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Abstract: 

Proliferative diabetic retinopathy (PDR) is a condition that carries a high risk of severe visual 

impairment.  The hallmark of PDR is neovascularisation, the growth of abnormal new vessels.  

This paper describes an automated method for the detection of new vessels in retinal images.  

Two vessel segmentation approaches are applied, using the standard line operator and a novel 

modified line operator.  The latter is designed to reduce false responses to non-vessel edges.  

Both generated binary vessel maps hold vital information which must be processed separately.  

This is achieved with a dual classification system.  Local morphology features are measured 

from each binary vessel map to produce two separate feature sets.  Independent classification 
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is performed for each feature set using a support vector machine (SVM) classifier.  The system 

then combines these individual classification outcomes to produce a final decision.  Sensitivity 

and specificity results using a dataset of 60 images are 0.862 and 0.944 respectively on a per 

patch basis and 1.00 and 0.90 respectively on a per image basis.  

Keywords: 

Retinal images, proliferative diabetic retinopathy, new vessels, modified line operator, dual 

classification. 

 

1  INTRODUCTION: 

Diabetes is a disorder of sugar metabolism and is characterized by raised levels of glucose in 

the blood.  These high levels can damage the vessels that supply blood to vital organs.  

Diabetic retinopathy (DR) is the resultant condition affecting the retinal vasculature, leading to 

progressive retinal damage that can end in loss to vision and blindness [1].  DR is recognized as 

the leading cause of blindness in the working-age population [2].  The problem is increasing in 

its scale, with diabetes having been identified as a significant growing global public health 

problem [3].  171 million people were estimated to have diabetes worldwide in the year 2000 

and this figure is expected to rise to 366 million by the year 2030 [4]. 

The purpose of DR screening is to detect potentially sight threatening disease at an early stage 

which is when treatment and management is the most effective [5,6].  In the United Kingdom 

diabetic patients aged 12 and above are invited, at least annually, for a screening appointment 

where retinal images are captured using digital photography [7].  With such a large diabetic 

population, assessment of these images can be a time consuming and costly task.  Therefore 

the introduction of automated detection systems would be greatly beneficial to this field [8]. 
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The damage to the retinal blood vessels will cause blood and fluid to leak on the retina and 

form features such as microaneurysms, haemorrhages, exudates, cotton wool spots and 

venous loops [9].  With progression, the blockages and damage to blood vessels will cause 

areas of retinal ischaemia to develop and in an attempt of revascularization the growth of new 

blood vessels is triggered.  The growth of new vessels represent the advanced stages of DR 

known as proliferative diabetic retinopathy (PDR), which poses a high risk of severe vision loss 

due to the fragile nature of the new vessels making them prone to bleed and cause pre-retinal 

and vitreous haemorrhages.  Also fibrous tissue gradually develops in association as new 

vessels increase in size and this can cause tractional retinal detachment [10].  Patients 

presenting PDR require an urgent referral to a specialist.   

Whilst disease/no disease automated grading system do provide benefits [11], an additional 

aim is to develop a system capable of triaging images.  This should include the ability to detect 

and prioritise PDR images to ensure immediate attention and treatment.  The automatic 

detection of DR has received a lot of research attention, with studies investigating 

microaneurysm and haemorrhage detection [12-16], and exudate detection [17-21].  In 

contrast, little work has been done to detect PDR. 

New vessels are termed according their location, new vessels at the optic disc (NVD) and new 

vessels elsewhere (NVE).  They appear as unregulated vessel growth, initially appearing as 

loops or networks that appear on the optic disc or near a vein.  As they grow they form dense 

lacy networks which usually pass across the underlying veins and arteries.  They tend to be fine 

in calibre and are more tortuous and convoluted than normal vessels.  New vessels tend to 

grow away from the retinal surface and hence can appear out of the focal plane of the 

photograph, which can result in a blurry and obscure appearance.  A retinal image containing 

new vessels is shown in figure 1(a). 
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Vessel segmentation is often the first step of new vessel detection methods, with the purpose 

of analysing the morphology of the binary vessel map in search of abnormality.  Vessel 

segmentation has received the largest share of attention in the field of retinal image analysis, 

studies include [22-29].  Segmentation techniques often proceed into methodologies that 

classify vessels as arteries or veins and measure vessel calibre [30,31] for application in 

cardiovascular disease studies.   A comprehensive review of this mature field of vessel 

segmentation is provided by Fraz [32].    However these techniques struggle with segmenting 

new vessels due to their irregular appearance. 

The following vessel segmentation techniques were designed with new vessels taken into 

consideration.  L.Zhang [33] proposed a modified matched filter that used double sided 

thresholding.  The main emphasis was not on the increased segmentation of new vessels, but 

instead the reduction of the false response to exudates which can cause large local densities 

on the segmented map and therefore can be mistaken for new vessels.  B.Zhang [34] applied 

the matched filter with the first-order derivative of the Gaussian to reduce the false response 

to exudates.  Figure 1(b) shows a retinal image with exudates, also known as bright lesions.  

Ramlugun [35] described a small vessel extraction technique, the main contribution was the 

varying of the clip limit for contrast limited adaptive histogram equalization (CLAHE) to allow 

more contrast for small vessels. 

The following new vessel detection methods applied vessel segmentation prior to the 

described analysis methods.  Daxer [36] and Karperien [37] both described the retinal 

vasculature as a fractal and used the fractal dimension to quantify its complexity to indicate 

the presence of new vessel growth.  Jelinek [38] extracted morphological features based on 

data obtained from the application of the derivatives of Gaussian wavelets to the vessel 

skeleton.  Goatman [39] developed a comprehensive set of 15 features including the number 

of vessel segments, the mean vessel wall gradient and various tortuosity measures to detect 
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new vessels on the optic disc.  Akram [40] proposed a Gaussian mixture model based classifier 

with a 5 dimensional feature set based on intensity and gradient values.  Hassan [41] used just 

two local features, the number of vessels and the area of vessels within a small scanning sub-

window to indicate new vessels.  In [42], the majority of normal vasculature was removed from 

the vessel map to simplify new vessel detection. 

The next described methods do not perform vessel segmentation and therefore avoid the 

difficulties associated with segmenting new vessels.  Statistical texture measures calculated 

using the grey level co-occurrence matrix (GLCM) were applied by Frame [43] to identify 

irregular distributions of pixel intensities associated with neovascularisation. Acharya [44] 

calculated texture features from the GLCM and the run length matrix to identify the stage of 

DR.  Agurto [45] utilised multi-scale amplitude modulation frequency modulation (AM-FM) 

methods for spectral texture analysis to characterise different retinal structures, including new 

vessels.  However, later work by Agurto [46] involved AM-FM along with granulometry and 

vessel segmentation to detect new vessels on the optic disc. 

There exist techniques developed from other research topics that are very relevant to PDR 

detection.  Zutis [47] presented a system using edge contour analysis for detecting abnormal 

retinal capillary regions, with the focus on telangiectasia.  Doukas [48] created an automated 

method for the quantification of micro-vessel density within the inner surface of egg shells in 

order to study the angiogenesis in developing chick embryos.  Measures included vessel 

length, branching points and GLCM textural information. 

The main contribution of the proposed method is the novel application of a dual classification 

approach to independently process the binary maps from two different vessel segmentation 

methods with the aim to detect new vessels and reduce false responses caused by other 

retinal features. This includes a novel modified line operator, based on double sided 

thresholding, designed to segment vessels whilst reducing false responses to non-vessel edges.  
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The organization of this paper is as follows.  Section 2 describes details of the methodology.  

Section 3 presents the experimental evaluation.  Finally, a discussion and conclusion is given in 

section 4. 

 

 

 

Fig. 1: (a) Retinal image with new vessels. (b) Retinal image with bright lesions. (c)-(d) Zoom-in 

images of (a)-(b). 

 

2  METHODOLOGY:   

The proposed dual classification system was adapted from the general preferred approach of 

the use of vessel segmentation followed by analysis of the binary vessel map to detect new 

vessels.  The architecture of this system is shown is figure 2.  Initial steps included spatial 

normalization to ensure the system’s robustness with respect to image resolution and pre-

(a) (b) 

(c) (d) 
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processing to enhance the vasculature.  Thereafter the system splits into two pathways as two 

different vessel segmentation methods were applied to create two binary vessel maps.  Each 

map held vital information and it was important that they were processed separately.  The two 

segmentation methods used were the standard line operator approach and a novel modified 

line operator approach.  The latter was designed to reduce false responses to non-vessel 

edges.  Straight vessel removal was applied to remove large sections of normal vasculature 

from the binary vessel maps.  Structural analysis was applied to the resultant where local 

features associated with the morphology of the vasculature were measured.  Each pathway 

had its own feature set produced, using the same set of local features.  Independent 

classification was performed for each feature set using a linear support vector machine.  The 

system produced a final decision by combining the two individual classification outcomes in 

which regions of the retina were labelled as new vessels or non-new vessels.  The main 

purpose of the novel application of a dual classification system in retinal image analysis is to 

detect new vessels whilst reducing false responses caused by other common retinal features. 
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Figure 2:  System architecture. 

 

2.1  Pre-processing: 

Retinal images often show light variations, poor contrast and noise.  This, along with the fact 

that new vessels tend to lack distinction meant that pre-processing was required.  The green 

channel exhibits the best vessel/background contrast while the red and blue tend to be very 

noisy.  Therefore the inverted green colour channel was used, where vessels appear brighter 

than the background.  A median filter was applied to reduce salt and pepper noise.  Local 

contrast enhancement was achieved by applying contrast limited adaptive histogram 

equalisation (CLAHE) [49].  Shade correction was performed by subtracting an image 

approximating the background.  This approximation was obtained by applying a median filter 

with a 105 x 105 pixel size kernel.  This large size was chosen to ensure new vessel regions 
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were preserved.  A morphological top-hat transformation was used to produce an image 

containing small circular objects (microaneurysms) [12] which were then subtracted from the 

image.  A pre-processed image is shown in figure 3, which has been inverted back again only 

for better visualisation.  

 

 

Figure 3: Pre-processed version of figure 1(a). 

 

2.2  Line Operator /Modified Line Operator: 

The detection of linear structures has become a topic of significant importance in medical 

image analysis mainly due to the fact that vessels can be approximated as being piecewise 

linear.  Ricci [27] applied line operators to detect linear structures in retinal images having 

been inspired by a method [50] which applied a line operator to detect linear structures in 

mammographic images. 
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Figure 4: Standard line operator at 3 different orientations. 

The standard line operator is illustrated in figure 4.  The average grey-level of the pixels lying 

on a line passing through the target pixel (i,j) was calculated for multiple orientations.  The 

orientation giving the largest value was found and its value was denoted with L(i,j).  The line 

strength of the pixel, S1(i,j),  is given by  

S1(i,j) = L(i,j) – N(i,j)    (1)  

where N(i,j) is the average grey-level of the similarly orientated neighbourhood.  Conversely to 

[27], the whole window was orientated as opposed to keeping a fixed window and orientating 

only the line.  At certain orientations, the line’s path could not be exactly matched by the pixel 

grid, thus line and region averages were found by using nearest neighbour interpolation 

instead of bi-linear interpolation. 

The line strength was large if the winning line was aligned with a vessel.  In figure 5, the line 

strength images corresponding to the images in figure 1 are shown.  The parameters were 

selected to ensure an adequate response to new vessels was achieved.  The line operator of 

length 15 pixels and width 25 pixels was applied over 12 different orientations (angular 

resolution of 15ᵒ).  The square dimensions of the line operator did not have to be adhered to, 

the operator width was selected in accordance to vessel width and the operator length was 

selected to be relatively short as new vessels tend to be tortuous.  An empirically derived 

threshold, T1, was applied to the line strength image to produce segmentation of the vessels.  

T1 was chosen to be relatively low to ensure that faint and obscure new vessel segments were 
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retained.  Figure 6 shows the binary vessel maps corresponding to the images in figure 1.  The 

new vessels had been segmented with reasonably accuracy, thus meaning their properties 

could be adequately analysed.  Considering some simple properties of new vessels such as high 

local density and large curvatures, it is evident from figure 6 that new vessels were 

distinguishable to normal vasculature.   

 

 

Figure 5: Line strength maps corresponding to the images in figure 1. 

 

(a) (b) 

(c) (d) 
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Figure 6: Binary vessel maps corresponding to the images in figure 1, standard line operator. 

 

A well documented problem of vessel segmentation is that they respond not only to vessels 

but also to non-vessel edges.  Bright lesions cause the most misclassifications.  Areas of glare 

or reflection artefact, which are common on retinal images of younger individuals, also cause 

false responses.  Figure 5 illustrates the strong line strength response to vessels as well as the 

edges of the bright lesions and figure 6 shows that after thresholding both the vessels and the 

edges of the bright lesions were detected.  These false detections caused large local densities 

and large curvatures which were undistinguishable to new vessels. 

A novel modified line operator was developed to reduce the false responses to non-vessel 

edges, inspired by L.Zhang [33] where a matched filter with double sided thresholding was 

proposed.  Three modified line strength measures were derived,  

S2(i,j) = L(i,j) – NR (i,j)    (2)  

(c) (d) 

(a) (b) 
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S3(i,j) = L(i,j) – NL(i,j)    (3)  

S4(i,j) = L(i,j) – NB(i,j)    (4)  

where NR(i,j) is the average grey-level of just the right side of the similarly orientated 

neighbourhood, NL(i,j) is the average grey-level of just the  left side of the similarly orientated 

neighbourhood and NB(i,j) is the median value of a large neighbourhood (not orientated).  The 

operator parameters of length and width remained unchanged, the size of the large 

neighbourhood was set to 151 x 151 pixels.  An empirically derived threshold, T2, was applied 

to all 3 modified line strength measures and followed by the logical AND operator to define the 

pixel as a vessel. 

 

Figure 7: Cross section of a vessel and a bright lesion. 

To simplify the explanation of the modifications, figure 7 shows a 1D cross section of a vessel 

(left of the trace) and a bright lesion (right of the trace) from a pre-processed image.  The 

thresholding of the line strength done in the standard line operator approach was simply 

stating that L(i,j) must be a value T1 greater than the grey-level average of the similarly 

orientated neighbourhood.  Looking at the trace it’s clear that the vessel points are 

significantly greater than its local neighbourhood.  Unfortunately, this is also this case for the 

edges of the bright lesion due to the large dip in value caused by the bright lesion.  This was 
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the cause of the false responses from the standard approach.  The trace shows the difference 

between the two cases is that vessels are significantly greater than local neighbourhood on 

both sides unlike non-vessel edges.  The first modification was that now L(i,j) was required to 

be a value of T2 greater than the grey-level average of both the right and the left side of the 

similarly orientated neighbourhood, which rectified this problem.  However, consider two 

bright lesions in close proximity.  The space in-between them is significantly greater than both 

sides.  We could distinguish this case by the fact the pixel value of these points are likely to be 

similar to that of the retinal background.  The median value of a large neighbourhood was used 

to calculate the retinal background value.  Therefore the next modification was that the L(i,j) 

was required to be a value of T2 greater than the local retinal background value. 

The binary vessel maps generated by the modified line operator approach are shown in figure 

8.  The false responses caused by non-vessel edges were now significantly reduced to the 

extent that non vessel edges were distinguishable to new vessels. Unfortunately the 

segmentation of new vessel had become slightly damaged.  This is a trait of all vessel 

segmentation techniques, the more emphasis put on the reduction of non-vessel responses 

the greater the risk of damage to the segmentation of the vessels.  This meant that new 

vessels were no longer so distinguishable to the normal vasculature.  
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Figure 8: Binary vessel maps corresponding to the images in figure 1, modified line operator.  

Both of the segmentation methods showed disadvantages and therefore neither method alone 

was suitable for the detection of new vessels.  However, each of the produced binary maps 

held vital information.  The standard approach provided the information to distinguish new 

vessel from normal vasculature and the modified approach provided information to distinguish 

new vessels from non-vessel edges.  Extraction of information from both maps could be used 

effectively to detect new vessels, therefore both segmentation methods were applied. 

The segmented results shown in the figures so far also included an additional step to remove 

any falsely detected microaneurysms and haemorrhages, known as dark lesions.  The line 

operator parameters and the low threshold that were selected to ensure increased sensitivity 

to new vessels also caused an increased sensitivity to red lesions.  A simple measure of 

circularity (see equation 5) and area from the objects in the binary vessel map was used to 

distinguish dark lesions and other spurious objects in order to remove them. 

  Circularity = 4π.area/perimeter2   (5) 

(a) (b) 

(c) (d) 
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2.3  Straight Vessel Removal: 

Many sections of the normal vasculature possess high local densities, which occur at or near 

the optic disc, at bifurcation points and at crossover points.  Therefore the claim that new 

vessels could be distinguished from the normal vasculature was only possible if large sections 

of the normal vasculature were first removed.  This was done using a technique proposed by 

[42], which involves the segmentation of the straight vessels.  The standard line operator was 

applied as before, however the operator length was increased to 81 pixels.  The operator was 

no longer sensitive to the tortuous vessels and was instead only sensitive to relatively straight 

vessels.  An empirically derived threshold, T3, was applied and the resultant straight vessel 

maps are shown figure 9. 

 

 

Figure 9: Straight vessel maps corresponding to the images in figure 1. 

The binary vessel maps from the standard and modified approach were both skeletonised by 

means of morphological thinning, to ensure they were thinner than the straight vessel map.  

Following this the straight vessel map was subtracted from each.  The following sections will 

describe how the binary vessel maps, which now contained only partial vasculature, were 

assessed for new vessels. 

(a) (b) 
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2.4  Feature Extraction: 

The design of this method is aimed at the classification of image regions that contain new 

vessels.  These image regions can be described as containing many vessel segments, which are 

closely spaced, appear in multiple orientations and possess a tortuous nature.  There was no 

intention in this work to identify individual new vessel pixels or segments.  Achieving a high 

performance at such a level of accuracy is currently unrealistic, and even a human observer 

would struggle due to the often obscure appearance of new vessels.  

The binary vessel maps were converted into vessel segments prior to measurements of 

features.  The vasculature was a single pixel in thickness as skeletonization had been 

performed in the previous stage.  Vessel segments were created by removing bifurcation 

points which were pixels with more than two eight-way neighbours.  Finally, small segments 

consisting of fewer than ten pixels were discarded. 

A sub window of size 151 x 151 pixels was created in order to calculate local features 

associated with the morphology of the vasculature.  This sub window was scanned through the 

image and at each pixel position the four features listed below were calculated.  This same set 

of features was measured from the binary vessel map from each the standard and modified 

approach to produce two separate feature sets. 

1) Number of vessel pixels 

2) Number of vessel segments 

3) Number of vessel orientations  

4) Vessel density 
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For the third feature, the end points of a segment were connected by a straight line.  The angle 

the line made with the x-axis that fell within the range -90ᵒ to 90ᵒ of the unit circle was 

calculated.  The calculated angle was accordingly dropped into one of eight bins, each 

representing a range of angles.  This was done for each segment within the sub window and 

the number of non-empty bins represented the number of orientations.  For the fourth 

feature, a segment was dilated with a disk structuring element with a radius of 20 pixels.  The 

number of vessel pixels within the dilated area was divided by the number of pixels within the 

segment to give its vessel density.  This was done for each segment within the sub window and 

the mean vessel density was calculated.   

 

2.5  Dual Classification: 

The conventional approach for classification is an individual classifier that uses a single feature 

set.  Combining multiple classifiers can enhance the performance of the individual classifier.  

Fraz [28] described a multiple classifier approach using bagging and boosting techniques, this 

used a single feature set.  Of more relevance to this work are the multiple classifier approaches 

that use multiple feature sets.  Chim [51] proposed a dual classification system that used two 

different feature sets.  The features could have been combined to produce a single feature set, 

however to achieve a better performance they were kept separate and independent 

classification was performed which were then combined to produce a final decision.  

The proposed methodology adopted a dual classification approach.  All features were 

normalised so that each feature had zero mean and unit standard deviation.  Independent 

classification was performed for each feature set using a support vector machine (SVM) 

classifier [52,53].  The linear and nonlinear SVMs were tested.  The former was used as the 

latter did not demonstrate any improvements in this application.  Each classifier independently 
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labelled the candidate pixel as new vessels or non-new vessels.  The system produced a final 

decision by combining the outcomes.  The candidate pixel achieved a new vessel label only 

when both classifications agreed on its identity being new vessels, otherwise it achieved a non-

new vessel label.  When complete, all pixels labelled as new vessels were dilated with a 

structuring element the size of the sub window to illustrate the new vessel regions. 

Whilst only two classes were used, new vessels and non new vessels, both feature sets and 

their independent classification were not intended to distinguish the same two cases.  

Classifier 1, associated with the feature set measured from the standard line operator 

approach, was intended to distinguish new vessels from normal vessels.  Classifier 2, 

associated with the feature set measured from the modified line operator approach, was 

intended to distinguish new vessels from exudates.  Combining the outcomes then removed 

the false new vessel responses that each classifier made. 

 

3  EXPERIMENTAL EVALUATION: 

3.1  Materials: 

Due to the low prevalence of new vessel in the screening population, the proposed method 

was evaluated using images collected from two sources.  These were the publicly available 

MESSIDOR retinal image database, provided by the Messidor program partners [54], and the St 

Thomas’ hospital ophthalmology department.  A total of 60 images were included in the 

dataset: 20 with confirmed new vessels and a further 40 images without new vessels.  The 

image data from each source were as follows: 

1) MESSIDOR:  5 new vessel images, 20 normal images and 20 images with the large 

majority showing other DR pathology (mainly bright lesions) and the remainder 
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showing strong reflection artefacts.  These images were acquired from a colour video 

3CCD camera on a Topcon TRC NW6 fundus camera with a 45 degree field of view 

(FOV) and an image resolution of 2240 x 1488 pixels. 

2) St Thomas’ Hospital:  15 new vessel images acquired with a Nikon D80 digital SLR 

camera on a Topcon TRC NW6 fundus camera with a 45 degree FOV and an image 

resolution of 2896 x 1944 pixels.  Ethical approval was obtained for the use of these 

images. 

Images were scaled to the same size using a spatial normalization technique proposed by [55] 

along with bicubic interpolation and anti-aliasing.  This was based on normalizing the FOV 

width, with the requirement that all images were captured with the same FOV angle.  All 

images were normalized to have a FOV width of 1379 pixels.  This was followed by cropping to 

remove some of the surrounding black boarder to produce images of size 1479 x 1479 pixels. 

For training data, image patches the same size of the sub window were created from the 

dataset and each was labelled as either new vessels or non-new vessels by an ophthalmologist.  

Separate training data was used for each classifier.  Classifier 1 was trained with 50 new vessel 

patches and 50 normal vessel patches.  Classifier 2 was trained with 50 new vessel patches and 

50 patches made up of a variety of bright lesions, dark lesions and reflection artefacts.  Testing 

was performed across the whole of each retinal image, in terms of the classification process 

being performed at every pixel location.  Because of the limited size of the dataset, splitting 

the data set to create separate training and testing sets was not suitable.  Instead, both the 

training and testing sets were created using the same selection of images (entire dataset).  

Evaluation in this manner would clearly cause over fitting of the model, therefore the leave-

one-out cross validation method was applied.  This meant the classifiers were trained using all 

the patches from all the images except those from the single test image, and this process was 
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repeated for each image.  The feature value normalization was also recalculated each time, 

leaving out the test image. 

As mentioned above, the system made decisions on a pixel basis.  As stated previously features 

were extracted using information from the local neighbourhood contained within the sub 

window centred over the target pixel.  Positive pixels were then dilated by the size of the sub 

window to delineate the new vessels regions.  However, the performance from a per image 

basis is more useful from a clinical point of view.  An image simply achieved a new vessel label 

if it contained any delineated regions.  Prior to this, all images had been labelled by an 

ophthalmologist using the same labels as before but on a per image basis.   

To get a more detailed insight into the system’s performance, evaluation was also performed 

on a per patch basis.  The logical approach was to perform testing on the training patches 

using the leave-one-out cross validation method.  This was followed, except many more 

patches were created and labelled by an ophthalmologist to increase the testing data.   

 

3.2  Performance Measures: 

It is common practice to evaluate the performance of such machine learning algorithms using 

the receiver operating characteristic (ROC) curve.  This was created by plotting the true 

positive rate (sensitivity) versus the false positive rate (1-specificity) at various threshold levels 

of the probability score of the classifier.  The SVM estimated a new vessel probability score 

using the distance to the decision boundary.  However due to the dual classifier approach and 

therefore two probability scores, the creation of ROC curves was not a straight-forward task. 

This problem was tackled by creating a 3D ROC surface.  The majority of literature relating to 

higher dimensional ROC analysis relates to multi-class analysis [56,57] and are of little 

relevance.  Of more relevance are studies that add a third dimension by varying the threshold 
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of an additional parameter [58].  To our knowledge, there appears to be no available literature 

concerning ROC analysis for dual classifiers.   

 

Figure 10: 3D ROC surface for the performance on a per patch basis.  The third axis is required 

to vary the threshold of the probability score of the additional classifier that arises in a dual 

classification approach. 

Mentioned above, a conventional 2D ROC curve has 2 axes and the points of the curve are 

created by varying the threshold of the probability score of the classifier.  In this scenario, 

consider the thresholding in concern was that of the probability score of classifier 2.  The 

addition of a third axis was used to represent the thresholding of the probability score of 

classifier 1.  The resultant was a 3D ROC surface that explores all combinations of thresholds 

for the dual classification.  Figure 10 shows the 3D ROC surface representing performance on a 

per patch basis.   

Information from this 3D ROC surface was extracted to create a 2D ROC curve.  For each false 

positive rate value its maximum true positive rate value was found by searching along the third 

axis.  From this 2D plot the area under the curve (AUC) was extracted and used as a 

performance measure. 

Theoretically, plotting the points for all combinations of thresholds of the two probability 

scores directly on a 2D coordinate system was a viable option.  However, the use of a 3D ROC 
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surface provided better visualization in respect to how varying the threshold for each of the 

probability scores affected the performance.    

 

3.3  Results: 

The ROC curves for evaluation on a per patch basis and per image basis are depicted in figures 

11 and 12.  The AUC value for the per patch basis is 0.9632.  A maximum accuracy is achieved 

at an operating point giving a sensitivity (SN) of 0.8793 and a specificity (SP) of 0.9440.  An 

alternate operating point gives a sensitivity of 0.9137 and a specificity of 0.9200.  For the per 

image basis the AUC value is 0.9682.  The operating point with maximum accuracy gives a 

sensitivity of 1.00 and a specificity of 0.90.  The performance from a per image basis is more 

useful from a clinical point of view.  Examples of classified images are given in figure 13.  

Classified new vessel regions have also been indicated with a white boundary.  Images 

containing any delineated regions are classified as new vessel images.  Table 1 shows these 

results along with the reported results from other new vessel detection methods.  The 

MATLAB Code took 450 seconds on an Intel(R) core(TM)2 Quad CPU Q9300 at 2.5 GHz to 

process each image. 

 

Figure 11: ROC curve for the performance on a per patch basis. 
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Figure 12: ROC curve for the performance on a per image basis. 

 

 

Methods AUC SN SP Level 

Jelinek [38] 0.9000 0.9400 0.8200 Image 

Goatman [39] 0.9110 0.8420 0.8590 Image 

Akram [40] - 0.9893 0.9635 Segment 

Hassan [41] 0.7045 0.6390 0.8940 Pixel 

Agurto [46] 0.9400 0.9600 0.8300 Image 

Welikala [42] - 1.0000 0.7000 Image 

Proposed 0.9632 0.8793 0.9440 Patch 

Proposed 0.9682 1.0000 0.9000 Image 

 

Table 1: Reported results for new vessel detection methods. 
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Figure 13: Results of the algorithm applied to the dataset.  (a)-(d) True positive images, (e)-(i) 

true negative images, (j) false positive image. 

 

Figure 14:  Manual delineation of new vessel regions by an ophthalmologist. 

 

4  DISCUSSION AND CONCLUSION: 

In this paper, we have presented an effective new vessel detection method based on a dual 

classification approach and a four dimensional feature vector used to analyse the morphology 

of the local retinal vasculature. 
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The main contribution of this paper is the novel application of a dual classification approach to 

independently process two different segmented vessel maps with the objective to detect new 

vessels whilst reducing false responses caused by bright lesions and other retinal features.  

Segmentation methods include the standard line operator and a novel modified line operator.  

The latter targets the reduction of false responses to non-vessel edges.  In addition, emphasis 

is put on ensuring new vessels are adequately segmented with the correct selection of 

parameters for vessel segmentation.  Another important point emphasised in this paper, is 

that high vessel area alone is not enough to identify new vessels.  A more detailed analysis of 

the morphology of the vasculature is required as well as the removal of straight vessels. 

From the examples of classified images shown in figure 13 it is evident that the algorithm 

responds well to a variety of new vessel formations.  This includes both new vessels elsewhere 

(NVE) and new vessels at the optic disc (NVD), new vessels with associated fibrosis and 

obscure new vessels.  Also evident is the algorithm’s ability to avoid false responses despite 

the presence of bright lesions, dark lesions and reflection artefacts.  Figure 13(j) shows a false 

positive image caused by vessels from the layer beneath the retina (choroid) being visible.  This 

is an unusual case because when vessels from this layer are visible they normally possess little 

contrast to the background and often have a wider calibre, therefore they do not get 

segmented.  Another cause of false responses are dilated capillaries known as intra-retinal 

microvascular abnormalities (IRMA) which are very difficult to differentiate from new vessels.  

IRMA represents a stage of DR that indicates a high risk of the progression of new vessels.  A 

final area of evident difficultly to the algorithm concerns the spacing between bright lesions of 

close proximity.  On rare occasions these areas appear significantly darker than the retinal 

background and therefore the modified line operator can fail to avoid their segmentation. 

In 2002, studies from the UK [59,60] reported the prevalence of PDR is 3.7% for patients with 

type 1 diabetes and 0.5% for patients with type 2 diabetes.  When taking into the account the 
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proportions of patients with each type of diabetes in the UK, an overall value of 0.82% can be 

derived.  Although the prevalence of PDR is low, the associated risk of the rapid onset of vision 

loss means it must be detected reliably.  In UK screening programmes it is considered a serious 

breach in protocol if an image with PDR is either missed or delayed in referral.  Therefore the 

maximum sensitivity of 1.00 that our algorithm reaches on a per image basis whilst achieving a 

respectable specificity of 0.90 gives it potential for clinical application.  However, when 

considering the low prevalence of PDR, this specificity value is lacking.  The results indicate if 

the algorithm is applied in screening programmes that for every correctly identified patient 

with PDR there would be approximately 12 incorrectly identified patients.  This calculation 

does not consider that the 40 non new vessel images from the dataset used to calculate 

specificity were chosen to make this dataset more challenging and is therefore not a true 

representative of a screening population.  This calculation also does not take into 

consideration that on average 4 images are obtained for each patient.  A final point not 

considered in this calculation is that a proportion of patients with PDR will already be under 

the care of ophthalmology and therefore are not required to attend screening. 

The proposed method does achieve better performance metrics than the other published 

methods, as shown in table 1.  However, true comparisons are difficult to make as no standard 

datasets have been used for testing.  Also from the small handful of published results, there 

exists variability in terms of their application.  Goatman [39] and Agurto [46] seek to only 

detect new vessels at the optic disc.  Jelinek [38] applied their methods on fluorescein images, 

which have the advantage of possessing a very high vessel to background contrast.  However, 

image capture using fluorescein is an invasive procedure and therefore is not suitable for the 

large scale screening programmes. 

Our algorithm’s SN and SP results that achieve the maximum accuracy on each level (image 

and patch) do not correspond to the same operating point.  The reported per image 
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performance of 1.00 and 0.90 for SN and SP respectively corresponds to a per patch 

performance of 0.5172 and 0.9840 for SN and SP respectively.  This shows, for this per image 

performance, that the system puts no emphasis on detecting and correctly delineating all new 

vessels.  Instead identifying any part of any new vessels in the image is sufficient to achieve a 

positive image label.  Figure 13(d) illustrates how there is no requirement to identify all new 

vessels in the image, with only two out of the five new vessel networks being identified.  Figure 

14 shows the location of all five new vessel networks.  Such an approach assists in obtaining a 

higher specificity whilst being careful to ensure the maximum sensitivity is still retained.  

Niemeijer [13] follows this same approach but in respect to dark lesion detection.  Such an 

approach may hold certain risks, although it is still a viable option for clinical application.  

Previously mentioned were other vessel segmentation methods [33,34] that specialize in the 

reduction of false responses caused by bright lesions.  However, the reduction has to achieve a 

more comprehensive level if they are to be successfully applied in PDR detection.  Our 

modified line operator achieves such required levels, particularly due to the additional step 

taken to resolve the false response caused by the space in-between bright lesions of close 

proximity.  Such a comprehensive level inevitably risks damage to the segmented vessels and 

therefore brought around the requirement of a dual system. 

Future developments of this method will include the evaluation of new vessel delineation.  

Whilst the accurate delineation of new vessels regions was not an objective of this method, its 

performance evaluation provides a comprehensive approach in respect to gaining a detailed 

insight into the system’s performance.  This will provide additional detail to that gained by the 

evaluation on a per patch basis.  Requirements are the careful manual delineation of new 

vessel regions by an ophthalmologist to create ground truth images.  Further development 

concerning the vessel segmentation approaches shall be explored.  Currently a global 

threshold is applied, although a more sophisticated approach such as adaptive thresholding or 
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a supervised machine learning approach may yield better results.  Another intended 

development involves the extraction of further information regarding the morphology of the 

vasculature in order create a higher dimensional feature set.  A mean tortuosity measure had 

been calculated by dividing the true length by Euclidean length for each segment in the sub 

window followed by averaging.  However, it was excluded from the feature set as it reduced 

the system’s performance.  Such an important new vessel characteristic has to be calculated 

more effectively and reassessed. 

All existing PDR detection methods define new vessels as dense lacy networks of unregulated 

vessel growth.  This description does not match their appearance at their initial formation, 

when they can appear as loops or small networks.  These changes in the vasculature can be so 

subtle and it is likely that all existing methods, including our work, would fail in detecting such 

cases.  These cases must still receive urgent referral to a specialist, although they possess far 

less risk of a rapid onset of vision reduction in comparison to large regions of abnormal vessel 

growth.  Another difficultly of PDR detection is caused by retinal features associated with new 

vessels which may on occasion obscure or completely hide them from view.  This includes pre-

retinal and vitreous haemorrhages caused by the rapture of new vessels and tractional retinal 

detachment caused by fibrosis.  On the positive side such cases are clearly identifiable and 

therefore can be flagged up by the photographer performing the screening test. 

Our methodology was not solely tested on images from publicly available data sets due to their 

limited inclusion of new vessel images.  To assist in the development of PDR detection 

algorithms it is vital that a large new vessel data set becomes publicly available.  New vessel 

formations can vary greatly in appearance, thus this should be represented in the data set.  

With a standard data set, comparisons of published methods will be possible.   

In conclusion, this paper has demonstrated an automated system that is capable of detecting 

the presence of new vessels whilst reducing false responses to bright lesions and other retinal 
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features.  The proposal of introducing automated disease/no disease systems into DR 

screening programmes to reduce the manual grading workload have been considered.  The 

addition of PDR detection will greatly strengthen the proposal by ensuring images requiring 

urgent referrals are automatically prioritized.  
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