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Abstract 

Background and Objective: It can be challenging to delineate the target object in anatomical imaging when the object boundaries 

are difficult to discern due to the low contrast or overlapping intensity distributions from adjacent tissues. Methods: We propose 

a topo-graph model to address this issue. The first step is to extract a topographic representation that reflects multiple levels of 

topographic information in an input image. We then define two types of node connections - nesting branches (NBs) and geodesic 

edges (GEs). NBs connect nodes corresponding to initial topographic regions and GEs link the nodes at a detailed level. The 

weights for NBs are defined to measure the similarity of regional appearance, and weights for GEs are defined with geodesic and 

local constraints. NBs contribute to the separation of topographic regions and the GEs assist the delineation of uncertain boundaries. 

Final segmentation is achieved by calculating the relevance of the unlabeled nodes to the labels by the optimization of a graph-

based energy function. We test our model on 47 low contrast CT studies of patients with non-small cell lung cancer (NSCLC), 10 

contrast-enhanced CT liver cases and 50 breast and abdominal ultrasound images. The validation criteria are the Dice’s similarity 

coefficient and the Hausdorff distance. Results: Student’s t-test show that our model outperformed the graph models with pixel-

only, pixel and regional, neighboring and radial connections (p-values < 0.05). Conclusions: Our findings show that the 

topographic representation and topo-graph model provides improved delineation and separation of objects from adjacent tissues 

compared to the tested models. 
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1. Introduction 

The accurate segmentation of a target object from adjacent 

tissues is a fundamental component of medical image 

processing. It is critical for accurate diagnosis and has major 

ramifications for patient management as surgical, radiological 

intervention and radiotherapy approaches often depend on the 

relationship of the target to its surrounding structures. Image 

segmentation is also typically performed in feature analysis of 

tissues for disease classification. Automated target object 

segmentation and boundary delineation algorithms have 

attracted intensive research interest because of their efficiency 

and objectivity when compared to manual approaches. An 

ongoing challenge for anatomical image segmentation is the 

delineation of blurred or indistinct object boundaries. Ideally, 

objects of interest belonging to the foreground would be 

dissimilar in appearance or have disparate features to the 

background. In reality, objects of interest and background 

regions can have overlapping intensity distributions or low 

contrast on anatomical images. Under these circumstances, it is 

difficult to delineate the boundaries of the target object, 

especially when it abuts adjacent tissues that have a similar 

appearance. For example, a lung tumor on chest CT may be 

difficult to separate from soft tissues of the chest wall or 

associated collapse and consolidation.  

Target object segmentation refers to segmentation where 

users provide inference for objects of interest or background, 

by using labels or scribbles. Segmentation is then achieved by 

assigning labels to unknown/unlabeled image regions 

according to their relevance to the labels. Active contour [1] 

models have been investigated by a number of researchers for 

computer-aided anatomical image segmentation. Active 

contours have obtained promising performance when there was 

contrast variability and non-uniform illumination [2]. Edge-

based geometric models [3] were among the early level set 

formulations that minimized an objective function of the 

contour’s geodesic length [4]. For blurry or weak boundaries, 

region-based active contour models [5] were proposed to 

control the motion of level set functions by using a region 

descriptor [6]. The region descriptor can be obtained by 

unsupervised or supervised statistical models such as clustering 

models and Gaussian models [4] [7].  

Graph-based methods have shown great value in target tumor 

or organ boundary delineation from medical images [8]. For 
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this work, we focused on graph-based algorithms and designed 

a new graph model to delineate indistinct boundaries in 

anatomical images.  

Graph theory has a long history in mathematics and computer 

science [9] and graph models have been used in image 

processing, for semi-supervised clustering, user interactive 

segmentation and saliency detection [8]. Fundamental graph 

theory approaches such as graph cut (GC) [10] and the random 

walk algorithm (RW) [11] have been widely used [12-14]. The 

RW [11] can capture the local intensity changes and solve 

‘weak boundary’ problems for various organs from different 

image modalities [11, 15, 16]. Graph models have also been 

used in the co-delineation of the target object boundary, for 

instance a RW based model [14] and a combined GC and 

Markov Random Field (MRF) model [17, 18] have been 

applied to regulate and penalize the energy functions of PET 

and CT intensity distributions for co-segmentation. In all these 

aforementioned graph models, the nodes represent 4 or 8 

connected adjacent/neighboring pixels in two dimensional (2D) 

images. In 3D volumes, there can be 6, 18 or 26 adjacent 

connections. The weights of the graph edges are calculated to 

reflect the changes in the neighboring feature spaces of intensity 

or gradient magnitude. When the target object’s appearance is 

inhomogeneous, the local pixel level intensity similarities are 

insufficient to achieve good segmentation results [19-22]. 

Hence, additional approaches are required to improve 

segmentation accuracy and these approaches include the 

construction of specialized graph models and the incorporation 

of prior knowledge to assist the local pixel level information.  

Specialized graph models vary in the definition of nodes. In 

some graph models, regions are used as graph nodes [23-25] 

where the images are pre-processed and partitioned into a 

number of irregular regions in an unsupervised manner such as 

mean shift, quick shift etc. Region-level nodes represent more 

informative image features and textures than pixel-level nodes. 

These specialized graph models have thus improved 

segmentation results over textured images [23]. Models with 

region-level information also have the advantage of 

propagating local grouping cues to broader image ranges while 

minimizing the influence of frequent local intensity changes or 

noise, but the segmentation results are largely dependent on the 

initial region partition results, as perfect pre-partitions cannot 

always be guaranteed [25].  

The construction of graph models also vary in node 

connections / edge definitions and these can be categorized as 

geometrical and topological connections. In geometrical 

connections, the edges are constructed based on the spatial 

locations of nodes. For instance a radial connection is proposed 

in the graph model [24] where each node is connected to its 

neighboring nodes as well as the nodes sharing the common 

boundaries with these neighboring nodes. Other edge 

definitions include full connection. When the number of nodes 

is limited, the nodes can be fully connected to achieve the whole 

image information propagation [23]. Full connection, however, 

decreases computation efficiency with increasing node 

numbers and we previously reported that full regional 

connections might produce misleading grouping information 

and result in leakage or under-segmentation of inhomogeneous 

objects [26]. Topological connections and topological graphs 

provide abstracted and structured data representation that can 

be analyzed. These abstractions and representations are used in 

volume rendering and scalar field visualization [27]. 

Topological graph models include an ‘extreme graph’, which is 

an abstraction of the gradient flow of an image [28] and contour 

tree that represents how the level sets merge and split to form 

individual components [29]. The construction of topology 

graphs can be complicated in medical image processing. For 

instance, since PET images are noisy, the conventional contour 

tree construction methods may produce giant size tree 

structures making data analysis and visualization impractical 

[21, 30]. Hence, research has focused on the simplification of 

topological representation [27, 30, 31]. Recently, we have 

explored region of interest (ROI) topology extraction from PET 

images and exploited the topological connections to graph 

based segmentations from PET-CT images [21, 22, 32].  

As mentioned above, incorporating prior knowledge or prior 

models is another way to alter conventional graph based 

segmentation that affects the edge weights calculations. Yang 

et al. [20] proposed a segmentation model where the prior 

distributions were estimated by Gaussian mixture models 

(GMM) and the weights were calculated with the estimated 

prior models instead of intensity values. If there are overlapping 

intensity distributions between foreground and background 

regions, however, the prior models may not be able to solve the 

separation or weak boundary problems. [21] Kim et al. [23] 

reported a boundary based weighting function, which measured 

the gradient magnitude along the edges, to capture the object 

boundary when the foreground and background had similar 

intensity distributions. This approach, however, may result in 

over-segmentation because of the frequent changes of gradient 

magnitudes of textured objects. Grady et al. further suggested a 

combined intensity and boundary weighting function where it 

was assumed that the object was more likely to be 

homogeneous than the background, but this is generally not the 

case with medical imaging [33].  

In contrast to Euclidean distance, the geodesic distance can 

capture the geometric structure of the data and has been used in 

various image analysis and computer vision tasks. For instance, 

it was used as a shape and surface descriptor for object 

matching [34, 35] and classification [36]. Liu et al. [37] used 

geodesic distance to capture the depth information in an image 

for low resolution image up-sampling. When segmenting 

images to superpixels, Wang et al. [38] proposed a structure-

sensitive superpixel generation algorithm that incorporated 

intensity information and the geodesic distance. Their results 

showed improved performance when using the geodesic 

distance information.  

1.1. Our contributions 

The unique contributions of our model include the 

introduction of a new topographic image representation to 

extract regional relationships in a multiple-level manner, in 

particular, for adjacent tissues that have similar intensity 
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distributions. The image topography provides regional 

information (referred to as topoRegion) and more importantly, 

the topological relations of multilevel topoRegions inherited 

from the concept of contour tree. The number of topoRegions 

is automatically determined by the density estimation and the 

partition of the feature space where local entropy is employed 

for boundary definition. Further, we use a new weighted graph 

model where two types of weighted edges are constructed to 

associate the pairwise similarities and link multilevel 

topoRegions according to the topographic relations. Finally, 

given the pre-defined labels for the target object, the relevance 

of individual unlabeled nodes to the given seeds/labels was 

calculated by the optimization of a quadratic cost function. The 

function is composed of inter-smoothness and intra-correlation 

terms to associate the label information and the embedded 

affinities in the graph edges. 

The paper is structured as follows: Section 2 introduces the 

graph model and experimental dataset; in Section 3 we present 

the experimental evaluation results and discussion, the 

concluding statements are in Section 4.  

2. Methods: Topo-Graph Model 

2.1. Related work: Graph-based image segmentation  

Given a set of foreground F and background B labels 𝐿 =
{𝐹, 𝐵}  in an image, the target object segmentation can be 

achieved by ranking the unlabelled pixels according to their 

relevance to the given labelled pixels / seeds as a query by 

solving a graph model.  

A graph model 𝐺 = (𝑉, 𝐸, 𝐖) is constructed with a graph 

node iv V  representing an image pixel or a region, a graph 

edge ije E  connecting nodes ,i jv v , a weight 𝑤𝑖𝑗 ∈ 𝐖|𝑉|×|𝑉| 

denoting the similarities between connected nodes. As 

discussed by Couprie et al. [39], a graph-based optimization 

framework can be generalized with a unary term that formulates 

the nodes pairwise and a binary term that penalizes the nodes 

and edges as: 
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where 𝐟 =
2

[ ]
kiL V

f


 and 
kiLf  is the relevance of an image 

pixel/graph node to the F(B) labels. FV ( BV ) denotes graph 

nodes initialized with F(B) labels. By optimizing Eq.1, the final 

segmentation is obtained by ranking the remaining unlabeled 

nodes 𝑉𝑈 = 𝑉 ∖ (𝑉𝐹⋃𝑉𝐵)  according to their relevance to the 

labeled nodes.  

Most previous graph models have nodes that are defined as 

pixels or super-pixels and edges that are designed to connect 

adjacent or neighboring nodes. These models may not work 

when the target object boundaries are difficult to discern due to 

the low contrast or overlapping intensity distributions from 

adjacent tissues.  

2.2. Hypothesis and framework 

Our hypothesis is that embedding topographic regional 

information in a graph model will assist the object separation 

and boundary delineation especially when the target object is in 

close proximity to other regions with overlapping intensity 

distributions in anatomical images. The overview of the 

proposed Topo-Graph model is given in Fig. 1. Given input 

images and user inference of the target object to be segmented, 

a topographic representation is extracted and indexed by 

constructing initial and fine-grained topology trees. Then, the 

graph model is defined with nesting branches connecting nodes 

corresponding to initial level topoRegions and geodesic edges 

linking the fine level topoRegions. Lastly, the segmentation is 

achieved by estimating the relevance of the unlabeled nodes to 

the labeled nodes by graph regulation. 

 

 
Fig.1. Overview of the proposed Topo-Graph model. For a) an 

input image, d) the edges in topo-graph are constructed with nesting 

branches connecting topoRegions corresponding to (b) initial 

topology tree and geodesic edges linking topoRegions at detailed 

level based on c) fine-grained topology. e) The graph weighting 

function associates adaptive appearance and boundary cues and 

geodesic distance information. The final segmentation is achieved 

by f) graph regulation. 

2.3. Multi-level Topographic Representation 

We define the topographic representation as a visual index of 

image regions inspired by the concept of contour tree. The 

contour tree is an abstract description of the image and reflects 

how the iso-contours merge and split to form individual 

components [40]. In the contour tree structure, the list of nodes 

corresponds to the critical points that are the local extremes and 

saddle points in the image. The arcs represent a set of regions 

where each of the regions is composed of the set of iso-contours 

between the critical points. Conventional contour tree 

generation methods, such as merging the split and joint trees 

[41], can be unmanageable and impractical for clinical image 

analysis because of noise and artifacts in real-world data. Thus, 

further simplification procedures are normally performed to 

optimize the tree size so that it is small enough for user 

interaction while maintaining the essential structure of the data. 
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Nevertheless, in this work, we propose an alternative 

approach to initially identify a set of regions and assign them 

the topological relation based on the concept of a contour tree. 

Then these initial regions are locally refined to find detailed 

topologies.  

2.3.1 Initial topography extraction 

The initial topography is designed to reflect the landscape of 

the whole image domain. To obtain the initial level 

topoRegions, we partition the image by firstly estimating the 

density distribution of feature space and secondly clustering the 

feature space according to optimal threshold levels.  

1) Feature space 

Local entropy of the input image is exploited as the feature 

space. The areas with high intensity changing frequency such 

as region boundaries appear as ‘hot’ regions in the feature map. 

The entropy map is then normalized to [0,  1] . The density 

distribution of the normalized feature space X  is estimated by 

diffusion-based Gaussian kernel density estimator [42] as  

( , ; )

      ( ( ,2 ; ) ( ,2 ; )), [0,1]

diff

i

i i

KDE X Q t

X Q t X Q t X


   


=−

=

+ + − 
  (2) 

where { ,..., }i 1 MQ  is one of M  independent realizations;   

denotes the Gaussian probability density at scale t  defined as  

 
2( ) / (2 )1

( , ; )
2

iX Q t

iX Q t e
t




− −
=   (3) 

2) Feature space clustering 

Given Eq.(2) representing the feature space distribution, the 

next step is to obtain the cluster numbers and optimal 

thresholding levels. An affinity propagation (AP) based 

clustering method [43] is performed for image partition. This 

method was proposed to identify spatially diffuse and multi-

focal radiotracer uptake in PET images [43] which have similar 

appearance with our local entropy feature map. Unlike 

conventional thresholding methods or clustering methods, the 

initial topoRegions are generated based on the automatically 

estimated thresholding levels and cluster numbers without user 

intervention.  

2.3.2. Fine-grained topography extraction 

The initially extracted topoRegions provide general and 

global information of the input image. To obtain more detailed 

information of the target object, fine level topography is 

extracted from the target object (ROI) by performing local 

refinement until a stopping criterion is satisfied (as shown in 

Fig. 2). The theoretical basis for the stopping criterion is that: 

in a contour tree structure, the topology changes at the saddle 

point where two or more existing components are joined into a 

new component, or an existing component is split into two or 

more components. [27] 

For each of the initially obtained saddle points, a local 

refinement is performed by a sweep through changing iso-

values of this saddle point’s neighboring initial topoRegion 

contours. The sweeping is stopped when the following stopping 

criterion is satisfied: when locally increasing or decreasing the 

iso-values, the iso-contours are about to join or split at the 

saddle point.  

 

 
Fig. 1. Fine-grained topography extraction. Given a) the density 

distribution of the feature space estimated by KDE, b) initial 

topology tree is constructed and c) fine-grained topology is 

extracted by focusing on the ROI until the depth stopping criterion 

is satisfied.  

 

By going through all the saddle points within the ROI, a set 

of fine-grained topoRegions are obtained based on the updated 

iso-values. When compared to using super-pixels as sub-

regions in other graph models, the main advantage of extracting 

topoRegions is its automatic partition procedure while super-

pixels require prior case-by-case parameter settings. Moreover, 

the initial and fine-grained topoRegions, which are composed 

of sets of iso-contours, inherit the topological information from 

the contour tree.  

2.3.3. Topographic relations definition 

Two topographic relations derived from a contour tree are 

defined to represent regional topology. If the outer boundary of 

a region ar  is a subset of the inner boundaries of br , then ar  

and br  are defined as having a nesting/inclusion relation, i.e. 

a br r . If two regions ,a br r  are both included in 
cr , 

, ,a c b c a br r r r r r   = , then ,a br r  are considered as 

having an exclusion relation.  

2.4. Weighted Graph Model Construction 

Given an image I and a set of topoRegions 𝑅 = 𝑅0 ∪ 𝑅1 

where 0R ( 1R ) denotes the initial level (fine-grained level) 

topoRegions, we construct a weighted undirected graph to 

associate the initial-to-fine level image topography.  
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Table 1: Symbols, abbreviations and descriptions used for Topo-

Graph model 

Symbol Description Symbol Description 

I Input image G Graph 

V Graph nodes E Graph edge 

W Edge weights   Graph optimization 

function 

D   Degree matrix T   Transition matrix 

f  Relevance vector R
f   Relevance scores of 

topoRegions 

I
f   Relevance scores of 

pixels  

L Label set  

F  Foreground labels  B Background labels 

VF  Nodes with foreground 

labels 
BV  Nodes with 

background labels  

R  topoRegions set  
0R  Initial level 

topoRegion  

0RN  Number of initial level 

topoRegions  
1R  Fine-grained 

topoRegion 

NBE  Nesting branches 

connecting initial level 

topoRegions  

GEE  Geodesic edge 

connecting region and 

pixel 

ij  Pairwise feature 

distances of the nodes 

connected by nesting 

branches 

ij  Pairwise feature 

distances of regions 

and pixels connected 

by geodesic edges 

GM  Gradient magnitude EMD Earth Mover’s 

Distance 

Gd  Geodesic distance KDE Diffusion-based 

Gaussian kernel 

density estimator 

inter  Inter energy term 
intra  Intra energy term  

  Fitting constraint    Label confidence 

parameter  

1  region level 

information confidence 

factor 

2  pixel level information 

confidence factor 

 

2.4.1. Graph nodes and edges 

Each graph node iv V  corresponds to a topoRegion ir R . 

According to the level of topoRegions and their topographic 

relations, two types of graph edges ( , )NB GEE E E=
 
are defined 

where NBE  denotes nesting branches and GEE  is the geodesic 

edge set. Nesting branches are defined to assist the long-range 

propagation of label information; the geodesic edges are 

designed to assist the local splitting of topoRegions and proper 

grouping of uncertain regions.  

1) Nesting Branch  

Given two nesting topoRegions 0,  m nr r R  as nodes, a 

nesting branch (as shown in Fig. 3 (b)) is defined as: 

   , , :     m i n j m n ij NBr v r v r r e E → →     (4) 

where m ir v→  denotes a node iv  corresponding to a 

topoRegion mr ; m nr r  denotes that a topoRegion 
mr  is 

included/nested in 
nr .  

2) Geodesic Edge 

Given an initial level topoRegions 0mr R  and a pixel kI  

inside fine level topoRegion 1 nr R  as nodes, geodesic edges 

(Fig. 3 (c)) are defined as:  

  , ,  ,  :  m i k j k n n m ij GEr v I v I r r r e E → →      (5) 

where ,  k n n mI r r r   denotes that node  is located inside a 

fine level topoRegion nr  which has a nesting relation with
 mr . 

In terms of a tree structure, each topoRegion can be considered 

as connected to the regions of nesting relations with its “parent” 

(as shown in Fig. 3 (c)).  

 

 
Fig. 2. Illustration of nesting branches and geodesic edges. (a) Each 

square represents a pixel index with different colors indicating various 

topoRegions. (b) Nesting initial topoRegions are connected by nesting 

branches. (c) Geodesic edges link fine-grained topoRegions and their 

nesting ‘parent’ initial level topoRegion.  

 

2.4.2. Weighting functions 

The edge weights reflecting the pairwise feature distances / 

affinities between topographically connected nodes are defined 

as:  

 

exp( ),   if 

exp( ),    if 

0,                      otherwise

ij ij NB

ij ij ij GE

e E

w e E  

 

 

−  


= −  



  (6) 

where   is free parameter and set to 60 by default;  and 

denote the pairwise feature distances of the nodes connected by 

nesting branches and geodesic edges respectively. 

The feature distance  between nodes of initial level 

topoRegions is defined with an adaptive appearance and 

boundary cue. The prior appearance cue is particularly useful 

when the background and foreground/object have dissimilar 

appearances. When the background has a similar appearance to 

the foreground, the boundary cue provides complementary 

information and contributes to the edge disconnection. The 

feature distance  is calculated as:  

 '

2
2

'( ( ) ( )) (1 ) maxij i j ii ij
g v g v GM  


= − + −    (7) 

where   is a factor balancing the appearance and boundary 

jv

ij  ij

ij

ij
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terms defined by Eq. 8; 'i
GM  denotes the gradient magnitude 

on the common boundary 𝑖𝑗  of nodes 𝑣𝑖 , 𝑣𝑗 ; ( )ig v  is 

calculated as the probability that a node iv  fits the foreground 

model by:  

 
( | )

( )
( | ) ( | )

i

i

i i

g v F
g v

g v F g v B
=

+
  (8) 

where ( | )ig v F  and ( | )ig v B  denote the foreground and 

background likelihood respectively.   is determined 

adaptively with respect to the distance between  and 

 as [20]:  

 0

0

1

( | ) ( | )1

( | ) ( | )

RN i i

i
R i i

g v F g v B

N g v F g v B


=

−
=

+
   (9) 

where 
0RN  denotes the number of initial topoRegions. 

According to factor  , the weight 
ij  is adaptively tuned to 

depend more on the appearance cue when the foreground and 

background have disparate appearances. When the appearance 

dissimilarity is indistinct, the value of   decreases and the 

boundary cue contributes more to the weight calculation. Given 

the overlapping intensity distributions of foreground and 

background objects, features such as the average intensity 

values would be insufficient to distinguish the target object and 

background tissues. Therefore ，  
 
( ) is 

calculated as the Earth Mover’s Distance (EMD) [44] between 

node  and foreground (background) seeds. The foreground 

likelihood  is determined by 

 
1

( | ) ( , )

F

i i k F

k

g v F EMD v v V
=

=    (10) 

where ( , )i kEMD v v  denotes the EMD between nodes ,i kv v . 

( | )ig v B  is defined as 
1

( | ) ( , )

B

i i k B

k

g v B EMD v v V
=

=   in a 

similar way.  

The feature distance ij  between the nodes connected by 

geodesic edges is defined to be structure-sensitive. The 

geodesic distance is used for calculation as it can enhance and 

capture the thin boundary information [37, 45] when compared 

with Euclidean distance as shown in Fig. 4.  

 

 
Fig. 4. Comparison of Euclidean and geodesic distances from points i 

to j. The geodesic distance (b) captures the thin boundary information 

giving a much larger distance than Euclidean distance (c) between 

points i and j. 
 

ij  is calculated as:  

 0( , ( )) ,ij G i j jd v r c r R =    (11) 

where ( , )Gd x y  denotes the geodesic distance between two 

points x, y and is calculated using an efficient method in [46]; 

( )jr c  denotes the center of region jr .  

2.5. Energy Function and Graph Regulation 

To solve the proposed graph model, the ranking score f  is 

obtained by solving the following function as:  

 ( ) ( ) ( )  ( , )inter intra L =  + + f f f f   (12) 

where inter  correlates the inter affinities between connected 

nodes;  correlates the intra affinities between a 

topoRegion and a pixel,   is a constraint associating label 

information. The parameter   reflects how much the 

segmentation results would like to trust the initial labels. 𝐟 =

[𝐟𝑅 , 𝐟𝐼]
2

[ ]
kiL V

f


=  is a vector with 𝐟𝑅  denoting the relevance 

between topoRegions, 𝐟𝐼  denoting the relevance between 

pixels, and 1kL =  for F, 2kL =  for B. inter  is defined as:  

 
2 2

( )
ij GE ij NB

inter ij i j ij i je E e E
w f f w f f

 
 = − + − f   (13) 

and intra  is defined as  

 

2

1

2

2

( )
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w f f

w f f









 = −
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 

 

f

  (14) 

where 1  is to control the confidence of using pixel level 

similarities to classify regions; 2  is to control the confidence 

of using region level similarities to classify pixels, 
if  is the 

average relevance score of all the nodes connected with iv .   

associates labels and is defined as 
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w f f

f v V





 = −

 = 
+ − 

= 

 

 

f

  (15) 

By differentiating Eq.13 with respect to ,R I
f f  respectively 

as below:  

 
*

1( ) ( )R NB R R R R GE I

R



= − + − + −



f
f Τ f Λ f f f Τ f

f
  (16) 

 
*

2( ) ( )I I I I I I GE R

I



= − + − + −



f
f Τ f Λ f f f Τ f

f
  (17) 

where 1−=Τ D W  is the transition matrix; ( )ijj
diag w= D  is 

the degree matrix; NB
Τ  is the transition matrix along nesting 

branches; GE
Τ  is the transition matrix along geodesic edges, 

I
Τ  is the matrix between pixels. By setting the derivative of 

Eq.16 and Eq.17 to 0, the two equations can be jointly 

transformed to 

 *( ( ) )  − − =I I Ω Π f Ω f   (18) 

where , 

( | )ig v F

( | )ig v B

( | )ig v F ( | )ig v B

iv

( | )ig v F

intra

1 2diag( ((1 ) ), ((1 ) )) = + + + +Ω Λ I Λ Λ I Λ
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1 1 1

2 2 2

/ (1 ) / (1 )

/ (1 ) / (1 )

I GE

GE NB

  

  

 + +
=  

+ + 

Τ Τ
Π

Τ Τ
. The final decision to 

assign a label 1L  or 2L  to pixel i is determined by 

 arg max
k

k

I

i iL
L

l f=   (19) 

2.6. Image datasets  

The proposed model was applied to lung tumor segmentation 

from low contrast CT images, liver segmentation from 

enhanced CT images, and target object segmentation from 

breast and abdominal ultrasound images. The CT images were 

used to validate the performance of target object separation 

when the foreground and background objects share similar 

intensity distributions and the boundaries are not easily 

discernible. The ultrasound images were used to evaluate the 

ability of identifying uncertain/blurred boundaries with speckle 

noise.  

2.6.1. Clinical low contrast NSCLC CT studies 

We studied 47 non-small cell lung cancer CT studies 

including 27 patients from Shandong Cancer Hospital (SCH), 

China and 20 patients from Royal Prince Alfred (RPA) 

Hospital, Australia. The CT scans were done as part of a PET-

CT study using [18F]FDG. The SCH patients were scanned on 

a Discovery LS PET-CT system (GE Healthcare, Milwaukee, 

WI, USA). The CT images were reconstructed using a matrix 

of 512 × 512 pixels. The CT voxel size was 1.17 mm × 1.17 

mm × 5 mm. The manual tumor delineations were performed 

by one experienced radiation oncologist on CT with PET 

images as reference. The 20 RPA scans were carried out on a 

Biograph TrueV 64 slice PET-CT scanner (Siemens Medical 

Solutions, Hoffman Estates, IL, USA) where the CT data were 

reconstructed using a matrix of 512 × 512 pixels with voxel size 

of 0.98 mm × 0.98 mm × 3 mm. The manual tumor delineations 

were performed by one senior clinical expert. The manual 

delineations were used as the reference, ground truth (GT), for 

segmentation accuracy comparison. 

2.6.2. Public liver dataset from high contrast CT  

These images were obtained from the 3D Image 

Reconstruction for Comparison of Algorithm Database1 (3D-

IRCADb). There were 10 enhanced CT images of liver with no 

more than two tumors. The CT images were reconstructed with 

matrix of 512 × 512 pixels and inter-slice distances varying 

from 1.0 to 2.4 mm. The manual segmentations were done by 

multiple experienced radiologists.  

2.6.3. Public breast and abdominal ultrasound images 

We obtained fifty breast and abdominal ultrasound images 

[33]2 including, scan-converted, monochromatic, B-mode and 

elastography ultrasound acquisitions. The segmentation results 

and 14 sets of manual delineations were also provided to 

compare accuracy. In our experiments, the manual 

segmentation results named by “subject 8” and “subject 10” 

 
1 3D-IRCADb data http://www.ircad.fr/research/3d-ircadb-01/ 

were used for segmentation accuracy evaluation because they 

were listed for qualitative and quantitative analysis [33]. These 

two manual delineations are referred to as GT-1 and GT-2.  

2.7. Evaluation methods 

To assess the accuracy of the proposed method, we 

calculated the spatial overlap and shape dissimilarity between 

the segmentation results and manual delineations by Dice’s 

Similarity Coefficient (DSC) and the Hausdorff distance (HD). 

DSC was defined as: 

 1 2

1 2

1 2

2
( , )

Vol Vol
DSC Vol Vol

Vol Vol


=

+
  (20) 

where 1Vol  is the segmented volume, and 2Vol  is the GT 

volume. A higher DSC value indicates greater spatial overlap 

between the segmentation and ground truth.  

HD was defined as:  

 
2 1

1 2

1 2( , ) max{sup inf ( ), sup inf ( )}Eu Eu
j Suf i Sufi Suf j Suf

HD Vol Vol d i, j d i, j
  

=   (21) 

where 1Suf  and 2Suf
 
denote the boundary of the segmented 

volume and the GT volume, sup represents the supremum and 

inf the infimum; Eud  is the Euclidean distance between point i 

and j. For our cases, the HD measurement can be implemented 

by using the maximum and minimum surface distances between 

1Vol  and 2Vol  to replace supremum and infimum. [47] A low 

HD value indicates high segmentation accuracy.  

A paired t-test with two-tailed distribution was performed to 

evaluate any statistical significance of performance 

improvement.  

2.8. Comparison methods 

We compared our proposed model, using the 3 datasets 

outlined above, to 5 other methods: 1) GC [48]; 2) RW [11], 3) 

graph model [24] where each superpixel / node is connected to 

its neighboring nodes as well as the nodes sharing the common 

boundaries with these neighboring nodes (referred to as radial 

connection (RSP)); 4) graph model with multi-level superpixel 

and pixel connection (NHLIS) [49]. For the NSCLC datasets 

we also compared our model to our previous topology 

polymorphism graph model (P-Graph) [21]. P-Graph was only 

used for the NSCLC datasets because the P-Graph model 

requires PET and CT images together for segmentation. For the 

ultrasound datasets, the segmentation from a box algorithm (S-

Box) [33] was used for comparison where the authors provided 

the segmentation results. We refer to our proposed model as PM 

from here.  

2.9. Implementation, initialization and parameter settings  

Our algorithm was implemented with MATLAB R2017a on 

a PC with 3.50GHz Intel(R) Core(TM) i7-4770K CPU and 

16.0GB memory, running a 64-bit Windows operating system. 

The model was implemented on 2D slices. The graph model 

can, however, be extended to a 3D graph by changing the nodes 

2 The ultrasound data and segmentation results are from 

http://cns.bu.edu/~lgrady/box_study/box_study.html 

http://www.ircad.fr/research/3d-ircadb-01/
http://cns.bu.edu/~lgrady/box_study/box_study.html
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and edges from a neighboring 4-connected 2D lattice to a 3D 

lattice with 6, 18 or 26 adjacent connections. The number of 

nodes and edges in the graph, however, will be increased 

correspondingly and hence it will require substantially larger 

memory resources and a longer computation time.  

The AP based method for feature space clustering was 

implemented using the published code [43]. The graph and the 

ranking function were constructed and solved using the Graph 

Analysis Toolbox3. RSP and NHLIS were implemented using 

the published code by the authors. The geodesic distance was 

calculated by fast marching toolbox4. EMD is implemented 

using fast EMD5.  

A “one-touch” user-input is required to segment the target 

object. The ROI is obtained by a rectangle box which is drawn 

outside the object with the user-input “one-touch” foreground 

seed as the centroid. We set the size of background box as 

40×40 for the NSCLC cases as this size allowed all the lung 

tumors to be enclosed. We set the background box as 300×300 

for the liver volume and the foreground seeds with a rectangle 

of 15×20. For the ultrasound datasets, the boundaries of the 

images as provided in the dataset comprised the background 

boxes [33].  

For the free parameters in this paper,   needs to be assigned 

a high value (105) to associate prior knowledge and ensure that 

the segmentation results would not change from the foreground 

and background seeds. 1 2,   were set as 0.002 and 0.2 which 

are the same as NHLIS for comparison. In the weighting 

function, β was set as 60 which is generally used by graph 

models.  

3. Results and discussion 

3.1. Comparison and evaluation of NSCLC CT images 

The segmentation accuracy for the lung tumor cases is shown 

in Tables 2 and 3. Our PM achieved the best results followed 

by P-graph and RSP; GC and RW with sole pixel level 

information had lower segmentation accuracy than the graph 

models using regional or combined regional and pixel level 

information.  

 

Table 2: DSC for lung tumor CT images 

 Mean±SD p-value 

RW 0.677±0.156 1.07E-08 

GC 0.603±0.142 1.11E-08 

NHLIS 0.635±0.110 2.99E-09 

RSP 0.708±0.097 3.04E-09 

P-Graph 0.842±0.051 0.00954 

PM 0.878±0.046 - 

 

 
3 Grady L The graph analysis toolbox: image processing on arbitrary graphs 
2003. Boston University, Boston, MA, Tech. Rep. TR-03-021 

Table 3: HD (mm) for lung tumor CT images 

 Mean±SD p-value 

RW 13.212±11.352 8.7E-05 

GC 16.102±10.213 5.4E-06 

NHLIS 17.523±10.265 8.74E-07 

RSP 12.154±6.564 3.49E-07 

P-Graph 6.341±5.231 0.00521 

PM 5.741±3.226 - 

 

The segmentation result of a case with indistinct tumor 

boundaries is shown in Fig. 5. In this example, the tumor was 

located in the left lower lobe of the lung, adjacent to the 

pericardium and descending thoracic aorta and abutting the 

posteromedial pleura. Note that there is similar intensity in the 

tumor, the pericardium, heart, aorta, posteromedial pleura and 

the chest wall and the tumor boundaries are difficult to discern 

on CT. Our PM gave the best tumor delineation from the 

surrounding structures with a DSC of 0.886 and HD of 3.153 

(mm). The second best segmentation was achieved by P-Graph 

with a DSC of 0.865 and HD of 5.652 (mm). The GC, RSP and 

NHLIS methods all showed leakage into the heart. RW, RSP 

and NHLIS all included non-tumor regions.  

3.2. Comparison and evaluation of liver CT images 

The segmentation results for the ten liver cases are shown in 

Tables 4 and 5. Our PM obtained consistently better spatial 

volume overlap similarity. As shown in the two cases 

(3Dircadb03 and 3Dircadb06) in Fig. 6, although RSP and 

NHLIS failed to delineate the weak boundary between the liver 

and the chest wall, they were able to propagate long range 

foreground and background label information. Considering 

only pixel level information, RW and GC failed to delineate the 

complete liver volume. Our PM was able to delineate the whole 

object and capture detailed boundary information. 

 

Table 4: DSC for liver CT images 

 Mean±SD p-value 

RW 0.768±0.072 2.25E-09 

GC 0.677±0.108 3.08E-09 

NHLIS 0.746±0.068 6.11E-07 

RSP 0.743±0.075 5.95E-08 

PM 0.871±0.034 - 

 

Table 5: HD(mm) for liver CT images 

 Mean±SD p-value 

RW 18.49±6.230 5.13E-06 

GC 20.23±6.320 6.09E-06 

NHLIS 14.63±5.478 4.21E-06 

RSP 13.268±4.404 6.83E-05 

PM 6.989±2.033 - 

3.3. Comparison and evaluation of ultrasound images 

Across the 50 images, the object in Case 32 had two separate 

components and the segmentation result of S-box had only one 

4 Fast marching toolbox: 
http://au.mathworks.com/matlabcentral/fileexchange/6110-toolbox-fast-

marching 
5 http://www.ariel.ac.il/sites/ofirpele/FastEMD/code/ 
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component, and so this case was excluded from the analysis. 

For the remaining 49 cases, our PM obtained better 

segmentation results than S-Box as shown in Tables 6 and 7. 

Student’s t-test performed between our results and S-box 

showed a statistical difference (p-values = 1.17E-05 and 4.49E-

06 with respect to GT-1 and GT-2).  

 

Table 6: DSC for the ultrasound images* 

 GT-1 GT-2 

 Mean± SD p-value Mean± SD p-value 

RW 0.533±0.401 4.58E-06 0.546±0.400 6.54E-07 

RSP 0.392±0.341 6.87E-08 0.384±0.344 4.96E-07 

NHLIS 0.684±0.292 5.35E-07 0.664±0.295 3.47E-06 

S-Box 0.866±0.065 1.17E-05 0.859±0.070 4.49E-06 

PM 0.891±0.080 - 0.888±0.084 - 

*Note: Case 32 was removed because it contained two objects 

 

The case-by-case segmentation results of PM and S-box with 

respect to DSC of the 49 cases are shown in Fig. 8. The lowest 

segmentation accuracy was seen for Case 37. As shown for 

Case 37 in Fig. 7, RW failed to delineate the whole target object 

due to high frequency intensity changes inside the object. The 

results of RSP and NHLIS were sensitive to the intensity 

distributions and variations of the target object. 

Table 7: HD (mm) for the ultrasound images* 

 GT-1 GT-2 

 Mean± SD p-value Mean± SD p-value 

RW 18.256±12.653 5.77E-06 19.578±12.765 4.96E-07 

RSP 21.563±15.648 6.59E-07 23.564±17.689 5.37E-07 

NHLIS 12.563±10.247 7.35E-07 15.365±11.547 5.03E-07 

S-Box 7.812±4.231 6.05E-06 6.548±3.546 7.25E-06 

PM 5.311 ±3.022 - 4.882±2.865 - 

*Note: Case 32 was removed because it contained two objects  

 

 
Fig. 5. Cropped transaxial CT images with lung windows show tumor delineation results of a NSCLC CT case; segmentation results are 

shown in yellow and the ground truth is shown in red. 

 

 
Fig. 6: Segmentation results of two liver CT cases (3Dircadb03 and 3Dircadb06); segmentation results are shown in yellow and the ground 

truth is shown in red.  

 

 
Fig.7. Segmentation results of Case 16 and 37; the segmentation results are shown in yellow and the manual delineations of GT-1 and GT-2 

are shown in red. 
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Fig. 8. Case-by-case DSC comparisons between PM and S-Box with respect to GT-1 (a) and GT-2 (b). 

 

3.4. Performance evaluation on parameter settings 

3.4.1. Confidence parameters 

 , 1  and 2  are all confidence parameters for 

initialization, regional and pixel levels, respectively. We firstly 

investigated the sensitivity to the initialization confidence 

parameter  . The segmentation results with different   

values are plotted in Fig. 9. As shown in Fig. 9, when 
410 

, the segmentation accuracy was almost the same and the 

differences were not appreciable. Not surprisingly, the 

segmentation accuracy decreased with decreasing   when 
410  . This is because a smaller   value indicates less 

confidence on the pre-defined seeds with foreground and 

background labels. Therefore, a smaller  value may result in 

a final segmentation where each seed is less likely to be 

assigned to its initial label. Based on these experimental results, 

  can be fixed at 
510  to generate robust segmentations.  

 

 
Fig. 9. Effects of   on segmentation accuracy. 

 

To evaluate the sensitivity to regional and pixel level 

confidence parameters 1 2,  , we fixed   at 
510  and tested 

our model with different 1  and 2  values (

6 2

12 10 2 10− −    , 5 1

22 10 2 10− −    ). As shown by 

the segmentation results in Fig. 10, there was no significant 

difference when 5

1 2 10 −  . The segmentation results were 

less sensitive to 2  when compared with 1 . Generally, when 

we decreased the value of 1  and increased the value of 2 , 

the segmentation accuracy decreased. Given a fixed 2  value, 

higher 1  values yield better segmentation results. This finding 

also emphasizes the contributions of regional information in 

object separation, especially for the noisy images in the 

ultrasound cases and for large objects such as the liver.  
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Fig. 10. Effects of 1 2,   on the segmetnation accuracy. 

 
Fig. 11. Effects of neighbourhood shape on segmentation accuracy. 

 

 
Fig. 12. Effects of neighbourhood size on segmentation accuracy 

 

3.4.2. Neighborhood in feature space calculation 

When calculating entropy feature space, the neighborhood 

was defined as a 9×9 square by default. The sensitivity to 

varying neighborhood shape (square, disk and diamond) and 

size is shown in Fig. 11 and Fig. 12. To evaluate the 

sensitivity of neighborhood shape selection, the sizes of 

square and diamond were set as 9×9 and the radius of the disk 

was set as 4. In Fig. 11, the shape selection did not have 

significant impact on the segmentation results (p-value 
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<0.05). The variations of segmentation accuracy were within 

0.01 in terms of DSC and 0.02 mm in terms of HD.  

Given a square neighborhood, the segmentation results 

with respect to various neighborhood sizes were plotted in 

Fig. 12. The increment of neighborhood size had the smallest 

impact on the segmentation of ultrasound images. For the lung 

tumor cases, when the neighborhood size was greater than 

13×13, the difference was statistically significant (p>0.05). 

For the liver cases, when the neighborhood size was set > 

15×15, the segmentation accuracy variations were statistically 

significant (p>0.05). In summary, the selection of large 

neighborhood sizes may impact the segmentation results of 

objects with varying sizes. From our results, the 

neighborhood size can be set as 9×9 by default and this is 

widely accepted in entropy calculations.  

3.4.3. Initialization 

In regard to the initialization, we tested the segmentation 

results on the lung tumor and liver cases using different 

background box sizes. For lung tumor segmentation, our 

segmentation results were not significantly different (p>0.05) 

when the size was set as 40×40 or 50×50. Bigger background 

boxes may fail in the tumor separation when the tumor is 

attached to the heart. For liver cases, larger foreground box 

sizes resulted in improved segmentation results for all the 

methods due to the increased foreground confident 

pixels/regions.  

3.5. Execution time and memory consumption 

We measured the execution time and memory consumption 

of our PM and the five comparative graph models. We 

calculated the execution, the total amount of memory 

allocated within a model and any functions it called on 

(allocated memory), and the maximum amount of memory in 

use at any one time during the execution of a model (peak 

memory) for each slice. The average results over all the cases 

are given in Table 8. For all 6 graph models, the largest 

portions of the execution time and memory use were required 

for the weight calculations. As shown in Table 8, not 

surprisingly, graphs with both regional and pixel level nodes 

required more memory space and longer execution times. 

NHLIS had the longest execution time and largest memory 

consumption because of the full pixel level and regional level 

nodes connections. Our model required larger memory space 

and a longer execution time than RW, GC and P-Graph 

because of the incorporation of regional level nodes.  

 

Table 8. Average execution time (seconds) and memory 

consumption (MB) 

 RW GC RSP NHLIS P-Graph PM 

execution 

time 

0.24 0.57 1.62 2.70* 1.12 1.33 

allocated 

memory 

24.63 46.83 102.65 197.60 106.03 111.76 

peak 

memory 

8.22 10.24 32.84 32.84 16.42 20.05 

* excluding the superpixel generation time 

3.6. Discussion  

Our PM delineated the target object boundaries when the 

object and background shared similar or overlapping intensity 

distributions and where the boundaries were uncertain or not 

easily discernible. We explain this finding by the topographic 

nesting branches providing our model with the ability to 

separate adjacent different structures with similar intensities. 

For instance, in the case shown in Fig. 5, the topoRegions 

indicating tumor and the heart have an exclusive relation. 

Thus there is no direct connection between the two regions a 

and c in our graph model (as shown in Fig. 13 (c)). In 

comparison, the tumor and heart regions a and c are directly 

connected according to the adjacent or radial connection 

defined in RSP and NHLIS (as shown in Fig. 13 (a) and (b)). 

Therefore, when the intensity distributions of the target object 

and background are similar, it is difficult for these graph 

models to achieve the separation or identify the boundary.  

 

 
Fig. 13. Cropped transaxial slices with three types of edges. (a) and (b) 

show the neighboring and radial connections (white lines) of over-

segmentations generated by mean-shift algorithm. c) The proposed 

nesting branches (black lines) connecting initial topoRegions.  
 

The extracted initial topography from the whole image 

domain is essential and important in our PM due to: a) Noise 

and artefacts in medical images, the direct adoption of a 

conventional contour tree, even within the ROI, may generate 

giant tree structures with redundant information that makes 

data analysis impractical [30]. The proposed initial 

topography extraction method optimized the tree size for data 

understanding while maintaining the essential image 

structure. b) The initial topography reflects the landscape of 

the whole image domain. The derived nesting branches enable 
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long-range propagation and association of label information 

at the global level within the whole image that serves as a 

global guidance to assist the separation and merging of 

regions/pixels at fine levels. These contributions are shown in 

the regional/pixel level confidence parameter settings where 

in Fig. 10, given a fixed pixel level confidence, the greater 

regional confidence, the better the segmentation results. 

Moreover, those models that focused solely on fine level 

information without global association and propagation of 

label information, may fail to delineate the whole target object 

especially for noisy ultrasound images (as shown by Fig. 7) 

and where there are large objects such as the liver (as shown 

by Fig. 6).  

Our PM obtained complete target object segmentation 

using the adaptive appearance and boundary similarity 

estimation in the weights calculation of the nesting branches. 

Both NHLIS and RSP, incorporate the regional information 

in edge weights by calculating the average intensity values in 

each region. This regional information provided separation 

cues in general images. For medical images when the object 

and background have similar or overlapping intensity 

distributions, the average intensity values from each 

representative region do not allow these models to achieve 

target object separation (see regions a and c in Fig. 13(a) and 

(b)). Further, the geodesic edges in our model made it possible 

to obtain the final boundary delineation with detailed 

structural information. The other graph models, without the 

geodesic constraint, failed to identify detailed boundary 

information (see the lung tumor and liver cases in Fig. 5 and 

6). In our PM, the edge weight was moderated by the geodesic 

distances and it takes more energy for the foreground label 

information to reach background when crossing the gap than 

in Euclidean space. This also explains why the graph models 

such as NHLIS were unable to obtain accurate boundary 

delineation although they incorporated the combined regional 

and pixel level information as well.  

4. Conclusions  

We present a new graph model for target object 

segmentation and boundary delineation in anatomical images. 

Our model incorporates topographic relations of multilevel 

topoRegions by constructing nesting branches and geodesic 

edges. The evaluation we conducted on cases of lung tumors 

in low contrast chest CT volumes, liver CT cases and 

ultrasound images show that our graph model improved 

segmentation accuracy, in particular, for cases where there are 

overlapping intensity distributions and uncertain boundaries.  
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