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Abstract

Gait function is traditionally assessed using well-lit, unobstructed walkways with minimal 

distractions. In patients with subclinical physiological abnormalities, these conditions may not 

provide enough stress on their ability to adapt to walking. The introduction of challenging walking 

conditions in gait can induce responses in physiological systems in addition to the locomotor 

system. There is a need for a device that is capable of monitoring multiple physiological systems 

in various walking conditions. To address this need, an Android-based gait-monitoring device was 

developed that enabled the recording of a patient's physiological systems during walking. The 

gait-monitoring device was tested during self-regulated overground walking sessions of fifteen 

healthy subjects that included 6 females and 9 males aged 18 to 35 years. The gait-monitoring 

device measures the patient's stride interval, acceleration, electrocardiogram, skin conductance and 

respiratory rate. The data is stored on an Android phone and is analyzed offline through the 

extraction of features in the time, frequency and time-frequency domains. The analysis of the data 

depicted multisystem physiological interactions during overground walking in healthy subjects. 

These interactions included locomotion-electrodermal, locomotion-respiratory and 

cardiolocomotion couplings. The current results depicting strong interactions between the 

locomotion system and the other considered systems (i.e., electrodermal, respiratory and 

cardivascular systems) warrant further investigation into multisystem interactions during walking, 

particularly in challenging walking conditions with older adults.
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1. Introduction

Mobility disabilities in older adults is a major factor in the loss of independence and 

contributes to higher rates of morbidity and mortality [1] and are considered to be a 

predictor of other disabilities that restrict independent living [2]. Unfortunately, the clinical 

identification of impaired gait function is not straightforward. The locomotor function and 

its associated parameters, including gait speed, are traditionally assessed under ideal 

conditions without distractions in a well-lit, unobstructed walkway. In patients with 

subclinical physiological abnormalities, these ideal conditions may not provide enough 

stress on their ability to adapt to walking. A challenging walking environment can provide a 

more realistic assessment in the early detection of alterations in walking and in the 

characterization of subclinical physiological abnormalities. Patients walking on challenging 

environments have previously been used to detect subclinical risk in aging research. Fall 

risks were predicted more accurately by gait characteristics on irregular and challenging 

surfaces when compared to smooth and non-challenging surfaces [3]. The fear of falling 

(FOF) is highly prevalent for all older adults [4], [5], and is known to negatively impact gait 

parameters (e.g., reduced gait velocity or higher stride-length or stride-time variability) [6]. 

Fear also induces significant change in physiological signals, heart rate and skin 

conductance, associated with cardiovascular and autonomic control systems (e.g., [7], [8], 

[9]). The interaction between cardiovascular systems, autonomic control systems and their 

impact on gait function have not been sufficiently quantitatively linked due to the lack of 

computational methods and instrumentation for the reliable assessment of these systems in 

real-life scenarios.

Prior gait assessment systems have centered on a single transduction method. Analysis of 

multiple physiological modalities during gait often required interfacing multiple acquisitions 

systems together [10]. A widely accepted approach for such interfacing is the use of a 

stationary system that provides gait temporal-spatial parameters. The GaitMat, a typical 

representative of the stationary system, consists of a long array of pressure sensitive 

switches that detect foot strikes upon participant ambulation [11]. These systems provide 

accurate and reliable measures of temporal-spatial gait parameters during free walking but 

the limited size and the high cost associated with larger mats are a deterrent in the 

widespread use. VICON is another type of stationary system that captures three-dimensional 

data of gait through the use of video motion capture systems. These video capture systems 

can accurately and precisely capture gait kinematics [12] but the systems are expensive and 

require multiple cameras arrangements that must be calibrated in the constrained volume 

[13]. Although it is possible to extend a video capture system to larger volumes, the cost of 

the system would scale with the increase in volume. Due to the limited number of steps that 

can be taken on these stationary systems, concerns exist about the limited analysis of these 

systems due to the small window lengths in detrended fluctuation analysis [14].

In response to these shortcomings, a number of solutions to gait monitoring have been 

developed in recent years that aim to assess older adults and patients with walking problems. 

In addition to these rehabilitation devices, the LOCOMAT [15], active ankle foot orthosis 

[16] and sensor-embedded shoes have been used to assess the human locomotor function. 
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Examples of this include the ACHILLE system [16], GaitShoe [17], the Intelligent-Shoe 

[18], and a sensor-embedded shoe measuring ground contact [19]. Devices for the 

assessment of physiological signals have also been developed that include wrist worn heart 

rate monitors and wrist worn activity monitors [20]. Additional devices include the FRWD 

[21], a sport computer that measures heart rate, distance, speed, and altitude, or the 

SenseWear armband from Bodymedia, a measurement device worn near the biceps [22] 

capable of measuring skin temperature, galvanic skin response, three-axis accelerations, and 

heat flux from body. Also, devices such as the Delsys Tringo wireless system have been 

used to assess electromyography and accelerometry signals during walking (e.g., [23]). 

Clothing-based physiological monitors such as a LifeShirt from Vivometrics [24], the 

adiStar Fusion products [25], the VTAMN [26], and the Wealthy measurement system [27] 

have been developed. Similarly, smartphones have become a popular platform for gait 

monitoring in recent years (e.g., [28], [29]). However, none of the devices have incorporated 

the interactions between various physiological systems to understand their impact on the 

locomotor function. Assessing only gait parameters is not sufficient for the early prediction 

of falls due to a number of factors that cause gait instabilities. By assessing multisystem 

interactions, we will be able to make early predictions about falls and warn patients about 

their instability.

There is a need for a screening instrument that can accurately detect impaired locomotor 

function outside of controlled settings. In this paper, an Android-based system is proposed 

for the simultaneous acquisition of temporal gait parameters including force sensitive 

resistors (FSR) placed on the heel and forefoot, an electrocardiogram (ECG), electrodermal 

response (EDR), respiration via a strain gauge transducer, and a tri-axial accelerometer 

placed on the lumbar region of the spine during ambulation. The proposed system was tested 

using 15 healthy subjects, and data was collected for verification and preliminary analysis. 

Our goal was to test the reliability of the system, specifically, to understand whether the 

system was capable of collecting physiological signals reliably. Therefore, from the data 

collected and extracted to an external workstation, a number of features, previously 

considered in other publications, were extracted in time, frequency and time-frequency 

domains to conduct a preliminary analysis of the interaction between multiple physiological 

systems and locomotor function.

This paper is organized as follows: In the next section, an overview of the data collection 

system is provided. Section 3 illustrates the data collection procedure with the data analysis 

steps outlined in Section 4. Our results and discussions are given in Sections 5 and 6, 

respectively. Finally, conclusions are drawn in Section 7, followed by a list of references.

2. Collection System Overview

The mobile data collection system is comprised of three main components:

• multiple biosignal transducers attached to the participants with signal conditioning 

circuitry;

• a microcontroller unit (MCU) that digitizes each biosensor; and
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• An Android smartphone that receives data from the MCU and stores it for post-

processing.

A high-level overview of the system concept is shown in Figure 1. A phablet computer 

running the Android operating system is used as the hub for receiving the sensor signals and 

logging the data. The Android device communicates with a MCU via a USB interface. The 

MCU essentially provides a bridge to collect and multiplex the sensor signals for 

communication and storage on the Android device. For many of the sensors, custom signal 

conditioning circuitry was to accept and multiplex the analog signals into the MCU.

In our particular design, we used a Samsung Galaxy Nexus Android phone to function as the 

data-logging hub. A Microchip PIC24 (PIC24FJ256GB106) functioned as the MCU. An on-

board Parallax H48C tri-axial accelerometer was connected to the MCU via a serial 

peripheral interface (SPI) digital bus. The remaining analog transducers were all discrete 

components external to the MCU and included electrocardiography electrodes, 

electrodermal activity electrodes, strain gauges, and force sensitive resistors. The final 

design was realized using a PCB to integrate the discrete components.

The remainder of this section describes the implementation of the three major components 

including the design of the signal conditioning circuitry for the analog transducers, the 

design of the microcontroller code to accept the input sensor signals and relay them to the 

Android phablet computer, and the data logging software on the Android phablet computer.

2.1. Signal conditioning and transducer details

As described in Figure 1, with the exception of the accelerometer whose output is read 

digitally, the sensors are designed to deliver analog input to the MCU with an attenuation of 

at least 30dB at the Nyquist frequency (i.e. half the sample rate). All considered sensors are 

commercially available sensors, and they are typically used in clinical examinations. In this 

section we describe the peripheral signal conditioning circuitry to allow the signals to 

effectively interface with the MCU. The analog transducers and accelerations sampling was 

performed using time-division multiplexing. We considered first the sampling of analog 

transducers. As shown on Figure 2, each sensor was sampled successively at a rate of 949 

Hz, the sampling duration being 150.5 μs for each of them. Accelerations were sampled at a 

rate of 1kHz, the sampling duration being 250 μs for each acceleration as well as a reference 

voltage measurement required to convert accelerations in g units. Since both transducers and 

accelerations were sampled successively, the total sample rate is 487Hz.

The Hitachi H48C three-axis accelerometer is designed with an anti-aliasing filter, and is 

connected to a Microchip MCP 3204 12-bit ADC. Samples are retrieved through SPI, a 

serial protocol, at a rate of 1 kHz. The signal is oversampled to ensure that this filter is past 

the stopband and as such provides an improved noise floor. Force sensitive resistors (FSRs), 

produced by Interlinx FSR406, are used to measure gait temporal characteristics. The FSRs 

are placed on the heel and forefoot of the participant. The output of the FSR forms a voltage 

divider with a 1kΩ resistor, whose output connects to a second order anti-aliasing low-pass 

filter that attenuates frequencies above 232.15 Hz.
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The Electrodermal Response (EDR) is measured across two electrodes placed on the index 

and ring finger. The EDR signal is filtered through a band pass filter with a passband 

between 0.5 - 1.5Hz [30, 31]. The filter helps remove the shifting DC offset and higher 

frequency noise [30, 31]. The reference ground used for the non-measuring electrode has a 

current limit of 100nA, in an attempt to reduce the risk of electrical shock. The conditioned 

EDR signal is filtered by a second order, anti-aliasing low-pass filter that attenuates 

frequencies above 61.17 Hz.

A piezoelectric respiratory belt, produced by ADInstruments MLT1132, measures the 

respiration rate during ambulation through the volumetric change of the thoracic cavity. The 

respiratory signal is bandpass filtered by a voltage mode amplifier whose filter is designed 

with a passband between 0.13 - 0.5 Hz [32, 33]. The conditioned respiratory signal is filtered 

using an anti-aliasing filter that reduces frequencies above 1 Hz.

A three-lead ECG connected to the patient is measured during ambulation through the use of 

an instrumentation amplifier with a high common mode rejection ratio. An instrumentation 

amplifier is required to amplify the microvolt ECG signal. The output of the instrumentation 

amplifier is cascaded into a filter with a passband between 1 - 150 Hz to eliminate potential 

ADC saturation caused by a floating baseline and higher frequency noise. Lastly, an anti-

aliasing filter reduces frequencies above 232.15 Hz.

The conditioned sensor output is connected to the ADC pins on the PIC24F that transmits 

the converted data to the Android Phone. The Processing Unit is powered via a 2000mAh 

lithium polymer (LiPo) battery, which is capable of an output voltage between 2.5V and 

3.7V. The LiPo voltage is regulated to 5V, −5V and 3.3V in order to properly bias the 

biosensors, the conditioning circuitry and PIC24F. The current draw of the processing unit is 

approximately 900mA allowing for a continuous run time of 1 hour and 30 minutes, which 

is sufficient for the data collection in this paper, but may be too short for more extensive 

protocols. In the next section we describe the MCU software design to distinguish each 

sensor input and communicate them to Android device.

2.2. MCU Software Design

The embedded software was designed to continuously sample the conditioned biosignals 

through a 10-bit analog-to-digital converters (ADC) integrated with the PIC24F and through 

SPI when accelerations were measured. As outlined by the software architecture in Figure 3, 

the embedded software consists of several states.

The first state taken by the machine is the RESET state, in which timers, the 10-bit ADC and 

the modules required to communicate with the accelerometer are reset. Next, the machine 

enters immediately the IDLE state. In this one, the program waits for the smartphone to be 

connected to the processing unit. Once the former is attached, the machine enters the 

WAITING state, during which the processing unit waits for the phone to send a command. 

The latter consists of a single character x. If the phablet is detached, the program goes back 

to the IDLE state. Otherwise, the program enters the MEASUREMENT pseudo-state, 

composed of a SAMPLING state in which the wearable device samples data, and a DATA 

TRANSFER state, where data is transferred to the smartphone.
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In the SAMPLING state, the device samples data and stores it in a transfer buffer that is 

later sent to the Android phone. The microcontroller alternates between the analog 

transducers and the accelerations sampling. Two interrupt service routines (ISR) are 

triggered in each case. ISRs are executed when special events are detected by the 

microcontroller. For our processing unit, the first routine is executed when all of the analog 

transducers have been sampled. Every sample is associated to a channel so as to identify the 

origin of the measurement, and is placed into the transfer buffer mentioned earlier. The 

second ISR is designed to generate the signals required to retrieve data from the 

accelerometer. The data received from the SPI of the accelerometer is stored in the transfer 

buffer as well.

An arbitrary design choice was to limit the number of samples the transfer buffer can hold to 

32 samples. Once this buffer is full, the program switches to the DATA TRANSFER state, 

during which the collected samples are transmitted to the smartphone as it provides a larger 

data storage capacity. A Microchip supplied Android USB Accessory Stack was used to 

allow the PIC24F to do so. ISRs can still be triggered during the DATA TRANSFER state. 

As a result, the data sampling does not stop even if the microcontroller is considered to be in 

a transfer state. Since the transfer buffer is full, another sample buffer, that is able to contain 

up to 1024 samples, stores measurements in the meantime. Before switching back to the 

SAMPLING state, the content of the sample buffer is moved to the the transfer buffer until 

the latter becomes full again.

The program alternates between the SAMPLING and the DATA TRANSFER states until 

either the phone sends a command (a single character s) that stops the sampling process, the 

phone is disconnected from the processing unit, or an overflow of the large sample buffer 

occurs. In that case, the program enters the CLOSING state: data sampling is stopped, and 

samples remaining in the buffers are transmitted to the phone if it is still attached. The 

program then enters the RESET state again.

2.3. Android Smartphone Datalogging

As it can be seen in Figure 4, a field in an Android application allows one to specify the 

amount of time during which the device attached to the smartphone should perform 

measurements. Data sampling will stop automatically after the specified duration. Below, 

the list of connected USB devices is displayed, although Figure 4 only shows an empty list 

since no devices were connected when the screenshot was taken. Finally, pressing the button 

under the list starts or stops data sampling.

The application uses the Accessory mode so as to exchange data with the processing unit. 

The Android operating system (OS) provides abstraction layers which allow one to receive 

data sent by the processing unit, by merely reading a file. In order to keep the user interface 

responsive, the Android application creates a background service that polls the phone's USB 

receive buffers and stores the sampled data onto the phone's internal storage. The application 

keeps track of the service status, and updates the user interface accordingly. To avoid buffer 

overruns on the Smartphone CPU, the custom Android Application requests a CPU Wake 

Lock for the Android OS. A CPU Wake Lock prevents the Android OS from entering a low-

power state.
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3. Sampling methodology

The study was approved by the University of Pittsburgh's Institutional Review Board. Data 

was collected from 15 healthy participants (6 females, 9 males; 1.76 ± 0.11 m; 68.3 ± 9.68 

kg; 20.2 ± 1.90 years; BMI: 22.1±2.23). The participants were screened prior to testing for 

neurological and physiological conditions that would affect their gait. The anthropometric 

measures of height, weight, age and gender were obtained from the participant's prior to the 

experiment. After consenting to the study, participants were fitted with the device around the 

lumbar region, in order to position the accelerometer near the center-of-mass as suggested in 

previous studies (e.g., [34], [35]). Following the sensor fitting step, participants performed 

two, fifteen-minute walking sessions around a closed corridor with a ten-minute break in-

between. The placement of the Processing Unit was chosen to facilitate the collection of 

accelerometer signals for the exploration of non-linear stability analysis. During each 

session, the participant was instructed to focus strictly on the ambulation through the closed 

corridor. An investigator followed the participant and recorded any external stimuli that may 

have affected the gait. The investigator maintained a safe distance, approximately 35 feet, 

behind the participant so as not to modulate the participant's stride interval with the sound of 

periodic footfall [36]. No other external pacers were used in the study, but also no sources of 

pacing were noticed during walking. Participants were asked to wear comfortable footwear 

(e.g., running shoes). Sensor placements used in this study is shown in Figure 5.

4. Data analysis

4.1. Pre-Processing of signals

Although analog signal conditioning had greatly narrowed the frequency characteristics of 

the signals, various disturbances and noise were still present within the signals. To alleviate 

these issues, the collected data was pre-processed prior to further analysis. Some signals, 

such as the force sensitive resistors, required pre-processing in order to obtain relevant time 

series.

Stride interval time series—The purpose of the FSRs is to provide information 

concerning the stride interval time series from the heel impact and toe impact on each foot. 

We used a stride interval extraction algorithm proposed in [37], which is based on initially 

identifying potential strides, and then using probabilistic modeling and post-extraction 

filtering to determine stride interval time series from force sensitive resistor data. Stride 

intervals that were physiologically long or short (i.e., falling outside 0.01% and 99.99% of a 

gamma distribution fit) were removed. Ultimately, the average number of stride intervals 

across all participants per session was equal to 783 strides.

Heart rate variability (HRV)—During the participant sessions, the ECG signal often 

exhibited motion artifacts [38] [39]. To alleviate the presence of these artifacts, a 15th-order 

low-pass Butterworth filter with the cut-off frequency equal to 40 Hz followed by a 23rd-

order high-pass Butterworth filter with cutoff frequency equal to 1 Hz [40] was 

implemented. To extract the heart rate variability (HRV), we utilized a wavelet based 

algorithm to extract R peaks from ECG recordings [41]. We subsequently eliminated points 
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that fell outside 5% and 95% of a gamma distribution fit, considering these peaks as 

physiologically not relevant.

Respiratory rate (RR)—To recover the respiratory rate from conditioned signals 

acquired, we first utilized an 18th-order low-pass Butterworth filter with the cut-off 

frequency equal to 1.5 Hz [42]. Using the filtered signal, we found subsequent local 

maximal points under the following constraints: (a) successive points should be at least 

separated by 1 second; and (b) the detected maximal points should be greater than half of the 

standard deviation value of the filtered signal. These two constraints eliminate the detection 

of physiologically irrelevant points.

Electrodermal reactivity (EDR)—To isolate the phasic response of the electrodermal 

reactivity signals, we utilized an 86th-order low-pass Butterworth filter with the cut-off 

frequency equal to 1.51 Hz followed by a 6th-order high-pass Butterworth filter with the 

cut-off frequency equal to 0.02 Hz [43], [44].

4.2. Feature extraction

The main purpose of the proposed system is to infer about various physiological systems 

during walking and the interactions amongst these systems. In order to do so, the proposed 

system should be able to extract certain features from each considered physiological system, 

and relate them to other features to infer about the walking condition of each person. As a 

preliminary step, we processed these signals offline, and in here, we extract features 

considered in previous contributions dealing with each of the considered physiological 

systems (e.g., [45], [46], [47], [48], [49], [50], [51], [52]). Not all features are not considered 

for all acquired signals, and presented results will make evident the considered features for 

each type of signals.

Assuming that a signal, x(n), is represented by a set of N values, then using those values 

typical statistical features such as mean (μx), standard deviation (σx), the coefficient of 

variation (ξx), kurtosis (γx) can be calculated [53]. To assess the similarity between time 

structures of two signals, x(n) and y(n), we utilized the cross-correlation coefficient, CCx–y, 

at the zeroth lag [53]. Variants of these statistical measures were further adopted to heart 

rate variability time series. Here, we considered SDNN, RMSSD, NN50, PNN50 which are 

typical statistical features used in the analysis of the HRV time series. For a thorough 

description of these variables, one should refer to [45], [46]. Here, we will only provide brief 

definitions of them. If we consider NN intervals (the so-called normal-to-normal intervals, 

that is, intervals between adjacent QRS complexes), then SDNN is defined as the standard 

deviation of NN intervals [45]. RMSSD is the square root of the mean squared differences 

of successive NN intervals [45]. NN50 is defined as the number of successive NN intervals 

greater than 50 ms [45]. PNN50 equals the number of NN50 divided by the total number of 

NN intervals [45].

Stride interval dynamics incorporate temporal information into the analysis of the stride 

interval time series and reveals statistical persistence. Here, we utilized the spectral 

exponent, β, to characterize the stride interval dynamics as described in [49]. β = 0 indicates 

random, uncorrelated behavior (e.g. white Gaussian noise). β = 1 denotes a 1/f process, 
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while β = 2 indicates a Brownian process [54]. It should be pointed that spectral exponent 

was also applied to heart rate time series [55] and respiratory rate time series [56].

In this paper, we also considered various information-theoretic features [47], [48], [50]. The 

Lempel-Ziv complexity (LZC) measures the predictability of the signal [50], [57]. The 

entropy rate (ρ) measure quantifies the extent of regularity in a signal [48]. A variant of the 

entropy rate known as the sample entropy (SampEn) is often used in the analysis of HRV 

time series [51], [52]. Extending the entropy rate measure, the cross-entropy rate, ΛX|Y, 

quantifies the entropy rate between two stochastic processes [47]. This measure describes 

the predictability of a data point in one signal given a sequence of current and past data 

points in the other signal.

When considering features in the frequency domain, we considered the following three 

features [58]: the peak frequency, fp, the spectral centroid, , and the bandwidth, BW . 

Variants of these features known as very low frequency (VLF), low frequency (LF) and high 

frequency (HF) were also applied to the HRV time series [45].

Lastly, we considered a typically used time-frequency feature such as the wavelet entropy, 

Ω, for the analysis of acquired biomedical signals [59], [60].

4.3. Statistics

We used paired samples t-tests to examine whether there are any systematic differences 

between sessions in gait, skin conductance, respiration and heart rate measures; and used 

intraclass correlation coefficients (ICC) to quantify test-retest reliability between sessions. 

Next, we fit a series of multivariable linear mixed models using data from both sessions, 

with each measure as the dependent variable; sex, age, height and weight (simultaneously) 

as independent variables of interest; and a participant random effect to account for the 

correlation between sessions in the measurements from the same participant. We repeated 

modeling with BMI instead of height and weight. Associations were quantified as fixed 

effect regression coefficients corresponding to gender differences, and rates per unit for age 

(years), height (cm), weight (kg) and BMI (kg/m2). To account for the large number of 

features considered, and the resulting number of hypothesis tests, we used false discovery 

rate methodology [61] to make multiplicity corrections to our p-values. Finally, using means 

across sessions, we computed Pearson correlation coefficients between gait features and 

other measures of skin conductance, respiration and heart rate. We used SAS version 9.2 

(SAS Institute, Inc., Cary North Carolina) for all statistical analyses.

5. Results

Tables 1-6 summarize the average results of the feature extraction process for all 15 

participants across the two sessions. The gait features considered in this manuscript are 

shown in Tables 1, 2 and 3, while Tables 4, 5, and 6 depict features associated with 

respiration, heart rate and electrodermal acitivity, respectively. Subscripts ML, AP and SI 

denote three anatomical directions: medio-lateral, anterior-posterior and superior-inferior, 

respectively. These are typical features considered in the literature for the given signals. The 
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stride intervals did not differ based on the position (heel or toe) or leg (left or right) (p > 

0.11). Hence, we considered stride interval time series from the left heel.

There were no statistical differences in feature values between sessions (p > 0.53). No 

variables were dependent on age (p > 0.14), sex (p > 0.71), height (p > 0.41), weight (p > 

0.19) and BMI (p > 0.14).

Among the considered features, a significant number of relations was determined between 

gait features and features based on other physiological signals. CCML–AP was negatively 

correlated with fpEDR (p = 0.03), while ΛML|AP and ΛML|SI were positively correlated with 

the same variable (p ≤ 0.04). BWML was positively correlated with LZCEDR and  (p < 

0.04).

When considering the features based on the respiratory rate, we found that μRR was 

positively related to CCSI–AP, ΛML|SI, , BWAP and BWML (p < 0.05) and negatively 

related to ρML, ρAP and  (p ≤ 0.04). ξRR was increasing with the increasing values of the 

frequencies with the maximum spectral power in the SI direction (p < 0.01). A higher 

number of breaths per minute denoted higher regularity of ML and SI (ρML and ρAP, p ≤ 

0.01) and higher values of  (p = 0.03), but also meant lower values of CCSI–AP, LZCAP, 

and BWML (p ≤ 0.04). Lastly, higher βRR meant a higher and wider spectral content of ML 

signals (  and BWML, p < 0.04), but also denoted smaller values of CCML–AP, fPAP, and 

ΩAP (p < 0.05).

It should be also mentioned that a more peaked distribution of EDR amplitudes around the 

mean value (γEDR) also denoted higher sample entropies of HRV signals and a decreased 

spectral exponent (βRR) of RR time series (p < 0.04).

6. Discussion

6.1. Multisystem interaction during walking

Many previous studies conjectured about the interactions between various physiological 

systems and human gait (e.g., [21], [62], [63]). However, those studies mostly correlated 

gait features obtained walking to features obtained from other physiological systems during 

sitting or standing. Our main contribution here is the system that can capture the interactions 

among different physiological systems, while the human body is in motion. Our results 

clearly demonstrated that in order to gain a clear understanding of human walking, 

cardiovascular system and autonomic control systems should be also monitored during 

walking. There was a clear interaction among these systems during simple walking tasks. 

We anticipate that walking trials involving challenges and/or multitasking will involve even 

greater interactions between these systems, as challenging walking trials and/or multitasking 

have effects on gait parameters [64], [65].

Previous contributions have shown that changes in the electrodermal activity can be detected 

during walking trials during which participants experience high anxiety regarding the 

possibility of falling [66], [67], [68]. However, our results have shown that the features 
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based on electrodermal activity were strongly related to gait features even during non-

challenging walks. In fact, most of the EDR features were associated with one or more gait 

feature. The major implication of our findings is that the proposed device could be used to 

study locomotion and electrodermal coupling. This is especially significant in older adults 

with fear of falling as we can study the anxiety in older adults associated with increased 

postural threats [67].

While it is a known fact that breathing and walking are synchronized in humans [7], [69], 

we also found that several features of respiratory and locomotion systems are related as well. 

In particular, a breathing rate was strongly related to the spectral content and the variability 

of gait accelerometry signals, which is expected as the breathing rate is generally modulated 

by the pace of walking. The major implication of these results is the fact that the proposed 

device could be used to study locomotor-respiratory coupling during walking, as such 

studies are limited due to the lack of adequate systems. Most prior studies focused on the 

locomotor-respiratory coupling in balance studies. Nevertheless, the locomotor-respiratory 

coupling is important as energy-efficient and stable locomotion demands that the movement 

mechanical and metabolic demands are continuously met [70]. More specifically, the 

locomotion system generates motions and maintains stability, while the respiratory system 

maintains sufficient levels of oxygen while removing metabolic byproducts from the 

circulatory system [70]. However, it should be understood that these systems do not act 

independently. The locomotor system regulates the respiratory system by generating 

chemical and neural commands, while the respiratory system helps with the posture control 

as it continuously perturbed.

Similarly, HRV features were also related to gait accelerometry features and the major 

implication of our work is that the proposed device can used to study cardiolocomotor 

coupling. As in the case of features based on the respiratory rate time series, the HRV 

features directly inferred about the spectral characteristics and the variability of gait 

accelerometry signals. Our findings support the previous contributions which showed that 

the cardiac rhythm is controlled by the locomotor system (i.e., the locomotor system's 

rhythm) [71]. The cardiolocomotor interaction can possibly indicate direct interactions 

between the cardiovascular centers and the central pattern generator [71], which can lead to 

many interesting investigations using the proposed devices such as investigations of the 

cardiolocomotor coupling in patients with compromised cardiovascular systems due to 

myocardial infraction or other similar cardiovascular diseases.

The test-retest reliability of the considered features is good or excellent for 42 out of 50 

features, while only 8 out of 50 features had poor reliability (ICC < 0.4). These findings 

point out that the proposed system is capable of measuring the considered physiological 

signals reliably. Specifically, low ICC values are spread across different physiological 

signals, and other features considered for those signals had good or excellent ICC values. It 

was interesting to note that the spectral exponent feature had low ICC values in all 

considered cases. In addition, other four frequency features (fpML, fpSI, fpEDR and HF) also 

had very low ICC values. While there is no obvious reason why these frequency-based 

features should have low ICC values, future investigations should consider them more 

closely.
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6.2. Remarks

The proposed system is a prototype system developed to demonstrate that multisystem 

interactions should be considering during walking. Our future work involves two directions. 

One direction is the development of sensors that will connect to the central processing unit, 

shown in Figure 1, via a wireless protocol (e.g., Bluetooth). This will enables us to avoid 

any cables currently needed to connect sensors, and decrease any complications while using 

a system (e.g., long set-up times or additional walking hazards due to long cables). Our 

second direction will be focused towards the implementation of some of the signal 

processing algorithms on the smart phone, which would enable processing of data in real 

time. Real time data processing is desirable for future versions of this device, so that the 

proposed device is enabled to detect walking instabilities in real time in order to prevent 

falls. A real time analysis of walking instabilities can increase research and clinical 

potentials of the proposed device. However, it should be pointed out that selected features 

will be implemented and those features will be selected based on our future studies with a 

clinical population. A possible solution for data processing is that the phone uploads 

collected points to a cloud based unit, which will process signal samples as they arrive. In 

such a scenario, it would be worthwhile to compress data on the smartphone in order to 

reduce the burden on wireless networks and the subscriber wireless data plan. Lastly, we 

need to investigate the power efficiency of the device in order to enable the device for 

longer data collections.

Additionally, the presented results are the first step towards the investigations of 

multisystem physiological interactions. While most of our efforts in the present manuscript 

are geared towards the establishing the reliability of the results with the proposed system, 

our future investigations will be aimed towards examining walking under different 

conditions, but also investigations of specific interactions and the effects of various neuro-

degenerative diseases on these interactions. Finally, our findings were based on a relatively 

small sample of participants. Further study is needed to validate our findings and draw more 

definitive conclusions.

Future developments should also consider how to utilize the proposed device for assessing 

sitto-stand maneuvers. Sit-to-stand performance is also affected by many physiological 

variables [72].

7. Conclusion

In this paper, we proposed a smart-phone based gait monitor capable of simultaneously 

acquiring data from multiple physiological systems involved in human walking. For the 

purpose of this study, we collected data from 15 healthy subjects during 15-minute 

overground walks at a self-selected speed. The data was collected using the proposed system 

and stored for offline analyses. Our numerical analysis involved feature extraction in time, 

frequency and time-frequency domains. The results of our analysis clearly showed that 

multisystem interaction existed during walking.
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Figure 1. 
Hardware overview of gait data collection system
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Figure 2. 
An overview of the sampling process.
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Figure 3. 
State machine on which was based our MCU software design.
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Figure 4. 
Screenshot of the Android application.
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Figure 5. 
Sensor placements for all participants.
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Table 1

Features based on stride intervals.

Feature Session 1 Session 2 ICC

μ s 1.18 ± 0.14 1.16 ± 0.16 0.90

ξ s 6.07 ± 7.81 5.22 ± 7.66 0.49

β s 0.33 ± 0.21 0.22 ± 0.28 0.17
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Table 2

Statistical and information-theoretic features based on gait accelerometry signals.

Feature Session 1 Session 2 ICC

CCML–AP 0.10 ± 0.14 0.08 ± 0.12 0.98

CCML–SI 0.18 ± 0.12 0.20 ± 0.10 0.88

CCSI–AP 0.06 ± 0.21 0.04 ± 0.16 0.95

LZCML 0.49 ± 0.03 0.48 ± 0.02 0.90

LZCAP 0.46 ± 0.04 0.46 ± 0.04 0.93

LZCSI 0.49 ± 0.02 0.49 ± 0.02 0.48

ρ ML 0.77 ± 0.03 0.77 ± 0.02 0.87

ρ AP 0.80 ± 0.03 0.80 ± 0.03 0.93

ρ SI 0.78 ± 0.03 0.77 ± 0.02 0.57

Λ ML|AP 0.72 ± 0.07 0.71 ± 0.07 0.92

Λ ML|SI 0.69 ± 0.07 0.68 ± 0.08 0.92

Λ AP|SI 0.71 ± 0.09 0.71 ± 0.09 0.97
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Table 3

Frequency and time-frequency features based on gait accelerometry signals.

Feature Session 1 Session 2 ICC

fpML 1.96 ± 1.16 2.91 ± 1.64 0.24

f̂ML
5.67 ± 0.90 5.61 ± 0.84 0.96

BWML 4.80 ± 0.52 4.79 ± 1.45 0.97

fpAP 1.63 ± 0.11 1.65 ± 0.11 0.98

f̂AP
4.17 ± 0.90 4.18 ± 0.91 0.97

BWAP 4.20 ± 0.65 4.16 ± 0.58 0.82

fpSI 1.32 ± 0.69 1.87 ± 0.85 0.05

f̂SI
4.81 ± 0.53 4.27 ± 0.50 0.88

BWSI 4.71 ± 1.17 4.80 ± 1.07 0.82

Ω ML 2.02 ± 0.21 1.95 ± 0.18 0.69

Ω AP 0.38 ± 0.13 0.41 ± 0.13 0.85

Ω SI 1.80 ± 0.54 1.87 ± 0.46 0.87
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Table 4

Features based on EDR signals.

Feature Session 1 Session 2 ICC

σ EDR 0.15 ± 0.12 0.14 ± 0.09 0.63

γ EDR 5.24 ± 3.37 4.01 ± 0.91 0.00

LZCEDR 0.18 ± 0.03 0.19 ± 0.04 0.68

ρ EDR
* 93.6 ± 0.34 93.7 ± 0.35 0.56

fpEDR 0.07 ± 0.01 0.07 ± 0.02 0.00

f̂EDR
0.26 ± 0.13 0.25 ± 0.15 0.69

BWEDR 0.30 ± 0.11 0.32 ± 0.14 0.71

*
multiplication by 1e-2
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Table 5

Features based on respiratory rate time series.

Feature Session 1 Session 2 ICC

μ RR 3.49 ± 1.49 3.40 ± 1.21 0.94

ξ RR 61.3 ± 10.2 62.5 ± 9.65 0.64

BRPM 19.1 ± 5.08 19.2 ± 4.82 0.93

β RR 0.15 ± 0.28 0.16 ± 0.17 0.24

BRPM = breaths per minute.
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Table 6

Features based on HRV time series.

Feature Session 1 Session 2 ICC

μ HRV 0.86 ± 0.25 0.89 ± 0.26 0.78

SDNN 0.17 ± 0.14 0.23 ± 0.21 0.93

ξ HRV 17.0 ± 11.7 21.8 ± 15.0 0.91

BPM 75.0 ± 19.9 72.6 ± 18.8 0.75

RMSSD 0.22 ± 0.21 0.29 ± 0.27 0.92

NN50 193 ± 151 239 ± 186 0.81

PNN50 0.22 ± 0.19 0.26 ± 0.19 0.83

β HRV 0.59 ± 0.16 0.66 ± 0.25 0.00

SamEn 1.50 ± 0.33 1.43 ± 0.36 0.48

VLF 0.49 ± 0.33 0.47 ± 0.33 0.45

LF 0.28 ± 0.18 0.28 ± 0.18 0.81

HF 0.18 ± 0.16 0.20 ± 0.17 0.23

BPM = beats per minute.
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