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Abstract  
Mathematical models that predict the complex dynamic behaviour of cellular 
networks are fundamental in systems biology, and provide an important basis 
for biomedical and biotechnological applications. However, obtaining reliable 
predictions from large-scale dynamic models is commonly a challenging task 
due to lack of identifiability. The present work addresses this challenge by pre-
senting a methodology for obtaining high-confidence predictions from dynamic 
models using time-series data. First, to preserve the complex behaviour of the 
network while reducing the number of estimated parameters, model parameters 
are combined in sets of meta-parameters, which are obtained from correlations 
between biochemical reaction rates and between concentrations of the chemical 
species. Next, an ensemble of models with different parameterizations is con-
structed and calibrated. Finally, the ensemble is used for assessing the reliability 
of model predictions by defining a measure of convergence of model outputs 
(consensus) that is used as an indicator of confidence. We report results of 
computational tests carried out on a metabolic model of Chinese Hamster Ovary 
(CHO) cells, which are used for recombinant protein production. Using noisy 
simulated data, we find that the aggregated ensemble predictions are on average 
more accurate than the predictions of individual ensemble models. Furthermore, 
ensemble predictions with high consensus are statistically more accurate than 
ensemble predictions with large variance. The procedure provides quantitative 
estimates of the confidence in model predictions and enables the analysis of 
sufficiently complex networks as required for practical applications.  

Keywords. Systems biology, Metabolic engineering, Cell line engineering, Dy-
namic modeling, Ensemble modeling, Consensus. 
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1 Introduction 

Mathematical modeling is a fundamental task in systems and computational biology 
[1], with important applications in biomedicine [2—5]. Among other features, models 
allow monitoring the state of unmeasured variables and making predictions about 
system behaviour for a larger number and broader variety of conditions than can be 
efficiently tested in experiments [6]. The construction and calibration of models of 
large, complex dynamic systems is a particularly challenging task. Uncertainties ap-
pear at different stages of the process, limiting the confidence in the resulting predic-
tions [7,8]. Shortage of experimental data can easily lead to poor identifiability. As an 
example, consider a well-known result from nonlinear systems theory which states 
that, to identify a model described by differential equations containing r parameters, 
2r+1 experimental measures may be enough [9]. This result assumes exact, noise-free 
measurements; however, in practice there will always be errors in the data, hence the 
2r+1 figure represents a lower bound. When the number of parameters is larger than 
what can be actually determined from data, the calibration procedure can some-
times—when allowed by the model structure—yield a perfect fit between model pre-
dictions and measurements. However, there is a danger of overfitting in this situation, 
i.e., the model is being trained to fit in detail the noise contained in the data instead of 
actually learning the system dynamics. This problem entails the risk that model pre-
dictions will be wrong for altered experimental conditions.  

The problem of dealing with uncertainty in cellular network modeling was re-
viewed in [10]. In that review, the use of ensembles—sets of models with different 
structures and/or parameter values—was considered as a powerful and generally ap-
plicable approach for reducing prediction errors. However, it was also acknowledged 
that the concept has not sufficiently matured yet. Indeed, ensemble modeling ap-
proaches have been recently applied to a variety of problems, ranging from climate 
prediction [11] to impact of vaccines [12]. An early example of the use of an ensem-
ble approach in biological models was presented in [13], which was limited to ensem-
bles of topologies of Boolean networks. Tran et al [14] extended the approach to the 
dynamic case, building an ensemble of metabolic models that reached the same steady 
state and applying it to the central carbon metabolism of E. coli. A related application 
was presented in [15]. For a review of metabolic ensemble modeling see [16].  

The use of the consensus as an indication of the reliability of the predictions was 
explored by Bever [17], who computed time-dependent probability distributions of 
protein concentrations in artificial gene regulatory networks and introduced the con-
cept of consensus sensitivity, finding that consensus among ensemble models was a 
good indicator of high-confidence predictions. Recently, further steps were taken with 
the introduction of the concept of “core prediction”: a property that must be fulfilled 
if the model structure is to explain the data, even if the individual parameters are not 
accurately identified [18]. 

The present paper deals with the problem of evaluating and, if possible, increasing 
the confidence in the predictions made by kinetic metabolic models. It is assumed that 
the model structure—the topology of the metabolic network—is known. Actually, this 
assumption is not a requirement of the proposed methodology, which may be applied 
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to ensembles of models with different topologies. However, in the present work the 
uncertainty in the predictions is due only to uncertainty in the parameter values. To 
overcome uncertainty, an ensemble of models with different parameterizations is 
built. As a preceding step to improve identifiability and to reduce overfitting, the ini-
tial model parameters are grouped into modules of meta-parameters, which are used 
during calibration. Then a measure of consensus among model outcomes is intro-
duced, which is used to quantify the confidence in the predicted metabolite concentra-
tions. A schematic depiction of the methodology is shown in Figure 1. 

We note that, while a consensus approach was proposed in [17], it used different 
measures than the ones we introduce here, and it was applied to toy models consisting 
of 3 or 4 genes. The present methodology includes entirely new features such as the 
use of meta-parameters, and it is tested on a medium-size network including 34 me-
tabolites. We also remark that, unlike the approach presented in [18], we do not intend 
to characterize the model’s core predictions, but instead to give estimates of the con-
fidence in the predictions. Finally, we note that a preliminary version of this work 
[19] was presented at the PACBB’14 conference. This new version has been exten-
sively rewritten, including new figures and results, which have been calculated with a 
new dissensus measure that enables a more sensitive discrimination of larger and 
smaller prediction errors. 

 

 
 

Fig. 1 - Diagram of the methodology. From the initial model (“Model 0”) different meta-
parameter sets are obtained, leading to a set of models with different parameterizations 
(“Model 1”, “Model 2”, …, “Model n”). Parameter est imation (PE) is then performed on 
these models, leading to an ensemble of calibrated models (“Model 1(C)”, …). Additional-
ly, the original model can also be calibrated without using the meta-parameter approach 
(dashed grey line leading to “Model 0 (C)”). The resulting ensemble of models is simu-
lated, obtaining an ensemble of predictions. From these predictions, consensus measures 
are calculated and conclusions are obtained. 
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2 Methods  

2.1. Meta-parameter approach 

The methodology aims at adapting the kinetics of interrelated reaction pathways. 
Highly correlated trajectories of simulated concentrations and reaction rates point at 
functional dynamic relations, which can be adjusted by the parameters that corre-
spond to the correlated time courses of concentrations and fluxes. We will refer to 
these sets of parameters as meta-parameters and use them for improving identifiability 
and reducing the risk of overfitting. 

Let us consider an ordinary differential equation (ODE) model with rate kinetics 
which follow the description in [20], where a rate of an enzyme i is defined by  

 

 �� � ����� ∙ ��	
� , ��� = ����� ∙ 	1 � ∑ ���������� ln � �����	��                                (1) 

 
with ri being a product of the maximal rate (ri

max) and a kinetic rate expression (��) 
which is a function of the metabolite concentrations (cj) and the parameters (��) that 
quantify the contribution of metabolite j in the rate i. The function �� is following here 
linlog kinetics [21], but it can be any generic kinetic rate equation where parameters �� are associated to specific metabolite concentrations cj, such as KM values in Micha-
elis-Menten type kinetic equations.  

The model is simulated with a set of initial parameter values ��	 � !��	 , … , ������	 #, obtaining time courses of concentrations and rates. The 
Pearson Correlation Coefficients (PCC) are then calculated between simulated con-
centration time courses for all balanced species cj, as well as between all simulated 
rates ��.  This yields two correlation arrays, Cr and Cc: 

 

$� � %&$$��,�� ⋯ &$$��,��⋮ ⋱ ⋮&$$��,�� ⋯ &$$��,��
*, $� � %&$$��,�� ⋯ &$$��,��⋮ ⋱ ⋮&$$��,�� ⋯ &$$��,��*         (2) 

 
Meta-parameters are defined by pairing metabolites and reactions. First, a set of 

metabolites is selected, cj sel, which is of particular interest, e.g. because their time 
courses have been measured. Each metabolite of interest is paired with the reaction 
rate with the highest contribution to the metabolite balance, ��	�+,. In most cases the 
flux with the highest contribution corresponds to the formation rate of the metabolite. 
Rates which are highly correlated (PCC > 0.8) with the selected rate ��	�+, are then 
included in a vector ��	�-��. Similarly, the metabolites which are present in the kinetic 
equations of the correlating rates (ri corr) and which are highly correlated with cj sel are 
included in a vector, 
�	�-���	�-��. Thus for each concentration-rate pair (cj sel, ri sel), two 

vectors 
�	�-���	�-��	and ��	�-�� 	are obtained.  
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A meta-parameter vector MPi sel,j sel  consists of all the parameters �	�-���	�-�� which are 
related to the metabolite concentrations 
�	�-���	�-�� in the correlating rates  ��	�-��. Each 
meta-parameter vector MPi sel,j sel is split into two vectors, one for substrate parameters .&�	�+,,�	�+,�/0� 	and one for product parameters .&�	�+,,�	�+,	��-1 : 

 
 .&�	�+,,�	�+,	��-1 � !�	�-���	��-1		�-��#, .&�	�+,,�	�+,�/0� � !�	�-���	�/0�	�-��#   (3) 

 
If identical meta-parameters are identified from correlation analysis, just one pa-

rameter vector is kept to avoid co-linearity.  
For each meta-parameter, an optimization parameter ki sel,j sel is defined, which mul-

tiplies every parameter in the set. This reduces the size of the optimization problem: 
instead of estimating all the parameters �	�-���	�-�� included in a meta-parameter separate-
ly, they are kept at their nominal values and only the ki sel,j sel need to be estimated, that 
is, .&�	�+,,�	�+,��-1	-�2���, = .&�	�+,,�	�+,	��-1	�-����,× 3�	�+,,�	�+,	��-1	-�2���, for product parameters, and .&�	�+,,�	�+,�/0�	-�2���, = .&�	�+,,�	�+,	�/0�	�-����,× 3�	�+,,�	�+,	�/0�	-�2���, 	for substrate parameters.  

Multiple meta-parameters can be grouped into modules. A module is a set of meta-
parameters that is designed to manipulate the dynamics of one phenotypic property. 
With a different choice of metabolites of interest, different meta-parameter sets for the 
same model structure are obtained. Thus, the property of interest determines the 
choice of meta-parameters.  

In the present work the meta-parameter sets have been determined using the mod-
elling and simulation software Insilico Discovery™ (Insilico Biotechnology AG, 
Stuttgart, Germany). The routine has a low computational cost: for the model under 
examination, calculations were carried out in less than three minutes. 

For better understanding, in the remaining of this subsection we explain the gen-
eration and grouping of a meta-parameter for a particular example. Let us assume that 
we want to obtain a module of meta-parameters related to the energy metabolism, in 
which we know that e.g. glucose plays a key role. We therefore choose glucose (
4,�) 
as cj sel. The glucose uptake rate (�4,�	/�2�5+) has the highest contribution to the node 
balance, and it is therefore chosen as ��	�+,. Then, we generate the concentration and 
rate correlation arrays by calculating the Pearson Correlation Coefficients from simu-
lated concentration and rate time curves. We obtain the vector �4,�	/�2�5+	�-�� for rates 
which correlate strongly (i.e., PCC > 0.8) with �4,�	/�2�5+. Concentrations which are 
(i) included in the kinetic expressions of the rates in �4,�	/�2�5+	�-�� 	 and (ii) correlate 
strongly with 
4,�, are included in the vector 
4,�	�-��. One of the rates in the rate vec-
tor �4,�	/�2�5+	�-�� 	 is the aspartate-glutamate carrier reaction (��4�). The kinetic equa-
tion for this reaction is shown in equation (4) below. The kinetic rate expression (��4�) 
includes the concentrations of four metabolites: two substrates, cytosolic glutamate 
(
4,/6) and mitochondrial aspartate (
���7), and two products, mitochondrial gluta-
mate (
4,/7) and cytosolic aspartate (
���6): 

      ��4� � ��4���� �1 � �4��/0�4,/6 ln ��89:6�89:6� � ��4��/0�	���7 ln ��;<=7�;<=7� � � �4�	��-1	4,/7 ln ��89:7�89:7� � ��4���-1	���6 ln ��;<=6�;<=6� ��		 (4) 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 

From the four metabolites present in the equation, we find one (cytosolic glutamate) 
whose concentration time course, 
4,/6 , is strongly correlated with the time course of 

the glucose concentration, 
4,�; hence we include 
4,/6  in the vector 
4,�	�-��4,�	/�2�5+	�-��. 
The parameter corresponding to both ��4� and 
4,/6  is �4��/0�	4,/6 , which is therefore 
included in the meta-parameter vector .&4,�	/�2�5+,4,��/0�  (since cytosolic glutamate is a 
substrate in the reaction of the aspartate-glutamate carrier). By repeating this proce-
dure for all the rates present in the vector �4,�	/�2�5+	�-��, we obtain the meta-

parameters .&4,�	/�2�5+,4,��/0�  and .&4,�	/�2�5+,4,���-1 . The set of parameters included in 
those meta-parameters, together with the parameters in other concentration—rate 
pairs (e.g.	
>?@6-	��2���+) that are key metabolites for the energy metabolism, form the 
module “energy metabolism”.  

As already mentioned, the procedure is not only valid for linlog kinetics, but also 
for any generic kinetic rate equation. To demonstrate the validity for an alternative 
rate equation, we reformulate equation (4) using irreversible Michaelis-Menten kinet-
ics. Using the notation AB � �� for the Michaelis-Menten constant, we have the fol-
lowing expression: 

 

��4� � ��4���� CD �;<=7�;<=7E�;86<:F<	;<=7G ∙ D �89:6�89:6E�;86<:F<	89:6GH		                    (5) 

 
Following the same reasoning as before, since the concentration 
4,/6  is highly cor-

related with the concentration of our metabolite of interest, 
4,�, the corresponding 

parameter �4��/0�	4,/6 is included in the meta-parameter .&4,�	/�2�5+,4,��/0� . This is 
equivalent to the linlog case.  
 

2.2. Calibrating the models in the ensemble 

The parameter values are estimated by calibrating the models in the ensemble with the 
enhanced scatter search parameter estimation method [22]. It is a state-of-the-art 
metaheuristic that has shown competitive performance with large-scale multimodal 
problems [23]. A parallel version of the method is available [24]; however, the com-
putational effort associated with the optimization problem tackled in the present work 
is not as demanding as to require parallel techniques. Hence we decided to apply the 
sequential version of the method that is included in the AMIGO toolbox [25]. Recent 
applications of parallel optimization metaheuristics in bioinformatics can be found 
e.g. in [26]. 

The enhanced scatter search metaheuristic (eSS) can be regarded as a hybrid tech-
nique which combines global and local search, the latter in order to accelerate con-
vergence to nearby optima. In this application, the local method chosen is the Matlab 
routine fmincon, available in the Optimization Toolbox. 
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When there is lack of identifiability, different sets of parameter values can fit the 
data equally well. Because eSS is a stochastic technique, several optimization runs 
with different random initializations result in different solutions, each of which is a 
member of the ensemble. Models in the ensemble share the same structure but have 
different parameterizations. Each meta-parameter set leads to a model with a different 
parameter set for optimization purposes. In turn, each of these models can give rise to 
several models by changing the parameter values. The resulting ensemble includes (i) 
models calibrated with the meta-parameter approach, and (ii) models that were cali-
brated with the original parameter set.  

2.3. Consensus approach 

After creating an ensemble of models with different meta-parameter set and/or differ-
ent parameter values, it is used for estimating the reliability of the predictions. The 
behaviour of each model in a different experimental condition is simulated. Conver-
gence of the model outputs (consensus) is then taken as an indicator of the confidence 
in the prediction (see section 3 for justification).  

Let us introduce the following notation: let np be the number of data points (that is, 
of time instants corresponding to the measurements), nm the number of models in the 
ensemble, and ns the number of dynamic states (concentrations) for which a prediction 
is made. The prediction of the dynamic state j at time i made by model k is Aijk. The 
average prediction of all the models for every state and time instant is the np×ns array: 

 

         IJKLLLL � ��7∑ I��5�75��                                                      (6) 

 
The dissensus dijk of every model k with respect to the average prediction for a 

concentration j at every time instant i can be encapsulated as a np×ns×nm array, 
                                                         

M��5 � !>N�OP>N�#Q
maxO!>N�O#PminO!>N�O#                                                (7) 

 

The mean dissensus of every model for every state along the time horizon is  

                        M�5 � ∑ 1N�OR=NST�=                                                      (8) 

And the ensemble dissensus is the mean dissensus among all the models for a par-
ticular state along the time horizon, 

                       M� � ∑ 1�OR7OST�7                                                      (9) 

From which we define the ensemble consensus for each state as: 

 U� 	� 	VWU	M�� 	X 	M�                                               (10) 
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To compare the consensus elicited by different states in the same model it is useful 

to use normalized metrics which have values between 0 and 1. With this aim we de-
fine a scaled ensemble consensus for each state as: 
 YU� 	� 	���	1��	P	1����	1��                                                      (11) 

 
In this way, if we obtained e.g. sx1 = 0.8051, sx2 = 0.9874, and sx3 = 0.9903, we 

would note that the ensemble consensus for state variable 2 (which typically repre-
sents the concentration of a chemical species) is clearly higher than for state variable 
1, and therefore the methodology would suggest that the predictions about the concen-
trations of species 2 are more reliable than for species 1. Furthermore, since the dif-
ferences between sx2 and sx3 are relatively small, we could also conclude that the pre-
dictions about the concentrations of state variables 2 and 3 are similarly reliable. 

Finally, we can calculate an average global consensus for all the states as 

U � ∑ ��R<�ST�<                                                             (12) 

Defining other consensus metrics is straightforward, by choosing other measures of 
the distance between model predictions. For example, in equation (7) we could use 
the difference in absolute values rather than the squared difference, i.e.  

 M��5 � |>N�OP>N�|
maxO!>N�O#PminO!>N�O#                                                (13) 

 
The expression described in equation (13) was chosen in a previous work [19]. 

However, comparisons between both metrics have shown that using the expression in 
equation (7) enables a more sensitive discrimination of larger and smaller prediction 
errors, and is hence the one used in the present work. 

We quantify the error in the prediction of model k with respect to the true value of 
a concentration j at every time instant i as: 

                                                         

[��5 � \>N�OP>N�∗ ^Q
maxO!>N�O#                                               (14) 

 

where I��∗  is the true value of the concentration. The error of every model for every 
state along the time horizon is  

                        [�5 � ∑ +N�OR=NST�=                                                    (15) 

And the average prediction error for a state is the average error of all the models, 
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                  [� � ∑ 1�OR7OST�7                                                     (16)  

 
To normalize the prediction error between 0 and 1 we define a scaled error as: 

 Y[� 	 � 	 +����	+��                                                 (17)     

                                          

3 Results and Discussion 

3.1. Case study: Chinese Hamster Ovary cells model 

The methodology was applied to a metabolic model of Chinese Hamster Ovary cells 
(CHO), which are used for recombinant protein production in fermentation processes. 
We simulated a batch process with resting cells and a time horizon of 300 hours. The 
fermenter medium contains glucose as the main carbon source, and leucine and me-
thionine as representative amino acids that are taken up. Lactate is modeled as key by-
product of the fermentation process. A synthesized protein serves as main product of 
the fermentation process. Glucose, lactate, product protein, leucine, and methionine 
are assumed to be measured in the fermenter. Aspartate, malate, pyruvate, oxaloace-
tate, ATP, and ADP are assumed to be available as intracellular metabolite measure-
ments.  

The model comprises 34 metabolites (whose concentrations are the state variables, 
numbered in Table 1) and 32 reactions, and includes protein product formation, Emb-
den-Meyerhof-Parnas pathway (EMP), TCA cycle, a reduced amino acid metabolism, 
lactate production, and the electron transport chain. The metabolic network is shown 
on Fig. 2 and the detailed reactions are listed in the supplementary information (Table 
7). The kinetic ODE model comprises 117 parameters in total. The kinetic expres-
sions of the rates are of the form of equation (1). The values of  ����� that appear in 
the equation can be taken from a stationary reference flux distribution, which we ob-
tained by applying Flux Balance Analysis (FBA). The objective function for FBA is 
defined as: 
 �-0�_`> � VWU	V��                                (18) 
 
where mr is the maintenance rate, which is defined as surplus of all ATP producing 
fluxes over all ATP demanding metabolic processes in the cell. Uptake and produc-
tion rate constraints were chosen to be close to measured stationary fluxes in [27]. 
The remaining parameters that need to be identified are: the Km values in the Michae-
lis-Menten kinetics, and the elasticities in the linlog kinetics. The model is available 
in different formats (SBML, Matlab, C, COPASI, AMIGO) as part of the BioPreDyn-
Bench suite [28], which can be downloaded from 
http://www.iim.csic.es/~gingproc/biopredynbench/   
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Fig. 2 - Metabolic network of the CHO cell model.
 

The model was subdivided into f
ciated meta-parameter modules were generated
2—6 in the Supplementary Information): 

• Central metabolism module: 
EMP and TCA cycle, describing the dynamics of glucose, leucine, methionine, and 
2-oxoglutarate. 

• Fermenter module: describing the dynamics of glucose, lactate, methionine, le
cine, and product protein. 

• Energetics module: TCA cycle and energy
namics of glucose, pyruvate, methionine, leucine, and ATP.

• Uptake and energetics module: substrate
the dynamics of glucose, methionine, leucine, ATP, product protein

• Uptakes module: describing the dynamics of glucose, methionine, 

 

Metabolic network of the CHO cell model. 

subdivided into five different physiological modules, for which asso-
parameter modules were generated (more details are given in Tables 

6 in the Supplementary Information):  
Central metabolism module: MPs from concentration and rate pairs related to the 
EMP and TCA cycle, describing the dynamics of glucose, leucine, methionine, and 

Fermenter module: describing the dynamics of glucose, lactate, methionine, leu-

Energetics module: TCA cycle and energy-related metabolites, describing the dy-
namics of glucose, pyruvate, methionine, leucine, and ATP. 
Uptake and energetics module: substrate-associated meta-parameters describing 
the dynamics of glucose, methionine, leucine, ATP, product protein, and lactate. 
Uptakes module: describing the dynamics of glucose, methionine, and leucine. 
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Table 1. List of state variables (metabolite concentrations) in the CHO model. 
Commonly measured metabolites are marked with (*). 

Meta-parameters in these modules were estimated either for single modules or for 
module combinations during the parameter estimation procedure. Synthetic measure-
ment data was generated using a reference model and was used in lieu of experimen-
tal data. Care was taken to ensure resemblance to realistic experimental conditions. 
For each of the 13 metabolites that are typically measured, 12 sampling times were 
assumed and Gaussian noise was added with a standard deviation of 20% while non-
negativity for all synthetically generated concentrations was ensured.  

3.2. Calibrating the CHO cells model 

Using the eSS algorithm for parameter estimation included in AMIGO, we carried out 
10 optimizations of the full model without meta-parameters (117 parameters) starting 
from different initial random guesses. The lower and upper bounds for the parameters 
were 1/5 and 5 times the nominal values. All of the optimizations succeeded in ob-

Nr Variable name Nr Variable name 
1 Glucose (fermenter) (*)  18 H_out (mitochondria) 

2 Lactate (fermenter) (*)  19 CoQ (mitochondria) 

3 Leucine (fermenter) (*)  20 H_in (mitochondria) 

4 Methionine (fermenter) (*)  21 Pyruvate (cytosol) (*)  

5 Product protein (fermenter)(*)  22 Phosphoenolpyruvate (cytosol) 

6 Glutamate (mitochondria) 23 NADH (cytosol) 

7 NAD (mitochondria) 24 Glycerate3-phosphate (cytosol) 

8 2-Oxoglutarate (mitochondria) 25 NAD (cytosol) 

9 NADH (mitochondria) 26 Glucose (cytosol) 

10 Glutamine (cytosol) 27 Malate (cytosol) (*)  

11 ADP (cytosol) (*)  28 2-Oxoglutarate (cytosol) 

12 Glutamate (cytosol) 29 Aspartate (cytosol) (*)  

13 ATP (cytosol) (*)  30 ATP (mitochondria) (*)  

14 Aspartate (mitochondria) 31 Orthophosphate (mitochondria) 

15 Oxaloacetate (mitochondria) (*)  32 ADP (mitochondria) (*)  

16 Malate (mitochondria) 33 Leucine (cytosol) 

17 CoQH_radical (mitochondria) 34 Methionine (cytosol) 
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taining a good fit to the data, yielding 10 solutions that differed significantly; this 
non-uniqueness suggests lack of practical identifiability.  

Following this initial calibration with the original parameter set, we re-
parameterized the model using the meta-parameter approach. Every meta-parameter is 
defined as a function of several of the original parameters, for which a default value 
has to be set. This default value may simply be chosen as a random initial guess with-
in the parameter bounds. Alternatively, the result of a calibration with the original 
parameter set can be used, if it is available. In our case, since we had already per-
formed 10 optimizations, we chose to use their results for setting the default values. 
Since 10 different possible solutions were found in the first set of calibrations, we 
averaged the 10 parameter vector values obtained and used the result as the initial 
guess. Realizing that this simple average biases the guess towards large values, we 
also considered a solution with smaller parameter values as second initial guess. Thus 
two different guesses for the vector of 117 parameters were used, pg1 and pg2. 

Next we carried out parameter estimations with each of the 5 meta-parameter mod-
ules defined in section 3.1. As before, the optimizations started from 10 different 
initial points for each module; that is, the initial guesses were 10 parameter vectors 
whose values were chosen randomly within the parameter bounds. They were carried 
out twice: with pg1 and pg2, resulting in a total of 2×10×5=100 optimizations.  Re-
ducing the number of optimized parameters (from the original 117 parameters to be-
tween 5 and 12 meta-parameters, depending on the module) improved the identifiabil-
ity of the model, and the 100 optimizations yielded only 22 different solutions (that is, 
the fraction of different solutions obtained in the optimizations was reduced from 
100% to 22%). In particular, the “uptake and energetics” module returned just a single 
solution with pg1 and another one with pg2. On the other hand, we obtained 4 and 6 
different solutions, respectively, for the fermenter module. The number of solutions 
returned by the remaining modules was between the two aforementioned results. 

An ensemble of models was created with these 22 parameterizations plus the 10 re-
sulting from the optimization of the original model, that is, a total of 32 models. All of 
these models provided a near-perfect fit to the pseudo-experimental data used for 
calibration, as shown in Fig. 3A. The fact that the models calibrated with the meta-
parameter modules (which had between 5 and 12 free parameters to be optimized) 
managed to fit the data equally well as the models calibrated with the full original set 
(117 parameters) supports the idea that the models calibrated with the original para-
meter set had a clear risk of overfitting. The decrease in the number of optimal solu-
tions found with the meta-parameter approach suggests that its use reduced this risk. 
The reduction in the number of estimated parameters also led to a decrease of the 
computation times of the optimization procedure by up to two orders of magnitude. 
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Fig. 3 – (A): Time-courses of the 13 measured state variables (metabolite concen-
tration changes). The plots show: pseudo-experimental data (red circles with 
error bars); individual predictions of the 32 fitted models (grey lines); and their 
average—i.e., ensemble—predictions (blue lines). The pseudo-experimental data 
corresponding to these 13 states were used in the parameter estimation proce-
dure.  
(B): True model output with nominal parameters (red lines), individual predic-
tions of the 32 fitted models (grey lines), and their average—i.e., ensemble—
predictions (blue lines), for the 21 unmeasured states (metabolite concentra-
tions). 

3.3. Predictions of unmeasured variables 

Next we evaluated the ability of the calibrated models and of the ensemble to repro-
duce the concentrations of the remaining 21 metabolites, which are typically not 
measured in practice. The scaled consensus in the predictions among models in the 
ensemble was calculated for each of the measured and unmeasured metabolites as in 
equation (11). In general, the measured metabolites elicited more consensus than the 
unmeasured ones as expected. Panel B of Fig. 3 shows the predictions of every model 
in the ensemble (in grey) together with the real output (in red) and the ensemble pre-
diction (in blue), for the 21 unmeasured states. Visual inspection of this figure shows 
that consensus is a good indicator of the confidence in the predictions, a result further 
confirmed by the numerical results. For example, predictions of the time course of 
NADH (cytosol) elicit a very high consensus (sx23 = 0.999992), which suggests that 
its consensus prediction is very close to the real output. This is indeed the case: in Fig. 
3B, the ensemble prediction of this variable (blue line) is indistinguishable from its 
true time course (red line). Conversely, variable number 10 (concentration of gluta-
mine in cytosol) has the lowest consensus: due to scaling, its value is actually zero, 
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sx10 = 0, and the resulting prediction is far from the real output. Therefore, if we were 
thinking of measuring additional metabolites, we should concentrate our efforts on 
those metabolites with the larger dissensus, such as glutamine, and we could safely 
avoid additional measurements and rely on the ensemble prediction for metabolites 
such as NADH. 

Indeed, consensus and prediction error were found to be significantly anti-
correlated, with a correlation coefficient of � � X0.7719 and p-value � 9 ∙ 10Pe. Fig. 
4(A) plots the scaled consensus sxj and scaled prediction errors sej for the 13 meas-
ured variables. Since the models were fitted to these data, the prediction errors are 
very low and the consensus is very high for all the variables. Fig. 4(B) shows the 
corresponding values for the 21 unmeasured variables. 

 

 

Fig. 4 – Bar plots of the scaled consensus sxj and scaled prediction errors sej for the 13 
measured variables (panel A), and for the 21 unmeasured variables (panel B).  

It can be noticed that, for the 10 unmeasured variables that elicit higher consensus 
(numbers 31, 22, 7, 9, 18, 20, 17, 19, 23, and 25), the prediction errors are very low, 
which is not always the case for the other variables. Thus, ranking the predictions 
according to their consensus is a useful way of deciding which metabolites should be 
measured and which can be left unmeasured because we have enough confidence in 
the predictions. 

3.4. Predictions under different experimental conditions 

Assessing the confidence in predictions of the system’s behaviour under different 
conditions than those used for calibration represents another application of the con-
sensus approach. In this case, often no experimental data are available. To test the 
validity of the approach in this type of scenario, we generated a new set of experimen-
tal conditions by randomly changing the initial concentrations of all the metabolites. 
Then we simulated the model’s behaviour with nominal parameter values, generating 
a new artificial dataset, and compared it with the corresponding output of the ensem-
ble models; results are shown on Fig. 5. Fig. 6 plots the scaled consensus sxj and 
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scaled prediction errors sej for the 34 variables. Again, consensus and prediction error 
were found to be anti-correlated, with a correlation coefficient of � � X0.9998 and p-
value � 5 ∙ 10Phi. Finally, Fig. 7 represents in a different way the results shown in 
Figs. 4 and 6. 
 

 

Fig. 5 - True model output with nominal parameters (red lines), individual predictions of 
the 32 fitted models (grey lines) and their average—i.e., ensemble—predictions (blue 
lines) for the 34 state variables (metabolite concentration changes) in the CHO model, 
under different conditions than those used in the model calibration. 
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Fig. 6 - Bar plots of the scaled consensus sxj and scaled prediction errors sej for the 34 
state variables (metabolite concentrations) in the CHO model, under different conditions 
than those used for calibration. Note that the scaled consensus (range 0.99—1) and scaled 
prediction error (range 0—0.02) refer to different axes (consensus on the left, error on the 
right). Note also that the scaled error lies outside the plot range: se2 = 1.   

 
Fig. 7 – Scatter plot of scaled consensus sxj and scaled prediction errors sej for 
the 34 state variables (metabolite concentrations) in the CHO model. This figure 
includes the data used in Fig. 4 (blue circles) and in Fig. 6 (black circles). The 
dashed green line corresponds to an ideal correlation. 
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4 Discussion 

Before proceeding to the conclusions, we discuss in this section some aspects of the 
procedure and the results that deserve further comment. 

We begin by remarking that an advantage of using an ensemble approach is that, as 
suggested by the anti-correlation between YU� and	Y[�, the ensemble average can gen-
erally recapitulate the true system behaviour. This is shown in figures 3 and 5, where 
it can be noticed that the average (blue lines) and the true output (red lines) are gener-
ally close to each other, while some individual predictions (grey lines) are sometimes 
very far from reality.  

This is not always true, though: in some cases (i.e. for some concentrations) the en-
semble average fails to recapitulate the true dynamics. However, what the aforemen-
tioned anti-correlation implies is that—to a certain extent—we can expect to know 
when we should trust the ensemble predictions and when we should not. Thus, from 
Fig. 4 we conclude that the predictions for the variables with the highest consensus 
(that is, 19, 23, 25…) are highly reliable; and when we look at the corresponding plots 
in Fig. 3 we see that this is indeed the case. Conversely, since variables such as 10, 
28, and 12 elicit low consensus, we expect their predictions to be of less quality than 
the others, which is indeed the case if we look again at Fig. 3. To sum up, the intro-
duction of a consensus metric complements the ensemble approach by providing indi-
cations of the confidence in the ensemble prediction. 

We remark that the ensemble prediction is, on average, better than the individual 
predictions of the models in the ensemble. This is shown in Fig. 8, which compares 
the prediction errors of the ensemble average for all the states with the average error 
of each of the calibrated models. Furthermore, Fig. S1 (see supplementary file) aggre-
gates the prediction errors of each model for all states, thus comparing the predictions 
of individual models with the ensemble prediction globally (instead of doing it sepa-
rately for each state), showing that in both scenarios the ensemble prediction is among 
the top performers. To sum up, from the results it can be concluded that, since one 
cannot know a priori the quality of a particular model’s prediction, the best option is 
always to use the ensemble prediction instead of the prediction of an individual mod-
el. 

Another aspect that should be noted is that the consensus can vary between scena-
rios. For example, variable 21, which is pyruvate (cytosol), elicits high consensus in 
the first scenario (Fig. 4), while in the second scenario (Fig. 6) its consensus is very 
low, and as a consequence the ensemble average has a large prediction error. This 
difference in consensus can be easily explained: in the first scenario pyruvate (cyto-
sol) was one of the measured variables, and hence its data were used to calibrate the 
models; hence all of the models managed to fit those data well—the output of all the 
models was nearly identical for that variable—producing a high consensus. In the 
second scenario, however, there were no measured data, so in principle there was no 
reason to expect a higher consensus for any particular variable. 
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Fig. 8 - Bar plots of the errors made by ensemble prediction for each state (me-
tabolite concentration) vs. the average error of the individual models in the en-
semble. The upper panel shows results for the first scenario, where the models 
were calibrated using data from 13 variables; errors for the remaining 21 un-
measured states are displayed. The lower panel shows results for the second sce-
nario, where a new experimental condition was tested; in this case the errors are 
displayed for all the 34 states. 

 
Finally, another aspect of the methodology that is open to discussion is whether to 

include in the ensemble all the available models, or only those calibrated with the 
meta-parameter approach. The difference between both options can be analyzed ac-
cording to two criteria: (1) the resulting ensemble prediction error, and (2) how the 
prediction error for each variable correlates with the ensemble dissensus for that vari-
able. We computed quantities (1) and (2) for ensembles built in two ways: (A) includ-
ing all the available models, and (B) including only models calibrated with the meta-
parameter approach. We found that the differences between both cases were small 
(data not shown). Furthermore, the ‘best’ strategy was different in the scenarios con-
sidered in sections 3.3 (predicting time courses of unmeasured variables) and 3.4 
(predicting time courses of all variables in a different experimental condition). To 
sum up, the consensus approach provided good results for ensembles built with and 
without the meta-parameter approach, and the differences between both cases are 
small. Given that all the calibrated models yielded a good fit to the data, we found no 
reason to leave out of the ensemble the ones that had been calibrated without meta-
parameters. 

5 Conclusions  

We have presented a method for making high-quality predictions in large-scale dy-
namic models. The method introduces two computational techniques, which we have 
referred to as the meta-parameter approach and the consensus approach. Its use has 
been demonstrated on a biotechnological application, a batch process for recombinant 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

protein production in Chinese Hamster ovary (CHO) cells. After building a metabolic 
model of CHO cells, we reduced the number of its parameters by applying the meta-
parameter approach without reducing the model structure. This decreased the risk of 
over-fitting and accelerated the parameter estimation procedure, which produced an 
ensemble of models with different parameterizations. This ensemble was used as a 
basis for application of the consensus approach, whose core idea is to consider the 
coincidence among predictions of the models in the ensemble as an indication of the 
reliability of these predictions. Using a measure of the relative distance between the 
average prediction of all models and the true value, the procedure quantifies the de-
gree of confidence in the predictions of the time evolution of each of the state va-
riables (which can be e.g. metabolite concentrations, as in the example application). 
This quantitative indication can be used to decide where it is most efficient to make 
an additional measurement effort, that is, which state variables should be actually 
measured and for which we can rely on the model simulations. In summary, it has 
been shown how the combination of the meta-parameter approach and of the consen-
sus approach can be a valuable tool for improving the identifiability and applicability 
of complex dynamic models. 
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