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Abstract

Mathematical models that predict the complex dymab@haviour of cellular
networks are fundamental in systems biology, aravide an important basis
for biomedical and biotechnological applicationswéver, obtaining reliable
predictions from large-scale dynamic models is comiy a challenging task
due to lack of identifiability. The present workdaesses this challenge by pre-
senting a methodology for obtaining high-confidepeedictions from dynamic
models using time-series data. First, to presdmeecbmplex behaviour of the
network while reducing the number of estimated peters, model parameters
are combined in sets of meta-parameters, whiclolat@ned from correlations
between biochemical reaction rates and betweeneotrations of the chemical
species. Next, an ensemble of models with diffepamameterizations is con-
structed and calibrated. Finally, the ensembleségifor assessing the reliability
of model predictions by defining a measure of cogeace of model outputs
(consensus) that is used as an indicator of caméieleWe report results of
computational tests carried out on a metabolic hold€hinese Hamster Ovary
(CHO) cells, which are used for recombinant progiaduction. Using noisy
simulated data, we find that the aggregated enseprielictions are on average
more accurate than the predictions of individualesnble models. Furthermore,
ensemble predictions with high consensus are stafly more accurate than
ensemble predictions with large variance. The gtoee provides quantitative
estimates of the confidence in model predictiond anables the analysis of
sufficiently complex networks as required for pieaitapplications.

Keywords. Systems biology, Metabolic engineering, Cell lev@ineering, Dy-
namic modeling, Ensemble modeling, Consensus.
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1 Introduction

Mathematical modeling is a fundamental task inesyst and computational biology
[1], with important applications in biomedicine [5} Among other features, models
allow monitoring the state of unmeasured varialdled making predictions about
system behaviour for a larger number and broadeetyaof conditions than can be
efficiently tested in experiments [6]. The constime and calibration of models of
large, complex dynamic systems is a particularlgllelmging task. Uncertainties ap-
pear at different stages of the process, limitig ¢onfidence in the resulting predic-
tions [7,8]. Shortage of experimental data canlgéesad to poor identifiability. As an
example, consider a well-known result from nonlmegstems theory which states
that, to identify a model described by differenggjuations containing parameters,
2r+1 experimental measures may be enough [9]. Thidtrassumes exact, noise-free
measurements; however, in practice there will abuvag errors in the data, hence the
2r+1 figure represents a lower bound. When the numbea@meters is larger than
what can be actually determined from data, thebratiion procedure can some-
times—when allowed by the model structure—yieldesfgct fit between model pre-
dictions and measurements. However, there is aadayfgverfitting in this situation,
i.e., the model is being trained to fit in det&ié thoise contained in the data instead of
actually learning the system dynamics. This probtatails the risk that model pre-
dictions will be wrong for altered experimental ddions.

The problem of dealing with uncertainty in cellulaetwork modeling was re-
viewed in [10]. In that review, the use of enserablsets of models with different
structures and/or parameter values—was consideredppwerful and generally ap-
plicable approach for reducing prediction errorswever, it was also acknowledged
that the concept has not sufficiently matured yeteed, ensemble modeling ap-
proaches have been recently applied to a variefyraflems, ranging from climate
prediction [11] to impact of vaccines [12]. An sadxample of the use of an ensem-
ble approach in biological models was presentdd3h which was limited to ensem-
bles of topologies of Boolean networks. Tedral [14] extended the approach to the
dynamic case, building an ensemble of metabolicetsodhat reached the same steady
state and applying it to the central carbon metalobfE. coli. A related application
was presented in [15For a review of metabolic ensemble modeling seg [16

The use of the consensus as an indication of tfebiléy of the predictions was
explored by Bever [17], who computed time-dependaobability distributions of
protein concentrations in artificial gene regulgtaetworks and introduced the con-
cept of consensus sensitivity, finding that conssramong ensemble models was a
good indicator of high-confidence predictions. Rehe further steps were taken with
the introduction of the concept of “core predictioa property that must be fulfilled
if the model structure is to explain the data, eehe individual parameters are not
accurately identified [18].

The present paper deals with the problem of evialg@nd, if possible, increasing
the confidence in the predictions made by kinet&taholic models. It is assumed that
the model structure—the topology of the metabofitnork—is known. Actually, this
assumption is not a requirement of the proposedhodeiogy, which may be applied
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to ensembles of models with different topologieswidver, in the present work the

uncertainty in the predictions is due only to uteiaty in the parameter values. To
overcome uncertainty, an ensemble of models wifferéint parameterizations is

built. As a preceding step to improve identifialyiland to reduce overfitting, the ini-

tial model parameters are grouped into modules ethrparameters, which are used
during calibration. Then a measure of consensusngnmeodel outcomes is intro-

duced, which is used to quantify the confidenctheénpredicted metabolite concentra-
tions. A schematic depiction of the methodologgtiswn in Figure 1.

We note that, while a consensus approach was pedpos[17], it used different
measures than the ones we introduce here, andiapg@lied to toy models consisting
of 3 or 4 genes. The present methodology includdisety new features such as the
use of meta-parameters, and it is tested on a mesize network including 34 me-
tabolites. We also remark that, unlike the apprgaelsented in [18], we do not intend
to characterize the model’s core predictions, hsteiad to give estimates of the con-
fidence in the predictions. Finally, we note thapraliminary version of this work
[19] was presented at the PACBB’14 conference. Tieiw version has been exten-
sively rewritten, including new figures and resultdhich have been calculated with a
new dissensus measure that enables a more sergigisgmination of larger and
smaller prediction errors.

| META- I ‘|::
PARAMETERS | PE's ' SIMULATE
CONSENSUS
) ) MEASURES
> @>EE>Ly
= ’ g\
Initial model Ensemble of
(not calibrated) calibrated models Predictions

Fig. 1 - Diagram of the methodology. From the inital model (“Model 0”) different meta-
parameter sets are obtained, leading to a set of mels with different parameterizations
(“Model 17, “Model 2", ..., “Model n"). Parameter est imation (PE) is then performed on
these models, leading to an ensemble of calibratetbdels (“Model 1(C)”, ...). Additional-

ly, the original model can also be calibrated withot using the meta-parameter approach
(dashed grey line leading to “Model 0 (C)”). The reulting ensemble of models is simu-
lated, obtaining an ensemble of predictions. Fromhese predictions, consensus measures
are calculated and conclusions are obtained.
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2 Methods

2.1. Meta-parameter approach

The methodology aims at adapting the kinetics oérielated reaction pathways.
Highly correlated trajectories of simulated concatibns and reaction rates point at
functional dynamic relations, which can be adjustgdthe parameters that corre-
spond to the correlated time courses of conceatratand fluxes. We will refer to
these sets of parameters as meta-parameters atiteoséor improving identifiability
and reducing the risk of overfitting.

Let us consider an ordinary differential equati@DE) model with rate kinetics
which follow the description in [20], where a ratiean enzyme is defined by

= 1 £ ) = (L T vl n () ®
J

with r; being a product of the maximal ratg{) and a kinetic rate expressiofj)(
which is a function of the metabolite concentrasiqg) and the parameterpfo that
quantify the contribution of metabolitén the ratd. The functionf; is following here
linlog kinetics [21], but it can be any generic ddic rate equation where parameters
pij are associated to specific metabolite concentratip such axy values in Micha-
elis-Menten type kinetic equations.

The model is simulated with a set of initial pardene values
pij0 = (p}°,..,p/"**°), obtaining time courses of concentrations andsraiée
Pearson Correlation Coefficients (PCC) are theoutaled between simulated con-
centration time courses for all balanced specieas well as between all simulated
ratesr;. This yields two correlation arrays, andC,:

PCCrl,rl PCCrl,rm
C, = ; P e = : :
PCCrm,rl PCCrm,rm PCCcn,cl PCCcn,cn

PCCcl,cl PCCcl,cn
H . H (2)

Meta-parameters are defined by pairing metaboétas reactions. First, a set of
metabolites is selected, «, wWhich is of particular interest, e.g. becauserttime
courses have been measured. Each metabolite ofshie paired with the reaction
rate with the highest contribution to the metaleoblancer; ;. In most cases the
flux with the highest contribution correspondstie formation rate of the metabolite.
Rates which are highly correlated (PCC > 0.8) with selected rate ,,; are then
included in a vector; ... Similarly, the metabolites which are presenthie kinetic
equations of the correlating rates.{) and which are highly correlated withy are
included in a vectorcjifgﬁrr. Thus for each concentration-rate pairy, ri «), two

vectorsc} sorr andr; o, are obtained.
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A meta-parameter vectMP; «j consists of all the parametgr§;,. which are
related to the metabolite concentratimﬁégﬂ in the correlating rates; ... Each
meta-parameter vectMP; « ; s is split into two vectors, one for substrate pseters

Mp?ubs.  and one for product parametef®?’ %

iseljse isel,jsel"
prod _ jprod corr subs _ j subs corr
MPL sel,jsel — pi corr )’ MPL' sel,j sel — (pi corr ) (3)

If identical meta-parameters are identified fromrettion analysis, just one pa-
rameter vector is kept to avoid co-linearity.

For each meta-parameter, an optimization pararkeigt is defined, which mul-
tiplies every parameter in the set. This reducessthe of the optimization problem:

instead of estimating all the parametgf§°"" included in a meta-parameter separate-

ly, they are kept at their nominal values and dhbk; « j <« N€€d to be estimated, that

is, MPL.”SZ? optimal - MPL.”Sre‘Z‘j.?;’l’"m“lx kfsr;’ldj“s’;?mal for product parameters, and

MP; % 0imet = Mpsubsnominalx 5008 9/l for substrate parameters.

Multiple meta-parameters can be grouped into mad#lemodule is a set of meta-
parameters that is designed to manipulate the digsaof one phenotypic property.
With a different choice of metabolites of interafifferent meta-parameter sets for the
same model structure are obtained. Thus, the promdrinterest determines the
choice of meta-parameters.

In the present work the meta-parameter sets hase thetermined using the mod-
elling and simulation software Insilico DiscoveryTtsilico Biotechnology AG,
Stuttgart, Germany). The routine has a low compnat cost: for the model under
examination, calculations were carried out in ks® three minutes.

For better understanding, in the remaining of thibsection we explain the gen-
eration and grouping of a meta-parameter for equdar example. Let us assume that
we want to obtain a module of meta-parametersa@ltd the energy metabolism, in
which we know that e.g. glucose plays a key role. tiérefore choose glucosg ()
asq o. The glucose uptake ratg;( ,pqke) has the highest contribution to the node
balance, and it is therefore chosenrgs,. Then, we generate the concentration and
rate correlation arrays by calculating the PeafSorrelation Coefficients from simu-
lated concentration and rate time curves. We olitsnvectony;. yptake corr fOr rates
which correlate strongly (i.e., PCC > 0.8) WitJi. yprare- Concentrations which are
(i) included in the kinetic expressions of the sait@ry;c yptake corr and (i) correlate
strongly withc,,., are included in the vecteg,. ... One of the rates in the rate vec-
tOr Ty1c uptake corr 1S the aspartate-glutamate carrier reactigp ). The kinetic equa-
tion for this reaction is shown in equation (4)dvel The kinetic rate expressior{.)
includes the concentrations of four metaboliteso substrates, cytosolic glutamate
(cgr,) @and mitochondrial aspartate,§, ), and two products, mitochondrial gluta-
mate €,,,,) and cytosolic aspartate,(,, ):

_ ..max subsglu, Cgluc subs aspm Caspm prod gluy, Cglum prod asp, Caspc
Tage = Tagc (1 + Page In (Col +Page In 0, + Page In 0 +Page In o0 (4)
gluc

Pm glum aspc
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From the four metabolites present in the equatianfind one (cytosolic glutamate)
whose concentration time coursgy,,, is strongly correlated with the time course of

the glucose concentration,,.; hence we includey,, in the vectorcdlc uptake corr,

glc corr
The parameter corresponding to beg). andcg,,, is plefsgl“”, which is therefore
included in the meta-parameter vedtﬁPgs}g”,fpmke,glc (since cytosolic glutamate is a

substrate in the reaction of the aspartate-glutaroatrier). By repeating this proce-
dure for all the rates present in the VeCtpf. .prakecorr» WE Obtain the meta-

parametersMPSils oo gic and MPLSL . .. The set of parameters included in
those meta-parameters, together with the paramatecther concentration—rate
pairs (€.gcarp,- Tarpase) that are key metabolites for the energy metablferm the
module “energy metabolism”.

As already mentioned, the procedure is not onlydviar linlog kinetics, but also
for any generic kinetic rate equation. To demonstthe validity for an alternative
rate equation, we reformulate equation (4) usingversible Michaelis-Menten kinet-
ics. Using the notatioi,, = p; for the Michaelis-Menten constant, we have the fol

lowing expression:

C (o
— ,.max aspm . gluc
ragc - ragc subs aspm subs gluc (5)
CaspmtPagc CgluctPagc

Following the same reasoning as before, sincedheentratiorcy,, is highly cor-
related with the concentration of our metaboliteirdérest,c,,., the corresponding

subs gluc

parameterpg g, is included in the meta-parametMP;l“C”,fpmke_glc. This is
equivalent to the linlog case.

2.2. Calibrating the models in the ensemble

The parameter values are estimated by calibratiagrtodels in the ensemble with the
enhanced scatter search parameter estimation m¢#2pd It is a state-of-the-art
metaheuristic that has shown competitive perforraanith large-scale multimodal
problems [23]. A parallel version of the methodhigilable [24]; however, the com-
putational effort associated with the optimizatmoblem tackled in the present work
is not as demanding as to require parallel tectesigtience we decided to apply the
sequential version of the method that is includethe AMIGO toolbox [25]. Recent
applications of parallel optimization metaheuristia bioinformatics can be found
e.g. in [26].

The enhanced scatter search metaheuristic (eSSjeceegarded as a hybrid tech-
niqgue which combines global and local search, #teell in order to accelerate con-
vergence to nearby optima. In this application,|tdmal method chosen is the Matlab
routinefmincon, available in the Optimization Toolbox.
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When there is lack of identifiability, differenttseof parameter values can fit the
data equally well. Because eSS is a stochastinigebd, several optimization runs
with different random initializations result in tBfent solutions, each of which is a
member of the ensemble. Models in the ensemble= sharsame structure but have
different parameterizations. Each meta-parametdeads to a model with a different
parameter set for optimization purposes. In tuatheof these models can give rise to
several models by changing the parameter valuesrdsulting ensemble includes (i)
models calibrated with the meta-parameter approacti, (i) models that were cali-
brated with the original parameter set.

2.3. Consensus approach

After creating an ensemble of models with differerdta-parameter set and/or differ-
ent parameter values, it is used for estimatingrétiability of the predictions. The
behaviour of each model in a different experimentaldition is simulated. Conver-
gence of the model outputs (consensus) is themta&en indicator of the confidence
in the prediction (see section 3 for justification)

Let us introduce the following notation: g be the number of data points (that is,
of time instants corresponding to the measurememighe number of models in the
ensemble, andsthe number of dynamic states (concentrations) tuckva prediction
is made. The prediction of the dynamic state timei made by modek is Aj. The
average prediction of all the models for everyestatd time instant is thgxns array:

- 1
Al] = mZZquAijk (6)

n.

The dissensusly of every modek with respect to the average prediction for a
concentratior) at every time instaritcan be encapsulated ag,ansxny array,

=mi

diix = 7
ijk maxk(Aijk)—mink(Aijk) ( )
The mean dissensus of every model for every statgydhe time horizon is
Z:l_p dij
djre = —_:Lp - (8)

And the ensemble dissensus is the mean dissensagyat the models for a par-
ticular state along the time horizon,

T d;
d] = —k;:m Ik (9)

From which we define the ensemble consensus fdr gate as:

x; = max(d;) — d; (10)
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To compare the consensus elicited by differenestat the same model it is useful
to use normalized metrics which have values betveand 1. With this aim we de-
fine a scaled ensemble consensus for each state as:

ij _ max(dj) —d; (11)

max(d;)

In this way, if we obtained e.gx; = 0.8051,sx, = 0.9874, andsx; = 0.9903, we
would note that the ensemble consensus for statable 2 (which typically repre-
sents the concentration of a chemical speciede&lyg higher than for state variable
1, and therefore the methodology would suggestttigapredictions about the concen-
trations of species 2 are more reliable than fecis 1. Furthermore, since the dif-
ferences betweesx, andsx; are relatively small, we could also conclude that pre-
dictions about the concentrations of state varmBland 3 are similarly reliable.

Finally, we can calculate an average global consefa all the states as

23‘21"]'

x =-1— (12)

ns

Defining other consensus metrics is straightforywhlgdchoosing other measures of
the distance between model predictions. For exaniplequation (7) we could use
the difference in absolute values rather than tlueused difference, i.e.

|Aijr—Aijl
maxk(Aijk)—mink(Aijk)

dijk = 113

The expression described in equation (13) was chose previous work [19].
However, comparisons between both metrics have shbat using the expression in
equation (7) enables a more sensitive discriminatiblarger and smaller prediction
errors, and is hence the one used in the presekt wo

We quantify the error in the prediction of modekith respect to the true value of
a concentratiopat every time instantas:

2
(4yje-4i))
maxg (Aijk)

eijik = (14)

WhereA;-‘j is the true value of the concentration. The eafoevery model for every
state along the time horizon is
_ 3T eiji

And the average prediction error for a state isatberage error of all the models,
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T dj
e = k=1%jk (16)

m
To normalize the prediction error between 0 anceldefine a scaled error as:

e
sej = —2 71

max(ej)

3 Results and Discussion

3.1. Case study: Chinese Hamster Ovary cells model

The methodology was applied to a metabolic modeTluihese Hamster Ovary cells
(CHO), which are used for recombinant protein patidun in fermentation processes.
We simulated a batch process with resting cellsaticthe horizon of 300 hours. The
fermenter medium contains glucose as the main oasbarce, and leucine and me-
thionine as representative amino acids that aentalk. Lactate is modeled as key by-
product of the fermentation process. A synthesjzetiein serves as main product of
the fermentation process. Glucose, lactate, progratein, leucine, and methionine
are assumed to be measured in the fermenter. Aspanhalate, pyruvate, oxaloace-
tate, ATP, and ADP are assumed to be availablatescellular metabolite measure-
ments.

The model comprises 34 metabolites (whose condé@nigaare the state variables,
numbered in Table 1) and 32 reactions, and inclpdetgin product formation, Emb-
den-Meyerhof-Parnas pathway (EMP), TCA cycle, aiced amino acid metabolism,
lactate production, and the electron transportrchiiie metabolic network is shown
on Fig. 2 and the detailed reactions are listetiénsupplementary information (Table
7). The kinetic ODE model comprises 117 parameter®tal. The kinetic expres-
sions of the rates are of the form of equation The values ofr/"** that appear in
the equation can be taken from a stationary referdinix distribution, which we ob-
tained by applying Flux Balance Analysis (FBA). Tiigiective function for FBA is
defined as:

fE54 = mas(mr) (18)

wherenr is the maintenance rate, which is defined as sarpf all ATP producing
fluxes over all ATP demanding metabolic processethé cell. Uptake and produc-
tion rate constraints were chosen to be close tasored stationary fluxes in [27].
The remaining parameters that need to be identifiedtheK,, values in the Michae-
lis-Menten kinetics, and the elasticities in thddg kinetics. The model is available
in different formats (SBML, Matlab, C, COPASI, AM® as part of the BioPreDyn-
Bench suite [28], which can be downloaded from
http://www.iim.csic.es/~gingproc/biopredynbench/
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Fig. 2 -Metabolic network of the CHO cell model

The model wasubdivided intoive different physiological modules, for which asso
ciated metgparameter modules were gener. (more details are given in Tables
2—6 in the Supplementary Informatiot

» Central metabolism modulMPs from concentration and rate pairs related € th
EMP and TCA cycle, describing the dynamics of ghe;deucine, methionine, al
2-oxoglutarate.

« Fermenter module: describing the dynamics of glecdectate, methionine, u-
cine, and product protein.

¢ Energetics module: TCA cycle and enerelated metabolites, describing the dy-
namics of glucose, pyruvate, methionine, leucine, ATP

e Uptake and energetics module: subs-associated meta-parameters describing
the dynamics of glucose, methionine, leucine, Afi®duct protei, and lactate.

e Uptakes module: describing the dynamics of glucoshionineand leucine.
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Table 1. List of state variables (metabolite concérations) in the CHO model.
Commonly measured metabolites are marked with (*).

Nr Variable name Nr Variable name

1 Glucose (fermenter()) 18 H_out (mitochondria)

2 Lactate (fermenter(*) 19 CoQ (mitochondria)

3 Leucine (fermenter{*) 20 H_in (mitochondria)

4 Methionine (fermenter{*) 21 Pyruvate (cytosolf*)

5 Product protein (fermente) 22 Phosphoenolpyruvate (cytosol)
6 Glutamate (mitochondria) 23 NADH (cytosol)

7 NAD (mitochondria) 24 Glycerate3-phosphate (cytosol)
8 2-Oxoglutarate (mitochondria) 25 NAD (cytosol)

9 NADH (mitochondria) 26 Glucose (cytosol)

10 Glutamine (cytosol) 27 Malate (cytosolf*)

11 ADP (cytosol)(*) 28 2-Oxoglutarate (cytosol)

12 Glutamate (cytosol) 29 Aspartate (cytosol)¥)

13 ATP (cytosol)(*) 30 ATP (mitochondriaf*)

14 Aspartate (mitochondria) 31 Orthophosphate (mitochondria)
15 Oxaloacetate (mitochondri§) 32 ADP (mitochondriaf*)

16 Malate (mitochondria) 33 Leucine (cytosol)

17 CoQH_radical (mitochondria) 34 Methionine (cytosol)

Meta-parameters in these modules were estimatedreior single modules or for
module combinations during the parameter estimgtimcedure. Synthetic measure-
ment data was generated using a reference modetandised in lieu of experimen-
tal data. Care was taken to ensure resemblanceatistic experimental conditions.
For each of the 13 metabolites that are typicalbasured, 12 sampling times were
assumed and Gaussian noise was added with a dasheldation of 20% while non-
negativity for all synthetically generated concatitms was ensured.

3.2. Calibrating the CHO cells model

Using the eSS algorithm for parameter estimatiatutied in AMIGO, we carried out

10 optimizations of the full model without meta-pareters (117 parameters) starting
from different initial random guesses. The lowed aipper bounds for the parameters
were 1/5 and 5 times the nominal values. All of gdmimizations succeeded in ob-
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taining a good fit to the data, yielding 10 solosothat differed significantly; this
non-uniqueness suggests lack of practical idebilfig.

Following this initial calibration with the origihaparameter set, we re-
parameterized the model using the meta-paramepeoagh. Every meta-parameter is
defined as a function of several of the originalapaeters, for which a default value
has to be set. This default value may simply beseh@s a random initial guess with-
in the parameter bounds. Alternatively, the resifila calibration with the original
parameter set can be used, if it is available.Unaase, since we had already per-
formed 10 optimizations, we chose to use theirltesar setting the default values.
Since 10 different possible solutions were foundhe first set of calibrations, we
averaged the 10 parameter vector values obtainddused the result as the initial
guess. Realizing that this simple average biasegtkess towards large values, we
also considered a solution with smaller paramedéres as second initial guess. Thus
two different guesses for the vector of 117 paransevere usegygl andpg?2.

Next we carried out parameter estimations with eddhe 5 meta-parameter mod-
ules defined in section 3.1. As before, the optatians started from 10 different
initial points for each module; that is, the initguesses were 10 parameter vectors
whose values were chosen randomly within the paemt®unds. They were carried
out twice: withpgl andpg2, resulting in a total of 2x10x5=100 optimizationRe-
ducing the number of optimized parameters (fromdtiginal 117 parameters to be-
tween 5 and 12 meta-parameters, depending on tHale)amproved the identifiabil-
ity of the model, and the 100 optimizations yieldedly 22 different solutions (that is,
the fraction of different solutions obtained in thptimizations was reduced from
100% to 22%). In particular, the “uptake and engcgémodule returned just a single
solution withpg; and another one with,. On the other hand, we obtained 4 and 6
different solutions, respectively, for the fermenteodule. The number of solutions
returned by the remaining modules was betweentheaforementioned results.

An ensemble of models was created with these 22hpeterizations plus the 10 re-
sulting from the optimization of the original mogdtiat is, a total of 32 models. All of
these models provided a near-perfect fit to theugggeexperimental data used for
calibration, as shown in Fig. 3A. The fact that thedels calibrated with the meta-
parameter modules (which had between 5 and 12paeameters to be optimized)
managed to fit the data equally well as the modalibrated with the full original set
(117 parameters) supports the idea that the maddilsrated with the original para-
meter set had a clear risk of overfitting. The dase in the number of optimal solu-
tions found with the meta-parameter approach suggbat its use reduced this risk.
The reduction in the number of estimated paramedtss led to a decrease of the
computation times of the optimization proceduraipyto two orders of magnitude.
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(A) Measured concentrations

(B) Unmeasured concentrations
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Fig. 3 — (A): Time-courses of the 13 measured stat@riables (metabolite concen-
tration changes). The plots show: pseudo-experimeait data (red circles with

error bars); individual predictions of the 32 fitted models (grey lines); and their
average—i.e., ensemble—predictions (blue lines). €lpseudo-experimental data
corresponding to these 13 states were used in tharpmeter estimation proce-
dure.

(B): True model output with nhominal parameters (red lines), individual predic-

tions of the 32 fitted models (grey lines), and tlie average—i.e., ensemble—
predictions (blue lines), for the 21 unmeasured stas (metabolite concentra-
tions).

3.3. Predictions of unmeasured variables

Next we evaluated the ability of the calibrated eledcand of the ensemble to repro-
duce the concentrations of the remaining 21 meitgisolwhich are typically not

measured in practice. The scaled consensus inrdticpons among models in the
ensemble was calculated for each of the measurddimmeasured metabolites as in
equation (11). In general, the measured metabaiieged more consensus than the
unmeasured ones as expected. Panel B of Fig. 3sstiewpredictions of every model
in the ensemble (in grey) together with the redpot(in red) and the ensemble pre-
diction (in blue), for the 21 unmeasured statesu#i inspection of this figure shows
that consensus is a good indicator of the confidendhe predictions, a result further
confirmed by the numerical results. For exampledmtions of the time course of

NADH (cytosol) elicit a very high consensus = 0.999992), which suggests that
its consensus prediction is very close to the @agut. This is indeed the case: in Fig.
3B, the ensemble prediction of this variable (dine) is indistinguishable from its

true time course (red line). Conversely, variablenber 10 (concentration of gluta-
mine in cytosol) has the lowest consensus: dueabng, its value is actually zero,
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sx10 = 0, and the resulting prediction is far from tkeelroutput. Therefore, if we were
thinking of measuring additional metabolites, wewdtd concentrate our efforts on
those metabolites with the larger dissensus, seciwtamine, and we could safely
avoid additional measurements and rely on the eblseprediction for metabolites
such as NADH.

Indeed, consensus and prediction error were foundbd significantly anti-
correlated, with a correlation coefficientiof= —0.7719 and p-value= 9 - 1078. Fig.
4(A) plots the scaled consenssxg and scaled prediction errosg for the 13 meas-
ured variables. Since the models were fitted tedhgata, the prediction errors are
very low and the consensus is very high for all theiables. Fig. 4(B) shows the
corresponding values for the 21 unmeasured vasgable

(A) Measured concentrations (B) Unmeasured concentrations

[ <caled consensus

-scaled consensus
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Fig. 4 — Bar plots of the scaled consensusx; and scaled prediction errorssg for the 13
measured variables (panel A), and for the 21 unmeaeed variables (panel B).

It can be noticed that, for the 10 unmeasured kbgathat elicit higher consensus
(numbers 31, 22, 7, 9, 18, 20, 17, 19, 23, andt®®8)prediction errors are very low,
which is not always the case for the other vargblEhus, ranking the predictions
according to their consensus is a useful way ofditeg which metabolites should be
measured and which can be left unmeasured becaaidmve enough confidence in
the predictions.

3.4. Predictions under different experimental condions

Assessing the confidence in predictions of theesy& behaviour under different
conditions than those used for calibration reprissanother application of the con-
sensus approach. In this case, often no experiindata are available. To test the
validity of the approach in this type of scenavie, generated a new set of experimen-
tal conditions by randomly changing the initial centrations of all the metabolites.
Then we simulated the model’s behaviour with noinpeaameter values, generating
a new artificial dataset, and compared it with ¢beresponding output of the ensem-
ble models; results are shown on Fig. 5. Fig. Gspthe scaled consenssg and
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scaled prediction erroig, for the 34 variables. Again, consensus and priedi&rror
were found to be anti-correlated, with a correlagoefficient ofr = —0.9998 and p-
value= 5-1075%%, Finally, Fig. 7 represents in a different way tlesults shown in
Figs. 4 and 6.
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Fig. 5 - True model output with nominal parameters(red lines), individual predictions of

the 32 fitted models (grey lines) and their averagei.e., ensemble—predictions (blue
lines) for the 34 state variables (metabolite conagration changes) in the CHO model,
under different conditions than those used in the mdel calibration.
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Fig. 6 - Bar plots of the scaled consensisx; and scaled prediction errorssg for the 34
state variables (metabolite concentrations) in th€HO model, under different conditions
than those used for calibration. Note that the scall consensus (range 0.99—1) and scaled
prediction error (range 0—0.02) refer to differentaxes (consensus on the left, error on the
right). Note also that the scaled error lies outsiel the plot range:se, = 1.
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Fig. 7 — Scatter plot of scaled consensi%; and scaled prediction errorssg for
the 34 state variables (metabolite concentrationsh the CHO model. This figure
includes the data used in Fig. 4 (blue circles) anih Fig. 6 (black circles). The
dashed green line corresponds to an ideal correlaitn.
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4 Discussion

Before proceeding to the conclusions, we discudbissection some aspects of the
procedure and the results that deserve further @arhm

We begin by remarking that an advantage of usingresemble approach is that, as
suggested by the anti-correlation betwsgpandse;, the ensemble average can gen-
erally recapitulate the true system behaviour. Thshown in figures 3 and 5, where
it can be noticed that the average (blue lines)taadrue output (red lines) are gener-
ally close to each other, while some individualdixgons (grey lines) are sometimes
very far from reality.

This is not always true, though: in some casesftiressome concentrations) the en-
semble average fails to recapitulate the true dyeearhlowever, what the aforemen-
tioned anti-correlation implies is that—to a cemaixtent—we can expect to know
when we should trust the ensemble predictions amehvwve should not. Thus, from
Fig. 4 we conclude that the predictions for theialgles with the highest consensus
(that is, 19, 23, 25...) are highly reliable; and whee look at the corresponding plots
in Fig. 3 we see that this is indeed the case. ©w®ly, since variables such as 10,
28, and 12 elicit low consensus, we expect theddigtions to be of less quality than
the others, which is indeed the case if we lookragaFig. 3. To sum up, the intro-
duction of a consensus metric complements the drisespproach by providing indi-
cations of the confidence in the ensemble predictio

We remark that the ensemble prediction is, on @eerhetter than the individual
predictions of the models in the ensemble. Thishiswn in Fig. 8, which compares
the prediction errors of the ensemble average Ifdha states with the average error
of each of the calibrated models. Furthermore, Elg(see supplementary file) aggre-
gates the prediction errors of each model fortalies, thus comparing the predictions
of individual models with the ensemble predictidabally (instead of doing it sepa-
rately for each state), showing that in both sdesahe ensemble prediction is among
the top performers. To sum up, from the resultsait be concluded that, since one
cannot know a priori the quality of a particular sets prediction, the best option is
always to use the ensemble prediction insteadeopthdiction of an individual mod-
el.

Another aspect that should be noted is that theersus can vary between scena-
rios. For example, variable 21, which is pyruvatgt@sol), elicits high consensus in
the first scenario (Fig. 4), while in the secondrario (Fig. 6) its consensus is very
low, and as a consequence the ensemble average laege prediction error. This
difference in consensus can be easily explainethenfirst scenario pyruvate (cyto-
sol) was one of the measured variables, and henataia were used to calibrate the
models; hence all of the models managed to fitehdata well—the output of all the
models was nearly identical for that variable—pm@dg a high consensus. In the
second scenario, however, there were no measutadsiain principle there was no
reason to expect a higher consensus for any platicariable.
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Scenario 1: predictions of unmeasured variables

-Average model error
- Ensemble error
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Scenario 2: predictions of all variables under different experimental conditions

Prediction error {log scale)

123 456 7 8 9101112131415 1617 1819 20 21 2223 24 25 26 27 28 29 30 31 32 33 34
States

Fig. 8 - Bar plots of the errors made by ensemblergdiction for each state (me-

tabolite concentration) vs. the average error of th individual models in the en-

semble. The upper panel shows results for the firsicenario, where the models
were calibrated using data from 13 variables; erros for the remaining 21 un-

measured states are displayed. The lower panel shewesults for the second sce-
nario, where a new experimental condition was teste in this case the errors are

displayed for all the 34 states.

Finally, another aspect of the methodology thatpen to discussion is whether to
include in the ensemble all the available modetsprdy those calibrated with the
meta-parameter approach. The difference betwedn dytions can be analyzed ac-
cording to two criteria: (1) the resulting ensemptediction error, and (2) how the
prediction error for each variable correlates vt ensemble dissensus for that vari-
able. We computed quantities (1) and (2) for ensesnwilt in two ways: (A) includ-
ing all the available models, and (B) includingyonmodels calibrated with the meta-
parameter approach. We found that the differenetwden both cases were small
(data not shown). Furthermore, the ‘best’ strategg different in the scenarios con-
sidered in sections 3.3 (predicting time coursesummineasured variables) and 3.4
(predicting time courses of all variables in a eliéint experimental condition). To
sum up, the consensus approach provided good seésulensembles built with and
without the meta-parameter approach, and the diffars between both cases are
small. Given that all the calibrated models yieldegood fit to the data, we found no
reason to leave out of the ensemble the ones #thblen calibrated without meta-
parameters.

5 Conclusions

We have presented a method for making high-qualigdictions in large-scale dy-
namic models. The method introduces two computatitechniques, which we have
referred to as the meta-parameter approach andoteensus approach. Its use has
been demonstrated on a biotechnological applicatidratch process for recombinant



O©CO~NOOOTA~AWNPE

protein production in Chinese Hamster ovary (CHE&l)sc After building a metabolic
model of CHO cells, we reduced the number of itapeeters by applying the meta-
parameter approach without reducing the model strec This decreased the risk of
over-fitting and accelerated the parameter estonapirocedure, which produced an
ensemble of models with different parameterizatiortes ensemble was used as a
basis for application of the consensus approacloseltore idea is to consider the
coincidence among predictions of the models ingthgemble as an indication of the
reliability of these predictions. Using a measuféhe relative distance between the
average prediction of all models and the true vatllve procedure quantifies the de-
gree of confidence in the predictions of the tinveletion of each of the state va-
riables (which can be e.g. metabolite concentratias in the example application).
This quantitative indication can be used to deeithere it is most efficient to make
an additional measurement effort, that is, whidcitestvariables should be actually
measured and for which we can rely on the modellsitions. In summary, it has
been shown how the combination of the meta-paranagigroach and of the consen-
sus approach can be a valuable tool for improviegidentifiability and applicability
of complex dynamic models.
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