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A B S T R A C T

Background and objectives: Because skin cancer affects millions of people worldwide, com-

putational methods for the segmentation of pigmented skin lesions in images have been

developed in order to assist dermatologists in their diagnosis. This paper aims to present a

review of the current methods, and outline a comparative analysis with regards to several

of the fundamental steps of image processing, such as image acquisition, pre-processing

and segmentation.

Methods: Techniques that have been proposed to achieve these tasks were identified and

reviewed. As to the image segmentation task, the techniques were classified according to

their principle.

Results: The techniques employed in each step are explained, and their strengths and weak-

nesses are identified. In addition, several of the reviewed techniques are applied to macroscopic

and dermoscopy images in order to exemplify their results.

Conclusions: The image segmentation of skin lesions has been addressed successfully in many

studies; however, there is a demand for new methodologies in order to improve the efficiency.

© 2016 Elsevier Ireland Ltd. All rights reserved.
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1. Introduction

Pigmented skin lesions, which may be classified as benign or
malignant, are mainly caused by an abnormal production of

a group of cells in some specific regions. Benign lesions have
a more organized behaviour than malignant lesions, since the
former do not proliferate into other tissues. Nevus, such as
melanocytic, blue, halo, sptiz and dysplastic (Fig. 1a), and seb-
orrheic keratosis (Fig. 1b), are examples of benign lesions. In
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the case of malignant lesions, i.e., skin cancer, the cells split
quickly, and may invade other parts of the body. Indeed, these
cells do not die as generally occurs with normal cells. Skin
cancer may be divided into two categories: melanoma (Fig. 1c)
and non-melanoma (Fig. 1d). Basal cell carcinoma and squa-
mous cell carcinoma are two examples of non-melanoma skin
cancer (NMSC) and are the most common of all skin cancers.
Moreover, these types of cancer have a higher chance of cure
than melanoma, since they have a reduced capacity to spread
(metastasis) to other parts of the body. Melanoma is the most
aggressive form of skin cancer and the one with the highest
mortality rate due to its high levels of metastasis [2].

Melanoma was the 19th most common cancer worldwide
in 2008, with an approximate estimation of 200,000 new cases,
and with the highest incidence rate in Australia/New Zealand,
Northern America and Northern Europe, and the lowest in
South-Central Asia [3]. Table 1 presents recent data regarding
skin cancer in the United States of America (USA), the United
Kingdom (UK) and Brazil, according to gender. In the USA, 76,100
new cases of melanoma were estimated to be diagnosed in 2014
[4]. This estimate does not include NMSC, since this form of
skin cancer is not required to be reported to cancer registries.

For the same year, 9710 deaths from melanoma were esti-
mated.Another interesting point concerns melanoma incidence
rates, which have increased during the last 30 years; for
example, the incidence rates from 2006 to 2010 have in-
creased by 2.7% per year. In the UK, melanoma was the 15th
most common cancer in 2010, with approximately 12,800 new
cases of this disease [3]. As a result, melanoma was the 18th
most common cause of death from cancer in the UK. In 2011,
there were 2209 deaths from melanoma, and 590 deaths from
NMSC in the UK. Of these deaths from melanoma, 59% of the
deaths were male patients, and 41% of the deaths were female
patients. In Brazil, NMSC will be the most common form of
cancer, since approximately 182,000 new cases are estimated
in 2014 and 2015 [5]. Although NMSC has a lower mortality rate,
it has a higher incidence than melanoma.

Recently, there has been a great interest in the develop-
ment of computer-aided diagnosis (CAD) systems for the
detection and analysis of pigmented skin lesions from images
[6–9], which can assist the dermatologist in preventing the de-
velopment of malignant lesions. Particularly, CAD systems may
be used to monitor benign skin lesions, in order to prevent the
development of malignancy. Moreover, malignant lesions may
be diagnosed at an early stage, during which the patient has
a higher probability of cure, and more favourable conditions
for being properly treated.

On the other hand, there is also a great interest concern-
ing the image segmentation step of the CAD systems.This step
allows for a better representation of the lesion under study,
and extraction of its features. Image segmentation has, there-
fore, a critical role in the effectiveness of the CAD systems.
Previous studies [10–15] have shown that computational
methods for image segmentation may provide suitable results
for the identification of skin lesions in images. Frequently, the
images under analysis are pre-processed for image enhance-
ment and artefact removal, so that more robust segmentations
may be achieved [16,17]. An overview of lesion border detec-
tion methods, which addresses the pre-processing,
segmentation and post-processing steps, is presented in Celebi
et al. [18]. In addition, the authors also discuss performance
evaluation issues and propose guidelines for future studies.
However, they primarily focus on dermoscopy images of pig-
mented skin lesions, and the segmentation methods were
classified according to the images to be segmented. In this
review, we introduce some of the most relevant solutions that
have been developed to assist the diagnosis of skin lesions from
images, including those concerning the steps of image acqui-
sition, pre-processing and segmentation. In particular, we
comprehensively review the computational techniques that
have been suggested for the image segmentation of pig-
mented skin lesions. In the following sections, these techniques
are classified into five classes according to their segmenta-
tion principle, specifically, based on edges, thresholding, regions,
artificial intelligence techniques, and the ones based on active
contours. In addition, several of the reviewed techniques are
applied to macroscopic and dermoscopy images, in order to
exemplify and discuss their applications.

The paper is organized as follows: in Section 2, a review of
the current state-of-the-art concerning the image segmenta-
tion of pigmented skin lesions is provided. In addition,
smoothing and segmentation results by using several methods

Fig. 1 – Four examples of skin lesions: (a) dysplastic nevus,
(b) seborrheic keratosis, (c) melanoma, and (d) squamous
cell carcinoma (images publicly available in [1]).

Table 1 – Number of new cases of skin cancer, according
to gender, in the USA, UK and Brazil.

Country Type of skin
cancer

Year Number of new cases

Male Female

USAa Melanoma 2014 43,890 32,210
UKb Melanoma 2010 6201 6617

Non-melanoma 55,747 43,802
Brazilc Melanoma 2014 2960 2930

Non-melanoma 98,420 83,710

a Estimated number, based on 1995–2010 incidence rates.
b Confirmed cases in 2010.
c Estimated number in 2014 and valid also for 2015.
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are presented. In Section 3, the properties of some of the re-
viewed computational methods are discussed, and their
advantages/disadvantages are identified. Finally, in Section 4,
the conclusions of the review and future trends are outlined.

2. Image segmentation of pigmented skin
lesions

2.1. Imaging techniques

Different non-invasive imaging techniques have been em-
ployed to assist dermatologists in the diagnosis of skin lesions.
Dermoscopy, photography, confocal scanning laser micros-
copy (CSLM), optical coherence tomography (OCT), ultrasound,
magnetic resonance imaging (MRI), and spectroscopic imaging
are examples of these techniques [19–21]. Macroscopic images,
commonly known as clinical images [13,22,23], and images ac-
quired by epiluminescence microscopy (ELM), also called
dermoscopy or dermatoscopy images [12,14,15,24–27], are nor-
mally used in the computational analysis of skin lesions. Fig. 2
presents examples of dermoscopy and macroscopic images.

Clinical images are usually obtained using common digital
video or image cameras. However, the imaging conditions are
frequently inconsistent; for example, images are acquired from
variable distances or/and under different illumination condi-
tions. Furthermore, the images may have poor resolution, which
may cause complications when the size of the lesion is small.
An additional problem with clinical images is related to the
presence of artefacts, such as hair, reflections, shadows and
skin lines, which may hinder the adequate analysis of the
imaged skin lesions.

Essentially, ELM is a non-invasive technique for image ac-
quisition, where the lesion is immersed in oil, and subsequently
a dermatoscope device (which includes a specific camera) ac-
quires the images.This technique allows a better visualization

of the pigmentation pattern on the skin surface. Besides the
non-polarised imaging modality due to the oil immersion, there
are two other modalities of ELM that may be used: cross-
polarization and transillumination, also called side or epi-
transillumination. In these modalities, the images are acquired
via a nevoscope device, which allows the acquisition of images
with a variable amount of transillumination or cross-polarized
surface light. Both modalities highlight the surface pigmen-
tation, but the transillumination modality has the advantage
of highlighting the subsurface vasculature and blood flow.
However, hairs and air bubbles must be subsequently removed
from the images, to allow for a better recognition of the skin
lesions.

2.2. Image pre-processing

The image pre-processing step is an important aspect for the
effective identification and analysis of pigmented skin lesions
in images. As mentioned earlier, the images under analysis may
contain several artefacts, such as hairs, reflections, shadows,
skin lines and air bubbles, which may affect the accuracy of
the image segmentation step. Effective methods based on colour
space transformation [28–30], illumination correction [31,32],
contrast enhancement [28,29,33,34] and artefact removal [28,35]
as a pre-processing step have been proposed in order to improve
the segmentation accuracy.

In order to pre-process both macroscopy and dermoscopy
images, the original RGB (red, green, blue) colour image may
be used. The application may adopt scalar (single channel) or
vector (multichannel) processing. In scalar processing, the colour
image is converted into a scalar image such as, for example,
a grey-level image, or only the blue channel is retained, since
the lesions are often more evident in this channel [18]. In vector
processing, the original RGB image may be used directly or after
conversion to other colour spaces, such as the CIE L*a*b* [29],
CIE L*u*v* [6], and HSV (hue, saturation, value) spaces [31].These
colour spaces are commonly used in literature to enhance
colour images, since they augment the approximate percep-
tual uniformity of the image colours. Several pre-processing
methods were originally designed for scalar images. However,
these methods may also be applied to colour images, for
example, by applying the scalar method separately to each
colour channel of a given colour space, and then combining
the results [36], or adopting methods that deal with vector data
[37].

Artefacts due to illumination variation, such as shadows and
reflections, may significantly affect the skin lesion segmenta-
tion results, specifically in macroscopic images. For shading
effect attenuation in macroscopic images, Cavalcanti et al. [31]
proposed a method for illumination variation modelling with
a quadratic function. This method converts the original RGB
image to the HSV colour space, and retains the V channel in
order to obtain a higher visibility of the shading effects. The
normalized image is obtained by applying, on the HSV image,
an estimate of the quadratic function computed from the local
illumination intensity in V channel. Afterwards, the normal-
ized image is converted from the HSV colour space back to the
RGB colour space, but now with the shading effects signifi-
cantly attenuated. Colour image segmentation is then
performed on this illumination-corrected image, by using the

Fig. 2 – Examples of dermoscopy (a and c) and macroscopic
(b and d) images: a and b are images of melanoma in situ,
and c and d are of invasive melanoma (these images are
publicly available in [1]).
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Otsu’s thresholding segmentation approach [38]. Recently,
Glaister et al. [32] proposed a new multistep illumination mod-
elling method to correct the illumination variation in
macroscopic images.This method first determines a nonpara-
metric model of the illumination by using a Monte Carlo
sampling method.Then, a parametric quadratic surface model
is used to determine the final illumination estimation. Finally,
the illumination-corrected image is obtained by using the re-
flectance component computed from the final estimated
illumination.

Another factor that complicates the segmentation of skin
lesions, in both macroscopic and dermoscopy images, is the
low contrast of the lesions. Celebi et al. [34] presented a method
to enhance the contrast in dermoscopy images. The method
searches for the optimal weights to convert an original RGB
image to the corresponding grey-level image, by maximizing
an Otsu’s histogram bimodality measure. Recently, Barata et al.
[36] used a shades-of-grey method for colour compensation in
dermoscopy images. This method only uses image informa-
tion to estimate the colour of the light source. Morphological
filtering [39], which is based on set theory, may also be used
to enhance skin lesions in images [40]. For example, one may
refer to the work of Beuren et al. [40], where colour morpho-
logical filtering is used to enhance the regions of the lesions.
Moreover, morphological filtering has been applied in order to
include areas with low contrast borders in the detected lesion
regions [26,41], and to remove image noise [12,41].

Algorithms for hair removal, in both macroscopic and
dermoscopy images,are commonly used in pre-processing steps,
since this artefact may considerably affect the detection of the
lesion borders.Lee et al. [42] proposed a solution for hair removal,
especially thick dark hairs, which is based on one of the first
widely adopted methods for hair removal in dermoscopy images,
and consists of three main steps: 1) identify the hair location
by applying a grey-level morphological operation to the three
colour channels of the original RGB image separately, and build
the binary hair mask image by using thresholding to divide the
image into hair and non-hair regions; 2) replace the values of
the detected hair pixels in the original image by the values of
the corresponding nearby non-hair pixels; and 3) apply a binary
morphological operation and median filter to smooth the thin
lines. This method has influenced several other methods for
hair detection and removal [43–46].

The presence of hairs in images may also be reduced by the
application of image smoothing methods, such as the median
and anisotropic diffusion filters, without losing relevant in-
formation about the lesions, and, therefore improving the
accuracy of the segmentation process. The median filter [47],
which is a non-linear image filtering method, has been com-
monly applied on noisy images showing successful results.
Unlike linear filters, such as the average filter [47], this type
of filter allows the smoothing of the original image without
blurring edges and thin details.The median filter has been often
applied to smooth images of skin lesions, as well as to remove
artefacts, maintaining the edges of the lesions, which is im-
perative for an adequate segmentation [6,12,48,49].To establish
the best median filtering mask for the smoothing of skin lesion
images, Celebi et al. [48] established a theory, which consid-
ers that, for an effective smoothing, the size of the filtering
mask should be proportional to the size of the input image.

Anisotropic diffusion [50] has also been used for smoothing
skin lesion images [17]. This filter is applied iteratively, such
that the number of iterations is determined according to the
amount of noise presented in the input image. However, rel-
evant edges may be removed when the number of iterations
is too large. Improvements have been proposed, in order to
enhance the results of the anisotropic diffusion filter. For
example, Barcelos et al. [51] proposed an enhancement of the
anisotropic diffusion algorithm, originally suggested by Perona
and Malik [50]. The improved algorithm not only aims at
smoothing very noisy images without removing relevant edges,
but also considers the improvements proposed by Alvarez et al.
[52] and Nordström [53] to enhance the edges.

The results of the application of the median [47], average
[47] and anisotropic diffusion [50] filters to an 256 × 256 pixel
image are shown in Fig. 3. A 9 × 9 convolution mask was used
in the median and average filtering, since other masks did not
lead to a successfully smoothed image with a reduced noise
level. Regarding the anisotropic diffusion filter, the smooth-
ing was halted after 150 iterations.

Unlike most methods proposed in literature for reducing
the influence of hairs on images of skin lesions, Abbas et al.
[16] suggested an effective pre-processing method for the re-
duction of different artefacts, in both dermoscopy and
macroscopic images, and, consequently, a better detection of
lesion borders. Essentially, this method consists of three steps:
1) specular reflection reduction by applying homomorphic fil-
tering [54], Fast Fourier Transform (FFT) and high pass filtering,
in order to modify the illumination and reflectance, and ob-
taining, therefore, high contrast skin lesions; 2) the reduction
of dermoscopic-gel or air bubble artefacts, based on an adap-
tive and recursive weighted median filter; and 3) hair, blood
vessel and skin line detection and reduction, using a line de-
tection procedure, based on the two-dimensional (2D)
derivatives of Gaussian (DOG) [55] and the exemplar-based
inpainting technique [56].

Fig. 3 – Application of smoothing filters: (a) original
dermoscopy image of a melanoma (publicly available in
[1]), and the corresponding images obtained after (b)
median, (c) average, and (d) anisotropic diffusion filtering.
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2.3. Image segmentation

Segmentation allows the extraction of the region of interest (ROI)
of an image. Bearing in mind that the skin lesion is the ROI in
the image under analysis, the segmentation process should not
cease until the lesion is fully detached from the image back-
ground, or until some other outcome is reached. Some artefacts,
such as hairs, reflections, shadows, skin lines and bubbles, may
influence the result of the segmentation process, making it a
complex computational task. Nonetheless, as mentioned pre-
viously, pre-processing techniques may be applied to the original
images, with the purpose of facilitating the segmentation process
and improving the resultant accuracy.

In general, the segmentation process is based on the dis-
continuity and similarity of some properties of the ROIs to be
segmented [57]. The segmentation methods may be edge-
based, i.e., the methods are based on information about the
image edges, more specifically, they search for abrupt changes,
i.e., discontinuities, in the intensity of the image pixels rela-
tive to their neighbours. Edge detectors are the most common
examples of such methods. In addition, the segmentation
process may depend on similarity criteria, such as similar grey-
levels, colours or textures. Thresholding- and region-based
segmentation are some examples of methods that use simi-
larity criteria to identify skin lesions in images. Many
segmentation methods are originally designed for scalar images.
Therefore, several applications are available to convert the origi-
nal colour image to scalar data [58], for example, grey-level
images, pursuing the computational simplicity and conve-
nience of scalar processing. However, in order obtain better
segmentation results by using the information contained in
all the colour channels of the original images, segmentation
methods dedicated to process vector images have been de-
veloped [59]. However, this vector image processing is usually
more computationally demanding and requires appropriate
colour spaces.

In the following sections, we discuss the applicability of some
methods commonly used in literature for the segmentation of
pigmented skin lesions in images, such as the edge-,
thresholding- and region-based methods, and methods based
on artificial intelligence (AI) and active contours. Other methods
are discussed in Section 3. The reviewed research is summa-
rized in Table 2. Research that combines different methods
[10,14,67,71], and that compares segmentation methods [12],
is also included in Table 2.

2.3.1. Edge-based segmentation
The changes in intensity of the pixels in an image to be seg-
mented may be determined based on the magnitude of the
gradient used to detect the edges of the ROI [57]. The Prewitt,
Sobel, Roberts, Laplacian [57] and Canny [76] operators are
common examples of edge detectors that lead to image seg-
mentation based on edges. According to Sonka et al. [39], edge
detectors may only achieve partial image segmentation.There-
fore, the application of another segmentation method is needed
to improve the final segmentation result. In particular, edge
detectors present the following problems [39]: 1) the detec-
tion of an edge where no real border exists; 2) the non-
detection of an edge where a real border exists; 3) the possibility

of generating double edges; and 4) the large sensitivity to image
noise.

The edge detector developed by Canny [76] has been applied
to skin lesion images [17,60] due to its advantages compared
with other edge detectors: 1) it provides good edge detection
with a low error probability; 2) it allows a good location of the
edge pixels; and 3) it avoids the detection of double edges. First,
Canny’s algorithm smooths the input image f x y,( ), perform-
ing a convolution with a Gaussian function G x y,( ):

g x y f x y G x y, , , ,( ) = ( ) ∗ ( ) (1)

where:

G x y e
x y

, ,( ) =
− +1

2 2
2

2 2

2

πσ
σ (2)

and where σ is the Gaussian function standard deviation.Then,
the gradient magnitude M x y,( ), and the direction α x y,( ), at
each pixel in the smoothed image g x y,( ), are computed:

M x y g gx y, ,( ) = +2 2 and (3)

α x y tan
g
g

x

y

,( ) = −1 (4)

Subsequently, the non-maximum suppression technique is
used to preserve all pixels with local maximum in the

Table 2 – Research that has been performed related to
the segmentation of skin lesions in images.

Segmentation
method

Technique References

Edge-based Edge detectors [17,60]
Thresholding-

based
Otsu’s thresholding [6,26,29,31,34,41,

44,49,61–65]
Fuzzy logic [14]
Renyi’s entropy [40]
Adaptive thresholding [12,66]
Iterative thresholding [33,67,68]
Ensemble [24]
Statistics [7,23,69]

Region-based Region growing [6,7,10,12]
Statistical region merging [32,48,60,70]
Iterative stochastic region
merging

[13]

AI-based Neural networks [33,68,71]
Evolutionary computation [11]
Fuzzy logic [10,12,14,27,44,67,

70,71]
k-means clustering [44,70,72]

Active contour-
based

Adaptive snake [12]
Gradient vector flow [12,15,63,73,74]
Level set [64]
Region-based active
contour algorithm

[16,28]

Active contour without
edges

[12,65]

Expectation-maximization
level set

[12]

Other methods Hill-climbing algorithm [29]
Dynamic programming [58,75]
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gradient image. Afterwards, double thresholding T T1 2,( ) is es-
tablished to remove the weak edges.The pixels with a gradient
magnitude below the T1 are considered as weak edges, and
the pixels with a gradient magnitude above T2 are consid-
ered as strong edges. Finally, the final edges are defined by all
the pixels considered as strong edges or also by the weak pixels
that can be connected to any strong pixels.

Fig. 4 illustrates the segmentation results from applica-
tion of Canny’s edge detector to two skin lesion images [76].
Usually, a median filter [47] is applied before the edge detec-
tor in order to smooth the original image and reduce the noise.
However, the edges generated by Canny’s edge detector are
usually not satisfactory. Although the lesions are identified by
the detector, the generated edges are discontinuous; thus, the
boundaries of the lesions are not fully detected. In addition,
there is a large sensitivity to the noise, which generates bound-
aries that are not part of the lesions.

Barcelos and Pires [17] employed Canny’s edge detector after
the application of an anisotropic diffusion smoothing filter [51],
and the results demonstrated that the unwanted edges were
removed. However, some regions of the skin lesions were not
included in the detected edge map, and the edges were not
completely closed.

2.3.2. Thresholding-based segmentation
The thresholding technique has been commonly used in several
skin lesion segmentation methods proposed in literature.This
technique is based on the histogram of the input image, which
represents the distribution of the image pixels, P n Ni i= , in
terms of each possible intensity level, i L= [ ]1 2, , ,… , where ni

is the number of pixels for a particular intensity level i, N is
the total number of pixels of the image, and L is the number
of intensity levels.Thus, the thresholding technique entails the

selection of one or multiple threshold values to separate the
ROIs in the input images.

Among the various techniques proposed in literature to
define the threshold value(s), we may cite Otsu’s method [38],
which has many applications in image segmentation of skin
lesion [6,26,29,41,49,61,65]. This method is based on a normal-
ized histogram, built in order to set the optimal threshold value
k , which separates the pixels of the input image into two ho-
mogeneous classes C C0 1,( ), with minimal variance (σB

2): one
class for the ROI, C k0 1 2= [ ], , ,… , and the other class for the
image background, C k k L1 1 2= + +[ ], , ,… :

σ ω μ μ ω μ μB T T
2

0 0
2

1 1
2= ( ) + ( )− − , (5)

ω ω0 1 1 1
= =

= = +∑ ∑P Pii

k
ii k

L
, , (6)

μ
ω

μ
ω0

0
1 1 1

= =
= = +∑ ∑iP iPi

i

k i

i
i k

k
, , and (7)

μT ii k

k
iP=

= +∑ 1
, (8)

where ω0 and ω1 are the probabilities, and μ0 and μ1 the means
of the classes C0 and C1, respectively.Thus, μT is the total mean
of the intensities of the input image. Fig. 5 presents the seg-
mentation results after the application of Otsu’s method [38]
to dermoscopy and a macroscopic images. A median filter [47]
was employed before the segmentation step, to reduce the noise
in the original images. Although several lesion boundaries are
correctly detected, several other regions, such as edges with
low contrast, are not identified as part of the lesions. Further-
more, this edge detector is very sensitive to artefacts and,
therefore, because of reflections, some interior regions of the
lesions are wrongly identified as belonging to the lesions.

Otsu’s method has revealed some problems, such as: (1)
the segmented lesions tend to be smaller than they are in
reality; and (2) it may lead to very irregular lesion edges.
Yuksel and Borlu [14] proposed a method using the type-2
fuzzy logic technique [77] to solve such problems, which
automatically determines the threshold value to segment
dermoscopy images. This technique exhibits good perfor-
mance in dealing with fuzzy values, by determining whether
a specific image intensity level belongs to lesion regions or
belongs to the background skin. Alcón et al. [23] proposed an

Fig. 4 – Segmentation results after applying Canny’s edge
detector to a dermoscopy image (a and c), and to a
macroscopic image (b and d).

Fig. 5 – Segmentation results after applying Otsu’s method
(a) to the dermoscopy image shown in Fig. 4a and (b) to the
macroscopic image shown in Fig. 4b.
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improved thresholding technique to overcome some issues
of Otsu’s method. In the proposed algorithm, the threshold
is defined by finding the average value between the means of
both background and lesion probability distributions. Cavalcanti
et al. [31] and Gómez et al. [72] suggested building projec-
tions of the original RGB colour space, where they were able
to properly apply Otsu’s method. A thresholding method
based on the Renyi’s entropy [78] has also been applied to
define the desired threshold value, leading to segmentations
that preserve the geometry and shape of the lesions [40].
Another technique to define the threshold value is indicated
by Xu et al. [69], which considers the average intensity of the
strongest gradient pixels in the input image. Threshold selec-
tion by an iterative [33,67,68] or an adaptive [12,66] process
has also been adopted to segment skin lesions in images.
The fusion of the results provided by the ensemble of
thresholding methods results in another segmentation tech-
nique based on thresholding [24].

2.3.3. Region-based segmentation
The region growing algorithm [79], splitting and merging op-
erations [80], and the Mumford–Shah method [81] are examples
of region-based techniques that have been used to segment
skin lesion images. The region growing algorithm consists in
grouping similar neighbouring pixels, or in grouping sub-
regions, into larger homogeneous regions according to a growing
criterion. For example, in a given region of an image, pixels with
similar properties, such as grey-level, colour or texture, are
grouped together [6,7]. The splitting and merging operations
are region-based techniques applied to group similar regions
[10,12].Thus, the same intensity is attributed to all input pixels
that have similar intensity, in agreement with the grouping cri-
terion. On the other hand, the Mumford–Shah method divides
the original image into several regions Ω Ω Ω Ωi n k= ∪ ∪ ∪ ∪1 2 … ,
where k is the boundary between them, merging the close
regions by analysing their pixel intensities. This technique is
based on an energy functional E k( ) , calculated as:

E k u c dxdy l kii i
( ) = − + ( )∫∫∑ 2

Ω
� , (9)

where u is a constant function into each image region Ωi ,
c mean ui = ( ) , dx and dy are the differentials of x and y, � is
a parameter that is incremented at each iteration, and l k( ) is
the total length of the regions at each iteration.

The active contour model without edges [82] is based on
the Mumford–Shah method and has been used in the image
segmentation of skin lesions [12,16]. Examples of the results
obtained by the Mumford–Shah method applied to skin lesion
images are presented in Fig. 6. The method was employed on
two images that were previously smoothed using the median
filter [47]. Observation of the resultant images shows that the
lesions are completed identified, including the lesion regions
with considerable colour variation. However, some regions are
erroneously identified as belonging to the lesions due to image
artefacts.

Castillejos et al. [70], Celebi et al. [48] and Ganzeli et al. [60]
employed the statistical region merging (SRM) algorithm [83]
to detect the edges in images of skin lesions.This algorithm is
a technique developed to segment colour images based on
region growing and merging.Simplicity, computational efficiency

and excellent performance are the main advantages reported
for the SRM algorithm. Image quantization and colour space
transformation steps that are commonly applied to the origi-
nal images before their segmentation are unnecessary when
this algorithm is used to segment skin lesion images.

A method to segment skin lesion images through iterative
stochastic region merging has been proposed by Wong et al.
[13] based on the SRM algorithm [83]: each image pixel is as-
signed to a single region, which is subsequently merged with
other regions in a stochastic way, based on a probability func-
tion of region fusion. This process is characterized by a multi-
path refining of the results in order to achieve the best final
segmentation. This method has been shown to be robust to
image artefacts and to perform successfully in cases where
several skin lesions, structural lesion variations, varying illu-
minations and colour variations are present in the input images.
In addition, it achieves successful segmentation in cases where
there is low contrast between the lesion and the skin back-
ground near the lesion boundaries.

2.3.4. Segmentation based on artificial intelligence
Techniques based on artificial intelligence (AI) have also been
proposed for the image segmentation of skin lesions, in which
the image pixels are classified as belonging to the ROIs or to
the background of the images. Neural networks, evolutionary
computation and fuzzy logic are some examples of these tech-
niques, which aim at performing similar tasks to humans, based
on learning, natural evolution and human reasoning. These
techniques may be combined among themselves, or with other
traditional image processing techniques, in order to improve
segmentation performance.

Artificial neural networks (ANNs) [84], which are parallel
distributed systems composed of simple processing units with
the purpose of obtaining similar results to the human brain,
have been applied to segment images with skin lesions [33,68].
The segmentation performance of ANNs may be improved
through the application of Genetic Algorithms (GAs) [85], which
are computational techniques for searching and optimiza-
tion. GAs are based on natural evolution and biological genetics,
with the aim of finding the best solution for a given problem;
for example, GAs may be employed to optimize ANN
parameters.

Roberts and Claridge [11] presented a method to segment
skin lesion images through Genetic Programming (GP) [86],
which is a technique based on natural evolution to solve

Fig. 6 – Segmentation results after applying the Mumford–
Shah method: (a) to the dermoscopy image shown in
Fig. 4a and (b) to the macroscopic image shown in Fig. 4b.
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problems following the concepts of genetic algorithms.The pro-
posed method consists in creating a random population of
programmes from the function and terminal sets. The func-
tion set is built from the image processing operations, such as
image thresholding, morphological operations, edge detec-
tion and merging. The terminal set is built from information
in the input image, such as the intensity and coordinate values
of the pixels. This method showed good generalization with
a very small set of training samples. Furthermore, the system
learns by example, thus increasing the amount of problems
in which it is applicable. However, this method has some dis-
advantages regarding the complexity of its implementation,
and the presence of unnecessary steps, which is computa-
tionally demanding.

Fuzzy logic deals with uncertain and imprecise values. Many
algorithms based on fuzzy logic have been proposed to segment
skin lesions in images [10,12,14,27,67,71]. This method allows
the representation of intermediate values within an interval;
in other words, the input data is qualitatively analysed (lin-
guistic values). Frequently, the fuzzy method is applied together
with other segmentation techniques. In Maeda et al. [10] and
Silveira et al. [12], the fuzzy method, combined with both split-
ting and merging techniques, was used to segment dermoscopy
images. This combination, originally proposed by Maeda et al.
[87,88], generates an algorithm for the unsupervised percep-
tual segmentation of natural colour images using a fuzzy-
based homogeneity measure, which performs the fusion of
colour and texture features.The algorithm includes four steps:
simple splitting, local merging, global merging and boundary
refinement.

The fuzzy method was also used to define a threshold value
from fuzzy intensity, by applying the type-2 fuzzy logic tech-
nique [77]; the idea was to determine whether a specific
intensity belongs to the ROI or to the image background [14].
Another method, named neuro-fuzzy approach [71], com-
bines fuzzy logic with neural networks to segment
dermatological images. In addition, fuzzy logic, combined with
clustering techniques, has been employed in the image seg-
mentation of skin lesions, e.g., the fuzzy c-means (FCM)
algorithm [27,67,70]. The basic idea behind the FCM algo-
rithm is to find the centre of each cluster, similarly to the
traditional k-means algorithm. Nevertheless, this process is
more flexible, since partial membership may be introduced in
the clusters. For each iteration of FCM, the minimization of the
objective function F is computed as:
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where N is the number of pixels in the input image, C is the
number of defined clusters, cj is the centre of each cluster j,
μij is the degree of membership for the pixels xi in cluster j,
and k is a coefficient that defines the fuzziness of the

resulting clusters.The term x ci j− is used to measure the simi-
larity of the pixels to the centre cj of a given cluster j.

Fig. 7 presents the segmentation results obtained by ap-
plying the fuzzy c-means method to two images, which have
been previously smoothed by applying the median filter [47].
Two clusters were defined with the initial mean intensities of
8 and 250. Using these parameters, the resultant images dem-
onstrate that the lesions are successfully segmented. However,
some lesion pixels with low contrast are not clustered into the
lesion groups.

Zhou et al. [27] proposed a new mean shift approach, based
on the FCM algorithm, called the anisotropic mean shift al-
gorithm (AMSFCM), to segment dermoscopic images. The
AMSFCM algorithm [89] is more effective than the FCM algo-
rithm, and requires less computational time than the traditional
mean shift technique. Furthermore, it provides superior seg-
mentation results. Mean shift-based techniques [90] allow the
estimation of local density gradients of similar pixels by using
radially symmetric kernels. However, these kernels may not
adequately deal with the presence of irregular structures and
noise in the input image. On the other hand, the AMSFCM al-
gorithm provides improved performance in these cases, since
it uses an anisotropic kernel. Castillejos et al. [70] proposed a
cluster pre-selection algorithm based on the FCM algorithm
(CPSFCM) in order to use fuzzy logic to automatically deter-
mine the optimal number of clusters based on the input image
data such as the intensity values.

2.3.5. Segmentation based on active contours
Algorithms based on active contours have been used for seg-
menting skin lesion images [12,15,16,28,64]. In these algorithms,
the initial curves move towards the boundaries of the objects
of interest through appropriate deformation. A deformable
model may be classified as parametric [91–93] or geometric
[59,82,94–96], according to the technique used to track the curve
movement.

Parametric models include the traditional active contour
models, namely, snake models [92]. Typically, in these models,
the curve deformation is guided by energy forces, in which an
internal energy determines the smoothness level by the defi-
nition of the curve’s elasticity and rigidity; in other words, it
controls the degree of shrinkage or expansion of the model
curve in order to avoid over-deformations. An external energy
is also included in the models, which has the function of driving

Fig. 7 – Segmentation results obtained after applying the
fuzzy c-means method: (a) to the dermoscopy image
shown in Fig. 4a and (b) to the macroscopic image shown
in Fig. 4b.
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the curve to the desired boundary.This energy may be defined
by the user or through an automatic process. Image-based en-
ergies may also be defined which drive the curve towards
interesting image features, such as those based on image in-
tensity, gradient, line segments and corners. However, these
models have some limitations [82,93]: 1) the curve initializa-
tion must be near the object’s boundary; 2) the models have
difficulty in dealing with boundaries with large curvatures; 3)
the stop criterion of the curve deformation usually depends
on the image gradient, which may cause bad edge localiza-
tion when the gradient value is not high enough; and 4) these
models have difficulty in dealing with topological changes
during the curve evolution.

The gradient vector flow (GVF) [93] is another parametric
model that has been used in the segmentation of skin lesions
[12,15,63]. Xu and Prince [93] proposed a new external energy
for the active contour models, which is computed by a linear
partial differential equation, and extends the gradient vectors
at the image edges to the whole image. The goal of the new
model was to overcome some of the main problems of the tra-
ditional snake model, in particular, the curve initialization and
the convergence onto boundary regions with large curvature.
On the other hand, Zhou et al. [15], Zhou et al. [74] and Zhou
et al. [73] proposed a new type of dynamic energy for the seg-
mentation of skin lesions that combines the classical GVF model
[93] and the mean shift algorithm [97]. This algorithm was de-
signed to find the most similar edges to the true boundaries
by calculating the distance between the centroid of the curve
and the true boundary of the object of interest.Thus, the curve
evolution towards the ROI is generated by the gradient vector
flow as well as by the mean shift of the pixels contained within
the curve.This combination makes the model versatile, because
the successful calculation of the image-based energies is guar-
anteed, even in very noisy images.

Geometric models are characterized by the topological
changes that the curve may experience during the segmen-
tation process, and are less dependent on the initial curve
conditions. Level set method [94] and active contour model
without edges, known as Chan–Vese’s model [82], are such
examples of geometric models. The level set method was
originally proposed by Osher and Sethian [94] to handle
topological changes during the curve evolution, which is one
of the limitations of the traditional parametric models. The
curve evolution is implicitly tracked by a level set function,
which allows the easy identification of a pixel: whether an
image pixel is located inside, outside or on the curve. The
geometric properties of the curve may be easily computed by
the level set function.

The active contour model without edges proposed by Chan
and Vese [82] is based on the average of the intensities of the
image pixels, and not on the image gradient. Therefore, the
model uses the concepts of the Mumford–Shah [81] and Level
Set [94] segmentation techniques. Essentially, Chan–Vese’s
model considers a “fitting” term F for the energy minimiza-
tion, which is calculated by means of an energy functional based
on the level set function, φ , to identify whether the object of
interest is inside or outside the curve, C . The minimization of
the energy function F c c1 2, , φ( ) allows the deformation of the
curve towards the boundary of the object, where the inside and
outside intensities are constant and similar:
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where u0 is a pre-processed image, as a bounded function on
Ω and with real values. The fixed parameters μ , ν ≥ 0, �1

and �2 0> are weights for the fitting term. The terms H and
δ are the Heaviside and Dirac delta functions, respectively.
The constants c1 and c2, which are based on Mumford–
Shah’s segmentation model, are the average image u0 inside
and outside the curve C , respectively, and given by:
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Chan–Vese’s model has been used in the segmentation of
skin lesions in images [12,16,65] due to its advantages when
compared with other segmentation techniques based on the
active contour model [82], such as: 1) the initial curve may be
defined more freely in the image; 2) the inner contours are au-
tomatically detected without the need to introduce a second
curve in the image; 3) the object detection is carried out even
in the presence of varying intensities, very smooth boundar-
ies and where the boundaries may not be successfully defined
by the gradient, a situation which is not effectively handled
by the traditional active contour model; and 4) it provides ef-
fective detection of object boundaries even on noisy images,
without the necessity to previously smooth the original images.

Fig. 8 presents the segmentation results obtained by ap-
plying the traditional Chan–Vese’s model [82] to two images,
which were previously smoothed using a median filter [47].The
segmentation process was halted when the edges were on the
lesion boundaries, or when the maximum number of itera-
tions was reached. From the resultant images, one may confirm
that this model has provided good segmentation results, having
identified low contrast boundaries and overcome the image
noise.

Abbas et al. [28] proposed an improved, perceptually-
oriented region-based active contour (RAC) scheme [98], where

Fig. 8 – Segmentation results obtained after applying Chan–
Vese’s model: (a) to the dermoscopy image shown in
Fig. 4a and (b) to the macroscopic image shown in Fig. 4b.
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the segmentation concept is based on Chan–Vese’s model [82]
to determine the edges of the lesion to be segmented. The
authors suggested this model due to its ability to simultane-
ously define multiple regions, separate heterogeneous objects,
successfully deal with image noise, and because of the auto-
matic convergence of the modelled curve.

3. Discussion

In general, the segmentation results are post-processed in order
to improve the accuracy of the obtained lesion edges. In many
cases, morphological filters are used to smooth the edges, to
remove the isolated regions and/or even to fill the interior of
the segmented lesion regions [12,26,27,41,48,67].The final con-
tours obtained for the lesions may be compared with ground
truths defined by one or more specialists. Additionally, the ac-
curacy of the edge detection results may be measured using
statistical metrics in order to estimate the associated preci-
sion and recall, sensitivity and specificity, error probability and
operation exclusive disjunction (XOR) [29,49,99]. The accu-
racy of the segmentation depends on the model and techniques
used to solve the problem. Fig. 9 illustrates the distribution of
the methods reviewed in this article, according to the applied
principle, which have been developed to segment pigmented
skin lesions in images.

Threshold-based techniques have been widely used, mainly
because of their simplicity, computational efficiency and good
performance. The wide use of techniques based on AI is jus-
tified by the advantages it offers, such as the possibility of
learning from sample cases provided by the ANNs, the search
and optimization for the best segmentation results provided
by algorithms based on GAs, and the capability to deal with
imprecise values that are provided by fuzzy logic. Algorithms
based on the active contour model have also been frequently
proposed for the segmentation of skin lesions. Nevertheless,
parametric models have difficulty in dealing with topological
changes and large curvatures. On the other hand, geometric
models do not present such problems, but their computa-
tional complexity may be prohibitive. Region-based methods
have also been used, since such methods have shown successful

performance even in the presence of several obstacles, such
as illumination and colour variation. Usually, edge-based seg-
mentation techniques are not applied independently, since
these techniques may not completely identify the edges of the
lesions, which is imperative in the analysis of skin lesions in
images.

Clustering algorithms have also been applied to segment
skin lesion images [44,70,72]. For example, the k-means clus-
tering algorithm is used by Castillejos et al. [70]. The authors
present a novel approach to segment the images based on the
wavelet transform for k-means, FCM and CPSFCM algorithms.
The proposed methods achieved superior results when com-
pared with techniques that did not apply the wavelet transform.
The hill-climbing algorithm (HCA) is a technique based on the
clustering of points on an image, which is also applied to detect
the ROIs of skin lesion images [29]. This algorithm takes an
image and the number of histogram bins in each dimension
as input parameters, and returns a labelled image, whereas in
the traditional k-means algorithm, the numbers of clusters (k)
are specified manually by the users. Image segmentation based
on such a technique relies on a simple, fast and non-parametric
algorithm. In Abbas et al. [58] and Abbas et al. [75], a new seg-
mentation method based on dynamic programming was
proposed in order to overcome the limitation of thresholding,
region-growing and clustering, as well as level set-based seg-
mentation methods. This method is a general optimization
solution, with good edge-based segmentation capabilities, its
ability to solve for local minima or overlapping problems, its
computational efficiency, and its excellent performance in de-
tecting lesion borders in dermoscopy images.The combination
of different methods have also been adopted to improve the
final result of the image segmentation process, such as finding
the approximate location of lesion, and automatically defin-
ing the initial contours, mainly to be used with the active
contour model [7,63,68].

Table 3 allows the performance comparison of the methods
reviewed to segment both macroscopic and dermoscopy images
of skin lesions, which are mostly performed automatically.The
segmentation results are compared against the ground-truth
defined by one or more specialists, or their quality has been
visually assessed. The table indicates the number and type of
image used, the colour spaces and channels employed in the
pre-processing and segmentation steps, and the values of the
evaluation measures.

In order to obtain enhanced segmentation results, both
from dermoscopy and macroscopic images, pre-processing
methods, such as colour space transformation, illumination
correction, contrast enhancement and artefact removal, have
been used. The median filter [47] and anisotropic diffusion
filter [51] are usually applied to smooth images in order to
reduce the noise. Nonetheless, these filters cannot deal with
some obstacles, such as illumination variation and very thick
dark hair. Algorithms based on hair detection and repair, for
example, based on inpainting techniques, have been used for
hair removal [43].These enhance the lesions, which can lead
to important improvements, and, therefore, favourably affect
the diagnosis.

With regards to the segmentation step, edge-based tech-
niques are not suggested for segment skin lesions, since these
techniques may produce segmentations with edges that are

3%

37%

14%

23%

18%
5%

Edge-based

Thresholding-based

Region-based

AI-based

Active contour-based

Other methods

Fig. 9 – Distribution of the reviewed methods for the
segmentation of skin lesions according to the applied
principle.
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Table 3 – Comparison of the reviewed segmentation methods for skin lesions, both in macroscopic and dermoscopy
images.

Ref. Year Image number
(Type)

Pre-processing
(Colour space)

Segmentation
(Colour space)

Mean result (Evaluation
measure)

[64] 2015 90 (DB1)/160 (DB2)
(Dermoscopy)

Smoothing (RGB) Thresholding + Active contour
(CIE L*a*b* and CIE L*u*v*)

DB1: 10.82% (XOR); DB2: 13.92%
(XOR)

[73] 2013 100 (Dermoscopy) – Active contour (Grey-levels) 0.86 (SE), 0.99 (SP)
[65] 2013 152 (Macroscopic) Illumination correction (HSV) Thresholding + Active contour

( I N
2 and I L channels)

15.60% (XOR), 90.07% (SE), 99.11%
(SP)

[24] 2013 90 (Dermoscopy) – Thresholding + fusion (Blue-
channel—RGB)

8.31 (XOR)

[29] 2013 100 (Dermoscopy) Contrast enhancement (CIE
L*a*b*)

Hill-climbing
algorithm + thresholding (CIE
L*a*b*)

94.25% (TP), 3.56% (FP), 4% (EP)

[75] 2012 100 (Dermoscopy) Artefact removal (CIE L*a*b*) Dynamic programming (CIE
L*a*b* and Grey-levels)

94.64% (SE), 98.14% (SP), 5.23% (EP)

[28] 2012 175 (Dermoscopy) Illumination correction,
contrast enhancement, hair
removal (JCh and CIECAM02)

Active contour (JCh and
CIECAM02)

Single contour initialization: 8.38%
(EP); Multi-contour initialization:
4.10% (EP)

[26] 2012 426 (Dermoscopy) Smoothing, Illumination
correction (Grey-levels, RGB)

Thresholding (RGB) NoMSLs: 84.5% (Prec.), 88.5% (Rec.);
MSLs: 93.9% (Prec.), 93.8% (Rec.)

[70] 2012 50 (Dermoscopy) – AI-based (RGB) Non-reported
SE, SP, AUC

[40] 2012 100 (Macroscopic) Mathematical morphology
(HSI)

Thresholding (Grey-levels) Ben.: 95.22% (FM), 4.79 (NRM);
Mal.: 94.65% (FM),
5.56% (NRM)

[58] 2011 240 (Dermoscopy) Artefact removal (HSV) Dynamic programming (Grey-
levels)

Ben. Mel.: 8.6% (EP);
Melan.: 5.04% (EP); BCC: 9.0% (EP);
MCC: 7.02% (EP);
Seb. Kerat.: 2.01% (EP);
Nevus: 3.24% (EP)

[16] 2011 320 (Dermoscopy) Artefact removal (RGB) Active contour (Grey-levels) 4.58 (EP)
[74] 2011 100 (Dermoscopy) – Active contour (Grey-levels) 0.81 (SE), 0.99 (SP)
[13] 2011 60 (Macroscopic) – Region-based (RGB) 9.16% (EP)
[33] 2011 100 (Dermoscopy) Colour and contrast

enhancement (RGB)
AI-based (RGB and Grey-levels) RGB: 0.24, 0.16, 0.17 (XOR);

Grey-levels: 0.16 (XOR)
[49] 2011 85 (Dermoscopy) Hair removal,

Smoothing,
Contrast enhancement (RGB
and Grey-levels)

Thresholding + AI-based (XYZ,
RGB and Grey-levels)

89.64% (SE), 99.43 (SP)

[61] 2010 300 (Dermoscopy) – Thresholding (Grey-levels) Visual
[15] 2010 100 Dermoscopy – Active contour (Grey-levels) 0.99 (SP), 0.81 (SE)
[12] 2009 100 (Dermoscopy) Mathematical morphology,

smoothing (HSV)
Active contour (CIEL*a*b*) 12.63% (HM), 95.47% (TDR), 36.90%

(HD)
[34] 2009 367 (Dermoscopy) Contrast enhancement Thresholding (Grey-levels) 16.56% (XOR)
[14] 2009 Non-reported

(Dermoscopy)
– Thresholding + Fuzzy logic

(Grey-levels)
Visual

[17] 2009 10 (Macroscopic) Smoothing (RGB) Edge-based (Grey-levels) Visual
[27] 2009 100 (Dermoscopy) – AI-based (RGB) 0.78 (SE), 0.99 (SP)
[48] 2008 90 (Dermoscopy) Black frame removal,

smoothing (HSL)
Region-based (RGB) Ground-truth 1: 11.10 (EP);

Ground-truth 2: 10.27 (EP);
Ground-truth 3: 10.53 (EP)

[7] 2008 319 (Dermoscopy) Smoothing (RGB) Thresholding + region-based
(RGB)

94.1% (Prec.), 95.3% (Rec.)

[10] 2008 50 (Dermoscopy) – AI-based + region-based
(CIEL*a*b*)

Non-reported

[63] 2005 100 (Dermoscopy) Smoothing (Grey-levels) Thresholding + Active contour
(Grey-levels)

Ben.: 13.77% (EP);
Melan.: 19.76% (EP)

[100] 2004 Non-reported
(Dermoscopy)

Mathematical morphology
Smoothing (Grey-levels)

Thresholding + AI-based (RGB) Non-reported

[11] 2003 100 (Dermoscopy) – AI-based (Non-reported) 97% (SE), 81% (SP)

Ref.: reference; Prec.: precision; Rec.: recall; Ben.: benign; Mal.: malignant; Ben. Mel.: benign melanocytic; Melan.: melanoma; Seb. Kerat.: seb-
orrheic keratosis; DB: database; XOR: exclusive disjunction; SE: sensitivity; SP: specificity; EP: error probability; TP: true positive rate; FP: false
positive rate; AUC: area under an ROC curve; ROC: receiver operating characteristics; FM: F-measure; NRM: negative rate metric; NoMSLs: non-
melanocytic skin lesions; MSLs: melanocytic skin lesions; BCC: basal cell carcinoma; MCC: Merkel cell carcinoma; HM: Hammoude distance;
TDR: true detection rate; HD: Hausdorff distance.
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not completely closed. On the other hand, thresholding-, region-,
and AI-based segmentation techniques may completely iden-
tify the lesions in the images. However, lesion boundaries with
low contrast are generally not detected by such techniques.
Moreover, these techniques are susceptible to image arte-
facts. Other techniques based on entropy or fuzzy logic [14,40],
to define the threshold value, may sometimes achieve supe-
rior segmentation results.The region-based approach proposed
by Wong et al. [13] has a better segmentation performance even
in the presence of boundaries with low contrast. In addition,
such a method can tackle structural variations, varying illu-
mination and colour variations. Other techniques have also been
suggested to convert the FCM segmentation method into a more
effective approach for segmenting skin lesions in images [27].
Using these methods, better segmentation results may be
achieved even in the presence of irregular lesions and image
noise. Active contour models [82] are a good option for the seg-
mentation of skin lesions, since these models can adequately
deal with varying intensities, low contrast boundaries and noisy
images. Nevertheless, these models also have disadvantages;
for example, the segmentation result depends on the suitabil-
ity of the initial curve.

4. Conclusions

Image segmentation is an important step for the effective com-
putational diagnosis of pigmented skin lesions in images. Skin
lesion diagnosis is an area of increased interest due both to
the importance of prevention and to early diagnosis of skin
cancer. Although the image segmentation of skin lesions has
been addressed in several studies and successful applica-
tions, there is the potential to develop new methodologies and
to improve the performance of existing methods. Here, we have
presented a review about current methods that have been pro-
posed to segment skin lesions. Additionally, we have introduced
techniques used to acquire and pre-process images, with a focus
on their subsequent segmentation.

From the presented review, one may conclude that
dermoscopy images should be more commonly used in the
computational diagnosis of skin lesions, since these images
present less artefacts and more detailed features, which may
lead to more adequate lesion segmentation and analysis. Nev-
ertheless, techniques to remove or reduce the artefacts are
usually necessary to obtain robust segmentation results.

The reviewed segmentation techniques were classified
into: edge-, thresholding-, region-, AI- and active contour-
based and other categories. We have presented and discussed
results obtained with some of these techniques applied to
dermoscopy and macroscopic images of skin lesions. Active
contour models can provide good results on images with
colour variation and low contrast of the lesion boundaries.
Therefore, such models are a good option for the segmenta-
tion of skin lesions. However, other methods with
improvements, or in combination with other techniques,
may also provide good lesion detections.

In conclusion, the future trends regarding the image seg-
mentation of skin lesions are to search for superior accuracy
in terms of the detection of the lesion edges, as well as to take

into account other issues in the development of computa-
tional solutions, such as computational performance,
automaticity level, image noise smoothing and removal, and
image enhancement.
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