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Abstract

Background and Objective: The anatomical structure detection in retinal images
is an open problem. However, most of the works in the related literature are
oriented to the detection of each structure individually or assume the previous
detection of a structure which is used as a reference. The objective of this paper
is to obtain simultaneous detection of the main retinal structures (optic disc,
macula, network of vessels and vascular bundle) in a fast and robust way.

Methods: We propose a new methodology oriented to accomplish the men-
tioned objective. It consists of two stages. In an initial stage, a set of operators
is applied to the retinal image. Each operator uses intra-structure relational
knowledge in order to produce a set of candidate blobs that belongs to the
desired structure. In a second stage, a set of tuples is created, each of which
contains a different combination of the candidate blobs. Next, filtering opera-
tors, using inter-structure relational knowledge, are used in order to find the
winner tuple. A method using template matching and mathematical morpho-
logy is implemented following the proposed methodology.

Results: A success is achieved if the distance between the automatically
detected blob center and the actual structure center is less than or equal to one
optic disc radius. The success rates obtained in the different public databases
were: MESSIDOR (99.33%, 98.58%, 97.92%), DIARETDB1 (96.63%, 100%,
97.75%), DRIONS (100%, n/a, 100%) and ONHSD (100%, 98.85%, 97.70%) for
optic disc, macula and vascular bundle, respectively. Finally, the overall success
rate obtained in this study for each structure was 99.26%, 98.69% and 98.95%,
respectively. The average time of processing per image was 4.16 £+ 0.72 s.
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Conclusions: The main advantage of the use of inter-structure relational
knowledge was the reduction of the number of false positives in the detection
process. The implemented method is able to simultaneously detect four struc-
tures. It is fast, robust and its detection results are competitive in relation to
other methods of the recent literature.

Keywords: Retinal image, Anatomical structure detection, Optic disc,
Macula, Vessel network, Vascular bundle

1. Introduction

During the eye fundus exam or retinal image analysis, ophthalmologists look
for specific anatomical patterns to identify possible disease marks and establish
possible diagnoses from them. Therefore, it is necessary to address the detec-
tion and segmentation of the more relevant anatomical structures (see Fig. [
in order to automate the task of image-based diagnosis of the retina ﬂ] In the
context of retinal image processing, the anatomical structure detection task,
also called localization task, is normally defined as the search the one point that
represents the center of the area encompassed by the structure. On the other
hand, the segmentation task implies the search of the all the points that form
the area or perimeter of the structure. Although both tasks are important se-
parately, a high success rate in the detection process will greatly facilitate the
success of the segmentation task. The following stages involved in the cons-
truction of an image-based diagnostic aid system will also be favored by such
successes. In this work, we only focus on the detection task.

There are many arguments in the literature that justify the importance of
the retinal structure detection. Thus, the detection results of the different
anatomical structures can be used as reference points (landmarks) for other
automated diagnosis systems in order to detect signs of several retinal diseases
@, E, @, B, , B] For example, the detection of the optic disc is a prerequisite for
the computation of some important diagnostic indexes for hypertensive /sclerotic
retinopathy based on vasculature E, |. In the same way, the proximity of a
bright /dark lesion to macula indicates a higher likelihood of impaired vision and
hence calls for immediate medical attention ﬂ] On the other hand, in order to
successfully find abnormal structures in a retinal image it is often necessary to
mask out the normal anatomy from the analysis IE] For example, since the OD
may be easily confounded with large exudative lesions by image analysis techni-
ques, its detection is also important to exclude it from the set of possible lesions
E] A similar argument applies to fovea when the objective is to automatically
detect retinal hemorrhages M] Additionally, detecting a retinal structure is
a fundamental step to segment such structure, which is not only reducing the
computing time, but improving the accuracy and specificity ] For example,
there are many approaches where the optic disc detection is used as a previous
step to segment it m, |E, |1__4|, ﬁ, E] Finally, the detection can also be used to
automatically classify left and right eyes in retinal images ﬁ]



Figure 1: Main anatomical structures to consider in a retinal image (right eye).

Many strategies have been used in order to detect the different anatomical
structures in retinal images. In a first classification, the different approaches
can be divided into two main groups: those that only use the properties of each
structure in order to detect it separately and those that, additionally, also use
the relational knowledge between different structures to facilitate jointly the
detection of two or more structures. Henceforth, the first type of knowledge will
be denoted as intra-structure relational knowledge (intra-SRK) and the second
as inter-structure relational knowledge (inter-SRK).

Initially, the first works addressed isolated detection of each structure, using
only intra-SRK. Thus, for example, in m], the optic disc was located by iden-
tifying the area with the highest variation in intensity of adjacent pixels; the
blood vessels were identified by means of a multilayer perceptron; and the ma-
cula was identified using matching correlation with a template to locate can-
didate regions. This type of strategy, based on the unique use of intra-SRK,
has continued to be exploited in more recent research works. However, the
objective of these strategies was twofold, detecting and segmenting a specific
structure. Several works on optic disc identification have gone in that direction
B, |E, |l__4|, ﬁ, @] Under this paradigm, the macula has received less attention,
probably due to the fact that isolated macula detection is more difficult to solve
than optic disc detection.

Other strategies have evolved into a joint use of the two types of knowledge
(intra- and inter-SRK). For example, optic disc detection has been accomplished
by preliminary detection of the main retinal vessel E, E, E] The main blood
vessels have been identified using a modified active shape model and then the



parabolic shape has been used as a reference in order to locate the macula [20].
The optic disc detection has been exploited to constrain a candidate region
where the fovea is detected [7, 121, [22]. Simultaneous detection of OD and fovea
has been also addressed [23].

Following the trend of the aforementioned approaches, there also exist re-
search works where the use of intra- and inter-SRK has been proposed in order
to jointly find three different retinal structures. In [24], accurate segmentation
of the vasculature and its spatial features are used to detect the optic disc and
then this and a geometric model of the vasculature are used to detect the ho-
rizontal raphe and finally detect the macula. In [25], the elliptical form of the
major retinal blood vessels is used to obtain approximate locations for the optic
disc and macula, which are refined based on the circular edge of the former and
local darkening at the latter. In [26], a k-NN regressor is utilized to predict the
distance to the structures of interest using segmentation of the retinal vascula-
ture. The point with the lowest predicted distance to the optic disc is selected
as the optic disc solution and the search area for the macula is defined based on
the location of the optic disc. In [27], the location of the optic disc is identified
using template matching and, in order to reduce false positives due to bright
areas of pathology, the vessel characteristics are also exploited. The location of
the fovea is estimated as the point of lowest matched filter response within a
search area determined by the optic disc location. In [4], optic disc detection
and blood vessel segmentation are used to detect the macula, using the above
mentioned distance relation between the macula and optic disc centers. Finally,
in [5], the likelihood values for pixels to be optic disc or macula centers are
computed by what is known as the fast radial symmetry transform, making use
of vessel density estimation.

All the references mentioned above are only a representative sample of the
substantial amount of approaches reported in the literature. This indicates that
anatomical structure detection in retinal images is an open problem, directing
efforts towards obtaining increasingly fast and robust methods. In any case, the
current trend seems to be directed towards the use of the two kinds of knowledge
(intra- and inter-SRK). In this work, we provide a detection methodology that
follows that trend. Basically, this methodology consists of two stages. In an
initial stage, a set of operators is applied to the retina image. Each operator
is defined for searching a specific structure by using intra-SRK and produces
a set of candidate blobs belonging to such structure. Then, in a second stage,
a new set of relational operators use inter-SRK in order to filter and evaluate
the set of tuples resulting from combining the different types of blobs obtained
in the first stage. Finally, the winner tuple selected will contain the solution
structures.

The main contribution of this work is twofold. First, a new generic methodo-
logy for the simultaneous detection of N different retinal structures is presented.
It is based on the joint use of intra- and inter-SRK and is independent of the
resolution and angle of field-of-view (FOV) of the original image. It exploits the
three RGB channel information, avoiding the loss of information due to channel
saturation problems of other approaches where a unique channel is used. In



addition, the methodology does not make assumptions about the way in which
the retinal images have been acquired (i.e. fovea centered or optic disc centered)
and is easily reconfigurable in sets of images where the optic disc or the macula
was not visible. Second, a method based on such a methodology is instantiated
for the detection of four retinal structures: optic disc, macula, main vessels and
vascular bundle. This latter structure is not normally used in the literature.
However, as will be seen here, the vascular bundle has allowed us to improve
the robustness of the detection process by helping to eliminate false positive
candidate blobs.

The rest of the paper is organized as follows. Section [2] describes the data-
bases used in the experiments. Section Bl provides a detailed explanation of the
proposed methodology and describes the method used to instantiate it. Section
Ml presents the experimental results and these are discussed in Section5l Finally,
conclusions and future work are provided in Section [6l

2. Materials

We have used four different databases for the experiments: MESSIDOR
[28,129], DRIONS-DB [13,[30], ONHSD [12,31], and DIARETDBI [32,133]. The
MESSIDOR database contains 1200 retinal images, RGB format, 8 bits/pixel,
FOV = 452 and three different sizes: 1440 x 960, 2240 x 1488 and 2304 x 1536.
The optic disc ground truth for this database is available on the MESSIDOR,
web [28]. The annotationd] of fovea centers from 1136 MESSIDOR images were
created and published by the University of Huelva. The remaining 64 annota-
tions, up to 1200, were kindly provided by the authors of [4]. The DRIONS
database consists of 110 retinal images, RGB format, 8 bits/pixel, FOV = 40°
and a size of 600 x 400. Only the optic disc ground truth is provided on the
web of this database [30]. Specifically, each OD center used as a reference was
obtained as a result of averaging the geometric centers of two OD contours tra-
ced by two different experts. The ONHSD database contains 99 retinal images,
RGB format, 8 bits/pixel, FOV = 459 and size of 640 x 480. Here, only the
optic disc ground truth is provided on the web of this database [31]. Specifically,
each OD center used as a reference was obtained as a result of averaging the
geometric centers of four OD contours traced by four different experts and, on
the other hand, the fovea centers were annotated by our specialist in ophthal-
mology. Finally, the DIARETDBI1 database contains 89 retinal images, RGB
format, FOV = 502 and size of 1500 x 1152. On the web of this database [32],
there is no ground truth for the fovea and optic disc. Here, the OD centers
were annotated by our specialist in ophthalmology and the fovea annotations
were obtained from [34]. All the mentioned databases contain healthy eyes and
eyes with several kinds of retinopathies. A more detailed description for each
database can be consulted in their respective references.

Uhttp://www.uhu.es/retinopathy /muestras/Provided Information.zip
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3. Methodology and Method

The objective of the methodology here presented is to obtain joint detection
of the main anatomical structures in digital retinal images: optic disc, macula,
network of main vessels, and vascular bundle (see Fig. [[l). The basic idea is to
use both intra-SRK and inter-SRK. Figure 2l shows the scheme followed. First,
the original image is normalized and then its size is reduced. Next, for each type
of anatomical structure, an operator, which only uses intra-SRK, is applied in
order to obtain a set of candidate blobs, each of which is a potential solution of
the type of structure searched. We use the term set of candidates because each
set should contain zero, one or more false positives and the true positive. The
false positives would be associated to the existence of distractors in the image,
that is, patterns which are similar to the structure to be detected. On the other
hand, the true positive will correspond to the solution structure. After that, a
set of tuples is created where each tuple contains a different combination of the
candidate blobs. Then new operators, which use inter-SRK, are applied. One
of these operators is capable of detecting false positive blobs in order to elimi-
nate all those tuples containing them. Finally, an ultimate inter-SRK operator
discards the rest of false positive tuples and selects the best tuple, where each
component contains the solution blob of the respective anatomical structure.

3.1. Normalizing and resizing the original retinal image

The two objectives of this stage are to normalize the intensity and reduce the
size of the input image. Intensity normalization is implemented as a contrast
stretching method, that is, it is applied in order to each RGB channel covers
the intensity maximum range [0,255]. The reduction of size is made using a
scale factor oriented to obtain a fixed image resolution value. This reduction
process has several advantages. First, it helps to decrease the image processing
time and it also eliminates some noisy artifacts that are present in the original
image. Second, the use of a fixed resolution allows us to implement and con-
figure a detection method that only works with that resolution and, therefore,
is independent of the original size and resolution of the input image. Thus,
assuming that the method will work with a standard resolution, Ky, defined
by the user, and expressed in pizel/mm, it is straightforward to establish the
following expression:

Ape ]1/2 Q)

K()—OZ|:

where Azlmz and Ap, represent the input image retinal area, expressed in
mm? and pixels, respectively, and « is the scale factor needed to transform
the input image to the standard resolution chosen (Kj). Afnmz depends on the
field-of-view (FOV) of the input image, which is defined by the so-called ezternal
angle view of the fundus camera. Table [0l shows different values of Afnmz for
typical values FOV [35]. A, is easily calculated from the input image, counting

the number of actual retinal pixels. Finally, from eq. (), it is easy to obtain
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Figure 2: Block diagram of the methodology used.




the value of «, with K, Afnmz and A,,; known. For example, assuming that
a retinal image was taken with a camera whose FOV is 40°, then, from table
I Afnm2 = 99.2 mm?. If the measured diameter of the circle encompassed by
the actual retinal zone is 400 pixels, then A,, = m(400/2)% = 125,663.7 px?.
Finally, if our detection method is configured for, say, Ko = 10 pxz/mm, then,
using eq. (), it is immediate to obtain that the scale factor needed to reduce

the size of the original image is o = 0.281.

Table 1: Retinal area for different angle values of the field-of-view (FOV), ac-
cording to [35].

FOV Retinal Area (mm?)

30° 56.4
40° 99.2
452 124.8
502 153.1

3.2. Using intra-structure relational knowledge

The intra-structure relational knowledge (intra-SRK) makes reference to all
information that allows us to define a specific anatomical structure such as, for
example, its shape, color, texture or contour. Here, the idea is to use different
intra-SRK operators, one for each structure to detect. The final result of this
stage is a set of candidate blobs for each structure. Regarding how to implement
the different operators, we opted for two techniques that are well known in the
field of artificial vision: template matching and morphological image processing.
However, the methodology presented here is independent of the two mentioned
techniques, that is, any other approach oriented to obtain a set of blob candida-
tes for each structure could be used. The rest of this subsection describes how
these intra-SRK operators are implemented for detecting each structure.

3.2.1. Optic disc blob detection

In a retinal image, the optic disc (OD) has a bright oval shape and contains
the output point of the major blood vessels that supply the retina (see Fig. [J).
It also contains a rounded area located approximately in its center, called the
optic cup, which represents the brightest area of the retina in the absence of
distractors.

The detection of the set of candidate OD blobs is done using correlation
with template matching (TM). It is applied to each channel of the normalized
and reduced input image. For each channel, the result is an image of gray levels
with the property of having high values in those areas that are similar to the
template. Finally, the n,q brightest blobs per channel in the TM output are
obtained, making a total of N,q = 3 X n,q candidate optic disc blobs, where nyq
is chosen by the user. In the blob selection process, the property that a blob is
an isolated continuous region was taken into account. We start by choosing a
threshold equal to the intensity of the brightest pixel of the TM output. That
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Figure 3: Optic disc templates used for each RGB channel: (a) red, (b) green,
(c) blue.

pixel is called the current blob. Next, we progressively decrease that threshold
and, in each decrement, we check if the new pixels with intensity greater than or
equal to the current threshold are contiguous or not to the current blob. In the
first case, the new pixels are incorporated to the current blob and the iteration
continues. In the second case, the current blob is saved as a candidate blob, the
current blob is associated to the new isolated area and the iteration continues.
This process is repeated until n,q candidate blobs are obtained or the threshold
decreases below the mean value of the TM image gray level.

The three templates were chosen with square shape and width Wop = 4 x
Rop, where Rop is the mean radius of the optic disc, in pixels, at standard
resolution (Kp). Knowing that the mean radius of the optic disc, expressed in
mm, is Rop,mm = 0.925 mm B], it is easy to calculate Rop, for a Ky known,
by using the following expression:

ROD = KO . ROD,mm (2)

The template matrix of each channel was calculated as the intensity average
of different square sub-windows, with width Wy p, extracted from the MESSI-
DOR database images, at resolution Ky, and centered on the actual geometric
center of the optic disc. Specifically, 100 non-pathological images of the right
eye were extracted randomly from the MESSIDOR. That number was selected
experimentally (other values greater than 100 were tested but there were no
improvements in the detection process). In addition, 100 new images of the left
eye were generated by horizontally mirroring the 100 previous images. Thus,
the template computation was done from a total of 200 images. The three RGB
optic disc templates used are shown in Fig.

3.2.2. Macula blob detection
In a retinal image, the macula has an oval shape and is located in the tem-
poral area of the optic disc and delimited by the superior and inferior temporal
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Figure 4: Macula templates used for each RGB channel: (a) red, (b) green, (c)
blue.

vascular arcades (see Fig. [[)). It represents the darkest area of the retina in the
absence of distractors. The center of the macula is called the fovea, and it is
responsible for sharp central vision.

Template matching (TM) with correlation is used to detect the set of can-
didate macula blobs. As with the optic disc, the n,, brightest blobs per RGB
channel in the TM output are chosen, making a total of N,,, = 3 X n,, candi-
date macula blobs, where n,, is chosen by the user. In this case, because the
area covered by the macula is smaller than the optic disc area, the width of the
template was Wy = 2Rop, where Rop is obtained from eq. (2). The tem-
plate matrix of each channel was calculated as the intensity average of different
square sub-windows, with width Wy, extracted from images belonging to the
MESSIDOR database, at resolution Ky, and centered on the actual fovea. The
same 200 images as those used for computing the optic disc templates were used
here. The three RGB templates used are shown in Fig. @l

3.2.3. Retinal vessel blob detection

In a retinal image, the network of blood vessels has a tree-shaped geometry
(see Fig. [I)). This network can be divided into two parts: superior and inferior
arcade. Both of them converge in a point which is located close to the center
of the optic disc. There are morphological differences between the main and
secondary vessels. The former are wider and straighter than the latter and,
inversely, the latter are narrower and more branched than the former. Here, in
order to detect the network of vessels, we are only interested in the main vessels.

The detection process is based on three morphological stages. First, a gray-
scale bottom-hat transformation is used to enhance just the vessels. Second,
an iterative threshold binarization is done to select the main vessels from the
output image from the first stage. Finally, a post-processing stage is applied in
order to refine the network of vessels obtained in the second stage.

A bottom-hat transformation is a morphological operation consisting of two
steps: first, a morphological closing is applied to an input image and, second,
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the input image is subtracted from the closing result. In our case, the closing is
only applied to the green channel of the normalized and reduced input image,
Iy, and the result, I, is a new retinal image without vessels. We only used the
green channel because there is experimental evidence in the literature about the
high contrast between vessels and background for this channel [36]. Then the
difference of the closing image and the original image produces the final output
of this stage, Iy = I. — Iy, that is, a gray level image where only the vessels
are enhanced. The structuring element used in the closing has a circular shape
and its radius is calculated as the approximated mean of the maximum vessel
diameters, d,,, ., obtained from the DRIVE database [37] and considering the
resolution K. DRIVE is used here because the vessel network ground truth is
publicly available on the web [38]. The value calculated for d,,,,, at DRIVE
original size (without applying the scale factor o) was 9 pz. Fig. [Bla-c) show
an example of the different steps in this stage.

Subsequently, I; works as input to the iterative threshold binarization stage.
Here a threshold is decremented progressively, th;+1 = th; — e, where € 2 0 and
tho = max(Iy). In each iteration, the threshold, th;, is used to binarize I, obtai-
ning an iterative binary approach to the vessel network. As th; becomes smaller,
the number of vessels shown in the binary image is higher. The iterative pro-
cess finishes when the value of the vessel area, A4,, is AD™¢ < A, < 1.1ADrive,
where ADP7¢ is the average area of the network of vessels for all the images
of the DRIVE database at resolution Ko. The value calculated for APTv¢ at
the DRIVE original size was 28, 689 pixels. Fig. Bld-f) show an example of the
different steps in this stage.

Finally, a post-processing stage is applied to the second stage output, Io.
Specifically, four operators are applied sequentially. First, a filtering is done to
eliminate very small noisy blobs, using an area threshold as the filtering crite-
rion (thp = 0.01AP7ve). Second, a binary closing is applied to interconnect
isolated vessel blobs. Next, a new filtering is done in order to eliminate blobs
with no vessel aspect. Specifically, the blob filtering criterion is based on the
simultaneous fulfillment of three properties related to the blob geometric pro-
perties: (i) the ratio between the blob area and its bounding box is greater
than a threshold (thpe = 0.2); (ii) the ratio between the blob area and the
square area of side Ay, is greater than a threshold (thps=0.2), where Az
is the x-component of the blob bounding box; and (iii) the blob area is less
than a threshold (th,s = 0.5A0™™¢). The first property is used to filter noisy
blobs associated with exudates and cotton wool spots; the second one, to filter
horizontally elongated blobs (secondary vessels); and, the third one, to filter
medium or small blobs. Using knowledge of the domain, an initial value was
chosen for each parameter thyi, thpy and th,s3. Then, different experiments
were carried out in order to select the best values from a set of values close to
the initial values. Finally, a binary AND operation, between the last filtering
operator output and I», is done in order to eliminate the closing bloat effect
but preserving the filtering effects. Fig. Blg-1) show an example of the different
steps in this stage. To summarize, the block diagram in Fig. [l shows the entire
process, where the three stages mentioned above are included.
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Figure 5: Example of vessel blob detection using three stages: bottom-hat
transformation (1st row), iterative threshold binarization (2nd row) and post-
processing stage (3rd row): (a) Iy, green channel of normalized and reduced
image (input image); (b) I., morphological closing of Iy; (c¢) Iy = I, — Iy, gray
level vessel network (output of first stage); (d-e) results of applying an iterative
threshold, th;, to I1; (f) Io, first approach to the binary vessel network (output
of the second stage); (g) filtering and closing of I5; (h) filtering of blobs with no
vessel aspect; (i) undoing closing (final vessel network).
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Figure 6: Block diagram illustrating the three stages used in the process of
detecting the network of the main blood vessels.

3.2.4. Vascular bundle blob detection

In a retinal image, the vascular bundle is formed by the vessels that are loca-
ted within of the OD [39]. The point linking the superior (nasal and temporal)
and inferior (nasal and temporal) arcade, which emerge from the OD, is called
the center of the vascular bundle. This point is located near the OD center (see
Fig. [)).

The detection of the vascular bundle candidate blobs is done by means of TM
with correlation. However, unlike the optic disc and macula, TM is not applied
to RGB retinal images. It is applied to vessel network images obtained with the
method described in the previous section. In addition, since the orientation of
vessels emerging from the vascular bundle is different in the left and right eye, a
vascular bundle template is created for each type of eye. The n,; brightest blobs
per type of eye in the TM output are chosen, giving a total of Ny, = 2 X nyp
candidate vascular bundle blobs, where n,; is chosen by the user.

The two templates were chosen with a square shape. Due to the fact that
the vascular bundle center ground truth is not available, first at all, an auxiliary
template matrix for right eye was calculated as the intensity average of different
square sub-windows, with width W’ = 11Rop, where Rpp is obtained from eq.
@). These sub-windows are extracted from vessel network binary images and
centered on the actual geometric center of the optic disc. We choose a value
of W’ large enough as to define a sub-window that contains and distinguishes
the initial part of the four arcades that emerge from the vascular bundle (supe-
rior/inferior and nasal/temporal). However, the actual location of the vascular
bundle center is normally slightly offset from the OD center (see, for example,
Fig. ). Therefore, the final template is obtained by extracting a square sub-
window from the above auxiliary template and centered visually in the vascular
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Figure 7: Vascular bundle templates used for each type of eye: (a) right eye;
(b) left eye.

bundle center. To do this, the final size of the new sub-window, Wy g, has to be
slightly smaller than W’ (we choose Wy g = 10Rop). The vessel network ima-
ges used here are the result of applying the method of vessel blob detection (see
sectionB.2.3) to different MESSIDOR images. Specifically, 200 non-pathological
images of the right eye were used. In addition, the template of the left eye was
obtained by horizontally mirroring the previous one. Fig. [7]shows the two final
vascular bundle templates used (left and right eye).

Finally, as a summary, Fig. [§ shows the information flow of the intra-SRK
stages used for obtaining the sets of candidate blobs for the different anatomical
structures.

3.8. Using inter-structure relational knowledge

One of the main contributions of our methodology is the use of inter-structure
relational knowledge in order to eliminate false positive candidate blobs and si-
multaneously detect the different anatomical structures (true positives): optic
disc (OD), macula (M), and vascular bundle (VB). Thus, different relations
between the main retinal anatomical structures are used:

o Ry: The OD geometric center is located inside the OD area where there
always exists a high accumulation of vessels (see Fig. [I)).

e Ry: The macula center (fovea) lies in an avascular region [3].

e R3: The VB center is a point of vessel, surrounded by more vessels, located
inside the OD area, and very close to the OD geometric center (see Fig.

).

e R4: The center of the fovea is usually located at a distance of approxi-
mately 2.5 times the diameter of the OD, from the center of the OD [17].
This distance is denoted by D(OD, F) and can also be expressed in terms
of OD radii as: )

D(OD,F)=5Rop (3)
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e Rjs: In the right eye, the VB and the OD are always located on the right
of the macula (see Fig. [M)). The opposite occurs in the left eye.

e Rg: In the right eye, the VB center is normally located on the right of the
OD geometric center (see Fig. [I)). The opposite occurs in the left eye.

The above inter-SRK will be used to select the best triplet, (Bop, By, Bvs).
Thus, assuming that Nop, Njs and Ny p are, respectively, the total number of
OD, macula and VB candidate blobs, the selection algorithm of the best triplet
is implemented as follows:

1. Discarding false positive OD blobs: every OD blob whose geometric center
is located at a distance greater than a threshold value from any retinal
vessel is discarded (see relation Rq). We take one Rop, see eq. [2)), as the
threshold value. Next Nop is updated appropriately.

2. Discarding false positive macula blobs: every macula blob whose geometric
center is located at a distance less than a threshold value from any retinal
vessel is discarded (see relation Ry). We take (1/4)Rop as the threshold
value. Next Njs is updated appropriately.

3. Discarding false positive VB blobs: every VB blob whose geometric center
is located at a distance greater than a threshold value from any retinal
vessel is discarded (see relation R3). We take one Rop as the threshold
value. Next Ny p is updated appropriately.
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4. With the remaining blobs, a set containing all the possible triplets is
formed, (Bop,,Bum;,Bvs,), where i = 1,...,Nop, j = 1,..., Ny and
k=1,..,Nyp.

5. Discarding false positive triplets. Every triplet whose couple of blobs
verifies any of the following conditions is discarded from the set of triplets:

(a) D(Bop,,Bvp,) > 2Rop, that is, the distance between the OD and
VB blob geometric centers is greater than a threshold value. We take
2Rop as the threshold because it is the maximum allowable distance
considering that the OD and VB have to be inside the OD area (see
relations Ry and R3).

(b) ’D(BODHBMJ.) — D(OD, F)’ > 2Rop, where |.| is the absolute value
operator, D(Bop,, B, ) is the distance between the OD and macula
blob geometric centers, and D(OD, F) is obtained from the relation
R4. We take 2Rop as the threshold value because the worst case
corresponds to the case in which OD and macula blobs have a devia-
tion of one Rop in relation to their respective actual locations and
they are located in opposite positions.

(c) ‘D(BMj,BVBk) — D(OD, F)’ > 2Rop, where D(Byy,, By g, ) is the
distance between the macula and VB blob geometric centers, and
D(OD, F) is obtained from the relation R,. This condition is a
consequence of the proximity of the actual OD and VB centers (see
relation R3). So, we take 2Rop as the threshold for the same reason
explained in the previous case.

(d) The macula blob is located on the left of a left VB blob. Inversely,
the macula blob is located on the right of a right VB blob. Both
conditions are a consequence of Rs.

(e) The OD blob is located on the left of a left VB blob and at a distance
higher than one Rop. Inversely, the OD blob is located on the right
of a right VB blob and at a distance higher than one Rop. This
condition is a consequence of relations R3 and Rg.

6. If the final set of triplets obtained in step 5 is not empty, the following
fitness function is applied to each triplet:

F(Bop,,Bu;, Bvs,) = F1(Bop,, By, )+F2 (B, By, )+F3(Bobp,, Bvs,)

with

Irnvi(Bop,) Irm (BMj) )
1 ID(BODi;BAIj)—D(OD,F)‘

T 2Rop

ITM(BMj)'ITM(BVBk) (6)
1 |D(Bar;,Bvs,)—D(OD,F)]|

T 2Rop

ITM (BODl) ITM (BVB )
FS(BODi7BVBk) = D(Bop, ,Bvs,) k (7)
14 [ g

Fi(Bop,, Bu;) =

FQ(BMj;BVBk) -
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where I (By,) is the gray-level intensity of the TM output for the i—th
blob of type x, and |.| is the absolute value operator. Then the triplet
that obtains maximum fitness will be the solution to the three anatomical
structures:

(BOD; BM, BVB) = arg maxF(x) (8)

zeB
where B = {(Bop,, Bum,, BvB, ). Vi,j,k}. Note that, in eqs. (&), (@) and
(@), the denominators are normalized by 2Rop, and the numerators are
scaled to [—1,+1] due to the fact the template matching used is based on
normalized cross-correlation.
. In the other case (the set of triplets is empty), we return to step 4,
but now considering all possible couples, (Bop,, B, ), (Bu;, Bvp,) and
(Bop,,Bvp,). Next false positive couples are discarded according to the
rules expressed in step 5. Then each type of couple is evaluated, respecti-
vely, according to fitness functions (Bl), (6) and ([@). After that, the best
couple is selected according to the criterion of maximum fitness for each
type of couple:
(Bbp, Biy) = argmaxF ()
r€B1

(B3;, BY p) = argmaxF(r)
rz€B2

(B, B ) = argmaxFs(x)
2€Bs

where:
B, = {(BOD“BM].), Vi,j}
B = {(BijBVBkv)a vJ, k}
Bs = {(Bop,, Bva,,), Vi, k}

In this step, each type of blob can appear in two of the three winning
couples or, in the worst case, By, B2 and Bg can be empty sets. To
address this variety of cases, the solution blob for each structure is chosen

according to eqs. (@), (I0) and (II).

argmax {Fi(z,B},),F5(y, B} )}, ifBiUB3#0
v=Bbpy=Bdp

Bop = 9)

argmax Iy () other case
xE€Bop;

argmax {F1(Bbp, ), Fa(y, By p)} ifBiUB2#0

m:Bb[,y:Bif
By = (10)

argmax It () other case
xEBMJ»
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argmax {Fy(B3,,2), F3(Bdp,y)} ifB2UB3#0
2=B% 5,y=B} 5
Byp = (11)
argmax I () other case
xEBvB,

4. Experimental Results

The final value chosen in all experiments for the standard resolution was
Ky = 9px/mm. The scale factor value, «, needed to transform each image to
Ky, is calculated using eq. (). The Ky value was chosen following the trade-
off of being small enough to remove noisy artifacts from the original image and
large enough not to hinder the detection of the searched structures. In any case,
this value is not critical and any other similar value could have been chosen.
For all experiments, the number of candidate blobs was Nop = 9 for optic disc
(nog = 3, i.e. three blobs per each RGB channel), Nj; = 9 for macula blobs
(ny, = 3), and Nyp = 4 for vascular bundle (n,, = 2, i.e, two per each type
of eye). These values were obtained experimentally, taking into account that
lower values might not include the solution blob in the set of candidate blobs
and, inversely, higher values could increase the processing time of the method.

To determine our evaluation criteria we have considered those used in the
literature. As in most papers |4, 24, 27, |40], we consider a successful criterion
for OD detection if the distance from the estimated OD center to the real OD
center is less than or equal to one OD radius. Regarding the macula, most of the
research works have used the distance to the macula center as a reference point.
Thus macula detection will be successful if the distance from the estimated
macula center to the real macula center is less than or equal to p times one
OD radius. Here, depending on the approach considered, the value of p can
be different. For example, p = 1/2 in [27], p = 1 in [, 134], or p = 2 in [24].
Finally, in relation to the vascular bundle, a successful detection is considered if
the distance from the estimated vascular bundle center to the real OD center is
less than or equal to one OD radius. We chose the real OD center as a reference
because it is always close to the center of the vascular bundle (see Fig. ).

4.1. MESSIDOR database

For the first experiment, the MESSIDOR database is used. In order to
make a fair comparison, our method should be compared with other methods
that detect and evaluate the same three structures detected an evaluated by
our method. However it not was possible because such methods there not exist.
In any case, Table [2] shows a comparison of our method with other research in
terms of OD and/or macula detection success rate.

On the other hand, it is also important to evaluate how retinopathy affects
the performance of our method. Thus, Tables B and E show, respectively, a
comparison of OD and macula detection success rates of our method with ot-
her approaches in the literature considering different retinopathy grades and
different risks of macular edema in the MESSIDOR database.
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Table 2: Comparison of optic disc (OD) and macula detection success rates
(expressed in %) with other methodologies in the literature. Results are shown
as presented in the papers where methodologies are published. In order to faci-
litate the comparison with [9, 126], the values shown are the result of combining
the two results of normal and pathological image sets into one unique result.
Note that each database is formed by normal (norm) and pathological (path)

images.
Method Database #lmages OD Macula (p)
(norm-+path) (3R) (1R) (2R)

Fleming et al. [23] Private 1056 98.40 - 96.50 98.50
Tobin et al. [24] Private 345 (18+327) 90.04 - - 92.50
Niemeijer et al. [d] Private 600 (500+100) 97.67 - 94.00 -
Niemeijer et al. [26] Private 549 (449+-100) 98.23 - 95.38 -

Yu et al. [27] MESSIDOR 1200 (546+654)  98.33  95.00 - -
Gegundez et al. [4] MESSIDOR 1200 (546+654)  99.00  96.08  96.92  97.83
Giachetti et al. [5] MESSIDOR 1200 (546-+654) 99.66 - 99.10 -
Aquino [34] MESSIDOR 1136 (533+603) - 91.28 98.24 99.56
Kao et al. [23] MESSIDOR 1200 (546+654) - 97.83  98.17 -
Marin et al. [16] MESSIDOR. 1200 (546+654)  99.75 - - -
Girard et al. [41] MESSIDOR 1200 (546-+654) - 94.00 98.00 -
Dashtbozorg et al. [23] MESSIDOR 1200 (546-+654) 99.75 93.75 98.87 99.58
This work MESSIDOR 1200 (546+4654) 99.33 96.08 98.58 99.50

Table 3: Comparison of optic disc detection success rates (expressed in %) with
previous works for different retinopathy and risk of macular edema grades in
the MESSIDOR dataset. Results are shown as presented in the papers where
methodologies are published.

Retinopathy grade

Risk of macular edema

Method

0 1 2 3 Any 0 1 2 Any
Yu et al. [27] 98.71  99.34 99.19 96.16 98.33 98.39 100 97.26  98.33
Giachetti et al. [5] 99.62 100 100 99.23  99.66 99.69 100 99.35 99.66
This work 99.08 99.35 100 99.21  99.33  99.28 100 99.34  99.33
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Table 4: Comparison of macula detection success rates (expressed in %) with
previous works for different retinopathy and risk of macular edema grades in
the MESSIDOR. database. Results are shown as presented in the papers where
methodologies are published, except for those shown in [4] which are obtained
from [5]. Our method is tested for two criteria (p): 1R and 1R, in order to
compare different approaches.

Retinopathy grade Risk of macular edema
Method p

0 1 2 3 Any O 1 2 Any
Giachetti et al. [5] 1R 99.80 100 99.20 98.70 99.10 99.40 100 96.90 99.10
Gegundez et al. [4] 1R 99.20 98.70 99.10 95.40 98.20 98.80 98.60 95.80 98.20
This work 1R 99.63 100 98.79 95.28 98.58 99.18 100 94.04 98.58
Yu et al. |27)] R 97.78 99.35 95.95 85.77 95.00 96.19 98.67 85.71 95.00

This work R 97.62 100 97.57 88.98 96.08 97.33 100 86.09 96.08

4.2. Other public databases

In order to provide evidence about the robustness of our methodology, other
public databases were used: DRIONS, ONHSD and DIARETDBI1. Here, it
is important to note that, with these databases, the method was evaluated
using the same parameter configuration as that one used with the MESSIDOR,
database. Table [ shows the success rates obtained. Note that the DRIONS
database has the peculiarity of not showing the macular area in most of its
images, so the method is only evaluated for OD and VB.

In summary, considering the results obtained in the four databases, the
overall success rate for a structure s, denoted by SR,,(s), can be computed
from eq. (IZ), where DB; is the i-th database, sizepp, is the number of images
in the DB;, SRpp,(s) is the success rate accomplished by the method in the
DB; for s , and n is the number of different databases in which s was searched.
Thus, the overall success rate for each structure in this study was: 99.26% (OD),
98.69% (macula) and 98.95% (vascular bundle).

SROU(s) _ Z?:l SiZSDBi'X SRDBZ' (S) (12)
Zi:l S1Z€DB;

Finally, Fig. @shows two examples (1st and 2nd column) with intermediate
outputs of the detection process. Specifically, Fig. [Oa,c,e) show an example
of successful detection of the three structures and Fig. [@b,d,f) show another
example in which the OD and the VB are correctly detected but not the macula.

5. Discussion

To the best of our knowledge, there not exist works in the literature that
address the detection and evaluation of the three structures detected here (OD,
macula and vascular bundle). Therefore, we can only compare our results with
other approaches where two o less anatomical structures are detected and eva-
luated. As can be seen in the above section, the success rates obtained with
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Figure 9: Two examples with intermediate outputs of the detection process:
successful detection (1st column) and erroneous detection in macula (2nd co-
lumn). The first row shows the set of candidate blobs for each structure (see
Section 3:2). The second row shows the result of filtering blobs according to
steps 1-3 of the triplet selection algorithm (see Section B.3)). The third row
shows the solution blobs (step 6 or 7 of triplet selection algorithm). Circles,
triangles, squares and crosses represent OD, macula, right and left VB blobs,
respectively (in the online version, each color is associated with its respective
RGB channel). Dashed circumferences (radius=1Rop) are centered in the OD
and macula actual centers. 21



Table 5: Comparison of OD, macula and VB detection success rates (expressed
in %) in other public databases and different to the MESSIDOR database.

Method Database #Ilmages OD Macula VB
(p=1R)

Mahfouz and Fahmy [2] DIARETDB1 89 97.75 - 97.75

Welfer et al. [21]] DIARETDB1 89 - 92.13

Cao et al. [11]] DIARETDB1 89 97.75 - 97.75

Aquino [34] DIARETDB1 89 - 94.38

Kao et al. [22] DIARETDB1 89 - 94.38

Medhi and Dandapat [10] DIARETDBI1 89 - 95.51

Xiong and Li [19] DIARETDB1 89 97.75

Mittal and Sivaswamy [i] DIARETDB1 89 97.75  96.00

This work DIARETDB1 89 96.63 100 97.75

Lowell et al. [132] ONHSD 87 100

This work ONHSD 87 100 98.85 97.70

Molina and Carmona [42] DRIONS 110 100

This work DRIONS 110 100 - 100

our method are competitive in relation to other recent approaches tested on
the MESSIDOR database (see Table [2)). Specifically, our OD and macula de-
tection results are, respectively, 99.33% and [96.08% (p = 1/2), 98.58 (p = 1),
99.50% (p = 2)|. If the entire available results for each approach are used, our
results are only slightly surpassed by two methods E, ﬁ Thus, in ﬂﬂ], the
OD and macula are detected with a success rate of, respectively, 99.66% and
99.10% (p = 1), but the macula detection results for p = 1/2 and p = 2 are
not available and they were obtained for 1136 out of 1200 MESSIDOR images.
Otherwise, in M], the OD success rate is 99.75%, but it is the only structure
detected and evaluated. Good OD and macula detection results are obtained in
[23] (99.75% and [93.75% (p = 1/2), 98.87% (p = 1), 99.58% (p = 2)], but our
success rate for p = 1/2 is slightly higher (96.08%). The OD and macula de-
tection is addressed in @], but only macula success rates are provided [97.83%
(p = 1/2), 98.17% (p = 1)], obtaining the highest success rate for p = 1/2 in
relation to the entire approaches used in our comparative study (our success
rate for p = 1/2 is the second best). The results obtained in ] are interesting
because they also simultaneously detect the OD and macula. First, they detect
OD-macula candidate pairs and then they select the best pair. However, their
macula detection results [94.0% (p = 1/2), 98.0% (p = 1)] are slightly lower
and their OD segmentation and our OD detection results are not comparable.
Finally, our OD and macula detection results equal or slightly outperform those
obtained in M, ] and outperform those achieved in E, @, é, ]

The discussion of the vascular bundle results is less direct. On the one hand,
there exist approaches that combine convergence of blood vessels with detection
of other patterns in order to finally detect the OD (see, for example, E, E])
In these cases, we think that our OD detection results (not our vascular bundle
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detection results) should be used to compare with the results obtained in this
kind of approaches (see Table[2). On the other hand, there are other approaches
that directly search the center of the vascular bundle as the OD center [2, [11].
In these cases, the detection results obtained could be more directly comparable
with our vascular bundle detection results. Thus the vascular bundle success
rate obtained by our method (97.75%) equals to that one obtained in [2] and
|L1] for the DIARETDB1 database (see Table[). In each of the two mentioned
references, three more databases are used, but these are different to those ones
used in our experiments. However, we can still compare the average vascular
bundle success rate considering the four databases used in each study. In this
case, our result (98.3%) is slightly better than that one obtained in [2] and [11]
with a average success rate of 97.0% and 96.6%, respectively.

The presence of typical visual patterns associated with two important retinal
pathologies is also analyzed. Thus, Tables Bl and @] show the influence of the
degree of diabetic retinopathy (DRG) and the risk of macular edema (RME)
in the detection results. The DRG is expressed as a function of the number
of microaneurysms (uA), number of hemorrhages (H) and neovascularization
(NV = 1), where the meaning of the different grades are: “0 (Normal)”—
MA=0)A(H=0);“1" > (0<pA<5)AN(H =0);“2” > [b<pA<15)V(0<
H <5)AN(NV =0); and “3” — (WA > 15) V (H > 5) V(NV =1). The RME
is expressed in terms of the presence or absence of hard exudates (hE): "0 (No
risk)" — “No visible hE”; "1" — min_ distance(macula, hE) > 2Rop; and "2”
— min distance(macula, hE) < 2Rop. In relation to the OD, the detection
successes are always higher than 99%, regardless of the DRG or RME. In any
case, errors are obtained in images with advanced peripapillary atrophies or
posterior staphylomas (signs not considered for DRG or RME). Regarding the
macula (p = 1), the method obtains a success percentage higher than or equal
to 99% in images with DRG={0,1,2} or RME={0,1}. However this percentage
drops to 95.28% in those images with a high number of microaneurysms or
hemorrhages (DRG=3) and falls to 94.04% in those images with large hard
exudates in the macular area (RME=2), for example, see Fig. [B(f). With
respect to the vascular bundle, the method can fail in images where the main
vessels emerging from the OD center do not follow the typical curved pattern
shown in Fig. [0 (the path is straight up and down or has a reverse curvature).
In these cases, the detection mark is attached to a vessel point located outside
the OD but very close to its upper or lower boundary. Finally, in relation to
illumination conditions, the method is robust to non-homogenous illumination
and only partially affected (error in one or two of the three structures) when
there are serious illumination problems in the image.

In relation to other databases, the detection results obtained for the different
structures are also competitive and consistent with the results obtained in the
MESSIDOR, database (see Table[). In particular, our macula detection result
in DTARETDBI (100%, p = 1) is the highest in relation to all other approaches
with which we compare. From a global point of view, these results support
and reinforce the hypothesis that our method is robust and independent of the
database considered.

23



Table 6: Success rate (expressed in %) in the MESSIDOR database for each
anatomical structure depending on the amount of inter-SRK injected in the
search process.

Anatomical No inter-SRK inter-SRK inter-SRK
structure max{Irn (Bz)} for couples for triplets
Optic disc 98.00 98.25 99.33
Macula (p = 1R) 97.08 98.41 98.58
Vascular bundle 96.58 97.17 97.92
Average 97.22 97.94 98.61

A study was also done of how the amount of inter-SRK used affects the
selecting process of the best tuple. Table [0l shows the results obtained in the
MESSIDOR. database. Thus, for example, in the first experiment, the inter-
SRK is not used at all and the highest response template matching of each type
of structure is selected as the solution, max(Irp (B;)), where B, is a blob of
type-z and = € {od;, m;,vby}. The results for this case are shown in the se-
cond column and they are worse than those obtained with the original method
(fourth column). Next, in the second experiment, inter-SRK is used but consi-
dering couples of structures, that is, non triplets as in the original method. Here,
the algorithm used is the same as the one mentioned in section B3] but without
applying steps 5 and 6. The results are shown in the third column. Compared
with the previous case, the use of inter-two-structure relational knowledge im-
proves the percentages of successes, but the results are worse than those of the
original method where all the available inter-SRK is used.

Other similar study can be done considering a successful criterion for de-
tection if the three detected structures correspond simultaneously to three true
positives. The success rates obtained in the MESSIDOR database were the fo-
llowing: 91.91% if the highest TM response of each type of structure is selected
as the solution (inter-SRK is not used), 94.17% if only inter-two-SRK is con-
sidered, and 95.91% if the original method (triplets) is used. Once again, the
detection process improves as the amount of inter-SRK increases.

The use of the two VB templates (right and left) has an additional advantage.
They allow us to distinguish whether the image corresponds to right or left eye.
Thus, if we select in each image the VB blob with maximum template matching
response, its template associated always matches the type of eye in the 1200
MESSIDOR images. Therefore, these two templates could be used separately
as a fast and simple method of identifying the type of eye.

We consider that one advantage of the proposed methodology is the use of
two stages in each of which a different type of knowledge (intra- and inter-SRK)
is used. This allows us to simplify the detection methods used in the first stage
because we are only interested in detecting candidate blobs for each structure.
The second stage only has to use the inter-SRK in order to select the best
candidate tuple. In contrast, there are other approaches in the literature that
assume the final detection of each structure separately from the beginning (for
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Table 7: Comparison with competitive methods in the literature considering the
hardware, programming language, the computation time and the number and
type of structure detected: Optic Disc (OD), Macula (M), Main Vessels (V) and
Vascular Bundle (VB).

Method Hardware Language  Time (s) #Structures
detected (type)

Fleming et al. [25] Intel Pentium 4, MATLAB 120 3 (0D, M, V)
2.4GHz & C

Niemeijer et al. [9] Intel Pentium 4, C++ 600 3 (OD, M, V)
3GHz

Niemeijer et al. [26] Intel Core 2 Duo, C++ 27.6 3 (OD, M, V)
2.83GHz

Yu et al. [27] Intel Xeon W3520, MATLAB 3.9 2 (OD, M)
2.67GHz, 6GB RAM

Giachetti et al. [5] Intel Core i7 Q 740, MATLAB 5 3 (OD, M, V)
2.93GHz

Kao et al. [22] Intel Core C++ [2.6,6.9] 2 (OD, M)
i7-3610QM, 2.30GHz

Marin et al. [16] Intel Xeon 3.2 GHz, MATLAB  5.42 £ 0.98 2 (OD, V)
32GB RAM

Mittal and Sivaswamy [7] 2.1 GHz, 4GB RAM MATLAB  [120,160] 2 (OD, M)

This work Intel Core i7-2640M, MATLAB  4.16 £+ 0.72 4 (OD, M, V, VB)

2.8 GHz, 8GB RAM

example, see [17]) or the prior detection of a structure to be used as a reference
in the detection of a second one |4, 24, 25, 27]. In both cases, the approaches
used are more complex and have more computational cost than the methodo-
logy presented here. In this sense, several aspects related to implementation and
computational cost can also be considered. The method was implemented with
MATLAB language, in a laptop with CPU Intel Core i7-2640M, 2.8GHz and
8GB RAM. Table [ shows a comparison of our approach with other methods
in the literature. As these algorithms were implemented in different computer
system, the run-time should be interpreted in function of the number of struc-
tures detected and the hardware and programming language used. In any case,
for a fair comparison, the table only shows the results of those research works
in which two or more structures are detected. Our method is fast, considering
that four structures are detected simultaneously and an interpreted language is
used. It could be even faster if a compiled language was used.

6. Conclusions and Future work

In this paper, we have presented a methodology for the detection of the
main anatomical structures in retinal images. This methodology is independent
of the original image size and uses two types of relational knowledge: intra- and
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inter-structure. The first type has been commonly used in the related literature.
However, the second type has normally been used after prior detection of one
or more structures obtained independently. In our approach, the inter-structure
relational knowledge is used for the simultaneous detection of the main reti-
nal structures. The main advantage of that simultaneous detection was the
reduction of the number of false positives in the detection process.

A method was implemented based on the mentioned methodology. It is fast,
simple and its detection results are competitive in relation to other methods
existing in the recent literature. Unlike other approaches dedicated to detect
one structure, our method is able to simultaneously detect four different anato-
mical structures (optic disc, macula, network of vessels and vascular bundle).
Maintaining the same parameter configuration, the method was applied to dif-
ferent public databases and, in all of them, the detection success rates obtained
were consistent, providing evidence about its robustness.

As future work, the detection method could be applied as a prior step to the
segmentation stage, in order to increase performance and reduce the compu-
tation time in such a stage. Finally, the proposed methodology could also be
used in other types of images, related to both medical (for example, detec-
tion of anatomical structures and/or organs in digital radiography or resonance
magnetic images) and non-medical domains (for example, detection of types of
electronic components in board circuit images). In both cases, it is assumed
that there is always topological information, related to the types of structures
to detect, in order to be used as inter-SRK.
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