisy image and the denoised image, respectively. The
weight function w(x, y, p,q) depends on both the spatial similarity between points (x, y) and
(p,q), as well as the range similarity between corresponding patches centered at (x, y) and
(p,q). The detailed interpretation of the method can refer to [23].

Then, the intensity and edge information are utilized to refine the initialization, which is
presented as follows:

1. Remove background based on intensity difference of image patches. The 3 × 3
central object region in the current image is taken as a template. For each pixel in
the narrow band, if the distance of the image patch with the template is larger than
a threshold, it will be removed. The definition of the image patch distance is similar
with the Equation (1). The threshold is defined as thr = 8 · std, where std is the
standard variation within the lymph node in the baseline image.

2. Partition object and background regions. Generate the edge image of the current
image with the Canny edge detector, which is used to partition the object region
generated after the background removal based on the intensity difference. The
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connected object region with a maximum area is taken as the refined initial lymph
node region.

Fig.5 shows an example result after the initialization refinement. The initial object contour is
very close to the real lymph node after the refinement, which will prevent the snake model
running into the local optima.

4. Snake model
A traditional parametric active contour (or snake) is a curve X (s) = [x(s),y(s)],s ∈ [0,1],
which moves through the spatial domain of an image to minimize the energy functional

(4)

(4) where α and β are weighting parameters that control the snake’s tension and rigidity,
respectively, and X′(s) and X″(s) denote the first and second derivatives of X (s) with
respect to s, which are the internal forces coming from within the curve itself. In this paper,
the external energy function Eext is designed to lead the active contour toward image edges

(5)

(5) where I (x, y) denotes the input image. Details about the numerical solution of the energy
functional (4) were provided in [24]. In this paper, the parameters are fixed as α = 0.02 and
β = 0.033.

An example of the finial segmentation result of the algorithm is shown in Fig.6. The finial
object contour is smooth and precise after the evolution of the snake model.

5. Experimental evaluation
The images were acquired on a LightSpeed CT scanner (GE Medical Systems, Milwaukee,
Wis) with the slice thickness of 5 mm. We obtained 76 CT scans containing 26 distinct
mediastinal and abdominal lymph nodes from 14 patients obtained at 3 or 4 different time
points (i.e., each patient had 3 or 4 longitudinal CT imaging studies). The time interval
between two consecutive CT studies averaged 12 weeks. The image resolution is about 0.8
mm/pixel (range = 0.6180 to 0.9766 mm/pixel). The image containing the lymph node in the
earliest time point was taken as the baseline image, and the scans at the following time
points were taken as follow-up images. For each case, a radiologist circumscribed the lymph
node in the most representative cross-section in the baseline and follow-up CT images. The
outlines the radiologist drew in the baseline image were used for the initial position and
those drawn in the follow-up image served as the “gold standard” for evaluating our
proposed algorithm. Lymph node sizes ranged from 0.6 to 4 cm with a mean of 1.8 cm on
baseline scan; 0.5–3.9 cm with a mean of 1.9 cm on follow up scan. The change of size
ranged from 0.3 to 7.8 mm with a mean of 2.2 mm over time. The algorithm was
implemented in Matlab and run on a 2.83 GHz Pentium 4 PC with 3.37GB memory.

5.1 Quantitative evaluation
We evaluated the performance of our segmentation algorithm according to the RECIST
criteria [1, 2] and several quantitative metrics. The RECIST criteria have been widely
adopted in the assessment of treatment response. The length of the diameter (long axis) of
enlarged lymph nodes in both baseline and follow-up images was calculated based on the
circumscribed contour. A categorical value for disease response was given according to the
change in the sum of the diameters (SLD) of target nodes from baseline image to follow-up
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images, i.e in RECIST 1.0. “Complete Response (CR)” for disappearance of all target
lesions, “Partial Response (PR)” for at least a 30% decrease in SLD, “Progressive Disease
(PD)” for at least a 20% increase, and “Stable Disease (SD)” for neither sufficient shrinkage
to qualify for PR nor sufficient increase to qualify for PD. We compared the RECIST 1.0-
based assessment of lymph node response computed from our segmentation to that
computed from our gold standard. We also calculated quantitative metrics to evaluate our
performance, including contour distance-based measurements: mean absolute distance
(MAD) [25] and Hausdorff distance, and area matching-based measurements, e.g. the ratios
of overlay, over-estimation and underestimation of our segmentation compared with the
gold standard.

All 76 lymph nodes in the follow-up images were used to test our algorithm, and all of the
test cases were successfully detected using the method described in Section 2, while 26/29
(89.7%) lymph nodes could be matched in the follow-up scans when registering with the fast
FFD method in [19]. By “successful”, we mean that the deformed lymph node after
registration overlaps with the target lymph node in the follow-up scan. A total of 38/40
(95%) of lymph nodes resulted with our method in the same RECIST 1.0 response category
as the gold standard, where the numbers of CR, PR, PD and SD are 0, 3, 1 and 36,
respectively.

Segmentation results for the 76 lymph nodes are provided in Table 1. By way of
comparison, the average Hausdorff distance, overlap ratio and underestimated ratio of the
related approach to automatic identification and tracking of lymph nodes by Yan [19] are
3.9mm, 73.0% and 16.3%, respectively. Compared with Yan’s method, our algorithm
achieved good segmentation results, though different cases were used to evaluate Yan’s
method and our method. The computing time of our algorithm is fast, as shown in Table 2.
For the fast FFD method adopted by Yan, the computing complexity is high. Thus the time
performance of our algorithm seems to be superior to the Yan’s method.

5.2 Qualitative analysis
Fig.7 shows the automated segmentation results of Fig.2, where the red curve in Fig.7(a) is
the hand-drawn circumscription of the lymph node in the baseline image, showing that the
snake model can precisely segment the strong object edges and smoothly estimate the weak
or lost object edges.

Fig.8 shows the effect of the snake model. Depending on the internal forces of the snake
model, the segmentation results with the snake model (the second row) are smoother than
without the snake model (the first row). The smoothness is suitable with the lymph node
characteristics. The image gradient based external force of the snake model can make the
initial evolving curve closer to the object boundaries.

Fig.9 shows the segmentation results from four image series. The image density difference
in some parts of the lymph node boundary is small, because the lymph nodes are connected
with the tissues that have similar pixel values. The similarity distance based on image patch
described in Section 3 can enlarge the difference between the lymph nodes and the
surrounding tissues.

Fig.10 shows two inaccurate segmentation results where the second image of the first image
series and the fourth image of the second image series are not accurately segmented. The
reason is that the initial evolving curve is far away from the object boundaries after the
image registration and initialization refinement, and the snake model ran into local optima.
This illustrates that the position of the initial evolving curve is critical to obtain accurate
segmentation results.
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According to the evaluation above, it can be seen that the advantage of the proposed
algorithm is that it is faster and generally more accurate than an existing algorithms to which
we compared our results. However, the disadvantage is that the position of the initial
evolving curve has a great influence for the segmentation accuracy. Since the external force
of the snake model (4) depends on image gradient, the evolving curve cannot arrive at object
boundaries when the initial evolving position is far away from the object boundaries, namely
within inner object (top image of Fig.10(b)) or background (bottom image of Fig.10(d)). The
reason is that the gradient within flat regions is too small to put the initial evolving curve
move to the object boundaries. In order to extend the capture range, a new external force,
gradient vector flow (GVF) [26], can be adopted.

5.3 Parameter evaluation
The values of all parameters in our algorithm were fixed for all 76 test cases. We assessed
the sensitivity of the parameters based on overlap ratio in the following experiments.

In the template matching (section 2.2), the size r is different for the small and large
templates. Fig.11 shows the mean overlap ratio for different sizes of small (a) and large (b)
templates. We varied the size of small template from 3 to 12, and the size of large template
from 16 to 25. From Fig.11, we can see that the mean overlap is nearly constant with the
different sizes of the templates, which means that our algorithm is relatively insensitive to
the size of template.

The selection of the template matching degree (i in Equation (2)) is another free parameter
in section 2.2. As discussed in section 2.2, the value of i for small template should be larger
than that for large template. Fig.12 shows the overlap ratio for different i. We varied the
difference Δi between the small and large templates from 0 to 7 with an interval of 1. The
definition of difference Δi = ismall − ilarge, where ismall and ilarge denote the values of i for
small and large templates, respectively. Fig.12 indicates that the difference Δi has a very
limited influence on the average overlap ratio. In this paper, we set ismall = 15, ilarge = 10,
namely Δi = 5.

In the snake model, there are two parameters, α and β, that can be tuned. Figs. 13(a) and (b)
show the overlap ratio with different values of α and β, respectively. The change of the
mean overlap ratio is small for different α, and the mean overlap ration is almost constant
for different β. Thus the two parameters of the snake model have a small influence on the
performance of our algorithm.

6. Conclusions
This paper presents an automatic lymph node segmentation algorithm for longitudinal CT
exams. Since the region of the human body in an image is very different from the
background, a simple and robust coarse image registration is proposed based on the body
detection. To deal with the change of the surrounding background, a template matching
method with two different sizes is proposed to improve the coarse registration precision. The
initial curve outlining the lymph node is refined based on image intensity and edge
information to make the initial curve closely approximate the true lymph node boundaries.
The final segmentation results are obtained by evolving the refined initial curve with the
snake model. Experimental results demonstrate that our algorithm can successfully detect all
of the 76 lymph nodes in the follow-up images and can achieve high segmentation accuracy;
for example the average Hausdorff distance is 2.87mm. The speed of the proposed algorithm
is fast; the average computing time, including the image registration and segmentation, is
2.58s. Comparing to the state-of-art works, the main novelties of our work include: (1) two-
step image registration is performed to quickly and effectively detect lymph nodes; (2) a
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snake model was adopted to achieve smooth and accuracy segmentation results. In the
future, we will try to improve the proposed algorithm in three aspects: (1) adopt better image
registration method to improve the accuracy of the initial evolving position; (2) adopt more
flexible active contour model to obtain more accurate segmentation results; (3) set the
parameters of our algorithm adaptively to make the algorithm more robust for different sets
of images; (4) extend our algorithm from 2D to 3D; (5) Test and improve the system by
using more data, and adapt it to be usable by medical experts.
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Fig.1.
Flowchart of the proposed algorithm
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Fig.2.
Serial CT images in a patient at four different imaging dates (t0–t3), where the t0 scan is the
baseline image. The lymph node to be tracked is circled with the red dash line.
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Fig.3.
Rigid registration. The white region denotes the detected body region of Fig.2(a), and the
red point, orange arrow, and blue line represent the centroid, major orientation, and the
length of the minor axis, respectively.
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Fig.4.
The size of template. The small and large templates are marked with the orange and red dash
squares, respectively.
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Fig.5.
Image registration and initialization refinement results of Fig.2(b). Red circle: original
position of the lesion in the baseline image. Blue circle: updated lesion position after the
coarse registration. Green circle: fine registration result with the template matching. Yellow
circle: boundary of the refined initialization.
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Fig.6.
Final segmentation result (magenta circle) obtained with the snake model.
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Fig.7.
Automatic segmentation results of Fig.2. The green and red curves in the follow-up images
((b)–(d)) are the gold standard and the automatic segmentation results with our algorithm,
respectively.
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Fig.8.
Segmentation results without (Top) and with (Bottom) the snake model
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Fig.9.
Segmentation results in four image series
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Fig.10.
Two inaccurate segmentation results
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Fig.11.
Mean overlap ratio for different sizes of small (a) and large (b) templates
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Fig.12.
Mean overlap ratio for the selection of template matching degree
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Fig.13.
Mean overlap ratio for the parameters of the snake model
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Table 2

Computing time including the image registration and segmentation (unit: s)

Total Average

76 images 196.23 2.58
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