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Abstract
The statistical identifiability of nonlinear pharmacokinetic (PK) models with the Michaelis-
Menten (MM) kinetic equation is considered using a global optimization approach, which is
particle swarm optimization (PSO). If a model is statistically non-identifiable, the conventional
derivative-based estimation approach is often terminated earlier without converging, due to the
singularity. To circumvent this difficulty, we develop a derivative-free global optimization
algorithm by combining PSO with a derivative-free local optimization algorithm to improve the
rate of convergence of PSO. We further propose an efficient approach to not only checking the
convergence of estimation but also detecting the identifiability of nonlinear PK models. PK
simulation studies demonstrate that the convergence and identifiablity of the PK model can be
detected efficiently through the proposed approach. The proposed approach is then applied to
clinical PK data along with a two-compartmental model.
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1. Introduction
The nonlinear modeling is a routine but absolutely necessary statistical method in analyzing
drug concentration data measured over time in pharmacokinetics (PK). In PK studies,
Michaelis-Menten (MM) equation is often employed to describe the intrinsic clearance
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where Vmax is the maximum enzyme activity; Km is an inverse function of the affinity
between drug and enzyme; C(t) is an unbound drug concentration. Km is also called the MM
constant having the units of C(t). The deterministic and statistical identifiabilities of
parameters in the MM equation have been examined (Tong and Metzler, 1980; Metzler and
Tong, 1981; Godfrey and Fitch, 1984). The deterministic identifiablity is concerned with
whether the model parameters can be identified with noise-free data, while the statistical
identifiability is the possibility of identifying the model parameters with noise data.

Although numerous methods have been presented to detect the non-identifiable parameters
deterministically, such as the Laplace transform (Godfrey and DiStefano, 1987), the
similarity transformation approach (Vajda et al., 1989), the Voterra and generating power
series approaches (Lecourtier et al., 1987), the differential algebra approach (Saccomani et
al., 2003), and the alternating conditional expectation algorithm (Hengl et al., 2007), there
has been much less development in statistical identifiability analysis of PK models. One of
the empirical approaches to assessing the statistical identifiabilty is the local sensitivity
analysis. The local sensitivity analysis in the statistical identification uses the first partial
derivatives of the differential equations with respect to the parameters, and depends on the
non-singularity of the Fisher information matrix, which is equivalent to the Taylor series
method and differential algebra method (Hidalgo and Ayesa, 2001; Wynn and Parkin, 2001).

However, the local sensitivity analysis is likely to make a wrong decision if the estimate is
far from the true value or the model has very complicated dynamics. Yue et al. (2008) thus
proposed the global sensitivity analysis for robust experimental design based on the
modified Morris method (Morris, 1991), but it still requires an initial guess or prior
knowledge concerning the underlying relation of the parameters. Therefore, we propose an
approach not only to accessing the identifiability globally but also to requiring no
preprocessing to obtain an initial guess or prior knowledge.

A number of estimation approaches were developed for population PK analysis (Beal and
Sheiner 1982; Lindstrom and Bates 1990; Vonesh and Carter 1992; Wolfinger, 1993; Kim
and Li, 2011). Most approaches are a derivative-based local optimization method, however.
A well-known challenge of the local optimization, such as the Newton and alike methods, is
stuck at the saddle points or a local optimum so that the initial values are required to lie
within a relatively small neighborhood of the true optimum to find a global optimum, and
the derivative-based method is often terminated earlier due to the singularity. The singularity
problem can become more prominent when the model is statistically non-identifiable. These
issues urge us to use a derivative-free global optimization algorithm since it can avoid the
singularity problem as well as seek the best parameter estimates of nonlinear models
regardless of the presence of multiple local optima.

One interesting evolution based global optimization approach, particle swam optimization
(PSO), was developed by Kennedy and Eberhart (Eberhart and Kennedy, 1995; Kennedy
and Eberhart, 1995). PSO algorithm is a derivative-free approach and becoming very
popular due to its simplicity of implementation and robust convergence capability. Using
PSO algorithm, Kim and Li (2011) developed a global search algorithm, P-NONMEM, for
nonlinear mixed-effects models to meet the challenges of the local optimization in
NONMEM, which is one of the most popular approaches in PK studies. However,
NONMEM uses a Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton algorithm,
which is a derivative-based approach, so that it is not free from the singularity problem. For
this reason, we develop a modified version of PSO algorithm, which is the PSO coupled
with a derivative-free local optimization algorithm (LPSO), in order to estimate the
parameters regardless of the identifibility.
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One challenge of PSO algorithm is the lack of convergence criteria. The number of function
evaluations is often used as a stopping criterion along with incorporating the choice of a
problem-dependent parameter, which relies on the gradient or difference between the
previous and the current estimates. However, this approach doesn't take the random or
stochastic behavior of PSO into account so that it will make the estimation stopped before
reaching a global optimum. It also focuses only on the identifiable situations. Therefore, it is
desirable to have a reliable convergence criterion for detecting when the optimization
process has found the global optimum even for non-identifiable conditions. We thus propose
several approaches to not only diagnosing the convergence of PSO but also detecting the
statistical identifiability.

In Section 2, a brief description of a two-compartment model with Michaelis-Menten kinetic
equation is given. The nonlinear PK models with PSO are introduced in Section 3. In
Section 4, the proposed PSO algorithm and its convergence criteria are described in details.
Simulation studies are performed to evaluate the proposed approaches and real clinical PK
data then are applied in Section 5. In Section 6, conclusions are reached.

2. Michaelis-Menten Kinetic Equation and Two Compartmental
Pharmacokinetics Model
Statistical Identifiability with the Michaelis-Menten kinetic equation

It is well known that the drug metabolism rate follows the Michaelis-Menten (MM) kinetics
equation:

where V(t) is the velocity of the reaction, Vmax is the maximum velocity, Km is the MM
constant, and C(t) is the drug concentration. Monod (1949) first applied the MM equation to
microbiology for the growth rate of microorganisms.

The MM equation generally describes the relationship between the rates of substrate
conversion by an enzyme to the concentration of the substrate. In this relationship, V(t) is the
rate of conversion, Vmax is the maximum rate of conversion, and C(t) is the substrate
concentration. The MM constant Km is equivalent to the substrate concentration at which
the rate of conversion is half of Vmax. Km approximates the affinity of enzyme for the
substrate. A small Km indicates high affinity, and a substrate with a smaller Km will
approach Vmax more quickly. Very high C(t) values are required to approach Vmax, which
is reached only when C(t) is high enough to saturate the enzyme (Hein and Niemann, 1962).

In pharmacology research, the statistical identifiablity often occurs with the MM equation.
Suppose the observed data y(t) follows a normal distribution with the MM equation at a time
point t given the parameter θ =(Vmax, Km):

where f(θ, t) = V(t) and ND stands for a normal distribution. However, when Km is much
higher than the concentration C(t) (i.e., Km ≫ C(t)), the function f(θ, t) is close to

 in the equation below:
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In addition, when Km is much smaller than the concentration C(t) (i.e., Km ≪ C(t)), f(θ, t) is
close to Vmax in the equation below:

In other words, if the concentration C(t) is much either less or greater than Km, one will not
be able to estimate both Km and Vmax separately due to identifiability.

Two Compartmental Intravenous Pharmacokinetic Models with the Michaelis-Menten
kinetic equation

Compartmental PK analysis uses kinetic models to describe and predict the concentration-
time curve for both oral (PO) and intravenous (IV) administration. PK compartmental
models are often similar to kinetic models used in other scientific disciplines such as
chemical kinetics and thermodynamics. The simplest PK compartmental model is the one-
compartmental PK model with oral dose administration and first-order elimination (Chang,
2010). A two-compartmental IV model with the MM equation is considered for this study.
In this case, its PK is described by the system of the ordinary differential equations (ODEs):

where (A1(t), A2(t)) are amounts of drug in systemic and peripheral compartments at time t,
respectively, (V1, V2) are volumes of distribution in systemic and peripheral compartments,
respectively, CL12 is the inter-compartment rate constant, CL is the systemic clearance,
CLint is the intrinsic hepatic clearance, Vmax is the maximum of velocity, Km is MM
constant, and Qh is the hepatic blood flow known as 80 l/h.

Because the ODEs are nonlinear, there exists no closed-form solution and a numerical
approach should be used to solve the differential equations. We use the R package odesolve
to deal with the ODEs. Due to the nature of the clinical study, only the systemic
concentrations are observable from PK study and its predicted concentration at time t is
given by

where θ = (logV1, logV2, logCL12, logVmax, logKm).
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3. Pharmacokinetic Nonlinear Models and Particle Swarm Optimization
We illustrate the nonlinear PK model with the MM equation in this section. The observed
drug concentration is described by a non-linear model,

where N is the number of time points, yi the drug concentration at time ti, and f(·) a nonlinear
function of population PK parameter vector θ, and its log-transformed value

. The PK model is often assumed to follow a log-normal error model
since the observed systemic concentration yi is greater than zero. Then the log-likelihood
function for (θ, σ2) is

Since the function f(·) has no closed form solution, the parameters are estimated using
numerical methods, such as Newton-type approximation, Laplace asymptotic
approximation, and Markov chain Monte Carlo simulation. However, these approaches are
derivative-based methods so that it might not be free from singularity, especially when the
model is not identifiable. Furthermore, most derivative-based algorithms are local
optimization approaches. For these reasons, we adapt a global derivative-free optimization
algorithm, particle swarm optimization (PSO), to deal with both identifiable and non-
identifiable models.

PSO was originally developed by Kennedy and Eberhart (1995) as a population-based
global optimization method. Its evolutionary algorithm stochastically evolves a group of
particles. PSO allows each particle to maintain a memory of its best fitting. Each particle's
trace in the search space is then determined by its own memory of best fittings. Individual
particle moves towards a stochastically weighted average of these positions, until they
converge to the global best. It is used to solve a wide array of different optimization
problems because of its attractive advantages, such as the ease of implementation and its
gradient free stochastic algorithm. It has been proved to be an efficient method for many
global optimization problems, and not suffering from the difficulties encountered by other
evolutionary computation techniques. For instance, PSO does not suffer from some of
genetic algorithm (GA)'s difficulties, such as interaction in the group enhances rather than
detracts from progress toward the solution. In addition, PSO has memory, which GA does
not have. Change in genetic populations results in destruction of previous knowledge of the
problem. In PSO, individuals who fly past optima are tugged to return toward them,
meaning that knowledge of good solutions is retained by all particles (Kennedy and
Eberhart, 1995; Eberhart and Kennedy, 1995). For an overview of PSO and its variants, see
Englbrecht (2007).

Let particle s be an element of the population. Its position vector is , and

updating velocity vector is , where K is the total number of iterations of PSO
and S is the population size (s = 1, ..., S). Its best previous positions of itself (i.e. local best)
and the population (i.e. global best) are represented as  and xgbest, respectively. The

velocity  and the position  at the (k+1)th iteration of particle s are calculated
according to the following equations:
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(4)

(5)

where wk is called inertia weight (0 ≤ wk ≤ 1), c1 and c2 are the two positive constants called
cognitive and social coefficient, respectively, r1 and r2 are the two random sequences in the
range [0,1], and k is the iteration number. The low values of constants c1 and c2 allow each
particle to roam far from the target regions before being tugged back, while the high values
result in abrupt movement towards target regions. For this reason, these constants are
conventionally set as 2.0, as we did in our simulation studies. The inertia weight wk is

(6)

where wmin and wmax are user-defined constants in the range [0,1] and wK = wmin ≤ wk ≤
wmax = w0. The inertia weight is adapted to control the impact of the previous history of
velocities on the current velocity and to influence the trade-off between global (wide-
ranging) and local (nearby) exploration abilities of the “flying points”. A larger inertia
weight facilitates global exploration (searching new areas) while a smaller inertia weight
tends to facilitate local exploration to fine-tune the current search area. Suitable selection of
the inertia weight can provide a balance between global and local exploration abilities and
thus require less iteration on average to find the global optimum (Shi and Eberhart, 1998). In
order to use these properties of the inertia weight, we use a dynamic inertia weight by
linearly decreasing it as described in (6) so that PSO can escape from premature
convergence when it gets stagnated (Zhang and Cai, 2009).

4. LPSO: Particle Swarm Optimization Coupled with a Local Optimization
Algorithm

We propose a modified PSO coupled with a local optimization algorithm to improve the rate
of convergence and call the proposed algorithm LPSO. Kim and Li (2011) proposed P-
NONMEM that is a combined approach between PSO and NONMEM for mixed-effects
models. However, NONMEM, one of the most popular algorithms for PK study, is a
derivative-based algorithm so that it will not avoid the singularity problem of non-
identifiable models. For this reason, we incorporate a derivative-free local optimization
algorithm, Nelder-Mead method, into PSO to deal with the local best. It is a derivative-free
direct search method based on evaluating an interesting function at the vertices of a simplex
iteratively by shrinking the simplex to find better points until some desired bound (Nelder
and Mead, 1965). It is also called a simplex search algorithm developed by Nelder and Mead
(1965). Note that the term simplex is a generalized triangle in a certain dimension. Nelder-
Mead method requires no derivative information, making it suitable for problems with non-
smooth functions or/and discontinuous functions. Its general algorithm is composed of the
following two steps: construct the initial working simplex and repeat the transformation of
the working simplex until it converges. There are four transformations to compute the new
working simplex for the current one: reflect, expand, outside, contract, and shrink. Our
second improvement over PSO is to establish a novel approach to diagnosing the
convergence of the estimation. To do this, we propose three types of diagnostic measures:
the local best-quartile method, the global best-variance method, and the local best-quartile-
variance method.
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The local best-quartile method uses the first and third quartiles and the correlation structure
of the population. Suppose θk is the S × p matrix of the population (local best) of size S and
the p parameters at kth iteration, i.e.,

where  is the local best of ith particle of jth parameter at kth iteration, 1 ≤ i ≤ S, 1 ≤ j ≤ p,
X is the set of indices of each particle from 1 to S and |X| = S.

We first calculate the first (lower) and third (upper) quartiles,  and , for each
parameter j at kth iteration, where j = 1,2, ..., p, and then obtain the reduced matrix  using
the first and third quartiles as follows:

where M = |Xk| and . In particular,  and

, j = 1,2, ..., p. Then the difference between the first and
third quartiles for each parameter is calculated based on , i.e.,

obtaining the maximum difference of all the parameters as the following

In addition, the p × p correlation matrix of θk, i.e.,

is computed and then its maximum and minimum eigenvalues,  and , are estimated

to calculate the ratio of two eigenvalues, . If at least one parameter has , then
the eignvalues cannot be obtained, so we will assign zero to ρk in this case.

The global best-variance method considers the standard deviation of each estimate of the
parameters according to the different window size. Suppose ψk is the k × p matrix consisting
of the global best for each parameter up to kth iteration,
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where  is the global best of jth parameter at i the iteration and lk is the vector of the
loglikehood of each global best of size such as lk = (l1, l2, ..., lk). Then the reduced matrix is
obtained based on the user-defined window size, w. That is, the reduced matrix with w is

where k ≥ w < 0, and the reduced loglikehood vector is . Then
we compute the standard deviations for each parameter and loglikelihood:

where .

Likewise, the local best-quartile-variance method is based on the standard deviation of the
measures, dk and ρk, of the local best-quartile method. That is,

Until now, we introduce six different measures to diagnose the convergence of PSO at kth

iteration: dk, ρk, , , , and . We compare the performances
of each approach in terms of the number of iterations to converge and the estimates at that
iteration through the simulation in the next section.

The detailed procedure of the proposed LPSO is described as follows:

Step 1. Initialization

For the parameter θ and the measurement error σ2, their populations are initialized randomly
by their uniform distribution:
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where s = 1, ..., S; S is the size of population;  is the sth particle for θ and
σ2; R(z) is the range of a random variable (vector) z; Unif stands for the multivariate uniform
distribution.

Step 2. A derivative-free local optimization-based estimation

For particle s at iteration k, the local optimization-based estimation, Nelder-Mead method, is
rendered by an objective (loglikelihood) function. Let the current position of particle s at

iteration k,  be an initial value for the estimation. Their estimates  are
obtained and then the current position  is updated with the estimate  which is converged
and estimated by the local optimization algorithm, i.e.,

In case of failing to converge, there is no update on that particle.

Step 3. Finding local and global best positions

The loglikelihood for particle s at iteration  is calculated given the update current
position ,

 is then compared to the best previous local and global best goodness of fits (i.e.,  and
lgbest), and the current local and global bests are updated as follows:

a. Updating the local best position

and there is no update otherwise;

b. Updating the global best position

and there is no update otherwise.

Step 4. Convergence

If iteration k reaches the pre-specified maximum K or all the particles are converged by the
convergence diagnosis, the proposed algorithm LPSO will stop. Otherwise it will go to the
next step.

Step 5. Updating the current positions

If the current iteration is not satisfied with one of the convergence criteria described, the

current positions  will be updated to  by (4) and (5). That is,

Kim and Li Page 9

Comput Methods Programs Biomed. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



where  is defined in (4).

5. Simulation and Application
Simulation Experiment

The two-compartment IV model described in Section 2 was employed for the simulation
experiments. This model has five PK parameters θ = (logV1, logV2, logCL12, logVmax,
logKm) and variance σ2 for the measurement error. For the sake of simplicity, we fixed Dose
and logV1 as one and zero, respectively, in order for the systemic concentrations to range
zero to one. The identifiable and non-identifiable cases were used for comparison analysis.
As for the identifiable case, the true values for logVmax and logKm were zero and −2.3,
respectively, and, as for the non-identifiable case, their values were zero and 15,
respectively. We generated the simulated data without measurement error and its generated
data are depicted in Figure 1. As a result, the parameters to estimate are θ = (logVmax,
logKm). In Figure 1, we compare the nonlinear ODE based PK model with the linear ODE
based PK model. We call them linear and nonlinear in the sense that the intrinsic clearance
is dependent to time. The linear ODE-based PK model uses the following intrinsic clearance
instead:

That is, the intrinsic clearance is the ratio of Vmax to Km so that there is no influence from
the concentration. In fact, the trace plots are much different from each other when the model
is identifiable (black solid and dotted lines with circle), while both trace plots are very
similar to each other in case of non-identifiable models (read solid and dotted lines with
triangle) can be seen in Figure 1.

The constants of PSO were taken as (c1, c2, wmax, wmin, K) = (2,2,0.9,0.3,5000), and the
number of particles of each parameter was ten (for PSO) or five (for LPSO). The parameter
boundaries are (–20, 20). The true values are θtrue = (0, –2.3) for the identifiable case and
(0,15) for non-identifiable case. For both PSO and LPSO, the same seed number was used to
generate the initial population. We also use the five different cutoff values to consider PSO
and LPSO as converging to a global optimum such as 0, 10–5, 10–3, 10–1, and 1. After 5000
iterations, we can observe that both PSO and LPSO converge to the true value for the
identifiable case, but the non-identifiable case doesn't converge to the true value for both
PSO and LPSO as shown in Table 1. In addition, we can see that, in case of non-identifiable
model, LPSO will not be stopped if dk is used with a cutoff value less than or equal to one.

Figure 2 (a) and (c) display the trace plots for the global best of each parameter and their
loglikelihood over iteration, while the trace plots for dk and ρk over iteration are depicted in
Figure 2 (b) and (d), for identifiable and non-identifiable cases, respectively. We can see that
LPSO reaches steady state faster than PSO does in this figure. In Figure 1(c), the global best
estimates of each parameter have bigger variation than its loglikelihood for both PSO and
LPSO due to the non-identifiability. This is because several estimates share the exactly same
loglikelihood so that loglikelihood reaches steady state earlier for non-identifiable cases. In
terms of the number of iterations to converge, ρk converges earlier than dk, and LPSO
converges faster than PSO, as shown in Table 1. As well, the estimates of each parameter
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are closer to the true values in case of LPSO. However, in case of non-identifiable, although
PSO and LPSO converge to certain estimates when ρk or dk is less than a cutoff value, its
estimate is far from the true value. Especially, logVmax has much biased estimates for both
PSO and LPSO in Table 1. Interestingly, LPSO converges to the estimates close to the true
value already just after 1st iteration in case of the identifiable model.

Since PSO is a stochastic method and the direction of each particle is selected randomly, the
loglikelihood is not increased monotonically different from a gradient based approach. In
other words, although it is not converged yet, PSO will stay in the same estimate or
loglikelihood value, causing the users to consider PSO as converging to a global optimum,
especially, if the first derivative (or the difference) of the previous and current estimates is
employed. To overcome this issue, we instead consider the standard deviation according to
the five different window sizes, w = 10, 20, 30, 40, and 50, as described in the previous
section. Figure 3 shows the trace plots for the standard deviation (SD) of the four diagnostic

measures, , , , and . In the identifiable case, LPSO behaviors more stable than PSO
in terms of the trace plots of each standard deviation, while PSO reaches steady state earlier
than LPSO when the model is non-identifiable as shown in Figure 3. This is because the
direction of each particle in LPSO is the same as that of a local optimum by its combined
local optimization. If the model is non-identifiable, there are many estimates having the
exactly same loglikelihood so that the local optimization will finish to the different estimates
according to the different initial values. For this reason, the trace plot of LPSO as depicted
in the right column of Figure 3(d) is not stable. However, PSO relies on the previous local
and global bests so that it will fluctuate less than LPSO. Tables 2 and 3 show the number of
iterations to converge and the estimates according to the different window sizes (w) and
cutoff values (CV). In case of the identifiable models, if the window size is large, it seems
that all the methods can stop both PSO and LPSO when these algorithms converge to the
true values for all the cutoff values. However, if the window size becomes smaller, then
PSO is often stopped before it converges to the true values, while LPSO always stops when
it converge to the true values regardless of the diagnostic measures. This demonstrates that
LPSO converges much faster than PSO. Overall, LPSO has a better performance than PSO

in terms of the number of iterations to converge and the estimates, and  with the
cutoff values less than 10–3 and the window size of 10 seems to detect the correct iteration
to stop both PSO and LPSO as can be seen in Tables 2 and 3.

Figure 4 shows the scatter-box plots for PSO and LPSO at 1st, 500th, and 5000th iterations.
As for the identifiable model, LPSO reaches closely the true value after 1st iteration as
depicted in the upper row of Figure 4 (a). Both PSO and LPSO display the evidence of being
non-identifiable after 500th iteration in the non-identifiable case as shown in the bottom row
of Figure 4 (b). After 5000th iteration, although PSO reaches the true value, it seems that
logKm may still need more iterations in the sense that there are a lot of outliers in its box
plot in case of the identifiable model as can be seen in the upper row of Figure 4(c). It is
noteworthy that even though the pattern of the identifiable case of LPSO in Figure 4(c) is
similar to the non-identifiable, the ranges of x- and y-axis of each parameter are much
narrower than those of the non-identifiable model. Upon investigating of these properties,
the following convergence diagnostics is proposed for LPSO.

Convergence diagnostics

If  is less than equal to the user-defined cutoff value (α) with the window size of w,
LPSO will be considered as converged to a global optimum. Furthermore, if dk is greater
than the user-defined cutoff value (β), the model is considered as non-identifiable, where k is
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the number of iterations to converge which is identified by . The general guideline
for α and β is 0.001 and one, respectively.

Midazolam pharmacokinetic data analysis
We describe the analysis of a Midazolam (MDZ) pharmacokinetic data using the proposed
approaches of convergence diagnostics with LPSO. MDZ is a benzodiazepine used to cause
relaxation or sleep before surgery and to block the memory of the procedure. It can be
administrated in both oral and intravenous formulations. The MDZ PK study was conducted
in the General Clinical Research Center (GCRC) at Indiana University. Twenty-two subjects
were recruited into this study. Blood samples for MDZ assays were collected in non-
heparinized evacuated blood collection tubes at 0.5, 0.75, 1, 1.5, 2, 4, 6, and 9 hours after
intravenously dosing MDZ (2.98 mg ~ 4.8 mg). We investigate four of 24 subjects’ clinical
trial data for this study. Here the MDZ PK is assumed to follow a two-compartmental IV
model with the MM equation as described in Section 2. Likewise, this model has six log-
transformed parameters composed of five PK parameters and variance, resulting in θ =
(logV1, logV2, logCL12, logVmax, logKm, logσ2). The constants of LPSO were set to (c1,
c2, wmax, wmin, K) = (2,2,0.9,0.3,500) as the simulation studies did, and the number of
particles of each parameter was set to three. The parameter boundary for logσ2 is (–20,0)

and others are set to (–15, 15). The  is used as a stopping rule with the cutoff value
of α = 0.001 and the window size of w = 10, meaning that LPSO will stop if

, where k is the current iteration.

The converged global optima for MDZ data are shown in Table 4. The estimates of Km for
Subject 1 and 2 are larger, while those for Subject 3 and 4 are close to zero, indicating that
the parameter Km of these four MDZ data might be non-identifiable. Namely, in case of
Subject 1 and 2, the estimate of Km is much larger than their concentrations, while the
estimate of Km is much smaller than their concentrations. As a result, the estimates of Vmax
for Subject 1 and 2 become larger since only the ratio of Vmax to Km (Vmax/Km) is
identifiable. The number of iterations to converge ranges from 67 to 388. Although the
MDZ data set of Subject 3 has the largest number of iterations to converge, it has the worst
MSE (MSE = 3.8851), while Subject 1 has the smallest MSE (MSE = 0.0480) with the
largest variance ( ). Note that MSE stands for the mean squared error between
observed and predicted concentrations after log-transformed.

Figure 5 displays several trace plots of the estimation results of LPSO for four MDZ
individual data from Subject 1 to 4. For each subject, the trace plots of global estimates of

each parameter, the trace plots of loglikelihood and , the trace plots of dk, and the
prediction plot are depicted in (a)-(d), respectively.

If we consider the trace plots of loglikelihood in Figure 5(a), all subjects reach the steady

state after ~10 iterations of LPSO, while  still fluctuates until it converges. On the
other hand, compared to the trace plots of loglikelihood, the global optima for each
individual parameter still fluctuate as shown in Figure 5(b). In Figure 5(b), we can further
observe several steady-state-like periods before reaching the convergence. For example, in
case of Subject 1, all traces of the parameters have the steady-state period between 50 and
100 iterations before stopped. Therefore, if the stopping rule relies on the gradient or
difference between two consecutive estimates, it is possible that the estimation will stop
between 50 and 100 iterations and then give us a local optimum instead of a global
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optimum. This demonstrates an advantage of the proposed convergence criteria over the
gradient or difference based approaches.

The trace plots of dk for logKm are larger than the cutoff of β = 1 across all the subjects,
which indicate the non-identifiability as shown in Figure 5(c). In other words, according to
the proposed Convergence Diagnostics, we can decide that PK models of these four subjects
are non-identifiable since there are one or more parameters having dk greater than the cutoff
of β = 1 until it converges. We can see an interesting fact in Figure 5(d). The MSEs of
Subject 1 and 2 are smaller than those of Subject 3 and 4. As shown in Table 4, the
difference between Subject 1 and 2 and Subject 3 and 4 is the size of estimates of Km. As
for the first two subjects, their estimates of Km are large values, while the estimates of Km
are almost zero for the last two subjects.

Overall, the clinical PK data analysis is consistent with the simulation studies and shows that
the proposed LPSO and Convergence Diagnostics are able to not only diagnose the
convergence of LPSO but also detect the identifiability.

6. Conclusion
A novel version of PSO is proposed with enhancing the convergence of the local best using
a derivative-free local optimization algorithm, which is called LPSO. In fact, the simulation
studies and MDZ PK data analysis show that LPSO converges to a global optimum much
faster than PSO does. Since PSO is a derivative-free algorithm and a derivative-free local
optimization is combined, the proposed LPSO becomes a derivative-free global optimization
algorithm so that LPSO can be applied to the parameter estimation regardless of the
identifiability. Furthermore, several convergence diagnostic measures are proposed and
evaluated through both the simulation studies and clinical PK data analysis. Of these
measures, using the maximum of the difference between the first and third quartiles and the
standard deviation of the ratio of the minimum and maximum of eigenvalues can detect
when to stop LPSO as well as indicate whether the model is identifiable or not.
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Figure 1. The trace plots between time and concentration for simulation experiments
The solid line is for the nonlinear ODEs and the dotted line is for linear ODEs. When
log(Km) = –2.3, the open black circle is used and the red triangle is used when log(Km) =
15.
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Figure 2. The trace plots between iteration and the global best and its log-likelihood
In each plot, the first column is by PSO and the result of LPSO is the second column. The
trace plots for the global best and its loglikelihood of logVmax and logKm at each iteration
are depicted when (a) logKm = –2.3 and (c) logKm = 15 where the dotted line indicates the
true value. The trace plots for the difference of the first and third quartiles (|Q1 – Q3|) for

logVmax and logKm and the ratio between the minimum and maximum eigenvalues ( )
of correlation matrix at each iteration are depicted when (b) logKm = –2.3 and (d) logKm =
15.
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Figure 3. The standard deviation plots for convergence
The standard deviation plots of the global best and its loglikelihood at each iteration are
depicted when (a) logKm = –2.3 and (c) logKm = 15 according to the five different window
sizes (10, 20, 30, 40, 50). The standard deviation plots for the difference of the first and third
quartiles (|Q1 – Q3|) and for the ratio between the minimum and maximum eigenvalues of
correlation matrix at each iteration are depicted when (b) logKm = –2.3 and (d) logKm = 15.
In each plot, the first column is by PSO and the result of LPSO is the second column.
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Figure 4. The scatter-box plots between logVamx and logKm for PSO and LPSO
The plots in the left and right columns are for PSO and LPSO, respectively, and the first and
second rows are for identifiable and non-identifiable cases. The solid lines in the plot
indicate the true values for each parameter.
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Figure 5. The results of estimation of LPSO for MDZ data
For each subject of four MDZ individual data, the trace plots of global estimates, the trace

plots of the loglikelihood and the standard deviation of the ratio of eigenvalues ( ),
the trace plots of the difference between Q1 and Q3 (dk), and the prediction plot are
displayed in (a)-(d), respectively. The grey dotted horizontal line indicates the threshold of 1
to see whether a parameter is identifiable in (c).In (d), the MSE stands for the mean squared
error between the log-transformed observation and the predicted concentration. The
estimated Km value is indicated by the dotted grey horizontal line. The plots of Subject 1, 2,
3, and 4 are in the left-top, the right-top, the left-bottom, and the right-bottom, respectively.
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