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Abstract

Background and objective—Faster and more accurate methods for registration of images are 

important for research involved in conducting population-based studies that utilize medical 

imaging, as well as improvements for use in clinical applications. We present a novel 

computation- and memory-efficient multi-level method on graphics processing units (GPU) for 

performing registration of two computed tomography (CT) volumetric lung images.

Methods—We developed a computation- and memory-efficient Diffeomorphic Multi-level B-

Spline Transform Composite (DMTC) method to implement nonrigid mass-preserving registration 

of two CT lung images on GPU. The framework consists of a hierarchy of B-Spline control grids 

of increasing resolution. A similarity criterion known as the sum of squared tissue volume 

difference (SSTVD) was adopted to preserve lung tissue mass. The use of SSTVD consists of the 

calculation of the tissue volume, the Jacobian, and their derivatives, which makes its 

implementation on GPU challenging due to memory constraints. The use of the DMTC method 

enabled reduced computation and memory storage of variables with minimal communication 

between GPU and Central Processing Unit (CPU) due to ability to pre-compute values. The 

method was assessed on six healthy human subjects.

Results—Resultant GPU-generated displacement fields were compared against the previously 

validated CPU counterpart fields, showing good agreement with an average normalized root mean 

square error (nRMS) of 0.044 ± 0.015. Runtime and performance speedup are compared between 

single-threaded CPU, multi-threaded CPU, and GPU algorithms. Best performance speedup 
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occurs at the highest resolution in the GPU implementation for the SSTVD cost and cost gradient 

computations, with a speedup of 112 times that of the single-threaded CPU version and 11 times 

over the twelve-threaded version when considering average time per iteration using a Nvidia Tesla 

K20X GPU.

Conclusions—The proposed GPU-based DMTC method outperforms its multi-threaded CPU 

version in terms of runtime. Total registration time reduced runtime to 2.9 min on the GPU 

version, compared to 12.8 min on twelve-threaded CPU version and 112.5 min on a single-

threaded CPU. Furthermore, the GPU implementation discussed in this work can be adapted for 

use of other cost functions that require calculation of the first derivatives.
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1. Introduction

Image registration is a process used in medical image analysis to determine a spatial 

transformation that aligns image data in a common coordinate frame. It is used in a variety 

of applications, e.g., linking images across modalities [1], tracking the motion of lung 

tissues [2–4], and providing subject-specific boundary conditions for computational fluid 

dynamics analysis of airflow and particle deposition [5–7]. The process involves two or 

more images, a moving (floating) image, which is deformed by a transformation to align 

with a fixed (reference) image. A similarity measure (also called a cost function) quantifies 

the degree of alignment and is used to optimize the transformation’s parameters to achieve 

maximal alignment. Maintz and Viergever [8], Brown [9], Zitova and Flusser [10], and 

Sotiras et al. [11] provide extensive reviews on various image registration methods. Faster 

and more accurate methods for registration of images are important for conducting large 

population-based studies that make use of medical imaging, as well as improved potential 

future clinical applications such as image guided surgery. For example, Eggers et al. [12] 

demonstrated a method that makes image-guided surgery a usable application in clinical 

settings by developing a system using intraoperative CT imaging and automated registration. 

Heinrich et al. [13] developed a CPU method using a novel self-similarity descriptor that 

improves registration accuracy for multimodal fusion of images with realtime ultrasound 

images and taking less than 30 s, nearly fast enough for clinical use. Choi et al. [5] applied 

image registration to compare Asthmatic and normal patients to identify sensitive variables 

that can help provide improved and personalized diagnoses of compromised lung function. 

Shamonin et al. [14] used GPU for fast diagnostic classification of Alzheimer’s disease. 

Staring et al. [15] developed methods to better investigate emphysema and its progression 

over time. Progress made in accelerating registration algorithms has been demonstrated 

through various approaches [16–20], more recently through parallel computing using GPUs 

[21–28]. Previous works by multiple authors [29–31] have reviewed the use of GPU-based 

methods for image registration.

The objective of this paper is the development of an efficient multi-level method to 

effectively implement mass-preserving registration on GPU architectures. We employ a 

cubic B-Spline-based Free-Form Deformation (FFD) transformation model for its 
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effectiveness at capturing nonrigid deformations [32] of objects such as the human lungs. 

Pratx and Xing [30] summarized the key strategies for GPU acceleration, such as aligning 

the B-Spline grid of control nodes with the image voxel grid for B-Spline methods and 

optimizing data parallel computation to fit the GPU programming model [33]. Previous 

works [21,23–26,29] in accelerating intensity-based B-Spline deformable registration 

methods using GPU have focused on sum of squared intensity differences (SSD), 

normalized cross correlation, and mutual information as similarity measures. For example, 

the work of [24] reports a speedup of 6–8 times using GPU-based methods with mutual 

information. Shackleford et al. [23] developed methods to exploit data parallelism within B-

spline based deformable registration methods using a tiling approach with the mean squared 

error (MSE) similarity measure, a variation of the simplest and commonly used similarity 

measure, the sum of squared intensity difference (SSD), obtaining a speedup of 15 times 

using NVIDIA’s Tesla C1060 with 240 CUDA cores. A 55× speedup was reported in [25] 

using the Demons algorithm, when compared to single threaded implementations [34]. The 

work of [22] introduced a GPU framework for the optimal mass transport registration 

method, showing speed improvement of 4826% compared to CPU when using a Nvidia 

GeForce 8800 GPU and Intel Dual Xeon 1.6 GHz CPU.

We focus on mass-preserving registration and propose a composite transform necessary for 

its implementation in a multi-level framework on GPU in a memory- and computationally-

efficient manner. We use mass-preserving methods due to their demonstrated ability to 

effectively match the intra-subject lung CT images acquired at different inflation levels [35] 

and to further develop physiologically consistent lung functional measurements 

[6,15,36,37]. In particular, the use of the sum of squared tissue volume difference (SSTVD) 

has demonstrated improved registration accuracy for large deformations compared to SSD 

and MI [35]. In the mass preserving method, SSTVD is minimized and a one-to-one 

transformation with positive Jacobian values must be enforced. The composite transform 

introduced in this work is essential to reduce the memory needs of SSTVD at high 

resolutions to fit limitations of high-end GPU.

The next section of the paper reviews cubic B-Spline deformable registration and introduces 

a composite transform operation for efficient multi-level registration. The third section 

focuses on developing multi-level framework for GPU using SSD and SSTVD as similarity 

measures, and discusses the advantages of this method. In the fourth section experimental 

results are reported. Discussion of results occupies the fifth section and the paper concludes 

with the sixth section.

2. An efficient diffeomorphic multi-level transform composite (DMTC) 

method

2.1. Preliminaries

Multi-level methods are commonly used in FFD image registration to help improve 

registration quality and efficiency, reduce computational complexity, as well as help prevent 

incorrect local minima solutions during optimization when dealing with high dimensional 

transformations. Competing needs, such as capturing global motion as well as local 
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deformations can be addressed by constructing a hierarchy of control node meshes, referred 

to as control grids, and applying registration using each grid in a coarse to fine sequence. 

The control nodes serve as parameters to the FFD, where large control grid spacing allows 

for capturing large deformations and a smaller spacing between nodes captures local 

deformations. However, as the resolution of the control grid is increased, the dimension of 

the transformation and computational complexity also increases.

Another reason for employing a composite multi-level method is to enforce deformation 

constraints defined in terms of control node spacing to ensure a positive Jacobian. In the 

case of cubic B-Splines, the constraints of Choi and Lee [38] are employed to ensure 

diffeomorphic FFD transformations at each level. In their work, they use geometric 

argument to conclude that the transformation will be invertible if the x, y, and z directional 

displacements φx, φy, φz, along with B-spline grid spacing δx, δy, and δz, satisfy the 

constraints φx < δx/K, φy < δy/K, and φz < δz/K, where K = 2.479472335. Modeling large 

global deformations requires a coarse control grid with larger spacing (δx, δy, δz) to enforce 

the given constraints. However, local deformation modeling requires a fine control grid. 

Thus, a multi-level cubic B-spline technique is used to meet the conflicting needs of the 

control grid.

Let Φ0, Φ1, …, Φn define a hierarchy of control grids used to derive a sequence consisting of 

uniformly spaced FFD control nodes with displacement vectors φ = (φx, φy, φz) defined at 

each node to parameterize the corresponding transformations T0, T1, …, Tn. Denote by δx, 

δy, and δz the spacing of the control nodes in the x, y, and z directions, respectively, which 

vary for each grid refinement. Each control grid overlays a uniformly spaced voxel grid of 

intensity values, denoted as Ω, with a size of Nx × Ny × Nz voxels. The alignment of the 

control grid partitions the voxel grid into equally sized tiles. Fig. 1 demonstrates this with a 

2D example consisting of an image grid of 32 × 32 uniformly spaced voxels, shown as the 

smallest squares, and a 5 × 5 grid of control nodes separated by 16 voxels per direction, 

represented as gray circles. This partitions the voxel grid into four tiles of 16 × 16 voxels, 

shown by bold lines.

Define for each voxel coordinate x = (x, y, z) the cubic B-Spline transformation T,

(1)

where u = x/δx − x/δx, v = y/δy − y/δy, w = z/δz − z/δz denote the normalized local coordinates 

of the voxel within the tile it resides, and Bl, Bm, Bn denote the cubic B-Spline basis 

functions, referred to throughout as weights. Each voxel deformation is influenced by the φ 

values from 4 surrounding control nodes per direction, 64 in total for 3D. Two useful 

properties follow from applying Eq. (1) to a regularly spaced voxel grid with aligned control 

grid:

(1) The displacement field at each voxel within the same tile is determined by the same 

set of surrounding control nodes, and
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(2) The normalized local coordinates (u, v, w) are identical for corresponding voxels 

within each tile. Thus, B-Spline weights Bl(u), Bm(v), Bn(w) are identical for voxels at 

the same offset within each tile. Fig. 1b provides an example for clarification.

Due to these properties, the B-Spline weights can be pre-computed for a single tile rather 

than the entire image and reused, reducing redundant computation when applying the 

transformation to all voxel positions. We take advantage of this feature by storing the pre-

computed tile values in a lookup table (LUT) prior to cost-related computations, repeating 

for each control grid Φi.

2.2. Composite transformations and the DMTC

A smooth and one-to-one transformation can be obtained by a single-level manipulation 

employing the displacement constraints of Choi and Lee [38]. Given T0, T1, …, Ti as the 

sequence of transformations determined for i + 1 control grids, we define a composite 

transformation, Tc, by composing the sequence of transformations to represent the aggregate 

mapping after performing registration through the corresponding progression from coarse to 

fine control grids.

The most commonly used composite transform for multi-level cubic B-Spline based 

deformable registration [35,37,39,40] is

(2)

as proposed by Hagenlocker and Fujimura [41]. The composite transform is implemented by 

using the warping image, ω, which stores the resultant aggregate mapping from the previous 

levels, i.e. ω = Ti−1 ∘ ⋯ ∘ T0. This defines the composite transform in terms of the warping 

image at voxel position x as Tc [x, φ] = Ti [ω(x), φ]. The composite operation can be treated 

as a recursive process that manipulates the moving image physical space to better align 

corresponding intensity values with those of the fixed image. After level i + 1, the warping 

image is updated to store the displacement field following the i + 1 transformations. Fig. 

2(a) illustrates the composite transform based on Eq. (2) using a 2D example with two 

transformation levels T0 and T1, thus with ω = T0 at the second level. Fig. 2(a) shows that 

original voxel positions are first transformed into new locations after applying ω, 

represented by the dotted arrow, leading to scattered positions for all voxels as denoted by 

the gray circles. T1 is applied to the displaced voxel positions following warping, which 

yields the correction to ω to complete the composite transformation as shown by the dashed 

arrow in Fig. 2(a). Note that application of ω results in a non-uniform voxel grid after the 

first level, and thus the B-Spline weights and derivative weights must be recomputed at each 

level for the full voxel grid, eliminating the use of LUTs and increasing memory storage 

requirements.

Schnabel et al. [42] developed an efficient method for multi-level frameworks with non-

uniform grids. However, we wish to preserve the B-Spline LUT properties in order to reduce 

memory storage needs to meet GPU limitations. To accomplish this, we must maintain the 

regular spacing of the voxel grid, which we accomplish by introducing the DMTC
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(3)

The warping image stores all previous transforms as ω = T0 ∘ T1 ∘ ⋯ ∘ Ti−1 with the resultant 

composite transform at voxel position x defined as Tc [x, φ] = ω(Ti [x, φ]). Fig. 2(b) 

illustrates this method. We first seek the correction to ω in the non-deformed uniformly 

spaced grid, as determined by T1; thus, each tile has equivalent uniformly spaced input 

coordinates to T1, allowing use of LUTs for weights. We then add the warping image 

displacement vector, denoted by the dotted arrow, to complete the composite transformation 

as shown in Fig. 2(b) and denoted by the dashed arrow. Because ω was defined at the voxel 

center, the warping image displacement at the deformed position by T1 (denoted by black 

triangles in the figure) is obtained by linear interpolation of ω, which is less costly than 

computation of B-Spline weights and derivative weights in Eq. (2). Because the composition 

of diffeomorphisms is a diffeomorphism, a final one-to-one diffeomorphic mapping is 

guaranteed by imposing the displacement constraints for each control grid level in either Eq. 

(2) or Eq. (3). Besides preserving the regular spacing of the voxel grid for all iterations 

during optimization at each level to allow LUT use, several additional benefits of the DMTC 

will be exploited during cost and gradient computations, as discussed in the following 

section.

3. Multi-level GPU-based registration framework

3.1. Overview

The multi-level registration process is summarized in Fig. 3. At each level, a limited-

memory quasi-Newton minimization method with bounds on the variables (L-BFGS-B) is 

adopted. This method allows bound constraints on the independent variables, a necessary 

characteristic to implement the aforementioned displacement constraints to enforce the one-

to-one mapping condition (i.e. positive Jacobian). As previously mentioned, a key property 

for the multi-level framework using DMTC is the preservation of regular spacing of the 

voxel grid and thus the ability to utilize B-Spline weight LUTs. This is key for reducing 

memory needs and developing computational efficiencies necessary for GPU 

implementation.

We develop the GPU method for mass-preserving image registration using the SSTVD 

similarity measure, described in the next section. Use of SSD is also implemented in the 

same multi-level GPU framework to demonstrate fiexibility of the multi-level framework. A 

GPU tiling technique [43] is implemented that employs necessary principles of GPU 

computing to unlock the promised computational capability of the GPU. The GPU-based 

DMTC framework is implemented using Nvidia’s CUDA API, a parallel computing 

platform giving access to the GPU for general purpose computing.

3.2. Similarity measures

Let If and Im denote the intensity value of each image. We treat If(x) and Im(x) as continuous 

functions of intensity at voxel coordinate x. One of the simplest similarity measures is SSD, 

defined as
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(4)

The gradient with respect to φ is computed at a control node via the chain rule to give:

(5)

where

However, SSD does not account for CT voxel intensity changes with lung inflation. For this 

reason the SSTVD similarity measure was introduced to minimize the local tissue volume 

differences between matched regions as follows [35].

(6)

where vf and vm are the local volumes of corresponding regions in the fixed and moving 

images, respectively, and vm(T [x, φ]) can be calculated from the Jacobian value JT as vm(T 

[x, φ]) = JT(x, φ) vf(x). In addition,  is the tissue fraction estimated from the Hounsfield 

Unit (HU) by

(7)

where the intensities of air and tissue are set to HUair = −1000 HU and HUtissue = 55 HU 

[44]. Tissue volume V is computed as V = v .

The gradient for the SSTVD cost function is then computed at a control node with parameter 

φ as

(8)

Regularization constraints are neglected in this work in order to isolate components 

accelerated by GPU and report computational improvements in the registration framework. 

However, segmented airway tree and lobar masks were used in this work for two purposes: 

(1) to eliminate the possibility of registering ‘background’ voxels during the registration 

process, as an incorrect registration of background voxel pairs would add to the overall cost 

total, inaccurately inflating the value, and (2) to improve accuracy of registration along the 

boundaries, including discontinuity preservation for sliding motion between lobes. Other 

works have used regularization for discontinuity preservation, such as [45] where they 

present a method that removes the need for accurate lung image segmentation.
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3.3. GPU Implementation of SSTVD

GPUs possess a number of streaming multiprocessors that execute in parallel to one another. 

Each streaming multiprocessor consists of groups of streaming processors, or CUDA cores. 

For this work a Nvidia Tesla K20X was used. The K20X consists of 14 streaming 

multiprocessors of 192 CUDA cores each, for a total of 2688 cores. Each core executes a 

serial thread, or sequence of instructions on given data, and the architecture is designed so 

that cores execute in SIMT fashion (Single Instruction, Multiple Threads), meaning that all 

cores in the same group execute the same instruction simultaneously. A block is a group of 

threads sent to a streaming multiprocessor for parallel execution. Though individual threads 

cannot communicate, those within the same block can communicate through use of thread-

block synchronization and shared memory. Effective use of GPU capabilities requires 

making use of the small amounts of available shared memory, which is faster to access than 

the larger global memory, and minimizing CPU–GPU communication.

As with the MSE implementation reported by Shackleford et al. [23], the majority of 

runtime using SSTVD (111/112 min on single thread CPU) is spent on B-Spline 

interpolation and cost gradient computation, and due to the data-parallelism present these 

components were targeted for GPU acceleration. However, SSTVD calculates local tissue 

volume values by introducing Jacobian terms. This leads to a more computationally complex 

cost function and cost gradient with additional dependencies between terms on the 

transformation parameters, requiring modifications of the procedure used by Shackleford.

This GPU implementation consists of three kernels (routines executed on the GPU): a zero 

kernel that initializes relevant values (cost, cost gradient, bins) to zero prior to optimization, 

the main kernel responsible for the bulk of the cost and cost gradient computations, and a 

reduction kernel that computes the final sums of the cost gradients. Final cost gradient 

results are transferred to CPU for optimization, and the process repeats with updated 

displacement parameters φ until optimal values are found. The division of work between 

CPU and GPU is shown in Fig. 3(b), and specific GPU kernel details and pseudo-code can 

be found in the supplementary materials.

3.4. Benefits

The use of DMTC with Eq. (3) leads to several benefits for both the CPU and GPU versions 

that reduce memory and computational needs. The reduction in memory needs is particularly 

important for the GPU implementation since the limited 6 GB of DRAM available on the 

Tesla K20X is fully utilized at the high-resolution levels of registration. The benefits are as 

follows:

(1) The use of the DMTC preserves the regular spacing of the voxel grid throughout 

registration for all resolution levels. This allows the use of weight and derivative weight 

LUTs that are pre-computed for a single tile, rather than all tiles, drastically reducing 

computation (48 kB for 1D x, y, and z weights in tile of 103 voxels, as opposed to 6 GB 

for the same 1D weights in a full 5123 voxel grid). Further, the memory required to 

store the LUTs for a single tile is far less than for all voxels in an image, easily fitting 

within a GPU’s limited resources. Since weights only need to be pre-computed once per 
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level, due to the preservation of the regular spacing of the grid, CPU–GPU 

communication is minimized for this component.

(2) Several variables in Eq. (8), the composite transformation Tc, the Jacobian JTc, the 

Jacobian gradient ∇φJTc, and the moving tissue volume gradient ∇φ
m, can be 

mathematically manipulated to separate warping image components from components 

dependent on the current transformation Ti. This leads to the following forms for these 

variables:

(9)

where

(10)

where α is the x, y, or z directional component of φ, and 

 is the spatial gradient computed at voxel center. 

Application of the product rule to ∇φJTc leads to

(11)

where, similar to Eq. (10),

(12)

By preserving the regular spacing of the image grid, along with the independence of the 

warping image terms from the control grid displacement parameters φ, the warping 

components Jω, ∇x mω, and ∇xJω can be pre-computed a single time during initialization of 

each registration level and reused throughout optimization. The ∂Ti/∂φα values are 

equivalent to product weights stored in the LUT. JTi consists of products of derivative 

weight LUT values, and ∇φJTi consists of determinant minors of values from the derivative 

weight LUT. This simplifies the original complex computations required for the composite 

transforms to only solving the components dependent on Ti for each iteration of 

optimization as the φ values are updated, as the remainder of the values can be accessed 

from pre-computed values of LUTs.

Thus, the DMTC framework minimized CPU–GPU communication by successfully 

reducing redundant and complex computations following application of the chain rule to 
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split cost gradient terms into warping-related terms (ω) and current transformation (Ti) 

terms. The reduction in computation comes at the expense of linear interpolation, which is 

less costly than the original full computations. As the warping-related terms are independent 

of φ, they can be pre-computed a single time during initialization and transferred a single 

time to the GPU. The final cost and cost-gradient were the only terms requiring transfer 

from GPU to CPU every optimization iteration. These repeated transfers only required 0.2 s 

through 8 full levels of registration that totalled about 3.7 min, averaged for six subject data 

pairs and including roughly 500 iterations during the optimization process.

4. Evaluation of multi-level GPU framework

4.1. Data sets

Lung volumetric computed tomography (CT) image data for six healthy human subjects 

were used in this study. Two static images collected at 20% of vital capacity (VC) and 80% 

VC were used in this work. A Siemens Sensation 64-slice Multi-Detector-row CT scanner 

(Forchheim, Germany), with 120 kV, 75 mAs, 0.75 mm slice thickness, 500 mm field of 

view, was used to acquire the images. The scanning protocol to examine the patients was 

approved by the University Institutional Review Board. Each data set contains 550–760 

image planes with a reconstruction matrix of 512 × 512 pixels. The software Apollo (VIDA 

Diagnostics, Coralville, Iowa) was used to segment the airway tree and lobes of the CT 

images.

4.2. Registration validation and performance comparison

4.2.1. Registration validation—Registration was performed on a system with an Intel 

Xeon E5-2620 6-core CPU clocked at 2.1 GHz and Tesla K20X GPU.

SSTVD was previously evaluated in [35], demonstrating better mean landmark error over 

SSD and MI, particularly in regions of large deformation. Landmarks generated by experts 

using a semi-automatic annotating system [46] at vessel bifurcations were used for 

evaluation by comparing distances before and after registration. Each data set contains 

between 102 and 210 landmarks, with approximately 20–40 in each lobe, and with initial 

distance differences between fixed and moving images ranging between 4 mm and 70 mm to 

check accuracy for small and large deformations.

The same data sets were used in this work to evaluate landmark error after registration when 

using the DMTC with SSTVD for method validation. The same framework and data sets 

were used with SSD and results were compared with SSTVD. In the appendix, Table 3 

shows results averaged over all six subjects for landmark distance after registration 

categorized by initial landmark distance in groupings of 20 mm. Table 4 shows results for 

each subject. Table 3 shows that for the group of landmarks with initial separation distance 

of 20 mm, the distance after registration with SSTVD is 1.3 mm on average, while SSD is 

7.14 mm. For landmarks initially separated between 20 and 40 mm, SSTVD results in 

average distance of 2.15 mm, and SSD with 10.88 mm. For initial separation distances of 

40–60 mm, SSTVD yields results within 2.59 mm on average, and SSD yields 17.23 mm. 

Finally, for the largest deformations with distance greater than 60 mm, SSTVD results in 

average distance of 2.84 mm, compared to SSD which results in 28 mm distance after 
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registration. The comparison of SSTVD to SSD was done by using a paired T-test with two 

tails to compare the relative error of SSTVD to the relative error of SSD, where relative 

error here means landmark distance after registration relative to landmark distance before. 

The low p values in each case demonstrate that the results are statistical significant.

Fig. 6 in the appendix shows a comparison of landmark distance results (horizontal axis), 

with initial landmark distance before registration (upper) and landmark distance after 

registration (lower) for SSTVD and SSD cases. Both cases are plotted against distance from 

the apex (trachea). Inspection clearly shows the improvement of SSTVD over SSD, as in 

[35].

The normalized root mean square error (nRMSE) was used to evaluate accuracy of the GPU 

resultant displacement field against the validated single-threaded CPU implemenation of 

Yin et al. [35].

(13)

where v is the resultant displacement field associate with a voxel at coordinate x.

The average nRMS error for the six human subjects is 0.044 ± 0.015. The RMS value was 

0.26 ± 0.07.

4.2.2. Performance assessment—Performance of the multi-level GPU framework was 

compared to the multi-threaded CPU implementations under several measures, such as total 

runtime, average time per iteration per level, and speedup factor. Table 1 shows the total 

registration time results for GPU and CPU implementations. Also shown is the isolated cost 

and cost-gradient time, to directly compare the portions of the code modified for GPU 

implementation. SSTVD and SSD times are reported to show the success of the method for 

a non-mass-preserving and mass-preserving similarity criteria. The multi-level framework 

consisted of 8 levels of registration, beginning with the coarsest control grid and 

downsampled images, and increased in control grid resolution every level and image 

resolution every other level. See Fig. 3(c) for a sample image pyramid.

Table 1 demonstrates that total times substantially decrease with GPU compared to the 

multi-threaded implementations. For greater than 12 threads, the multi-threaded 

implemenation’s runtime performance does not improve much, only 30 s faster than 12 

threads when using 24 threads. Registration using SSD performs faster than SSTVD, as 

expected since SSD requires far less computation i.e. no Jacobian calculations. However, 

with the GPU implementations the difference in timing between the two is much closer (1 

min on K20X) than that of the multi-threaded CPU implementations (5.7 min with 12 

threads).

To compare the components targeted for acceleration by GPU with the multi-threaded CPU 

counterparts, the cost and cost-gradient times per level were divided by the total number of 

iterations to create a normalized comparison from start to finish, a table of these results can 
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be found in the supplementary section. A common metric used to compare the performance 

GPU to CPU is the speedup factor, speedup = timeCPU/timeGPU, where time refers to time 

per iteration. Fig. 4 shows the speedup factors by level for both GPU and CPU 

implementations, comparing time per iteration. At every level, the GPU performs better than 

each of the multithreaded CPU versions. Greatest speedup occurs for both GPUs over CPU 

at the highest resolution level, where the Tesla K20X demonstrates an average of 112 times 

and nearly 11 times speedup over the single-threaded and twelve-threaded versions, 

respectively. The twelve-threaded version demonstrates a 10.4 time speedup over the single-

threaded CPU version at the highest level.

Recurring memory transfers between CPU and GPU represent a negligible amount of time 

per iteration, as intended by design and the use of the composite transform Eq. (3). This 

includes transfer of the cost, cost gradient, and parameters φ for the control grid at each 

iteration of optimization. The total time summed for all levels for these recurring transfers is 

0.2 s. In addition, transfer of the quantities pre-computed during initialization (described in 

Section 3.4) to GPU occurs only once per registration level, prior to optimization start, and 

totaled 0.7 s for all levels, negligible compared to total registration runtime. Furthermore, 

memory allocation on the GPU totaled only 0.05 s. The negligible amount of time required 

for data transfers demonstrates the success of the algorithm in terms of minimizing CPU to 

GPU communication time. The majority of time is spent on cost and cost gradient 

computation, primarily handled by the main kernel described in Section 0 and the appendix. 

Of the three kernel executed on the GPU each iteration, the main kernel accounts for 99.8% 

of the time.

5. Discussion

We have presented a novel DMTC method for multi-level cubic B-Spline based mass 

preserving deformable registration developed to keep memory storage requirements within 

the GPU limitations. The method requires a uniformly spaced voxel grid and control grid for 

B-Spline weight computations to make use of the computational and memory efficiencies 

developed in this work. Constraints are placed on the maximum control node displacement 

in order to ensure a one-to-one transformation, and thus a multi-level framework is utilized 

in order to capture larger global deformations and smaller local deformation. In addition, the 

image size must be large enough to utilize the large number of threads available on the GPU 

to amortize the cost of parallelization and memory communication. SSTVD was chosen as 

similarity criteria due to its improvement of accuracy for registering two CT lung images 

when compared to SSD, and the composite multi-level framework was needed to capture 

both small and large deformations and ensure positive Jacobian values [35]. The proposed 

GPU method was validated against the previously established CPU version [35]. 

Corresponding landmarks (102–210) in 6 different subjects were used to compare the 

landmark error distance between the fixed image to moving image before registration and 

after registration, for both SSTVD and SSD. Results reported for DMTC (Section 4.2.1, 

Appendix Section 7.4), when compared to the results using the composite transform Eq. (2) 

of [35], show similar improvements of SSTVD over SSD, but lose some accuracy due to the 

required linear interpolation step when applying the warping image displacement to the 

transformed location (see Section 2, Fig. 2b). The final displacement fields show agreement 
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with an average nRMS of 0.044 ± 0.015. Regularization constraints are currently being 

investigated for improved registration accuracy while fitting within the current 

computational framework to prevent loss of performance. The GPU implementation 

achieves a peak speedup at the highest resolution levels over the multi-threaded CPU 

version, with speedup of 112 times over the sequential CPU version and 11 times over the 

twelve-threaded version when run on a Tesla K20X GPU. Total registration time for the full 

eight resolution levels reduced runtime to 2.9 min on the K20X GPU version, compared to 

12.8 min on twelve-threaded CPU version and 112.5 min on a single-threaded CPU, as 

averaged over six subjects. In addition, the GPU implementation of SSTVD performs 

considerably closer to SSD in terms of runtime than multi-threaded CPU versions, making it 

a practical replacement for improved accuracy and efficiency in image analysis.

The presence of the tissue volume and the Jacobian terms in the SSTVD cost function lead 

to a cost gradient with data dependencies between all term pairs. Unlike the GPU-based SSD 

algorithm by Shackleford et al. [23], splitting of terms of the cost gradient into separate 

kernels for independent computations is non-trivial. Attempting to duplicate their procedure 

would require additional storage of large data sets exceeding GPU limitations and would 

require recurring costly CPU-GPU memory transfers of a decomposed domain. Splitting the 

work between the three kernels discussed in Section 3.3 and the appendix prevents the issues 

just described. The Jacobian JTi, its matrix, and the transformed coordinates Ti [x, φ] were 

stored in registers throughout a voxel’s respective computations, the fastest memory to 

access on the GPU. Shared memory and thread-block synchronization enabled fast thread 

inter-communication within a thread-block during cost gradient computations and avoided 

the use of slower global memory. The use of the DMTC method with Eq. (3) prevented 

excessive CPU–GPU communication during optimization and enabled the use of B-Spline 

LUTs, pre-computed a single time per level for a single tile rather than all voxels in the 

image. DMTC minimized computations for the cost gradient by utilizing values pre-

computed for the previous resolution levels. This provided a benefit for the GPU 

implementation by requiring only one memory transfer between CPU and GPU at 

initialization for the data variables introduced by SSTVD and its gradient at previous levels.

6. Conclusion

The proposed GPU-based DMTC method for mass preserving (SSTVD) multi-level 

registration of CT lung images outperforms its multi-threaded CPU version in terms of 

runtime. As a result, total registration time reduced runtime to 2.9 min on the K20X GPU 

version, compared to 12.8 min on twelve-threaded CPU version and 112.5 min on a single-

threaded CPU. This is essential to process large data sets for population-based studies via 

clustering analysis to subpopulations of normal and diseased lungs for translational science 

[47]. Furthermore, the GPU implementation discussed in this work can be adapted for use of 

other cost functions that require calculation of the spatial first derivatives, as demonstrated 

with SSD. Future work to improve processing large data sets may include investigating 

regularization constraints and methods that enforce discontinuity preservation and avoid the 

need for accurate segmentation of images, as demonstrated in [45]. Other future work 

includes use of higher order interpolation, such as B-spline interpolation, to calculate the 

composite transformation Tc [x, φ] = w(Ti [x, φ]) as well as in the image resampling from 
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the supporting neighbor voxels, where linear interpolation is currently used. However, as 

noted in [48] the accuracy is improved at the expense of some increase in computing time. 

Another development is of a symmetric SSTVD registration method that contains forward 

and backward (i.e. inverse) transformation information to further improve accuracy of the 

method.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
(a) 2D example image of 32 × 32 voxels (small squares) with aligned overlaying 5 × 5 

control node (gray circles) grid creating partition of 4 tiles of 16 × 16 voxels each. (b) 

Emphasis on upper-left tile (shaded darker gray) and its 16 surrounding control nodes (solid 

black circles). In each tile, the voxels in solid black (5, 4), (21, 4), (5, 20), and (21, 20) share 

the same local index (5,4) within their respective tiles, as well as the same local normalized 

coordinates.
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Fig. 2. 
a and b Serve to illustrate the composite transform following registration after two levels. 

Please note that a and b have the same initial and final positions. (a) The initial positions 

(unfilled gray circles) are deformed to intermediate positions (filled gray circles) by using 

transform T0 (stored as ω), followed by deformation to final positions (filled dark circles) by 

further use of transform T1. The aggregate operation represents the composite transform 

(dashed line) of Eq. (2). (b) The initial positions (unfilled gray circles) are deformed to 

intermediate positions (filled black triangles) by using transform T1, followed by 

deformation to final positions (filled dark circles) by further use of transform T0, stored as 

the warping image ω at voxel centers. The aggregate operation represents the composite 

transform (dashed line) of Eq. (3).
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Fig. 3. 
(a) Flow of the multi-level image registration framework and (b) division of work between 

CPU and GPU during the SSTVD computations. (c) Sample image pyramid used by multi-

level framework.
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Fig. 4. 
Speedup factors for SSTVD implementation of the cost and cost gradient components, 

comparing the GPU implementation to single-, six-, and twelve-threaded (1 T, 6 T, 12 T) 

CPU versions. Log scale used for speedup axis. Values shown are averaged for 6 healthy 

subjects at each of the 8 levels of the image pyramid.
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Table 1

Total
a
 registration

b
 and total cost and gradient computational time for GPU and CPU

c
 implementations.

Version Total registration time (min) Total cost and gradient time (min)

SSTVDd SSDd SSTVDd SSDd

K20X GPU 2.9 2.0 1.1 1.0

12 T CPU 12.9 7.2 11.7 6.3

6 T CPU 23.7 12.6 22.6 11.7

1 T CPU 112.5 63.6 111.3 63.8

a
Time is totalled over all 8 levels of registration and averaged for 6 healthy subjects.

b
Registration time consists of SSTVD (cost and cost gradient) and optimization.

c
CPU implementations include single(1 T)-, six(6 T)-, and twelve(12 T)- threaded versions.

d
SSTVD and SSD time each consists of their respective cost and cost gradient calculations.
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