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Abstract 

Background and Objectives: Nowadays, clinical practice in Gamma Knife treatments is 

generally based on MRI anatomical information alone. However, the joint use of MRI and PET 

images can be useful for considering both anatomical and metabolic information about the 

lesion to be treated. In this paper we present a co-segmentation method to integrate the 

segmented Biological Target Volume (BTV), using [11C]-Methionine-PET (MET-PET) images, 

and the segmented Gross Target Volume (GTV), on the respective co-registered MR images. 

The resulting volume gives enhanced brain tumor information to be used in stereotactic neuro-

radiosurgery treatment planning. 

GTV often does not match entirely with BTV, which provides metabolic information about 

brain lesions. For this reason, PET imaging is valuable and it could be used to provide 

complementary information useful for treatment planning. In this way, BTV can be used to 

modify GTV, enhancing Clinical Target Volume (CTV) delineation. 

Methods: A novel fully automatic multimodal PET/MRI segmentation method for Leksell 

Gamma Knife® treatments is proposed. This approach improves and combines two computer-

assisted and operator-independent single modality methods, previously developed and validated, 

to segment BTV and GTV from PET and MR images, respectively. In addition, the GTV is 
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utilized to combine the superior contrast of PET images with the higher spatial resolution of 

MRI, obtaining a new BTV, called BTVMRI. 

A total of 19 brain metastatic tumors, undergone stereotactic neuro-radiosurgery, were 

retrospectively analyzed. A framework for the evaluation of multimodal PET/MRI segmentation 

is also presented. Overlap-based and spatial distance-based metrics were considered to quantify 

similarity concerning PET and MRI segmentation approaches. Statistics was also included to 

measure correlation among the different segmentation processes. Since it is not possible to 

define a gold-standard CTV according to both MRI and PET images without treatment response 

assessment, the feasibility and the clinical value of BTV integration in Gamma Knife treatment 

planning were considered. Therefore, a qualitative evaluation was carried out by three 

experienced clinicians. 

Results: The achieved experimental results showed that GTV and BTV segmentations are 

statistically correlated (Spearman’s rank correlation coefficient: 0.898) but they have low 

similarity degree (average Dice Similarity Coefficient: 61.87 ± 14.64). Therefore, volume 

measurements as well as evaluation metrics values demonstrated that MRI and PET convey 

different but complementary imaging information. GTV and BTV could be combined to 

enhance treatment planning. In more than 50% of cases the CTV was strongly or moderately 

conditioned by metabolic imaging. Especially, BTVMRI enhanced the CTV more accurately than 

BTV in 25% of cases. 

Conclusions: The proposed fully automatic multimodal PET/MRI segmentation method is a 

valid operator-independent methodology helping the clinicians to define a CTV that includes 

both metabolic and morphologic information. BTVMRI and GTV should be considered for a 

comprehensive treatment planning. 

Keywords: Multimodal image segmentation; PET/MR imaging; Fuzzy C-Means clustering; 

Random Walker algorithm; Brain tumors; Gamma Knife treatments. 
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1. Introduction 

Leksell Gamma Knife® (Elekta, Stockholm, Sweden) is a stereotactic radiosurgical device to 

treat different brain disorders that are often inaccessible for conventional surgery, such as 

benign or malignant tumors, arteriovenous malformations and trigeminal neuralgia [1][2]. 

Stereotactic radiosurgery allows an accurate external irradiation (with a single, high dose and 

steep dose gradient) to minimize doses given to adjacent critical brain structures. The gamma 

rays (generated by Cobalt-60 [60Co] radioactive sources) are focused on the target through a 

metal helmet. A personalized treatment plan is implemented using the Leksell Gamma Plan® 

treatment planning system. Currently, the Gamma Plan software does not support DICOM-RT 

objects (generated for the radiation therapy workflow [3] and does not allow to import/export 

any external ROIs (neither manually nor automatically calculated). In addition, the Gamma Plan 

software does not provide automatic image processing methods. 

Nowadays, Gross Tumor Volume (GTV) is usually delineated on anatomical Magnetic 

Resonance Imaging (MRI) alone, acquired a few hours before treatment, by means of a fully 

manual process. Manual segmentation has two main drawbacks: (i) time-expensiveness, 

because dozens of slices have to be manually segmented in a short time; (ii) operator-

dependence in target volume definition. The repeatability of the tumor volume delineation may 

be ensured only by using computer-assisted methods, to support the treatment planning phase. 

Automated or semi-automated approaches can be of great help, providing higher intra- and 

inter-operator reliability compared to conventional manual tracing [4]. Consequently, 

stereotactic neuro-radiosurgery treatment effectiveness can be optimized using automatic 

methods to support clinicians in the planning phase and to improve treatment response 

assessment. 

MRI is an important modality in radiation therapy planning and patient follow-up, 

complementing the use of Computed Tomography (CT) in target delineation. MRI provides 

several advantages over CT, including high quality detailed images and excellent soft-tissue 
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contrast, especially concerning the extent of brain cancer disease [5][6][7]. On the other hand, 

CT attenuation maps, used in radiotherapy for dose planning, are not available in MRI and 

geometric distortion could be manifested due to the static magnetic field non-uniformities [8]. 

However, stereotactic dose calculation algorithms utilize a simplified isocentric technique with 

a known beam profile and a constant linear attenuation through tissue [9], not performing dose 

painting for non-uniform radiation dose distribution. Gamma Plan system also assumes that the 

brain is composed entirely of unit density material [10] and dose delivery is based on the unit 

“shot” (i.e. a dose distribution approximately with spherical shape). Multiple shots are used in 

Gamma Knife treatment to deliver a conformal dose to an irregular radiosurgical target [11]. 

MRI is also considered to be superior to CT in determining the extent of tumor infiltration, 

although some histological evidence of malignancy may extend beyond the margin of 

enhancement [4]. In fact, typical MRI protocols, used for stereotactic radiosurgery treatment 

planning, include T1-weighted pre- and post-contrast (Gadolinium-enhanced) image of the head 

volume. Because of the infiltrative nature of glial and metastatic tumors, accurate delineation is 

difficult and the possibility for accurate determination of the appropriate target volume for 

treatment is limited. Moreover, in patients who underwent surgery, CT and MR imaging may 

not define tumor recurrence accurately. The integration of metabolic Positron Emission 

Tomography (PET) imaging may add another layer of sophistication to the use of radiosurgery 

in the treatment of gliomas and metastases. In addition, metabolic changes are often faster and 

more indicative of the effects caused by the therapy with respect to anatomical imaging [12]. 

Levivier et al. [13] used PET functional imaging in stereotactic conditions for the management 

of brain tumors, and found that it conveys independent metabolic information that is 

complementary to the anatomical information derived from CT or MR imaging. 

In this regard, [11C]-Methionine (MET) seems to have a potential role in providing additional 

information, although MRI remains the gold-standard for diagnosis and follow-up after 

radiation therapy [14][15]. Methionine is a natural amino acid avidly taken up by brain cancer 
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cells, whereas its uptake by normal cells is low. As a matter of fact, MET uptake is mainly from 

the activation of the L-mediated and A-mediated amino acid transport at the level of the Blood 

Brain Barrier (BBB) [16]. In this way, MET-PET discerns malign and benign tissues in brain 

tumors with great sensitivity and specificity, by localizing selectively in cancer regions of the 

brain. Numerous studies have shown that the specificity of the MET-PET for marking tumor 

delineation and for the differentiation relapse versus radiation necrosis is higher compared with 

MRI. In [17], metabolic imaging was used for biological target delineation in 36 patients that 

showed a significantly longer median survival compared with the group of patients in which 

target volume was merely defined by MRI. 

In contrast, [18F]-Fluorodeoxyglucose (FDG) PET for metabolic target delineation, which was 

systematically analyzed by Gross et al. [18], showed limited clinical value when comparing 

brain tumor volume defined by PET with the corresponding volume defined by PET/MRI fusion 

images. Only in few patients, additional information was derived from FDG-PET for radiation 

treatment planning because of the low contrast between viable tumor and normal brain tissue, 

although FDG uptake is regionally related to anaplastic areas. The distribution of FDG, a 

glucose metabolism tracer, is thus not limited to malignant tissue because FDG enters the cells 

according to glucose transport mechanism [19]. 

The higher diagnostic accuracy of MET-PET is the rationale for using this diagnostic technique 

in target volume delineation of brain tumors: T1-weighted MRI alone cannot differentiate 

between treatment-related changes and residual tumor after neurosurgery, chemotherapy or 

radiation therapy [20]. Although the high contrast between tumor and normal tissue on PET 

images can reduce the inter- and intra-observer variability in tumor localization, the variability 

in tumor delineation with the qualitative use of PET is still high and often inconsistent with 

anatomically defined GTV [21]. Due to the nature of PET images (low spatial resolution and 

weak region boundaries), the Biological Target Volume (BTV) varies substantially depending on 



6 
 

the algorithm used to segment functional lesions: the choice of a standard method for PET 

volume contouring is a very challenging yet unresolved step [22].  

Anatomical GTV often does not match with metabolic BTV at all. For this reason, MET-PET 

metabolic imaging is valuable and it could be used to provide additional information useful for 

treatment planning and enhanced tumor characterization [23]: the BTV can be used to modify 

the GTV in order to treat the actual cancer region more precisely. To improve the determination 

of lesion margin, it is necessary to combine the complementary information of tissues from both 

anatomical and functional imaging. Therefore, a reproducible multimodal PET/MRI 

segmentation method, which contextually segments tumors in each image domain, is 

mandatory. This task, named joint segmentation or co-segmentation, is a challenging problem 

due to: (i) unique demands and peculiarities brought by each imaging modality, and (ii) a lack 

of one-to-one region and boundary correspondences of lesions in different imaging modalities 

[24]. 

The implementation of molecular imaging, such as PET, into Gamma Knife treatment allows to 

better understand the biological activity about the cancer imaged on MRI. Especially for the 

brain tumors gaining deep insights about the cancer region is not always easy investigating MRI 

alone and it is needed to compare and, often, combine the information acquired by different 

imaging modalities. Applying contextually PET and MRI in Gamma Knife clinical scenarios 

showed that sometimes the BTV can contain metabolically active regions outside the GTV. In 

this case, combining both PET and MR imaging modalities is very important to improve the 

clinical outcome. Moreover, PET imaging requires computer-assisted segmentation methods to 

obtain an accurate BTV, minimizing operator-dependence and increasing result repeatability. 

As a matter of fact, this work is prominent for effective brain lesion therapy.  

The proposed study investigates the impact of BTV segmentation, using MET-PET imaging, 

and the subsequent co-registration with MR images, utilized to delineate the GTV, in 

stereotactic neuro-radiosurgery therapy. A novel fully automatic multimodal segmentation 
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method for Leksell Gamma Knife treatment planning is proposed. Our previously developed 

PET [22][25][26] and MRI [27][28] segmentation methods have been exploited, improved, and 

properly combined together. The former uses the graph-based Random Walker (RW) algorithm 

[29] and the latter is based on unsupervised Fuzzy C-Means (FCM) clustering [30]. Both 

segmentation methods are valid operator-independent approaches to identify the BTV and the 

GTV, respectively, in order to delineate a comprehensive Clinical Target Volume (CTV) that 

includes metabolic and morphologic information, useful for treatment planning and patient 

follow-up. First of all, the Interesting Uptake Region (IUR), obtained on co-registered PET 

images using the graph-based BTV segmentation method, is exploited for the automatic 

generation of a suitable region including the tumor on MR brain images. These bounding 

regions, computed adaptively on MR images using a Level Set method, are then utilized by the 

GTV segmentation method. Lastly, GTV masks are combined with PET images to influence the 

BTV segmentation. 

The presented multimodal segmentation approach yields the tumor boundaries in both PET and 

MRI modalities, conveying different information, which are not always complementary, 

considering that enhancement, edema, and necrosis regions are imaged differently by the 

modalities; so the tumor volumes defined on PET and on CT or MRI could be highly different 

[31].  

The main key novelties of the proposed multimodal segmentation approach are: 

• presenting a fully automatic method for GTV segmentation, calculated automatically by 

exploiting the IURs detected on PET images to define a suitable bounding region for 

the tumor zone with a Distance Regularized Level Set Evolution (DRLSE) approach; 

• computing the BTVMRI, which can reduce radioactivity spill-in and spill-out effects, 

between tumor and surrounding tissues, affecting the segmented BTV (according to the 

morphologic GTV information) and the subsequent BTVMRI integration for a 

comprehensive treatment planning. 
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Co-segmentation tests on 19 metastatic brain tumors, treated with Leksell Gamma Knife 

radiosurgery, were retrospectively performed in order to evaluate the effectiveness of the 

proposed approach. Overlap-based and spatial distance-based metrics were calculated between 

PET and MRI segmentation results. Statistics was also considered to quantify correlation. 

Finally, a qualitative evaluation, based on a Likert score scale, was carried out by three 

experienced clinicians. 

The manuscript is organized as follows: section 2 reports the state of the art on PET/CT and 

PET/MRI multimodal co-segmentation approaches; section 3 describes the MRI and MET-PET 

data as well as the proposed automatic multimodal PET/MRI segmentation method, its 

processing pipeline, and the used evaluation metrics for multimodal imaging; section 4 reports 

the experimental results and findings obtained in the segmentation tests; lastly, some 

discussions and conclusions are provided in sections 5 and 6, respectively. 

2. Background 

A huge number of monomodal segmentation methods on single image modalities (i.e. CT, MRI 

or PET) are present in the literature. Just a few studies address the segmentation of multimodal 

imaging data. In particular, we are interested in approaches that combine the complementary 

functional information conveyed by PET with the corresponding anatomical image scans (CT or 

MRI). In fact, in clinical use, it is highly desirable to have both functional and structural 

quantifiable information in a single scan so the disease can be both identified and localized, 

potentially resulting in an earlier diagnosis and more effective treatment plan. 

In parallel to the developments of multimodal scanners (PET/CT and PET/MRI), there have 

been recent literature works trying to bring the usefulness of integrating anatomical and 

functional information into a common place for separating tumor tissues from normal structures. 

A concise but complete review of the state of the art regarding multimodal co-segmentation 

approaches is reported in the following, wherein each research paper is briefly explained. 
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Several studies deal with PET/CT tumor identification and characterization in radiation therapy 

scenarios. In [32], co-registered FDG-PET/CT images were used for the textural 

characterization of head and neck cancer (HNC) in radiotherapy treatment planning. After a 

manual segmentation on co-registered PET/CT images (performed by an experienced radiation 

oncologist), useful textural features were selected for distinguishing tumor from normal tissue in 

HNC subjects. Both k-nearest neighbors (KNNs) and decision tree (DT)-based KNN classifiers 

were employed to discriminate images of cancerous and healthy tissues. Han et al. [21] 

presented a Markov random field (MRF)-based co-segmentation of the PET/CT image pair with 

a regularized term that penalizes the segmentation difference between PET and CT. This graph-

based method utilizes the strength of PET and CT modalities for target delineation in a group of 

16 patients with HNC. Background and foreground seed voxels must be always manually 

identified by the user. A similar approach is reported in [31], where the segmentation is seen as 

a minimization problem of a MRF model, which encodes the information from both modalities. 

This optimization is solved using a graph-cut based method, by constructing two sub-graphs for 

PET and CT segmentation, respectively, and adding inter-subgraph arcs. The overall approach 

is semi-automatic, because initial seed points are required for the graph-based co-segmentation: 

one center point and two radii are given by the user. The algorithm was validated in robust 

delineation of lung tumors on 23 PET/CT datasets and two HNC subjects. A further MRF-based 

systematic solution for the automated co-segmentation of brain PET/CT images into gray 

matter, white matter and cerebrospinal fluid regions is exposed in [33]. A PET/CT image pair 

and its segmentation result are modeled as a MRF triplet, and segmentation is eventually 

achieved by solving a maximum a posteriori (MAP) problem using the expectation 

maximization (EM) algorithm with simulated annealing. The overall MRF-MAP model was 

tested both on simulated and real patient PET/CT data. The same authors presented in [34] a 

more advanced brain PET/CT segmentation model. This dual-modality image segmentation 

approach converts PET/CT image segmentation into an optimization process controlled 
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simultaneously by PET and CT voxel values and spatial constraints. A modality discriminatory 

power (MDP) coefficient is applied as a weighting scheme to adaptively combine functional and 

anatomical information to separate voxels from different tissue types. 

The authors of [35] proposed a method for automated delineation of tumor boundaries in whole-

body PET/CT by jointly using information from both PET and diagnostic CT images. After an 

initial robust hot-spot detection and segmentation performed in PET, a model for tumor 

appearance and shape in corresponding CT structures is learned by weighted non-parametric 

density estimate. This voxel-based CT classification is then probabilistically integrated with 

PET classification using the joint likelihood ratio test technique to derive the final segmentation. 

The algorithm was tested on patient studies with lung and liver tumors identifiable in both the 

PET and CT images acquired by the same scanner. In this context, a recent study [36] aims at 

developing a radiomics model from joint FDG-PET and MRI texture analysis for the early 

evaluation of lung metastasis risk in soft-tissue sarcomas (STSs). The creation of new 

composite textures from the combination of FDG-PET and MR imaging information, to better 

identify aggressive tumors, was investigated. The results showed that FDG-PET and MRI 

texture features could act as strong prognostic factors of STSs. 

Yezzi et al. [37] introduced a geometric variational framework that uses active contours to 

simultaneously segment and register features from multiple images. The key aspect of this 

approach is that multiple images may be segmented by evolving a single contour as well as the 

mappings of that contour into each image during feature-based realignment steps. The results of 

three experiments on MRI/CT images of the head and the spine were reported. In [38] a 

variational segmentation method, based on the minimization of the total variation semi-norm 

and a convex formulation, was used for segmenting lung tumors and lymph node disease on 

thoracic PET/CT image pairs, in the context of radiotherapy planning. Also the authors of [39] 

developed a method based on multi-valued level set deformable models for simultaneous 2D or 

3D segmentation of multimodality images consisting of combinations of co-registered PET, CT, 
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or MRI datasets. In particular, only three patients are considered: a non-small cell lung cancer 

case with PET/CT, a cervix cancer case with PET/CT, and a prostate patient case with CT/MRI. 

In addition, CT, PET, and MRI phantom data were used for quantitative validation of the 

proposed multimodality segmentation approach. 

However, we have to focus on PET/MRI joint segmentation approaches reported in the 

literature. An automatic algorithm for the co-segmentation of HNC based on PET/MRI data was 

proposed in [40], in order to standardize tumor volume delineation. For both imaging modalities 

tumor probability maps were derived, assigning each voxel a probability of being cancerous 

according to its signal intensity. A combination of these maps was subsequently segmented 

using a threshold level set algorithm. The algorithm processes both the anatomical T2-weighted 

MRI and FDG-PET data concerning 10 HNC patient datasets acquired by a combined PET/MRI 

system. 

The group led by Bagci and Mollura developed some co-segmentation approaches in 

multimodal medical imaging, which mostly used random walker (RW) algorithm [29]. In [41] a 

computer-assisted volume quantification method for PET/MRI dual modality images using 

automated PET-guided random walk MR image co-segmentation was presented. A small-

animal breast cancer model was built by using 30 female nude mice. A more comprehensive 

and general approach was proposed in [42]. The RW algorithm is extended for jointly 

delineating multiple objects from multimodal images by unifying graph representation of each 

image modality in a single product lattice. The overall method results in an automatic and 

unified framework, providing an automated object detection via interesting uptake region (IUR) 

algorithm to avoid users having to provide foreground and background seeds. Afterwards, prior 

to the initiation of the segmentation process, these identified seeds are propagated to the 

corresponding anatomical images. Although no significant anatomical and functional changes 

between the scans have to be assumed, the study used PET, PET/CT, MRI/PET, and fused 

MRI/PET/CT scans (77 studies in all) from 56 patients who had various lesions in different 
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body regions. Finally, a 3D computer-aided co-segmentation tool for lesion detection and 

quantification from hybrid PET/MRI and PET/CT images was described in [24]. This method 

used a modality-specific visibility weighting scheme built upon a fuzzy connectedness (FC) 

image segmentation algorithm. 

To the best of our knowledge, this is the first paper that presents a co-segmentation method to 

integrate MET-PET metabolic information with anatomical MRI in stereotactic neuro-

radiosurgery treatments. 

The proposed approach aims to properly integrate the two monomodal processing pipeline 

proposed in [26][28]. Each single method has been already validated in previous journal articles 

[26][28], comparing each of them against the most common literature segmentation methods. 

Our method addresses the co-segmentation problem on multimodal PET/MRI only in the brain 

anatomical district imaging, by exploiting the great sensitivity and specificity of brain MET-

PET in distinguishing healthy and pathological tissues. As result, a fully automatic approach 

was obtained. In FDG-PET studies, target lesions must always be specified by an operator, 

because healthy structures (such as brain, heart, bladder, and kidneys) normally have high 

radiotracer uptake [43]. We do not claim that our approach is able to segment other types of 

imaging data. However, there are no general approaches that can work on all acquisition 

modalities and in all the clinical contexts without any limitations. As a matter of fact, 

multimodal PET/CT and PET/MRI segmentation techniques in the literature are quite different 

and have to be designed ad hoc. These methods have to be adapted considering the different 

imaging acquisition modalities in certain clinical scenarios, and the involved body districts and 

pathologies. 

As concerning state of the art methods on PET/MRI segmentation, we would like to underline 

that methods based on unifying graphs, which assume no significant anatomical and functional 

changes between the images acquired using different modalities to directly construct the hyper-

graph [21][42] or the sub-graphs with inter-subgraph arcs [31], generally yield a single target 
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volume on the fused multimodal images. Considering a decision-level fusion (i.e. taking into 

account the physicians’ final decision for CTV definition), rather than a feature-level fusion (i.e. 

processing and fusing the input imaging data into a unifying data-structure) [44], keeps all the 

initial information even when PET and MR images are considerably different. Especially, the 

proposed approach yields two different volumes, by processing multimodal PET/MR images: 

• the GTV on anatomical MR images, calculated using exploiting the IURs detected on 

PET images; 

• the BTVMRI on PET images, defined by combining the PET dataset with the 

corresponding MRI GTV segmentation results, so reducing spill-in and spill-out effects 

between lesion and surrounding tissues. 

Thereby, a complete knowledge about the clinical scenario is ensured from both anatomical and 

metabolic imaging perspectives. It is worth to notice that clinical evaluation is not just a 

mathematical procedure, based only on tumor area difference or on GTV and BTV union, but a 

deep decision-making process involving several anatomical and metabolic insights, the specific 

patient’s pathological scenario as well as the physician experience. The CTV identification is 

actually a critical task accomplished by expert physicians according to tumor volumes (BTV 

and GTV), and deciding about the regions to be included or excluded in the planned target 

volume. This can be the basis for personalized therapy, by integrating molecular imaging and 

allowing for a diagnosis and therapy that is specialized to the individual metabolism and disease 

[45]. 

In conclusion, the tackled problem and the aim of the proposed multimodal approach are 

considerably different with respect to joint segmentation approaches. Employing a decision-

level fusion, the assumption of a “ground truth” joint volume, defined on fused multimodal 

imaging data, and the consequent comparison of the proposed method with related works is not 

significant, and sometimes misleading. Under these hypotheses, a reference gold-standard for 

the evaluation is not consistent with the purpose of our work. This retrospective study aims to 
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evaluate the feasibility and the clinical value of BTV integration in Gamma Knife treatment 

planning. 

3. Materials and Methods 

In the current section, firstly PET and MR imaging data concerning the patients are reported, 

and then our novel fully automatic multimodal PET/MRI segmentation method is described. 

Lastly, the framework used for the evaluation of the proposed multimodal approach is 

presented. 

3.1. Patient Imaging Data 

A total of 19 brain metastatic tumors originating from several primary cancers (lungs, breast, 

kidneys, urothelium, melanoma), undergone stereotactic neuro-radiosurgery, were 

retrospectively considered in the present study. All the subjects (mean age ± standard deviation: 

60 ± 9.80 years; median age: 57 years; age range: 48÷78 years) were treated with Leksell 

Gamma Knife® model C at Cannizzaro Hospital in Catania, Italy. The patients underwent 

chemotherapy or radiotherapy to treat primary cancers, before neuro-radiosurgery treatment, so 

that the T1-weighted MRI sequence alone is not able to perform a clinical differentiation 

between treatment-related changes and residual tumor after neurosurgery, chemotherapy or 

radiation therapy [20]. 

Both MRI and PET datasets were acquired for these subjects. PET and MR imaging data were 

obtained by two different scanners at two different times. MRI dataset, used for Gamma Knife 

treatment planning, was scanned a few days after MET-PET study.  

Representative instances of input brain MR and PET image pairs are shown in Figure 1. 

The research associated with the Leksell Gamma Knife® treatment of brain tumors has no 

implication on actual patient treatment. No patient information was accessed; therefore, 
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institutional review board approval was not sought: the proposed image analysis is performed 

off-line and thus did not change the current treatment protocol. 

 

Figure 1 Examples of original input brain MR and PET image pairs concerning patients with brain tumors who 

underwent Gamma Knife: (a, c) MR slices and (b, d) the nearly respective corresponding PET slices (metastases #6 

and #14). Note the different dimensions and the substantial tridimensional misalignment between corresponding MR 

and PET images. The images are shown in grayscale. 

 

3.1.1. PET Dataset Description 

PET brain acquisitions without head frame were performed using the on time of flight PET/CT 

Discovery 690 by General Electric Medical Systems (Milwaukee, WI, USA). Patients fasted for 

4 hours before PET exam and were intravenous injected with MET. The PET protocol began 10 

minutes after the injection. PET images consist of a 256×256 pixel matrix of 

1.1719×1.1719×3.27 mm3 voxel size. Imaging data were encoded in the 16-bit DICOM (Digital 

Imaging and Communications in Medicine) format. 

(a) (b) 

(c) (d) 
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3.1.2. MRI Dataset Description 

All available MRI datasets were acquired on the Gyroscan Intera 1.5T MR Scanner (Philips 

Medical System, Eindhoven, the Netherlands), before treatment, for the planning phase. MR 

images were T1-weighted Fast Field Echo (“T1w FFE”) contrast-enhanced sequences. MRI 

acquisition parameters were: TR: 25 ms, TE: 1.808-3.688 ms, matrix size: 256 × 256 pixels, 

slice thickness: 1.5 mm, slice spacing: 1.5 mm, pixel spacing: 1.0 mm. Therefore, the size of 

each voxel was 1.0×1.0×1.50 mm3. Thanks to the Gadolinium-based contrast agent, brain 

lesions appeared as enhanced hyper-intense zones. Sometimes a dark area might be present due 

to either edema or necrotic tissue. Imaging data were encoded in the 16-bit DICOM format. 

3.2. The Proposed Multimodal PET/MRI Segmentation Approach 

This contribution presents a fully automatic multimodal PET/MRI segmentation approach for 

Leksell Gamma Knife® treatment planning. The main key novelty is the computation of the 

BTVMRI, a new BTV that could reduce radioactivity spill-in and spill-out effects considering 

morphologic GTV information. The proposed method improves and combines two computer-

assisted and operator-independent methods previously developed and validated to segment BTV 

and GTV from PET [22][25][26] and MR [27][28] images, respectively. 

These two previous single modality segmentation methods are broadly explained in sections 

3.2.1 and 3.2.2, respectively. However, as described in section 3.2.3, an image co-registration 

stage is mandatory to integrate and quantitatively compare MRI and MET-PET modality 

imaging data. The proposed fully automatic multimodal PET/MRI segmentation approach is 

presented in section 3.2.4. Lastly, section 3.2.5 discusses and summarizes parameter setting, by 

describing the theoretical basis and experiment trials involved in all the parameter value 

choices. 

The main goal is to present a multimodal PET/MRI automatic segmentation method, combining 

complementary information, and encourage its use in future Gamma Knife treatments. 
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The proposed method was entirely developed using the MatLab® environment (The 

MathWorks, Natick, MA, USA). Statistical analysis was performed with the MedCalc® 

computer program (MedCalc Software, Ostend, Belgium) [46]. Figure 2 outlines the overall 

flow diagram of the proposed multimodal PET/MRI segmentation method. All the employed 

parameters were fixed in the proposed computational model for all the analyzed datasets. These 

settings are completely hidden to the end-users (clinicians), who have not to select any 

parameters. Therefore, this does not affect the fully automation of the proposed method. 

 

Figure 2 Flow diagram of the proposed fully automatic multimodal PET/MRI segmentation method. The adopted 

graphical and color notations are explained in the legend box. 

 
 
 
 
 

Legend 

PET image processing pipeline 

MR image processing pipeline 

multimodal PET/MRI segmentation steps 
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3.2.1. PET Image Brain Lesion Segmentation 

BTV segmentation is based on an enhanced RW method. This approach is fully automatic [22]. 

Briefly, the RW algorithm is able to localize weak boundaries as part of consistent boundaries 

representing an image as a graph  with nodes (vertices)  corresponding to the 

voxels and edges (arcs)  are associated to a Gaussian cost function that maps a change in 

image intensity to the edge weights  defined as follows: 

 (1) 

where:  and  are the image intensity values at voxels  and , respectively;  is a free 

parameter. The segmentation problem is to assign a label to unknown nodes, by finding the 

minimum energy among all possible graph scenarios to achieve an optimal segmentation. The 

RW method partitions the voxels into foreground and background classes, considering the 

probability that a “random walker”, starting at a source node, first reaches a node with a pre-

assigned label visiting every voxel. A probability map is then produced, and a threshold of 50% 

is chosen to discriminate between foreground and background voxels. 

To obtain the BTV delineation, RW parameters have been modulated to incorporate PET 

information:  and  have been replaced with the Standardized Uptake Value (SUV) in the 

voxels  and . The SUV is the most common semi-quantitative parameter used to estimate 

radiotracer accumulation within a lesion in clinical practice. It normalizes the voxel activity 

considering acquisition time, administered activity, and patient’s body weight. Hence the PET 

image is converted in a lattice where the SUV of each voxel is assigned to the corresponding 

graph node and the edge weights  are computed accordingly.  

In addition, to obtain a fully automatic and user-independent method, two crucial improvements 

have been implemented to overcome two critical issues in the RW methodology: 
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1. an automatic method to localize starting target and background seeds: the RW algorithm 

requires a set of pre-labeled seeds, which may be generated by the user, making the RW 

delineation sensitive to the location of the pre-labeled voxels; 

2. a strategy to adaptively determine the appropriate probability threshold rather than fixed 

one of 50% on the probabilistic output of RW in order to overcome the operator-

dependence of the  weighting factor in (1). 

A more detailed explanation of these improvements is reported in [22] and [26]. 

By taking advantage of the great sensitivity and specificity of MET radiotracers in the 

discrimination between malign versus benign tissues, each brain tumor is independently 

processed by our algorithm. For each patient study, the highest uptake regions are automatically 

analyzed. The SUVmax value is not global, but is relative to each single brain tumor present in 

the PET study under examination. Therefore, in the case of  brain tumors a different 

 is identified for each lesion , with . 

Algorithm 1. Iterative procedure for the IUR detection and BTV delineation on PET images 

1. /* Create an empty list  for storing the coordinates of the voxels included in the segmented brain lesions 
on the processed PET study */ 

2. ; 
3. /* Initialize the iteration counter for the detected tumors */ 
4. ; 
5. do 
6. Find the slice with the highest  in the PET study, excluding the voxels already in ; 

7. /* Check if the  in the -th iteration is higher than 2.0 (minimum threshold value for considering a 
candidate region to be a tumor), otherwise stop the loop */ 

8. while ( ) 

9. /* Let  be the current lesion with , and set the  relative to  to  */ 

10. ; 
11. /* Segment the current lesion  using the Random Walker algorithm */ 
12. ; 
13. /* Store the segmented  voxel coordinates, by updating the list  */ 
14. ; 
15. /* Increment the iteration counter  */ 
16. ; 
17. end 
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Accordingly, the iterative procedure for the IUR detection and BTV delineation on PET images 

can be summarized as in the pseudo-code in Algorithm 1. 

At the end of this automatic tumor detection procedure, for a final control on the detected cancer 

regions, the user can discard any false positive uptake areas. 

3.2.2. MR Image Brain Lesion Segmentation 

In this section, our preliminary MR brain GTV segmentation approach, based on an 

unsupervised Fuzzy C-Means (FCM) clustering technique and proposed in [27] and [28], is 

outlined. Nevertheless the method is semi-automatic, operator-dependence is reduced because 

user intervention is limited only to the selection of a Region Of Interest (ROI) bounding area 

containing the cancer zone and no parameter setup is required. All the subsequent processing 

stages are accomplished on the MR images masked with this ROI bounding region. 

After pre-processing, FCM cluster analysis is performed on MR images including brain tumors. 

The goal of this algorithm is to classify a dataset  of  objects (statistical 

samples represented as vectors belonging to n-dimensional Euclidean space ) into  clusters 

(partitions of the input dataset), represented by  centroids  [30][47]. A fuzzy 

partition  is defined as a fuzzy set family  such that each object can have a 

partial membership to multiple clusters [48]. The matrix  defines a fuzzy C-

partition of the set  through  membership functions , whose values 

 represent membership grades of each element  to the ith fuzzy set (cluster) 

 and have to satisfy the constraints in (2). 
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Briefly, the sets of all the fuzzy C-partitions of the input  are defined by 

. Computationally, FCM is an optimization problem where the 

objective function in (3) must be iteratively minimized using a least-squares method. The 

fuzziness of the classification process is defined by the weighting exponent m. 

 (3) 

Two clusters are selected ( ) in order to suitably classify a hyper-intense lesion from the 

healthy part of the brain. In fact, in contrast-enhanced MR brain scans, metastases have a 

brighter core than periphery and distinct borders distinguishing them from the surrounding 

healthy brain tissue [49]. 

As reported in section 3.1.2, the analyzed MR images were T1w FFE contrast-enhanced 

sequences. Typical MRI protocols, employed in stereotactic radio-surgery treatment planning, 

include only T1w contrast-enhanced imaging of the head volume. Therefore, no multiparametric 

MRI structural data (i.e. T1w, T2w, Proton Density (PD), and Fluid Attenuation Inversion 

Recovery (FLAIR) images) are available and brain tumor segmentation approaches based on 

multispectral MR images cannot be applied to Leksell Gamma Knife treatment planning. These 

approaches rely on these multispectral MRI for segmenting and distinguishing cancer 

enhancement region, necrosis or edema [50]. 

As a matter of fact, tumor detection and segmentation on contrast-enhanced T1w MRI datasets 

are based on the hyper-intense enhancement regions. Since sometimes either edema or necrotic 

material (hypo-intense regions in T1w MR images) could be present in the analyzed tumors, 

necrosis inclusion in the planned target volume is required for radiosurgery purposes [51]. 

Therefore, some post-processing steps were designed ad hoc to include the necrosis in the 

planned volume for preventing recurrent cancers, as extensively described in [28]. 
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3.2.3. PET/MRI Modalities Co-registration 

An image co-registration stage is mandatory to bring the different MRI and MET-PET datasets, 

concerning the same patient, into the same space. In this way, it will be possible to make 

quantitative and meaningful comparisons between the brain lesion segmentation results 

achieved by both MRI and PET image segmentation methods. 

In our multimodality PET/MRI registration, MRI is used as reference image (target) while the 

PET is the source image (floating), because MRI conveys more anatomical information than 

PET. Indeed, PET imaging is characterized by weak boundaries and has a lower spatial 

resolution than MRI. Realignment and reslicing operations are thus required to get a one-to-one 

mapping between PET and MRI slices. From an algorithmic perspective, image co-registration 

involves finding parameters (i.e. geometric transformation matrix) that either maximize or 

minimize some objective function. However an accurate interpolation method is clearly 

required, by which the floating and target images are sampled when being represented in 

different spaces [52][53]. 

PET/MRI inter-modal 3D registration was performed using SPM 12 (Statistical Parametric 

Mapping, Wellcome Trust Centre for Neuroimaging, University College, London, UK), a 

software package designed for the analysis of brain imaging data sequences [54]. We relied on 

the SPM tool that is widely used in the neuroimaging community and in the clinical routine, also 

for Voxel-Based Morphometry (VBM). 

The registration method used by SPM is based on the work by Collignon et al. [55], where the 

original interpolation method has been changed to give a smoother cost function. The images 

are also smoothed slightly, by means of their histogram. This makes the cost function as smooth 

as possible, to give faster convergence and less chance of local minima. A 3D rigid-body model, 

parameterized by 3 translations and 3 rotations about the different axes, is used by means of 

voxel-to-voxel affine transformations. This approach is very efficient for brain anatomical 

district. 
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We chose Normalized Mutual Information (NMI) as the cost function to be optimized. The 

Mutual Information registration criterion states that the mutual information of the image 

intensity values of corresponding voxel pairs is maximal if the images are geometrically 

aligned. Mutual Information is the most intensively investigated criterion for registration of 

intra-individual human brain images [56][57]. In addition, PET/MRI registration misalignment 

can be large with respect to the field of views, then a criterion invariant to image overlap 

statistics is very important, such as the NMI [58]. 

Since MET-PET and MRI multimodal images are written in a different space, an efficient 

resampling and interpolation method must be utilized. Although Nearest-Neighbor and Trilinear 

interpolations are faster, it may be better to use a higher degree approach to achieve more 

accurate results (i.e. reducing the deviation from an ideal low-pass filter, by avoiding artifacts 

mostly near edges) [59]. In particular, we used the 4th Degree B-Spline interpolation. 

Two instances of PET/MRI co-registration are shown in Figure 3, where the quality of the 

achieved registration can be qualitatively appreciated with the checkerboard images (Figure 3(a) 

and (d)) as well as fused PET/MR images (Figure 3(b) and (e)). In addition, the joint histogram, 

that is a feature space constructed by counting the number of times a combination of gray values 

occurs contextually on source (MET-PET) and reference (MRI) images, was also computed and 

plotted (Figure 3(c) and (f)). Along the axes of each joint histogram the gray values of the two 

images are represented: from left to right for source (MET-PET) and from bottom to top for 

reference (MRI). Original and final joint histograms prove the quality of the Normalized Mutual 

Information registration process, because pixel values are mainly redistributed on the histogram 

diagonal. 

3.2.4. Fully Automatic Multimodal PET/MRI Segmentation 

In the following, a thorough explanation of the various processing steps that make up the 

proposed fully automatic multimodal PET/MRI segmentation method is presented. In the flow 
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diagram shown in Figure 2, for a better understanding, PET and MR image processing pipelines 

are represented with blue and purple blocks, respectively. It is worth noting, the smart 

combination of the two single modality pipelines (green connections in Figure 2). In particular, 

PET and MRI segmentation results mutually exploit each other. Firstly, the IUR, obtained on 

co-registered PET images by the graph-based tumor segmentation method (see section 3.2.1), is 

used for the generation of an area including the tumor ROI on MR brain images. These ROI 

bounding regions are calculated adaptively on MR images using a Level Set method and then 

utilized by the MRI brain lesion segmentation method based on FCM clustering technique (see 

section 3.2.2). Lastly, MRI GTV masks are combined with PET images, which are processed by 

the RW algorithm, to influence and refine BTV segmentation on PET images. 

 

Figure 3 Instances of PET/MRI co-registration using SPM via maximization of Normalized Mutual Information 

(tumors #7 and #10): (a, d) checkerboard images of co-registered PET (negative grayscale) and MRI (normal 

grayscale); (b, e) fused images (MRI in grayscale and PET in Jet colormap); (c, f) corresponding original and final 

joint histograms (feature space constructed by counting the number of times a combination of gray values occurs 

contextually on MRI and MET-PET images) for (b) and (e), respectively. 
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3.2.4.1. Interesting Uptake Region Detection 

The fully automatic multimodal PET/MRI segmentation starts with the automatic identification 

of the PET slices with the maximum SUV (SUVmax), relative to each lesion detected by means 

of the iterative procedure reported in section 3.2.1, on PET dataset previously co-registered with 

the corresponding MRI (see section 3.2.3). The voxels with a SUV greater than 95% of the 

SUVmax concerning each tumor are marked as target seeds. The neighborhood of the node with 

SUVmax, through searching in all 8 directions, is explored to identify the voxels with a SUV less 

than 30% of the average of target seed SUVs [26]. In this way, 8 background nodes are 

identified. Once the foreground and background seeds are automatically localized, the PET 

lesion is segmented using our enhanced RW method (see section 3.2.2): the probability 

threshold to discriminate between target and background voxels is obtained slice by slice to 

follow the whole lesion volume. In this way, the method takes into account the intensity 

gradient and contrast changes of the metabolic lesion over the entire range of PET slices. Once 

the BTV has been extracted, the ROI of the PET slice with the SUVmax is propagated to the 

corresponding MRI dataset. In addition, the range of segmented PET slices with high uptake 

regions is also provided to the next processing phase, to generate efficiently a ROI bounding 

region for the tumor on MR images (see the following section 3.2.4.2). Such information 

defines the so-called Interesting Uptake Region (IUR). 

3.2.4.2. ROI Bounding Region Generation 

A coarse lesion delineation on MR images is required in order to define automatically a 

bounding region that encloses the actual GTV on MR slices. Hence user interaction, needed by 

the methods in [27][28] through a ROI selection tool, will be completely prevented and avoided. 

Because of the variability of brain lesions in terms of location and intensity values, the 

definition of a valid ROI bounding region is not a trivial problem. A bad choice of the ROI 

bounding region on MR image can affect the whole FCM clustering process. Therefore, this 
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task must be carried out not in a static way (e.g. using a simple morphological dilation or 

closing with a fixed structuring element [60]), but rather dynamically by processing MRI input 

data. 

This adaptive procedure starts on the lesion ROI found on SUVmax slice, as described in section 

3.2.4.1. This IUR is first dilated (using a structuring element represented by a disk of 3 pixel 

radius) and then utilized as a binary step function to initialize a Level Set method. A rough and 

over-estimated MRI brain lesion segmentation, based on the Distance Regularized Level Set 

Evolution (DRLSE) formulation proposed in [61], is used to generate dynamically a bounding 

region that includes the brain lesion in the MR slice corresponding with the SUVmax PET slice. 

Unlike Region Growing algorithm [62], DRLSE method allows a controlled and regular Level 

Set Function (LSF) evolution, by avoiding leaking in the brain tissue area. In short, Level Set 

methods represent an active contour as the zero level set of a higher dimensional function, i.e. a 

time dependent LSF , and determine the evolution of the contour [63]. 

Let  be a LSF defined on a domain , the energy functional is defined by (4): 

 (4) 

where: 

• ,  and  are the coefficients of the energy functional terms ,  and , 

respectively; 

•  is the level set regularization term, where  is a potential 

function. In order to smooth the LSF effect and ensure accurate computation for curve 

evolution by maintaining the signed distance property , a potential function  with 

a minimum point at  is chosen. In particular, a double-well potential, with two minimum 

points at  and , was used: ; 
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•  is an energy functional that computes the line integral of the edge 

indicator function  (  is a Gaussian kernel with standard deviation  that is 

convolved with the image  to reduce the noise) along the zero level contour of  with 

the Dirac delta function ; 

•  is an energy functional that calculates weighted area of the region 

. This term is introduced to speed-up the motion of the zero level contour in 

the LSF evolution process, which is necessary when the initial contour is far away from the 

desired object boundary. Lastly,  is the Heaviside step function, whose derivative is the 

Dirac delta function . 

In practice and for implementation purposes, as described in [64], the Dirac delta function  

and Heaviside step function  in the functional in eq. (3) are approximated by their respective 

smooth version  and , defined as: 

 (5) 

 (6) 

where  (usually set to 1.5) is a parameter that specifies the width of the Dirac delta function 

and the slope of the Heaviside step function. 

The overall energy functional in (4) can be minimized, given an initial LSF , by 

solving the following gradient flow (7) in the temporal variable : 
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where  is the divergence operator and the function , defined as , has a 

diffusion effect on the LSF. In particular, in our approach, we used , 

where  is a constant and  is the initial IUR given by the processing steps 

described in section 3.2.4.1. Therefore, the utilized LSFs take negative values inside the zero 

level contour and positive values outside. This choice causes the coefficient  to take negative 

value to expand the active contour. The DRLSE and the temporal partial derivative  were 

implemented as a finite difference numerical scheme using a time step . 

Eq. (7) is an edge-based geometric active contour model and represents an application of the 

general DRLSE formulation. This variational formulation demonstrates good adaptation 

segmentation results in different image processing contexts, thanks to the available free 

parameters. 

Three examples of ROI bounding regions delineated, on original MR images, by the DRLSE-

based method are shown in Figure 4(a-c). 

These computations are performed just once for each dataset. In fact, only one bounding region 

is determined via DRLSE-based segmentation and it is extruded along the z axis onto the other 

candidate MR slices. For this purpose, the range of PET slices with high uptake regions is also 

provided by the IUR detection steps (see section 3.2.4.1), to construct a cylindroid (i.e. a 

cylinder with irregular-shaped bases) including the whole GTV brain lesion. Since PET and 

MRI tumor volumes may be distributed along different axial slices, the range of PET active 

slices is augmented by three slices on upper and lower sides, in order to ensure the total 

enclosing of the tumor into the cylindroid defined on the MRI dataset. 

Figure 4(d) shows 3D volume rendering of the cylindroid extruded on the ROI bounding region 

shown in Figure 4(a). The whole GTV is included into the cylinder volume (see Figure 4(e)). 
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Figure 4 ROI bounding region generation on MR images: (a, b, c) three examples (tumors #5, #6, and #10) of 

bounding region (blue contour) determined via DRLSE-based method, starting from IUR (cyan contour) imported 

from the corresponding SUVmax PET slice. Cylindroid extrusion on MRI dataset according to active PET slice range: 

(d) tridimensional bounding cylindroid for the tumor in the temporal brain lobe, reported in (b), rendered with 

transparent blue surface (Alpha Blending with ) on 3D orthogonal tri-planar view (middle slice is shown in 

the axial plane), that includes the whole GTV, as visible in (e). 

 

3.2.4.3. MRI Segmentation based on the FCM Algorithm 

As stated before in section 3.2.2, brain GTV segmentation on MR images is accomplished using 

our validated semi-automatic method described in [27][28]. However, due to the automation of 

the segmentation process, the direct control of the human operator is lost during ROI bounding 

region manual delineation. Some MR images included in the extruded cylindroid (defined by 

the steps in section 3.2.4.2), especially the most distant slices from the IUR, might include no 

brain tumor as well as anatomical parts with pixel values similar to enhancement regions (such 

as bone or epidermal tissue). 
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For the former case, our MRI brain lesion segmentation method yields an empty ROI. For the 

latter case, a shape-based control on connected-components belonging to the cluster with the 

highest intensity pixels is also defined, by taking advantage of the pseudospherical appearance 

of metastatic brain tumors [49]. When either skull bone or skin are included in the ROI 

bounding region, since IUR is located near brain boundary, other high-valued pixel areas may 

be erroneously segmented by the unsupervised FCM clustering algorithm. These areas are often 

characterized by a lengthened shape and may be removed by checking eccentricity (ratio 

between the foci distance related to an ellipse and its own major axis length) and extent (ratio 

between the pixels of the region and the bounding-box pixels) of the connected-components. 

Theoretically suitable and experimentally validated feature values for this refinement step are: 

 (8) 

Figure 5 shows segmentation results on the images reported in Figure 4. In particular, 

refinement steps can be appreciated in Figure 5(c), where the region composed of the skin 

highest pixels included in the ROI bounding region is correctly removed by the shape-based 

controls (yellow boundary). 

 

Figure 5 Examples (tumors #5, #6, and #10) of brain GTV segmentation on MR images (red contour), starting from 

the ROI bounding region (blue contour). A difficult case is shown in (c), where a lengthened hyper-intense region of 

the head skin is detected by FCM clustering (yellow contour), but it is removed using the shape-based control. 
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 Although the literature offers 3D approaches for brain lesion segmentation [65], we chose a 2D 

methodology because 3D FCM should be not well suitable on clusters with more general shapes 

[66]. The analyzed brain tumors are composed of inhomogeneous cancerous tissue and necrotic 

material. As a matter of fact, tumor detection and segmentation on contrast-enhanced T1-

weighted MRI datasets are based on the hyper-intense enhancement regions. Sometimes a dark 

area might be present due to either cystic or necrotic tissue, which must be included into the 

GTV for radiotherapeutic purposes. These hypo-intense areas can negatively affect the FCM 

clustering process when 3D MRI data are processed. In these cases, clustering could yield 

several disconnected volumes and successful post-processing steps are very difficult. On the 

other hand, performing FCM cluster analysis on the single MRI slices is definitely more reliable 

and post-processing steps proposed in [27][28] are able to segment the whole tumor. 

3.2.4.4. Combining MRI Segmentation Results and PET Images 

Lesion segmentation results on the morphologic brain MRI data, obtained according to section 

3.2.4.3, are combined with the metabolic information of the co-registered PET images. This 

PET dataset represents the input of the RW algorithm. In this way, MRI GTV is utilized to 

combine the superior contrast of PET images with the higher spatial resolution of MR images. 

Each PET slice is weighted pixel-by-pixel according to the corresponding MRI ROIs. 

Nevertheless, an assumption that there is a one-to-one correspondence between BTV and GTV 

is unrealistic. Lesions may have smaller uptake regions compared to GTV, such as shown in 

Figure 6(c) and Figure 7(c). In the same way, the PET lesion can show additional area 

compared to lesion boundaries in MR images (see Figure 7(d) and Figure 8(c)). 

For this reason, we incorporate, with extreme caution, the MRI GTV binary mask in the RW-

based segmentation procedure. In particular, PET pixels inside the corresponding MR target are 

multiplied by a gain factor to slightly emphasize probable lesion area; PET pixels outside the 

corresponding MRI ROIs are weakly underestimated in order to reduce radioactivity spill-in 



32 
 

effect, from background into the lesion, and spill-out effect, from the lesion into background, by 

taking advantage of the higher spatial resolution of MR images [67]. 

3.2.4.5. PET Segmentation based on the RW Algorithm 

The RW-based segmentation process on the input PET dataset, described in section 3.2.1, is 

updated and repeated, in the same way, on the same PET dataset combined with the 

corresponding MRI GTV binary masks (see previous section 3.2.4.4) in order to achieve a new 

BTV, in this paper also called as BTVMRI. 

In PET imaging, the adaptive probability threshold is computed separately slice-by-slice to 

follow the whole lesion volume, by taking into account the intensity gradient and contrast 

changes of the metabolic lesion over the entire range of PET slices. This key feature could be 

lost using a fully 3D method: the proposed method is then performed in parallel for the slices 

adjacent to the starting PET slice with the SUVmax [26]. 

3.2.5. Parameter Setting 

In our target volume validation experiments, the following parameter setting was empirically 

employed for all analyzed brain cancer datasets, always according to a theoretical basis. 

For the BTV segmentation in PET, regional information based on the SUV thresholding plays a 

key role. In particular, the 30% and 95% thresholds of the SUVmax used to find the background 

and target seeds are those which minimize the differences between actual and PET volumes in 

phantom experiments as reported in [26]. Especially, the threshold ranged from 10% to 40% 

and from 70% to 95% (with a step size of 5% in both cases) for background and target seeds, 

respectively. In the case of multiple brain tumors, the IUR detection and BTV delineation 

iterative procedure ends when the SUVmax of the currently processed lesion is less than 2.0 

[g/mL], to avoid the detection of non-tumor structures with moderate uptake. For all the 

analyzed brain tumors, the SUVmax range is 2.580 ÷ 6.828 [g/mL], with a mean value of 4.149 

[g/mL] and a standard deviation of 1.360 [g/mL]. 



33 
 

In the GTV segmentation on MR images, the bounding region is generated using the LSFs (see 

section 3.2.4.2). Although the DRLSE framework is characterized by several parameters [61], 

the proposed multimodal segmentation process is not too sensitive to the choice of these values.  

In our implementation, relying on the theoretical basis and experimental findings in [61], we set 

the parameters accordingly and tested them carefully. 

As reported in Li et al. [61], the DRLSE model is not sensitive to the choice of  and , which 

can be fixed for most of applications. Especially, we used  and . 

It is worth to note that the parameter  needs to be carefully tuned. A nonzero value forces the 

motion of the contour, but the resulting final contour may slightly deviate from the true object 

boundary due to the shrinking or expanding effect of the weighted area term. To avoid this, the 

final contour can be refined by further evolving the contour for a few iterations with  (e.g. 

10 iterations). Since an over-estimated segmentation is required to define a ROI boundary 

region on MR images and we deal with weak object boundaries, a large value of  may cause 

boundary leakage, i.e. the active contour can easily pass through the object boundary. For this 

reason, a relatively small  was chosen to reduce boundary leakage. We used a binary step 

function with  as initial LSF, consequently the utilized LSFs take negative values inside 

the zero level contour and positive values outside. This choice causes the coefficient  to take 

negative value to expand the active contour. For these reasons, we used . Moreover, the 

constant  controls the width of the Signed Distance Band (SDB), because  is a signed 

distance function in the SDB and its values vary in the range . Since the image domain 

is a discrete grid and the SDB should have at least one grid point on each side of the zero level 

contour, it is suggested to choose . During our experiment trials, the value  has 

provided satisfying results for the generation of the ROI bounding region. A Gaussian kernel 

with standard deviation  in the edge indicator function  in (4) represents an effective 

solution for image noise reduction. Finally, to achieve a good compromise between computation 
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time and numerical accuracy. the value  is a good choice, because the DRLSE model 

allows to use large time steps to significantly reduce the number of iterations.  

In conclusion, considering our experimental trials (for all the different MRI datasets), the 

multimodal segmentation process is not too sensitive to the choice of these values. As a matter 

of fact, LSF-based segmentation is used just to yield a first rough and over-estimated 

segmentation to generate a ROI boundary region for the GTV segmentation, by adapting on the 

current processed MR images. 

The constraints defined in (8) were also validated experimentally. These properties can be 

associated to each region and considered together define a selective checking about 

pseudospherical shapes. Especially, the values in (8) were selected by computing these 

properties for each MRI cancer slice during the GTV experiment trials on the 19 tumors 

considered in this study. For a further analysis, we validated the joint condition in (8) on 11 

other tumors, concerning independent MRI datasets acquired by another institution (University 

Hospital “Paolo Giaccone”, Palermo, Italy) with a Signa HTxt scanner (General Electric 

Medical Systems, Milwaukee, WI, USA) using a T1-weighted contrast-enhanced protocol 

(voxel size was 1.04×1.04×1.20 mm3). The achieved values satisfied the joint condition in (8) 

and were consistent also with independent datasets, showing a reproducible behavior of the 

extent and eccentricity properties calculated on a total of different 30 tumors. These 

experimental findings show that the chosen parameter values are not over-fitted and generalize 

well also when new MRI datasets are processed. 

In the BTVMRI segmentation process, which combines MRI segmentation results and PET 

imaging (section 3.2.4.4), two factors were used: the former to emphasize MR tumor area (i.e. 

gain factor) and the latter to reduce the radioactivity spill-in and spill-out effects. The clinical 

staff evaluated the 15% and 5% values, respectively, as the best among those analyzed in 5 

patient cases: the values ranged from 5% to 50% and from 5% to 30% (with a step size of 5% in 

both cases), respectively. 

0.1=Dt
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3.3. Evaluation Metrics 

In this section, a framework for the evaluation of multimodal PET/MRI segmentation is 

presented. Overlap-based and spatial distance-based metrics are considered to measure 

similarity and correlation concerning PET and MRI segmentation approaches. Assuming PET 

and MRI segmentations as two different processes, the evaluation metrics were computed 

according to the formulations presented in [68] and [69]. In fact, the aforementioned empirical 

discrepancy methods (supervised evaluation metrics) are intended to determine the accuracy 

achieved by a computer-assisted segmentation method against a gold-standard (manual 

segmentation performed by an expert) [70]. However, these formulations may be suitably 

generalized to quantify the similarity and correlation between two different segmentation 

procedures on images defined on the same space (i.e. the same image or co-registered images). 

Finally, a qualitative assessment, using a Likert scale, was carried out by experienced clinicians 

to evaluate retrospectively the clinical value of BTV integration in Gamma Knife treatment 

planning. 

Although spatial overlap-based and distance-based metrics generally quantify the segmentation 

accuracy against a gold-standard, in this paper the above metrics are used for measuring the 

similarity as well as the differences among the extracted volumes (i.e. GTV, BTV and BTVMRI) 

and also to highlight that the metabolic and anatomical volumes are so different to justify a 

CTV that takes into account both MR and PET imaging. 

3.3.1. Spatial Overlap-based Metrics 

Our aim is to demonstrate that PET and MR imaging convey different information. For this 

purpose, similarity and correlation measures were considered. Assuming PET and MRI 

segmentations as two different processes, several metrics were included in our quantitative 

assessment, by adapting formulations based on a gold-standard, as in [68][69]. 
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Let  and  be the results achieved by the PET and MRI 3D segmentation approaches, 

respectively. Each segmentation result has to be seen as a set of samples composed of pixels in 

2D or voxels in 3D. 

Dice similarity coefficient ( ) is the most used statistic measure for comparing the similarity 

of two segmentation processes, and it is defined in (9): 

 (9) 

3.3.2. Spatial Distance-based Metrics 

Although overlap-based metrics are very powerful for measuring the similarity between two 

image segmentation procedures, they are highly susceptible to differences between the positions 

of segmented volumes and highly dependent on their own size. Hence, to take into account the 

spatial position of the voxels, distance-based metrics are highly recommended. In particular, 

they must be utilized when the boundary delineation (contour) of the segmentation is critical, 

such as in target delineation for radiation therapy. 

Thus, it is required to quantitatively estimate the spatial distance between the 3D volume 

boundaries computed by the PET and MRI segmentation methods, which are formally 

represented by the vertex points  and , respectively. 

The Hausdorff distance ( ) between the point sets  and  is a max-min distance defined 

by: 

 (10) 

where  is called the directed Hausdorff distance and 

is a norm (in our case, the Euclidean distance defined on n-dimensional 

Euclidean space  is used) [71]. 
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Since medical images are usually characterized by noise and the  is generally sensitive to 

outliers, a more stable distance formulation must be also considered. The average distance 

( ), that is the  averaged over all points in  and , is defined by: 

 (11) 

where  is the directed average distance [68]. 

Lastly, in order to take into account the correlation of all samples belonging to two different 

points clouds, a variant of the Mahalanobis distance ( ) is used. Again, let  and  

be the set of voxels segmented by PET and MRI segmentation methods, respectively. The 

 between  and  is: 

 (12) 

where  and  are the means of the two 3D segmentations. Furthermore,  is the 

common covariance of the two sets and is given by . 

3.3.3. Clinical Evaluation 

The proposed method computes the tumor volumes defined in MRI as well as in MET-PET, 

simultaneously. Two boundaries are separately generated: one on MRI (i.e. GTV) and one on 

PET (i.e. BTV or BTVMRI). Ideally, both GTV and BTV should be validated against a manual 

delineation by the experts, considered as our “ground truth”, using the same PET/MRI datasets. 

However, due to the current clinical protocol in Leksell Gamma Knife treatment planning, the 

manual reference contours are available either on MR or PET images only, but not on the fused 

PET/MR images. Currently, it is not possible to define a real “gold-standard” CTV according to 

both morphologic MRI and metabolic PET images without treatment response evaluation, since 

the treatment is planned on MRI datasets alone in the clinical practice. As a matter of fact, 

ground truth refers to having exact knowledge of the tumor size. 
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In PET imaging, and consequently in multimodal PET/MR imaging, the metabolic ground truth 

is impossible to be obtained for images concerning living humans. Thus, the validation of PET 

methods with real patient images lacks of an actual gold-standard. In addition, manual 

delineation by expert physicians is subject to intra- and inter-operator variability, especially in 

tumor segmentation on PET images. Histological images provide the only valid ground truth for 

quantitative segmentation evaluation in human studies. Obviously, the histology of brain 

metastases treated using neuro-radiosurgery is unavailable. For this reason, the proposed 

monomodal PET image segmentation method was assessed using phantom experiments [26]. 

The same algorithm has been already applied in a real clinical environment to assess the clinical 

feasibility of the proposed automated approach [26]. 

So, to assess the clinical utility and feasibility of the proposed multimodal method and to 

evaluate retrospectively the clinical impact of BTV integration in Gamma Knife treatment 

planning, a qualitative evaluation, using a five-point Likert scale ranging from 1 (worst) to 5 

(best), was carried out by a team of experienced physicians.  

The clinical staff, composed of a neurosurgeon, a nuclear medicine physician, and a radiation 

oncologist, jointly analyzed the brain tumors without any information of the used segmentation 

method (BTV or BTVMRI). By comparing their perspectives by different clinical backgrounds, 

the physicians were able to gain insights about the tumors and provide a more careful evaluation 

for each case. As a matter of fact, a Likert scale, rather than providing fixed criteria, allows 

clinicians to give a score based on overall impression, focusing mainly on the clinical value of 

BTV in an accurate treatment planning. 

Although possibly prone to greater inter-observer variability, this approach may be more 

familiar to some physicians and may perhaps be more straightforward to apply for observers 

with previous experience in brain PET imaging. 

The used Likert scale, according to retrospective clinical value for treatment planning, was 

defined as: 

1. strong worsening in CTV definition; 
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2. moderate worsening in CTV definition; 

3. indifferent, neither enhancement nor worsening in CTV definition; 

4. moderate enhancement in CTV definition; 

5. strong enhancement in CTV definition. 

4. Results 

The evaluation of the data presented in this study was performed retrospectively on 19 

metastatic brain tumors, treated with Leksell Gamma Knife. Nowadays, the clinical protocol 

does not usually consider co-registered PET images for Gamma Knife treatment planning. 

In the proposed multimodal segmentation approach, two different PET segmentation results 

were computed: (i) , by considering PET images alone (section 3.2.4.1), and (ii) , 

by considering PET/MRI co-segmentation (section 3.2.4.4). Therefore,  and  can 

be used interchangeably in Eqs. (9)-(12), depending on the usage context.  

Firstly, volumes measured on PET and MRI data are reported and, for a quantitative assessment, 

PET/MRI volume difference and centroid distance were calculated for each lesion. 

Figure 6(a) and (c) show experimental results achieved by the proposed multimodal PET/MRI 

segmentation method on the input image pairs reported in Figure 1(a, b), and Figure 1(c, d), 

respectively. In addition, the corresponding GTV and BTVMRI volume rendering is reported in 

Figure 6(b) and (d), respectively. 

BTV MRIBTV

BTV MRIBTV
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Figure 6 Results achieved by the proposed multimodal PET/MRI segmentation method on the input image pairs 

(metastases #6 and #14) reported in Figure 1(a, b) and Figure 1(c, d), respectively. The BTVMRI (magenta contour) 

and GTV (green contour) are superimposed: (a) boundaries computed on PET and MR images are nearly overlaid; (c) 

the two ROIs are very different in this case. At the bottom right, the lesion regions are zoomed in both cases. 

Tridimensional volume reconstructions of brain tumors in (a) and (c) are shown in (b) and (d), respectively. 

Transparent surfaces are rendered with Alpha Blending ( ) to emphasize volume intersections. 

 

Three other interesting examples obtained by the proposed multimodal segmentation method 

can be visually and qualitatively evaluated in Figure 7. 

50.0=a

(a) 

(c) 

(b) 

(d) 
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It is worth to observe that the margin of enhancement of tumors in MRI datasets is not always 

strongly correlated with high uptake regions in PET images. Segmentation results of PET 

images combined with GTV MRI masks are very stable (magenta boundaries in Figure 7), even 

if GTV is quite different. In Figure 7(d), Partial Volume Effect (PVE) on PET image [67] is 

reduced by using MRI ROIs. 

 

Figure 7 Graphical examples of co-segmentation results achieved by the proposed multimodal PET/MRI approach, 

where GTV (green contour), BTV (blue contour) and BTVMRI (magenta contour) ROIs are overlaid on the 

corresponding fused PET/MRI slices (displayed in Hot Look-Up Table). Four metastatic tumors in different 

anatomical regions of human brain are considered: (a) left temporo-parietal (tumor #3), (b) right temporo-parietal 

(tumor #11), (c) limbic (tumor #15), and (d) occipital (tumor #13) regions. 

4.1. PET and MRI Tumor Volume Measurements 

Volumes, calculated for each brain tumor imaged on MRI and PET modalities, are shown in 

Table 1. Absolute average volume difference (defined as ) between BTV, 

BTVMRI, and GTV were also calculated, in order to evaluate either overestimation or 

( ) 221abs VVV -

(a) (b) 

(d) (c) 
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underestimation of PET functional imaging with respect to anatomical MRI data, before and 

after GTV binary mask combination into PET images. In addition, Euclidean distances between 

BTV, BTVMRI, and GTV centroids (centers of mass) were reported. 

First of all, mean BTV and GTV values and their average absolute volume difference attest that 

tumor regions are imaged and represented differently on PET and MRI datasets. Furthermore, 

high standard deviation in BTV and GTV measurements proves that we are dealing with 

metastatic lesions characterized by various types and dimensions. On the other hand, BTVMRI 

measurements follow a different trend because BTVMRI segmentation is influenced by the 

combination of GTV masks and PET images, as proposed in section 3.2.4.4. Although we 

slightly integrate MRI ROIs with PET datasets during BTVMRI computation, this conservative 

choice frequently could reduce radioactivity spill-in and spill-out effects, by exploiting higher 

MRI spatial resolution. This is evident in the examples shown in Figure 7. Moreover, BTVMRI 

measurement standard deviation is lower than BTV and GTV ones. This means that multimodal 

PET/MRI segmentation yields more stable results with respect to single modality 

segmentations, since both metabolic and morphological imaging are considered. These 

experimental evidences are corroborated by the achieved absolute volume difference values, 

where BTVMRI has about the same difference with GTV and BTV. Volume centroid distances 

reflect the aforementioned situation, too. 
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Table 1 Brain tumor volume measurement for each metastatic tumor using MR and PET imaging. Absolute volume 

difference and centroid distance between segmented GTV, BTV, and BTVMRI are also reported. Mean value (μ) and 

standard deviation (σ) are reported in the last two rows. 

Tumor GTV 
[voxels] 

BTV 
[voxels] 

BTVMRI 
[voxels] 

Absolute volume difference 
[voxels] 

Volume centroid distance 
[pixels] 

BTV vs 

GTV 

BTVMRI 

vs GTV  

BTV vs 

BTVMRI 

BTV vs 

GTV 

BTVMRI 

vs GTV  

BTV vs 

BTVMRI 

#1 2267 3029 2380 33.61 4.98 27.27 1.805 1.067 1.457 

#2 1546 1754 1297 13.45 16.11 35.24 1.523 0.740 0.839 

#3 1945 1938 1561 0.36 19.74 24.15 1.250 0.949 0.398 

#4 323 687 579 112.69 79.26 18.65 2.591 1.275 0.607 

#5 346 484 417 39.88 20.52 16.07 1.446 0.845 0.246 

#6 2293 2582 1996 12.60 12.95 29.36 0.974 0.971 0.098 

#7 537 609 381 13.41 30.98 59.84 2.248 1.042 1.229 

#8 1303 1010 1002 22.49 23.10 0.80 1.830 0.802 1.454 

#9 286 122 159 57.34 44.41 23.27 2.238 1.681 0.399 

#10 600 593 621 1.17 3.50 4.51 0.697 1.080 0.730 

#11 2906 4052 2552 39.44 12.18 58.78 0.647 0.772 0.801 

#12 210 226 138 7.62 34.29 63.77 3.118 2.720 0.447 

#13 255 620 325 143.14 27.45 90.77 5.660 0.840 0.648 

#14 2271 1202 1094 47.07 51.83 9.87 5.753 5.551 0.718 

#15 1634 1129 1158 30.91 29.13 2.50 1.162 0.768 0.518 

#16 2589 2491 1984 3.79 23.37 25.55 5.941 5.614 0.431 

#17 1404 869 828 38.11 41.03 4.95 0.972 1.099 0.238 

#18 2008 2398 1697 19.42 15.49 41.31 1.414 1.211 0.224 

#19 7307 2238 1581 69.37 78.36 41.56 7.141 6.769 0.885 

μ 1685.79 1475.42 1144.74 37.15 29.93 30.43 2.548 1.884 0.651 

σ 1627.99 1081.92 749.63 37.59 21.37 24.22 2.018 1.890 0.395 

 

The above observations, based on numerical experimental results, are qualitatively supported by 

the graphical multimodal PET/MRI segmentation results in Figure 8. 

To measure the degree of dependence between GTV, BTV, and BTVMRI, both Pearson’s 

correlation coefficient ρP and Spearman’s rank correlation coefficient ρS were calculated for 

each comparison. 
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Spearman’s correlation yields different information with respect to Pearson’s correlation, since 

Spearman’s ρS is less sensitive to strong outliers that are in the tails of both samples. In fact, 

outlier importance is limited to the value of its rank. 

As expected, GTV revealed greater correlation to BTVMRI, especially according to Spearman’s 

ρS. In addition, BTV and BTVMRI are significantly correlated, using both Pearson and Spearman 

correlation coefficients. Accordingly, scatter diagrams in Figure 9 represent graphically these 

numerical results. 

 

Figure 8 Segmentation results, on brain tumors #14 and #16, obtained by the single modality PET method (BTV) 

versus those obtained by the multimodal PET/MRI approach after the PET data updating based on the results of the 

MRI brain lesion segmentation (BTVMRI): (a, c) GTV (green contour), BTV (blue contour), and BTVMRI (magenta 

contour) ROIs overlaid on the corresponding fused PET/MRI slice (PET and MRI are displayed using Jet and 

grayscale LUTs, respectively); (b, d) 3D representation of BTV and BTVMRI rendered with transparent surfaces 

(Alpha Blending with ), respectively, cut at the corresponding slice shown in (a) and (c). 
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Figure 9 Scatter diagrams of tumor volume measurements: (a) BTV versus GTV; (b) BTVMRI versus GTV; (c) BTV 

versus BTVMRI. Red dashed line is the line of equality. In the upper part of each sub-figure, Pearson and Spearman 

correlation coefficients with the corresponding significance level (p value) are also reported. 

 

4.2. Evaluation of the Overall Multimodal PET/MRI Segmentation Method 

In this section, an overall evaluation of the proposed multimodal PET/MRI segmentation 

method is presented. Spatial overlap-based, and distance-based metrics were calculated, to 

measure similarity and correlation concerning PET and MRI segmentation approaches, 

according to the theoretical description in sections 3.3.1 and 3.3.2. 

Considering these results, it was possible to argue the complementarity between PET and MR 

imaging modalities, combined by the proposed multimodal segmentation method. 

(a) 

(b) 

(c) 

ρP = 0.625; p = 0.0042 
ρS = 0.898; p < 0.0001 

ρP = 0.627; p = 0.0041 
ρS = 0.921; p < 0.0001 

ρP = 0.977; p < 0.0001 
ρS = 0.975; p < 0.0001 

 



46 
 

4.2.1. Tumor Spatial Overlap-based Metrics Results 

Table 2 shows tumor spatial overlap-based metrics for PET and MRI segmentation methods. 

The achieved results demonstrated that GTV was, on average, more similar to BTVMRI than to 

BTV. The highest mean values and the lowest standard deviation of the evaluation measures 

were obtained in BTV and BTVMRI comparisons. 

 

Table 2 Achieved tumor spatial overlap-based metrics for GTV, BTV, and BTVMRI segmentations. Total average (μ) 

and standard deviation (σ) calculated on 19 brain lesions are also reported. 

Tumor 

Dice Similarity Coefficient [%] 

BTV vs 

GTV 

BTVMRI 

vs GTV  

BTV vs 

BTVMRI 

#1 63.97 78.89 76.17 

#2 80.55 81.11 80.24 

#3 81.33 79.81 83.91 

#4 40.79 56.32 79.30 

#5 55.42 59.24 73.70 

#6 76.43 73.26 86.76 

#7 58.29 78.46 62.22 

#8 68.31 83.90 80.82 

#9 39.22 51.24 83.99 

#10 72.59 74.20 84.35 

#11 65.74 78.71 68.14 

#12 46.79 51.72 69.23 

#13 52.57 76.90 68.36 

#14 53.38 54.62 87.37 

#15 76.66 79.08 89.81 

#16 67.80 70.59 86.97 

#17 65.55 67.03 85.80 

#18 77.30 79.51 82.39 

#19 32.85 31.66 78.24 

μ 61.87 68.75 79.36 

σ 14.64 14.07 7.79 
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4.2.2. Tumor Spatial Distance-based Metrics Results 

Table 3 reports the values of spatial distance-based metrics achieved by the proposed 

multimodal PET/MRI segmentation approach in the experimental trials. Distance-based metrics 

values agreed with achieved volume-based and overlap-based measurements, showing the same 

trend. 

Table 3 Achieved tumor spatial distance-based metrics for GTV, BTV, and BTVMRI segmentations. Total average (μ) 

and standard deviation (σ) calculated on 19 brain lesions are also reported. 

Tumor 

Hausdorff Distance [pixels] Average Distance [pixels] Mahalanobis Distance [pixels] 

BTV vs 

GTV 

BTVMRI 

vs GTV  

BTV vs 

BTVMRI 

BTV vs 

GTV 

BTVMRI 

vs GTV  

BTV vs 

BTVMRI 

BTV vs 

GTV 

BTVMRI 

vs GTV  

BTV vs 

BTVMRI 

#1 8.544 6.403 7.616 2.669 1.377 1.756 0.412 0.264 0.339 

#2 5.831 4.000 5.831 1.343 1.163 1.259 0.340 0.178 0.195 

#3 8.485 7.810 4.472 1.400 1.355 1.145 0.436 0.312 0.138 

#4 5.831 3.606 5.000 1.090 0.667 0.778 3.497 3.257 0.277 

#5 5.385 3.000 3.606 1.295 0.798 0.742 1.857 1.814 0.107 

#6 5.099 4.123 3.000 1.121 1.243 0.940 1.208 1.247 0.029 

#7 9.220 4.000 5.831 2.233 0.804 1.332 0.786 0.441 0.421 

#8 10.630 3.162 10.630 1.312 0.943 0.815 0.610 0.239 0.524 

#9 4.472 4.472 1.414 0.727 0.969 0.204 1.392 0.994 0.377 

#10 7.810 6.403 3.162 1.368 1.369 0.689 0.285 0.379 0.286 

#11 12.000 6.083 11.662 2.630 1.535 2.262 0.734 0.180 0.214 

#12 4.472 5.388 2.236 1.898 1.556 1.167 1.496 1.389 0.249 

#13 7.280 2.828 7.280 2.345 0.809 1.711 0.530 0.404 0.296 

#14 15.621 14.213 3.606 3.618 3.281 0.810 1.115 1.045 0.233 

#15 4.243 3.606 2.236 1.250 1.107 0.643 0.286 0.219 0.147 

#16 11.705 11.402 7.616 3.503 3.175 1.906 0.788 0.754 0.094 

#17 5.385 4.243 2.236 2.136 1.939 0.769 0.267 0.319 0.087 

#18 7.071 5.385 4.472 1.782 1.420 1.356 0.374 0.336 0.062 

#19 15.811 16.125 10.000 5.820 5.811 1.486 1.446 1.360 0.195 

μ 8.15 6.12 5.36 2.081 1.648 1.146 0.940 0.796 0.225 

σ 3.57 3.79 3.04 1.211 1.235 0.515 0.787 0.778 0.131 
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4.2.3. Clinical Evaluation Results 

Table 4 shows clinical evaluation results regarding both BTV and BTVMRI integration with 

GTV to determine CTV, according to the explanation in section 3.3.3. 

In the current clinical practice the CTV is always based on the GTV (defined on MR images). 

As a consequence, the BTV contribution (defined on PET images) cannot get worse the CTV 

definition from a clinical perspective, i.e., the Likert score is always greater than 2.  

Table 4 Clinical value of BTV and BTVMRI, for each brain metastasis, in CTV definition1. 

Tumor 
Clinical value 

BTV integration BTVMRI integration 

#1 4 5 
#2 4 4 
#3 3 3 
#4 4 4 
#5 3 3 
#6 4 5 
#7 4 4 
#8 3 3 
#9 3 3 
#10 3 3 
#11 5 5 
#12 3 3 
#13 3 4 
#14 4 4 
#15 3 3 
#16 4 4 
#17 3 3 
#18 4 5 
#19 4 5 

1 Qualitative evaluation performed by three physicians using a five-point Likert scale, defined as: 1) strong worsening in CTV 
definition; 2) moderate worsening in CTV definition; 3) indifferent, neither enhancement nor worsening in CTV definition; 4) 
moderate enhancement in CTV definition; 5) strong enhancement in CTV definition. 
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In ~26% of cases, the CTV definition was strongly influenced by PET imaging. In more than 

50% of cases, the CTV was strongly or moderately conditioned by metabolic imaging: only in 

8/19 cases PET volume did not modify the CTV definition. In more than 25% of cases, BTVMRI 

enhanced the CTV more accurately than BTV, because radioactivity spill-in and spill-out effects 

between tumor and surrounding tissues were reduced by the contribution of MRI ROIs in PET 

segmentation, shrinking false positive uptake areas. 

5. Discussion 

The proposed fully automated multimodal segmentation method introduces several novelties 

and advantages. 

Firstly, we used two computer-assisted single modality segmentation approaches for PET and 

MR images, which have been already tested using evaluation metrics and validated by 

clinicians. Although image co-registration is needed to bring multimodal PET/MR image 

information into the same reference system, the co-segmentation results are not just derived via 

image registration since anatomical and metabolic are carefully integrated, by relying also on 

the physicians’ expertise (see section 3.2.5), in the proposed multimodal PET/MRI 

segmentation algorithm. These accurate and operator-independent single modality segmentation 

methods are certainly more effective and reliable on PET and MRI datasets, with respect to 

approaches that unify information into a single graph.  

State of the art methods based on a hyper-graph [21][42] or sub-graphs with inter-subgraph arcs 

[31] are more sensitive to registration errors, especially when multimodal images are not 

acquired contextually using a hybrid scanner. In these cases, no significant anatomical and 

functional changes have to be assumed between the images acquired with different modalities at 

the same clinical phase to directly construct the hyper-graph or the interconnected sub-graphs. 

The proposed approach was not tailored specifically for the latest generation hybrid PET/MRI 

scanners. Obviously, in the case of multimodal PET/MRI scanner, the scenario is simplified 
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considering that all the initial registration stages are not necessary, whereas the subsequent steps 

in the processing pipeline are still valid. Methods based on hyper-graphs generally yield a single 

target volume on the fused multimodal images. This may compromise the segmentation quality 

since PET and MRI could convey different information, resulting in a disagreement between 

BTV and GTV, because enhancement, edema, and necrosis regions are imaged differently by 

the PET and MRI modalities; so the tumor volumes defined on metabolic PET and on anatomic 

CT or MRI could be highly different [31]. The proposed multimodal method, keeping all 

anatomical and metabolic information and enabling a decision-level fusion [44], is more reliable 

on PET and MRI datasets with respect to approaches that unify information into a single graph 

structure. Result repeatability is ensured because it is able to adapt in different pathological 

scenarios. This choice allows for a greater awareness on the decision-making process, carried 

out by the clinical staff that is going to plan the neuro-radiosurgery treatment, that brings to the 

CTV definition. The CTV is determined by the clinical staff, by taking into account the specific 

patient’s pathological scenario. According to the computed BTV and GTV volumes, the CTV 

identification is a deep decision-making process involving numerous anatomical and metabolic 

insights. Therefore, the appropriateness of the multimodal segmentation is justified by the 

addressed scenario, by allowing the clinicians to carefully consider the possibility to include 

BTV information into the planned CTV and to determine a personalized therapy for each single 

cancer metabolism [45]. 

Secondly, IURs detected on PET images (see section 3.2.4.1) are not blindly propagated to 

GTV segmentation algorithm, but properly modified according to MRI data using the developed 

ROI bounding region generation method, described in section 3.2.4.2. This ad hoc MRI-driven 

method, based on LSFs, finds adaptively a valid bounding region in order to eliminate user 

intervention, required by the MRI brain tumor segmentation method in [27] and [28]. On the 

other hand, in [42], the identified seeds on PET images are propagated to the corresponding 

anatomical images before segmentation process beginning. Hence, two existing and efficient 
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single modality processing pipelines are combined in a smart fashion. In particular, PET and 

MRI segmentation results are mutually exploited. 

Lastly, this fully automated approach is very reproducible and reliable, also due to the brain 

anatomical district imaging. We focused on the application domain regarding brain tumors that 

underwent Leksell Gamma Knife stereotactic radiosurgery. In fact, the fully automatic 

identification of target IURs is feasible because MET-PET datasets for stereotactic neuro-

radiosurgery treatment planning include only the brain area avoiding the possible presence of 

false positives in other anatomic regions. Differently, in total body FDG-PET examinations user 

interaction to manually identify the target lesion is always needed (normal structures such as 

brain, heart, bladder, kidneys, and ureters normally have high FDG uptake) [43]. Accordingly, 

these co-segmentation software implementation platforms must provide manual seeding 

facilities in addition to automated multimodal segmentation algorithm. 

Although a one-to-one relationship between two different structural images of the same 

abnormal region could be reasonable, the assumption of identical lesion contours in both 

functional and morphologic images is often infeasible in many anatomical regions [42]. For 

instance, depending on the metabolic characteristics of the cells within a lung tumor [72], it may 

not take up a radiotracer in all its volume, or uptake region may be larger than the anatomical 

boundary of the tumor due to cellular activation in nearby tissues. Further issues are introduced 

by combining more than two structural modalities, i.e. MRI and CT, with PET metabolic 

imaging. Briefly, different imaging modalities (PET/MRI vs PET/CT), anatomic regions, and 

pathologies require a customization/adaptation of the method according to the specific clinical 

scenario. 

In our study, PET and MRI datasets regarding the same subject were acquired at two different 

times (MRI is scanned a few days after MET-PET) by two different dedicated scanners. This 

represents a non trivial problem in co-segmentation domain, because an efficient and accurate 

multimodal co-registration is required. Instead, as explained in section 2, state of the art about 
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co-segmentation methods process mostly simultaneous PET/CT or PET/MRI acquisitions. Of 

course, the potential of hybrid imaging (PET/CT and PET/MRI systems) overcomes image 

registration issues by giving multimodal images contextually [73][74], especially in brain 

imaging [75]. 

The achieved experimental results showed that GTV and BTV segmentations are statistically 

correlated (Spearman’s rank correlation coefficient: 0.898) but have not higher degree of 

similarity (average Dice Similarity Coefficient: 61.87 ± 14.64). In fact, GTV and BTV 

measurements as well as evaluation metrics values (volume-based, overlap-based, and spatial 

distance-based metrics) corroborated that MRI and MET-PET convey different but 

complementary imaging information. Furthermore, when lesion sizes are greater than 2-3 times 

the Full Width at Half Maximum (FWHM) of the point spread function of the PET image 

resolution reconstructed by the PET imaging system, the underestimation of metabolic activity 

due to PVE can be assumed to be negligible [76]. In other cases, a recovery coefficient method 

could be included in our algorithm, such as the approach described in [77]. Nevertheless, the 

output of the proposed multimodal PET/MRI segmentation method, named BTVMRI, accurately 

combines PET and MR imaging. BTVMRI segmentation could reduce radioactivity spill-in and 

spill-out effects between tumor and surrounding tissues, taking advantage of the higher spatial 

resolution of MRI. 

In addition, since it is not possible to define a gold-standard CTV according to both MRI and 

PET images without treatment response assessment, the feasibility and the clinical value of 

BTV integration in Gamma Knife treatment planning were considered. Therefore, a visual and 

qualitative evaluation was performed by experienced physicians to assess the clinical value of 

BTV integration in CTV delineation using a five-point Likert scale. In most cases, CTV 

delineation was strongly or moderately influenced by PET imaging: GTV does not match with 

the functional area of the tumor, and metabolic imaging must be considered to assist the 

radiation oncologist in treatment planning. These results agree with [15], where in 74% the 
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expansion of the MET-PET volume was larger than the Gadolinium enhancement area. Table 4 

shows that BTVMRI influenced the CTV more accurately than BTV (in 5/19 of cases): this 

finding was attributed to the higher spatial resolution of MRI, which shrank small false positive 

areas in PET target segmentation (see section 3.2.4.4). 

Finally, PET imaging should be usually considered by clinicians in order to determine a CTV 

that takes into account the “active” part of the cancer in addition to anatomical tumor 

boundaries. According to these findings, it is appropriate to include PET images in stereotactic 

neuro-radiosurgery treatment planning. 

6. Conclusions 

In this paper, a novel fully automatic multimodal segmentation method for Leksell Gamma 

Knife treatments was proposed. Two previously developed BTV [22][25][26] and GTV 

[27][28] segmentation methods on MET-PET and MR images, respectively, have been 

improved and combined in a smart fashion. The proposed multimodal PET/MRI segmentation 

approach yields a new BTVMRI, which integrates PET and MR imaging. 

To evaluate the effectiveness of our segmentation multimodal approach, experimental tests on 

19 metastatic brain tumors were retrospectively performed. The proposed fully automatic 

multimodal PET/MRI segmentation approach is a valid operator-independent procedure to 

segment BTV and GTV. It has been proved that the BTV should be used to modify the GTV, 

considering both metabolic and morphologic information. By using our multimodal 

methodology, clinicians could be assisted in CTV delineation during stereotactic radiosurgery 

treatment planning. Therefore, the proposed multimodal segmentation approach can be 

considered clinically feasible, since it can be integrated in the current clinical practice. 

After the positive opinion provided by clinicians, we have the rationale to begin clinical trials to 

evaluate tumor response after Leksell Gamma Knife treatment execution, even when BTV is 

included in CTV delineation during planning phase. 
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