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Abstract 

 
Coronary Artery Disease (CAD) is one of the dangerous cardiac disease,  often may lead  to 

sudden cardiac death. It is difficult to diagnose  CAD by manual inspection of 

electrocardiogram (ECG) signals. To automate this detection task, in this study, we extracted 

the Heart Rate (HR) from the ECG signals and used them as base signal for further analysis. 

We then analyzed the HR signals of both normal and CAD subjects using (i) time domain, 

(ii) frequency domain and (iii) nonlinear techniques. The following are the nonlinear 

methods that were used in this work:  Poincare plots, Recurrence Quantification Analysis 
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(RQA) parameters, Shannon entropy, Approximate Entropy (ApEn), Sample Entropy 

(SampEn), Higher Order Spectra (HOS) methods, Detrended Fluctuation Analysis (DFA), 

Empirical Mode Decomposition (EMD), Cumulants, and Correlation Dimension. As a result 

of the analysis, we present unique recurrence, Poincare and HOS plots for normal and CAD 

subjects. We have also observed significant variations in the range of these features with 

respect to normal and CAD classes, and have presented the same in this paper. We found 

that the RQA parameters were higher for CAD subjects indicating more rhythm. Since the 

activity of CAD subjects is less, similar signal patterns repeat more frequently compared to 

the normal subjects. The entropy based parameters, ApEn and SampEn, are lower for CAD 

subjects indicating lower entropy (less activity due to impairment) for CAD. Almost all HOS 

parameters showed higher values for the CAD group, indicating the presence of higher 

frequency content in the CAD signals. Thus, our study provides a deep insight into how 

such nonlinear features could be exploited to effectively and reliably detect the presence of 

CAD.  

Keywords: heart rate, CAD, ECG, HOS, Poincare plot, recurrence plot, EMD. 

 
1. Introduction 

Coronary arteries supply nutrients and oxygen to heart muscles. Coronary Artery Disease 

(CAD) is a pathological condition where the diameter of the arteries decreases either due to 

the formation of cholesterol plaque on its inner wall [Steinberget al., 1999] or due to the 

contraction of the whole wall for other reasons, such as tobacco smoking [Ockene et al., 

1997] and environmental pollution [Brook et al., 2004]. The condition is often ominously 

silent, but progressive in nature. If it is not treated appropriately, it will eventually lead to 

ischemia (i.e., interruptions of blood supply) and then infarctions (i.e., the complete loss of 

blood supply). Usually one of the reasons  for Sudden Cardiac Death (SCD) is CAD 

[Thompson et al., 2006]. Hence, early detection of CAD is essential to prevent SCD.  

 One of the most commonly used techniques for CAD detection is the Exercise Stress 

Test (EST). EST increases the workload of the heart and records exaggerated 

electrophysiological information. For this test to be accurate, a target Heart Rate (HR) has to 

be attained. Not all CAD patients can reach this rate. Furthermore there is considerable risk 
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for the patient, because such a stress test can trigger Ventricular Tachycardia (VT) or cardiac 

arrest [San Roman et al., 1998]. 

 Electrocardiogram (ECG) could be a useful physiological measurement tool to detect 

the presence of CAD. However, visual interpretation of the ECG signals is not so effective as 

50 - 70% of CAD patients do not show any notable difference in their ECGs [Silber et al., 

1975]. However, the minute variations in the  ECG signals have to identified in order to 

diagnose specific type of heart disease. Due to the presence of noise and baseline wander, it 

is tedious to detect the minute variations by evaluating the morphological features of ECG 

signals. Hence, in this study, we extracted the HR from the ECG signals and used them for 

analysis. The study of Heart Rate Variability (HRV) is a better technique to diagnose CAD 

risk levels. HR is a nonlinear, non-stationary signal which indicates the subtle variations of 

the underlying ECG signal [Acharya et al., 2004a]. The HRV evaluates the changes in the 

consecutive  heart rates and it assesses the health of the Autonomic Nervous System (ANS) 

non-invasively. The HRV analysis conveys information about homeostasis of the body 

[Lombardi 2000]. Standard methods to analyze the HRV were proposed in various domains 

[Task Force, 1996].  

 Various cardiac and non-cardiac diseases have been diagnosed using HR 

signals[Isler et al., 2007, Schumann et al., 2002, Acharya et al., 2004a, Gujjar et al., 2004, 

Carney et al., 2000]. They have analyzed the HR signals using various linear and non-linear 

techniques [Acharya et al., 2004a; 2007].  Huikuri et al. (1994) have analyzed the CAD 

subjects using HRV signals and showed  that, the circadian rhythm decreases in CAD 

subjects.  Hayano et al. (1990) have shown a  correlation between CAD severity and a 

reduction  low-frequency power  .  reduction decrease in high frequency power were shown 

in CAD subjects [Lavoie et al. (2004), Nikolopoulos et al. (2003)] and features of time and 

frequency domain were found to be lower for CAD subjects[Bigger et al. (1995)].  The 

statistical measures changes with time and hence time domain analysis is not effective and 

effectiveness of frequency domain analysis decreases with reduction in the signal to noise 

ratio [Acharya et al., 2006].  

 Nonlinear techniques are more in tune with the nature of physiological signals and 

systems, therefore, they outperform  time and frequency domain methods. Hence, they are 

widely used in many biological and medical applications [Acharya et al., 2003; Fell et al., 
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2000]. Owis et al. (2002) performed ECG-based arrhythmia detection and classification based 

on nonlinear modeling. Sun et al. (2000), Acharya et al. (2007) and Chua et al. (2008) used 

nonlinear techniques to analyze cardiac signals for the development of cardiac arrhythmia 

detection algorithms. Schumacher et al. (2004) elaborated the effectiveness of linear and 

nonlinear techniques in analyzing HR signals. The onset of various cardiovascular diseases 

like, Ventricular Tachycardia (VT) and Congestive Cardiac Failure (CCF) can be predicted 

using non-linear analysis of HR signals [Cohen et al. 1996].  Chua et al. (2006) introduced a 

method to extract features  like bispectral entropy from HR signals by employing Higher 

Order Spectra (HOS) techniques. In their study, HOS features from HR signals were used to 

differentiate between a normal heart beat and seven arrhythmia classes. CAD results in 

reduced Baroreflex Sensitivity (BRS) and reduced vagal activity which can be understood by 

HRV analysis. BRS is an indicator of increased risk of SCD in myocardial infarction patients. 

Arica et al. (2010) used HR and systolic pressure signals to assess BRS.   

 The main aim of this paper is to present time, frequency and non-linear features for 

normal and CAD-affected HR signals. For this analysis, we extracted and analyzed features 

in the time domain, frequency domain, and also studied features derived using nonlinear 

methods. Furthermore, we have proposed various ranges for these features and presented 

unique nonlinear plots for the normal and CAD classes. Our results show that CAD subjects 

have less variability in their heart rate signal when compared to normal subjects. This 

reduced variability can be used as a single measure to diagnose CAD from ECG signals 

which were obtained under normal conditions. We predict that the consequent use of HRV 

measures will reduce the need to conduct stress ECG measurements, and therefore, expose 

patients to less risk.  

 

2. Data Used 

 

ECG signals from 10 CAD patients and an equal number of healthy volunteers were 

recorded using the BIOPACTM  equipment [http://www.biopac.com/]. The sampling 

frequency of ECG signal  was  500 Hz. The average age of  both normal and  CAD subjects 

was 55 years ( age varied from 40 to 70 years).  The CAD patients used for this study, were 

taken from  Iqraa Hospital, Calicut, Kerala, India. Subjects having normal blood pressure, 
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glucose level and ECG were considered in the normal category. For the CAD patients, 

coronary angiography (CAG) was performed. Patients with more than 50% narrowing in the 

left main artery were considered for this study. Patients suffering from bundle branch block 

(left or right bundle branch block), hypertrophy, atrial fibrillation, congestive heart failure, 

myopathy, and taking any cardiac medication are excluded in this study. The patients were 

selected by a cardiologist based on the similarity of their medications. It was assumed that 

the drug effects on the HR signal were similar. The data comprised a total of 61 normal and 

82 ECG CAD datasets; each set had 1000 samples from 10 subjects. The variations of ECG 

signals in CAD and normal subjects are shown in Figure 1. 

 

(a)                                                                                     (b)                                                                    

Figure 1 Typical RR signal: (a) normal (b) CAD. 

 

The ECG beats were sent via a band pass filter with a lower cut off frequency of 0.3 Hz to 

eliminate baseline wander and higher cut off frequency of 50 Hz to eliminate the noise.  A 

band-stop flter of cut-off frequency 50 Hz was used to eliminate power source influences. In 

the final step, the R peaks were located using Pan and Tompkins algorithm [Pan et al., 1985, 

Wariar et al., 1991]. The time duration between two consecutive R peaks  is termed as RR 

interval ( RRt ).  Heart rate is defined as:  

RR
bpm t

HR 60
=  (Beats Per Minute)                       

(1) 

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

1.2

Samples

R
R-

in
te

rv
al

 (s
ec

on
ds

)

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

1.2

Samples

R
R-

in
te

rv
al

 (s
ec

on
ds

)



6 
 

 

3. Methods Used 

This section discusses time, frequency  and nonlinear domain techniques  which were used 

for analyzing  CAD and normal  HR signals. 

 

 3.1. Time domain analysis 

RR interval is one of the time domain parameter which reflects the combined influence of 

SNS and PNS. The mean of the RR time intervals is the mean RR parameter. Most of the time 

domain parameters (both short term and long-term variation indices) are derived from the 

RR intervals. Apart from the RR interval, we have calculated RMSSD (root mean square 

standard deviation), NN50 (number of pairs of consecutive NNs which vary greater than 50 

ms) and pNN50 (ratio of NN50 divided by total number of NNs). RMSSD (in milliseconds) 

indicates the parasympathetic control of HR during the normal rhythm.   

 

3.2. Frequency domain analysis 

The above discussed time domain technique is easy to implement and use. But its ability to 

separate sympathetic and parasympathetic influences using heart rate signal is limited. The 

cardiac health of the subject can be evaluated using the power spectrum of the HR signal 

[Akselrod et al., 1981]. There are the three main frequency regions of the heart rate signal. 

• The power in the  frequency range from 0.15 Hz  to 0.5 Hz is defined as  high 

frequency (HF) power band. 

• The power in the  frequency range from 0.0.4Hz to 0.15 Hz is defined as  low 

frequency (LF) power band. 

• The power in the  frequency range from 0.0033Hz to 0.04 Hz is defined as very-low-

frequency (VLF) power band. 

 HF region is an indicator of the vagal activity and respiratory sinus arrhythmia 

(RSA), while LF refers to the baroreceptor control mechanisms and the combined effect of 

sympathetic and vagal systems. The VLF power spectrum  indicates the vascular 

mechanisms and rennin-angiotension systems. In our work, we measured total power, HF, 

LF as well as the ratio of LF to HF power. 
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 Frequency domain study is normally conducted using by using the using Fast 

Fourier Transform to estimate the  Power Spectral Density (PSD) . AR (Autoregressive) 

modeling is also a frequency domain analysis method [Faust et al., 2004]. The AR 

parameters are estimated by solving linear equations. A suitable filter order has to be 

selected. . In this study, we have used order of AR model as 16 [Akaike, 1969; 1974; Anita et 

al., 2002]. Figure 2 shows the typical PSD of a normal HR signal (Figure 2(a)) and  a CAD HR 

signal (Figure 2(b)). 

 

 

 

 

 

 

 

 

 

                            (a)                                                               (b)  

     Figure 2 Typical PSD of heart rate signal : (a) normal subject (b) CAD subject. 

  

 The frequency domain plots are divided in to three regions. Each frequency band 

depicts a  physiological processes and pathologies. The initial band is the VLF band 

followed by LF and then the unshaded portion is the HF range. The VLF variations are 

associated slow processes like thermal regulation, LF region relates to arterial blood 

pressure control (both sympathetic and parasympathetic effects) and HF band reflects 

respiration and parasympathetic activity. From the figures above, it can be observed that the 

PSD for the CAD subject is approximately half compared to the value of the normal subject 

for both VLF and LF regions. For the HF region, the PSD is almost the same for normal and 

CAD. This means that CAD reduces the activity of thermoregulatory and sympathetic 

systems, but the parasympathetic systems remain unaffected. 

 The Fourier transform indicates both amplitude and phase of different frequency 

components which are contained in a time domain signal. A drawback of this method is that 
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it does not specify the time when these frequencies occur in the signal. So, frequency domain 

analysis is not  preferable to study HR signals. Short Time Fourier Transform , based on a 

finite length sliding window, solves this issue to a certain degree, but it doesn’t work well 

for rapidly varying signals. HR signals are non-stationary. They are also nonlinear, and 

hence, conventional  time and frequency domain techniques cannot capture all the 

information contained in the higher harmonics (order greater than 2) of the HR signal. 

Nonlinear analysis methods and higher order spectrum can capture the higher harmonics 

information contained in HR signals. 

 

3.3. Nonlinear methods 

The theory of nonlinear dynamics is widely to  analyze the bio signals, which are nonlinear 

in nature [Acharya et al., 2004b; 2006; 2007; Faust et al., 2012]. The following are the 

nonlinear methods that were used in this work:  Poincare plots, Recurrence Quantification 

Analysis (RQA) parameters, Shannon entropy, Approximate Entropy (ApEn), Sample 

Entropy (SampEn), Higher Order Spectra (HOS) methods, Detrended Fluctuation Analysis 

(DFA), Empirical Mode Decomposition (EMD), Cumulants, and Correlation Dimension.  

These methods are briefly explained in the following sub-sections. 

3.3.1. Poincare geometry 

It is a visual plot, which was adopted from nonlinear  methods, to study the behavious of RR 

interval variability. It depicts the correlation between consecutive intervals in graphical 

representation. This plot shows the comprehensive every beat to beat variation[Woo et al. 

1992 , Kamen et al. 1996].  These plots are studied mathematically by determining the 

standard deviations of the lengths  of RR intervals ( RR(n)) [Tulppo et al., 1996]. The short 

term variability (SD1) of the heart signal is measured by the points that are perpendicular to 

the line-of-identity and long term variability by the points along the line-of-identity. By 

visually examining the Poincare plot shapes, we can discriminate normal from CAD 

subjects. In this paper,  SD1 parameter was used  to detect CAD. Figure 3 shows the 

Poincare plots of normal (Figure 3(a)) and CAD (Figure 3(b)) subjects. The plots are ellipse 

shaped and centre-aligned. SD2 describes the long term variability of RR(n) (instantaneous 

RR), while SD1 indicates the shorter-term variability of RR(n). In the plot for CAD, SD2 and 

SD1 are very low compared to the normal plot. 
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                               (a)                                                  (b)  

                

        Figure 3 Typical Poincare plots of HR signals : (a) normal (b) CAD. 

  

3.3.2 Recurrence quantification analysis (RQA) 

Recurrence Plot (RP) indicates, for a given instant of time, the times at which path of the 

phase space meets the same location in the phase space. The duration and counts of 

recurrences of the dynamical systems are estimated by RQA.  It measures the dynamicity 

and subtle rhythmicity in the HR signal. The RQA parameters evaluate the complexity and 

non-stationary nature of the time series [Webber et al., (1994), Zbilut et al., (1992) and 

Marwan et al., (2002)]. Zbilut at al. (2002) showed the usefulness of RQA in detecting 

randomness and  complexity in non-stationary heart beats which cannot be analyzed easily 

by conventional techniques.  In this study,  following RQA features were used: 

• M e a n  d i a g o n a l  l i n e  l e n g t h ( < L > o r  L m e a n ) :  d e p i c t s  t h e  a v e r a g e 

time of forecasting of the system. It can be written as:  

Lmean =  
∑ lP(l)N
l=lmin
∑ PlN
i,j

                                                                                   (2) 

• Max line length (Lmax): It is the largest distance of the diagonal of the RP and is given 

by:  

Lmax = max({li ; i = 1,…, Nl}).                                  (3) 

Here, Nl indicates the number of diagonal lines in the RP. 

• Recurrence Rate (REC): It describes the cloud of recurrence points existing in the plot.  

http://en.wikipedia.org/wiki/Phase_space
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REC is defined as: 

REC =  1
N2
∑ Ri,j
N
i,j=1         (4) 

• Where Ri,j represents the recurrence points, N is the amount of  points on phase space 

path Ri,j.Determinism (DET): is the portion of  Ri,j  that contribute to  the diagonal lines 

in the plot.  It explains the predictability of the dynamical system.  

  DET =  
∑ lP(l)N
l=lmin
∑ R(i,j)N
i,j=1

                                                                                              (5)                                                                               

Here, P(l) is the distribution in the frequency domain of the diagonal line with 

lengths l  and the minimum diagonal line length is given by  lmin.  

                     

                                                                               (a) 
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                                                                              (b) 

Figure 4 Typical recurrence plot of HR signal: (a) normal (b) CAD subject. 

 Figure 4 presents typical RP  for normal (Figure 4(a)) and CAD subjects (Figure 4(b)). 

More variation (dots) is predominant in the normal signal compared to the CAD class. 

Moreover, there is a more regular pattern in the recurrence plot of CAD. This indicates that 

there is more rhythmicity with respect  to  normal subjects.   

3.3.3. Approximate entropy (ApEn) 

It indicates the fluctuation in the time domain signal [ Pincus, 1991]. The value of ApEn is 

higher for more varying data. Hence, more varying time domain signals will have higher 

ApEn values, while regular and predictable time series signals will have lower ApEn values. 

ApEn is given by: 

( ) ( ) ( )∑∑ −

=
++−

= −
−

+−
=

mN

i
m
i

mN

i
m
i rC

mN
rC

mN
NrmApEn

1
11

1
log1log

1
1,,     (6) 

where  

( ) ( )∑
+−

=

−−Θ
+−

=
1

11
1 mN

j
ji

m
i xxr

mN
rC         (7) 

is the correlation integral.                             

Furthermore, xi, xjxi, xj→ Phase space trajectory points, 
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N→ Amount of points in the phase space. 

r→   radial length of a circular disc centered at the  reference point  xixi. 

Θ → Step function. 

In this work, we have used , ‘’ is the embedding dimension( m ) to 2  and the radial distance 

×2.0 set to  wasr the time series standard deviation [Thakor et al., 2004]. 

3.3.4. Sample Entropy (SampEn) 

It quantifies the complexity  in signal [Richman et al., 2000]. Higher values of  SampEn 

describes more irregularities in the time series. It is more refined than ApEn. In order to 

evaluate  sample entropy, continuous  matching of points  inside the radius  ‘r’ are done  as 

long as there is match exists.  The variables  A(k) and B(k) for all lengths k up to ‘e’ keep track 

of all matching templates.  It is given by: 

)1(
)(ln),,(
−

−=
kB

kANrkSampEn           (8) 

for 1,...,1,0 −= mk  with ,)0( NB =  the length of the HR signal, r is taken as 0.2 and m 

(maximum template length) is set to 2 [Song et al., 2010]. 

3.3.5. Detrended fluctuation analysis (DFA) 

It assess the self-similar properties of short term HR signals [Peng et al., 1996]. The 

roughness of the signal is indicated  by the factor ‘α’. This value is close to 1 for normal 

subjects and may have unique ranges for various cardiac classes.   

 

3.3.6. Correlation Dimension (D2) 

D2 is a useful measure of self-similarity of a signal [Grassberger et al., 1983]. According to 

the algorithm [Grassberger et al., 1983], Correlation integral (C(r)) function is constructed 

first. It was performed by measuring the gap between  N pairs of data points and arranging 

the output  dr proportional to r.  The gap between a pair of points is  estimated by  s(i,j) =|Xi-

Xj|. 

C(r) is given by: 

C(r) =  1
N2
∑ ∑ Θ(r-�Xx-Xy�N

y=1,x≠y
N
x=1 )                                                                                      (9) 

Where, Xx and Xy :  indicate phase space trajectory points,  

N : total  amount  of   phase space points,  

R:  radial length of a circular disc centered at Xi-Xj. 
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Correlation Dimension (D2) can be described by: 

[ ]
)log(
)(log2 lim

0 r
rCD

r→
=

         
         (10) 

D2 will have  higher value, if the  RR variations is more and vice versa.  

3.3.7. Higher Order Spectrum (HOS) 

It  is a novel tool for evaluating non-Gaussian and non-stationary  bio-signals . It identifies 

diversions from Gaussianity and phase correlations among frequency components of the 

signal [Chua et al., 2010]. HOS is more immune to noise and  can retain the actual  phase 

information of the signal. The 3rd order statistics is the  bispectrum 𝐵𝐵(𝑓𝑓1,𝑓𝑓2).  It is the Fourier 

transform of the 3rd order correlation of a signal and  is given by : 

B�f1,f2� =  E[X(f1)X(f2)X(f1 + f2)]                                                      (11) 

 Where, X(f) is the Fourier transform of input X(nT), n is the variable, T is the 

sampling period, and E[.] is expectation operator.  The normalized bispectrum (Bnorm(f1,f2)) 

will have magnitude  range 0 to 1 [Nikias et al., 1987; 1993a] and is defined as 

Bnorm(f1, f2) =  E[X(f1)X(f2)X(f1+f2)]
�P(f1)P(f2)P(f1+f2)

      (12) 

Where P(f) is the power spectrum. In this paper, we have presented discriminating  

bicoherence and bispectrum plots for normal and CAD HR signals. Both bispectrum and 

bicoherence plots exhibit symmetry as they are products of three Fourier coefficients. 

Various features can be estimated from the bispectrum and few of them are given below: 

a) Normalized Bispectral squared entropy1 (P1) is given by 

P1 =  −∑ qi i log qi          (13) 

2
1 2

2
1 2

| ( , ) | 
| ( , ) |n
B f fwhere q

B f f
Ω

=
∑

and  Ω  is the region where f1 > f2 and f1 + f2 < 1  is as shown 

in the plot below. 
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Figure 5: Non-redundant region of bispectrum computation.  

 

The region Ω, is the  principal domain used for the evaluation of  the bispectrum. 

b) Normalised Bispectrum entropy 2 is given by: 

P2 = −∑ rilogrii                                           (14) 

where rn = |B(f1,f2)|3

∑ |B(f1,f2)|3Ω
 

Ω = is the principal domain shown in Figure 5. 

c) The mean bispectrum magnitude is: 

( )1 2
1 ,aveM B f f
L Ω

= ∑                                                                                                                (15) 

 

aveM  can be used to distinguish between two classes. 

d) The bispectrum phase entropy is: 

( ) ( )loge n nn
P p p= Ψ Ψ∑             (16)  

Where: 

( )np Ψ  is ( ) ( )( )( )1 2
1 1 ,n np b f f
L Ω

Ψ = Φ ∈Ψ∑           (17)  

And: 

{ / 2 / 2 ( 1) / , 0,1,...... 1.n n N n N n Nπ π π πΨ = Φ − + ≤ Φ < − + + = −                                   (16)

  

Here, L  indicates the amount of points in the principal region and Φ  is the 

bispectrum phase angle.  The function 1(.) yields  1 if  φ (phase angle)  falls inside  bin 

nΨ  .  

e) The weighted center of bispectrum (WCOB) is defined as: 
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                                                                     (17) 

where, i and j are frequency bin index in the non-redundant region. 

Figure 6(a) presents the contour plots of bispectrum for normal and CAD heart rate signal 

(Figure 6(b)) respectively. By visually examining these plots, we can distinguish between 

normal and CAD subjects clearly. In the bispectrum plot of the normal subject (Figure 6(a)), 

there are peaks concentrated in the centre, while for CAD subject (Figure 6(b)), the peaks are 

present throughout the plot and spread throughout the frequency spectrum.  

 

 

 

                                                                             (a)  

( , )
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iB i j
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(b) 

Figure 6 Typical Bispectrum and its contour plots for (a) Normal and (b) CAD subjects. 

  

3.3.8. Cumulant Computation 

It is not easy to analyze  the nonlinear and non-stationary behavior time series using 1st and  

2nd order statistics [Nikias, 1993b].  So, third order cumulant which is a third order 

correlation derived from HOS can be used for HR signals. It has been successfully 

implemented to differentiate automatically  control, ictal and interictal EEG signals [Acharya 

et al., 2011].  

Let { }1 2 3, , ,..... kx x x x indicate a k dimensional random process of zero mean value .  Its 

moments are given by [Nikias, 1993]: 

[ ]1 ( )xm E x n=          (18) 

[ ]2 ( ) ( ) ( )xm i E x n x n i= +        (19) 

[ ]3 ( , ) ( ) ( ) ( )xm i j E x n x n i x n j= + +        (20) 

[ ]4 ( , , ) ( ) ( ) ( ) ( )xm i j k E x n x n i x n j x n k= + + +     (21) 

where 1 2 3, ,x x xm m m and 4
xm are 1st , 2nd , 3rd and 4th  order moments, E[.] indicates the 

expectation operator, and time lag parameters are I, j. Using moments,  cumulants are 

evaluated  as [Nikias, 1993]: 
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1 1
x xC m=          (22) 

2 2 ( )x xC m i=          (23) 

3 3 ( , )x xC m i j=          (24) 

4 4 2 2 2 2 2( , , ) ( ) ( ) ( ) ( ) ( )x x x x x x xC m i j k m i m j k m k i m k m i j= − − − − − −   (25) 

where 1 2 3, ,x x xC C C and 4
xC are the 1st, 2nd , 3rd and 4th order cumulants respectively. In the 

current study the third order cumulant is used for the analysis of HR signals. Figure 7(a) 

shows the 3rd  order cumulant plot and its contour plot for  normal HR signal and Figure 

7(b) for CAD HR signal.  
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                                                                     (b) 

      Figure 7 Typical third cumulant and its contour plots: (a) normal and (b) CAD subject. 

3.3.8 Empirical Mode Decomposition (EMD) 

It  is a direct, adaptive and data dependent model for nonlinear signal analysis.  It does not 

assume linearity and stationarity conditions [Huang et al., 1998].  Any complicated signal 

can be decomposed into a group of Intrinsic Mode Functions (IMFs) which are AM and FM 

modulated waveforms. The decomposition is based on local time and scale of the signal. 

Martis et al. (2012) applied EMD for the analysis for EEG signals of  control, preictal and 

ictal classes. Figure 8 presents eight IMFs of typical normal (Figure 8(a)) and CAD (Figure 

8(b)) HR signal.  Various important features can extracted from these IMFs to classify the 

normal and CAD HR signals.  
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                                                                           (a) 

 

(b) 

Figure 8 Typical IMFs extracted from EMD decomposition for HR signal: (a) normal and 

(b) CAD. 
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4.  Results 

Results of   time domain,  frequency domain and  nonlinear techniques are presented in this 

section. Table1 shows the feature values (Mean ± Standard Deviation(SD)) of the time 

domain parameters of normal and CAD HR signals. In this work, four time domain features 

were found to be clinically significant (p<0.05). They are mean HR, RMSSD, NN50 and 

pNN50 (listed in Table 1). 

 

Table 1 Results of time domain analysis. 

Features Normal (Mean±SD) CAD (Mean±SD) p-value 

Mean HR 52.9±6.62 45.6±16.1 0.0008 

RMSSD 44.5 ±16.0 72.7 ± 99.0 0.021 

NN50 187±145 68.3 ± 103 < 0.0001 

pNN50 21.5 ± 15.7 7.31 ± 11.5 < 0.0001 

  

 The clinically significant features like  NN50 and pNN50, have lower values for the 

CAD subjects with respect  to the normal. The difference is more than order 2. The next 

significant parameter, mean HR, is lower for CAD signals than for normal subjects. RMSSD 

is higher for CAD than for normal subjects.  

 In the frequency domain analysis, we have also obtained four clinically significant 

features for  LF to HF. The ratio LF to HF indicates sympathetic parasympathetic balance of 

heart. Table 2 shows frequency domain analysis results for CAD and normal heart rate 

signals.  

 

Table 2 Results of frequency-domain analysis. 

Features Normal (Mean ± SD) CAD (Mean ± SD) p-value 

LF/HF 2.93±2.46 943±3.109E+03 0.013 

 

 In our work, all the four frequency domain features have higher values for the CAD 

than for normal subjects. We have used a variety of nonlinear parameters for analysis. Table 

3 gives the summary of these nonlinear features. 



21 
 

              Table 3 Results of nonlinear analysis. 

Features Normal (Mean±SD) CAD (Mean±SD) p-value 

SD1 31.5 ± 11.3 52.5 ±69.4 0.014 

Lmean 14.3±5.57 39.1± 45.5 < 0.0001 

Max line length (Lmax) 378± 229 513±290 0.0044 

Recurrence rate (REC) 38.5 ±10.5 55.7±18.4 < 0.0001 

Determinism (DET) 98.4 ± 1.10 99.4 ± 0.772 < 0.0001 

ApEn 1.33 ± 0.121 1.05 ±0.288 < 0.0001 

SampEn 1.47 ±0.225 1.04 ±0.390 < 0.0001 

DFA (α1) 1.15 ± 0.209 0.933±0.407 0.0002 

Correlation dimension 

(D2) 3.41 ± 1.27 1.07 ± 1.16 < 0.0001 

 

 SD1 measures the short term variability of the heart signal. This value (SD1) for CAD 

signals is higher than for normal signals. Thus, SD1 reflects the fast variations brought by 

CAD on heartbeat. The next four parameters, Lmean, Lmax, REC and DET, belong to the RQA 

analysis. The values of these four parameters are high for the CAD group. For the first three 

values, the increase was significant while for the last parameter, CAD group showed only a 

slight increase compared to the normal group. The higher RQA parameters indicate more 

order or less variation in the signal. Hence, higher values of RQA parameters correctly 

indicate that the variation in CAD is less compared to normal subjects.  

 Entropy  parameters (ApEn and SampEn) showed higher values for normal HR 

signal  compared to CAD . ApEn value will be small for cardiac impairment cases.  It is 

evident from Table 3 that for the CAD signal, ApEn takes a value much less than normal 

subjects. SampEn parameter also showed low value for CAD. In general, the results showed 

a reduction in entropy-based parameters for CAD. That means the entropy is reduced due to 

the reduction in HRV for CAD. 

 The DFA parameter takes a large value as the input time series signal is more 

rhythmic. Accordingly, for normal subjects, we obtained larger values for DFA compared to 

CAD subjects. 
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 D2 is a quantitative measurement which indicates the nature of the path in a phase 

space. D2 decreases as the beat-to-beat variation decreases [Acharya et al., 2004a; 2004b]. The 

D2 value obtained for the CAD class is about one-third of that for the normal class. 

 Table 4 gives details of HOS parameters which were extracted, and the 

corresponding p-value. Except phase entropy (Pe), all HOS parameters showed higher 

values for the CAD class. CAD, with its high beat-to-beat variability, results in higher values 

for HOS parameters.  The disorder in the HR signals of a CAD subject shows itself as an 

increase in the information content in the higher harmonics of the HR signal. CAD brings 

short term fast beat-to-beat variability, thus causing the signal to contain extra information 

in higher harmonics compared to normal HR signals. 

Table 4 Results of HOS analysis. 

Features Normal (Mean ± SD) CAD (Mean ± SD) p-value 

P1 0.427 ±0.151 0.541 ±0.310 0.0074 

P2 0.246±0.126 0.405 ± 0.300 < 0.0001 

Mavg 0.392 ±0.481 134± 393 0.0052 

Pe 3.55 ± 5.488E-02 3.12 ± 0.867 < 0.0001 

Wcob1 26.3 ± 18.0 39.5± 29.3 0.0023 

Wcob3 34.7 ± 10.6 43.2 ±21.4 0.0038 

Wcob4 10.3 ±2.87 12.8 ± 7.31 0.0086 

 

5. Discussion 

Goldberger et al. (1987) showed that under normal conditions our  heart is not a periodic 

oscillator. Since then, several nonlinear methods  were proposed to quantitatively measure 

the heart rate variations [Goldberger et al., 1987; Pincus 1991]. Nonlinear parameters like 

recurrence percentage, fractal dimension, etc. were significantly different for normal and 

CAD subjects of the ECG signals [Antanavicius et al., (2008)]. Manis et al. (2007), Laitio et al. 

(2004) and Qtsuka et al. (2009) used correlation dimension and entropy features  on heart 

rate signals to diagnose CAD. Karamanos et al. (2006) analyzed HR signals using DFA and 

showed that the self similarity nature of heart rate signals decreased in CAD subjects.  
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Table 5 Summary of studies conducted in automated detection of CAD and normal 

classes. 

Authors 

Base 

signal/Techniques 

Used 

Classifiers Accuracy 

Karimi et al. (2005) 
Heart sound, Wavelet 

analysis 
Neural network 85% 

Arafat et al. (2005) 

ECG Stress Signals 

with Probabilistic 

Neural Networks 

Fuzzy Inference 

Systems 
80% 

Lee et al. (2007) 
HRV, Linear and 

Nonlinear Parameters 
SVM Classifier 90% 

Kim et al. (2007) 

HRV, Multiple 

Discriminant Analysis 

with linear and 

nonlinear feature 

Multiple 

Discriminant 

Analysis 

75% 

Zhao et al. (2008) 

Diastolic murmurs, 

EMD-Teager Energy 

Operator 

Back Propagation 

Neural Network 
85% 

Lee et al. (2008) 
HRV, carotid arterial 

wall thickness 
CPAR and SVM 85 - 90% 

Babaoglu et al. 

(2010a) 
EST-ECG, PSO+GA SVM 81.46% 

Babaoglu et al. 

(2010b) 
EST-ECG, PCA SVM 79.71% 

Dua et al. (2012) 
Nonlinear features 

+PCA 
MLP 89.5% 

Giri et al. (2012) HR signals , ICA GMM 96.8% 

This work HRV 
No classification 

done 

We have proposed 
unique linear and 
nonlinear feature 
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ranges for CAD and 
normal and also 
proposed unique 

plots; No accuracy 
reported 

 

 Table 5 shows the summary of the studies conducted for the automated diagnosis of 

CAD and normal HR signals. Karimi et al. (2005) presented classification result of  85% for 

CAD identification using the combination of artificial neural networks and wavelet features 

extracted from the heart sounds. ECG stress signals combined with fuzzy and probabilistic 

methods were effectively used to detect CAD with an accuracy of 80% [Arafat et al., 2005]. 

Various linear and  non-linear features were derived from heart rate signals in the left 

lateral,  supine, and right lateral position  [Lee et al., 2007]. In their work SVM yielded the 

highest accuracy of 90% compared to Bayesian classifiers, CMAR, and C4.5. The same group 

used the HRV features of different postures and carotid arterial wall thickness as features 

and classified the normal and CAD subjects with an accuracy of 85% to 90% using CAPAR 

and SVM classifier [Lee et al., 2008]. Classification was performed into control, angina 

pectoris and acute coronary syndrome using linear and nonlinear features of HR signals 

[Kim et al., 2007]. They reported an accuracy of 75%, and classified angina pectoris group 

with a sensitivity of 72.5% and specificity of  81.8%. Their system was able to classify people 

suffering from acute coronary syndrome  with a sensitivity of 84.6% and specificity of  

91.5%. Features extracted from heart murmurs using EMD  – Teager energy operator 

automaticaly diagnosed normal and CAD subjects with an accuracy of 85%  [Zhao et al., 

(2008)]. 

 Binary Particle Swarm Optimization coupled with genetic algorithm applied on 

exercise data to detect the CAD yielded an accuracy of 81.4% using SVM classifier using 

twenty three features [Babaoglu et al., 2010a].  Same group reduced the twenty three 

features of the exercise stress test data to eighteen features and obtained an accuracy of 

79.71% using SVM classifier (Babaoglu et al. (2010b)). Recently, Giri et al. (2012) classified 

normal and CAD classes using HR as base signal. Discrete wavelet transform (DWT) 

coefficients were subjected to data reduction using Independent Component Analysis (ICA). 

These ICA coefficients were classified using   Gaussian Mixture Model (GMM) with an 

accuracy of 96.8%.  The nonlinear features extracted from the HR signals were fed to  
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principal component analysis (PCA)  for data reduction[Dua et al., 2012]. These PCA 

coefficients coupled with  multilayer perceptron (MLP) method resulted in the highest 

classification accuracy (89.5%) to classify normal and CAD heart rate signals.   

 Unique ranges have been proposed for time, frequency and  nonlinear features  for 

normal and CAD HR signals. These extracted parameters can be used for automated 

detection of CAD using HR signals. The practical relevance of this study can be improved by 

using more diverse data form a wider range of subjects. It is risky to obtain the ECG signals 

during exercise from CAD affected subjects. Hence, signals like heart murmur, ECG stress 

signals, and HRV signals are more preferred to detect the normal and CAD classes. 

 The time domain analysis is not robust, due to the influence of artifacts and noise. 

The temporal information of the frequency content cannot be provided by the Fourier 

transform. The HR signal is a nonlinear signal and the information content in the higher 

harmonics of the signal can only be completely captured by nonlinear analysis methods. 

Hence, in this work, we evaluated the ranges of several nonlinear features extracted from 

normal and CAD affected subjects. We found that the RQA parameters, such as Lmean, Lmax, 

REC and DET, were higher for CAD subjects indicating more rhythm. Since the activity of 

CAD subjects is less, similar signal patterns repeat or recur more frequently compared to the 

normal subjects. Hence, the parameter REC has higher value for CAD subjects. Similarly, the 

value of the determinism parameter or DET is higher for CAD subjects. This is again is due 

to the fact that CAD subjects are less active than normal subjects. The same processes occur 

very frequently and thus it is easier to determine the HR signal. The entropy based 

parameters, ApEn and SampEn, are lower for CAD subjects indicating lower entropy (less 

activity due to impairment) for CAD. Almost all HOS parameters showed higher values for 

the CAD group, indicating the presence of higher frequency content in the CAD signals. 

 

6. Conclusion 

CAD is one of the prime reasons for the majority of cardiac deaths worldwide. In this work, 

we analyzed HR signals which were obtained from ECG data recorded from normal and 

CAD subjects. In our work, we have made an attempt to analyze both normal and CAD 

heart rate signals in time, frequency and non-linear domain. Our results show that HR 

signals are less variable in CAD subjects, compared to the normal subjects.  We have 
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proposed unique ranges for features in in various domains. Highly discriminative  

recurrence, Poincare, HOS plots have been presented to differentiate  normal and CAD heart 

rate signals. These ranges of features and unique plots can be used in future to identify these 

two classes.    
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