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Abstract

Background and Objective: We have cast the net into the ocean of knowledge to retrieve the
latest scientific research on deep learning methods for physiological signals. We found 53 research
papers on this topic, published from 01.01.2008 to 31.12.2017.
Methods: An initial bibliometric analysis shows that the reviewed papers focused on Electromyogram
(EMG), Electroencephalogram (EEG), Electrocardiogram (ECG), and Electrooculogram (EOG).
These four categories were used to structure the subsequent content review.
Results: During the content review, we understood that deep learning performs better for big
and varied datasets than classic analysis and machine classification methods. Deep learning
algorithms try to develop the model by using all the available input.
Conclusions: This review paper depicts the application of various deep learning algorithms used
till recently, but in future it will be used for more healthcare areas to improve the quality of
diagnosis.

Keywords: Deep learning, Physiological signals, Electrocardiogram, Electroencephalogram,
Electromyogram, Electrooculogram

1. Introduction

Physiological signals are an invaluable data source which assists in disease detection, reha-
bilitation, and treatment [1]. The signals come from sensors implanted or placed on the skin
[2]. The application areas dictate where the sensors are to be placed [3, 4]. In turn, the sensor
location determines the characteristics of the physiological signal. Relevant information must
be extracted from the physiological signal in order to support a specific healthcare application
[5, 6]. It is difficult to establish what constitutes relevant information, because various medical
ontologies can be used for data interpretation [7]. It is unavoidable that these ontologies con-
tain conflicts and inconsistencies [8]. Another fundamental problem is that physiological signal
interpretation suffers from intra-individual variability [9]. For example, both electrode position
and noise influence the signal waveform [10]. Therefore, human interpretation requires years of
training to acquire specialized knowledge. Even with expert knowledge, manual physiological
signal interpretation suffers from intra- and inter-operator variability [11]. Furthermore, physi-
ological signal interpretation is a tiresome process where human errors can be caused by fatigue
[12, 13]. Computer supported signal analysis is not affected by fatigue related mistakes and it
can also eliminate both intra- as well as inter-observer variability. In addition, most computer
based analysis interpretation can be done quicker and more cost effective when compared to
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human interpretation [14]. Having established the need for computer based physiological sig-
nal analysis, we have to find the most appropriate processing methods for a given healthcare
application.

Nowadays, performance measures, such as classification accuracies [15, 16], govern computer
based analysis and classification of physiological signals for healthcare applications [17, 18, 19].
The goal is to design algorithms that outperform the established methods [20]. The design
process is based on the idea of having an offline and online system, as shown in Figure 1 [21, 22].
The offline system is used to design the required algorithm structure based on labeled data.
That algorithm structure is used in the online system to process measurement data. In most of
the cases, the system consists of three sequential processing steps: 1) preprocessing [23, 24], 2)
feature extraction [25, 26] 3) classification [27]. The first two steps establish the analysis system
which extracts information from the physiological signal. This approach is very target directed,
since the design process is governed by the feature performance. However, real competition
is difficult to establish, because the underlying testing data are rarely comparable. Another
problem is that, there is no way of knowing which feature extraction algorithm is suitable for
a given problem. The feature quality can only be established aposter priory with statistical
methods [28, 29]. This situation is dis-satisfactory for two reasons. Various feature extraction
algorithms must be evaluated on the physiological signals before selecting the best performing
feature extraction method. Even the increased effort fails to ensure that the most relevant
information are extracted. The second reason comes from the fact that only a small number of
features are used for decision making, because the performance of decision making algorithms
deteriorates for higher dimensional inputs [30]. Hence, the main design goal of current decision
support systems is to restrict the amount of information that underpins the decision making [31].
Having to restrict the amount of information for the decision-making process is a big problem,
because the decision quality will suffer. The negative effects become more prominent for large
and diverse physiological signal datasets that hold the information to tackle more challenging
application areas, such as Brain Computer Interface (BCI), cardiovascular diseases, sleep apnea,
sleep stages and muscular abnormalities.

Offline system Online system

Physiological signals

Feature extraction
and

assessment

Classification and assessment

Physiological signals

Feature extraction

Decision support

Figure 1: Blcokdiagram for the design of a traditional decision support system based on physiological signals.

Current decision-making systems under-perform for large and varied datasets, because they
fail to process information that is sufficiently diverse to cover all scenarios. More depth is re-
quired to represent all the information in a dataset. Fundamentally, we require implicit knowl-
edge to make good decisions based on the information extracted from physiological signals. In
the past, that implicit knowledge was exclusively found in highly skilled medical practitioners.
Deep learning was designed to overcome these shortcomings by taking into consideration all in-
formation a training dataset has to offer. The method promises to establish implicit knowledge
in a machine. In this review, we investigate the validity of this claim by analysing the ways in
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which deep learning has been applied to physiological signals. We found promising research in
the areas of Electrocardiogram (ECG), Electroencephalogram (EEG), Electromyogram (EMG)
and Electrooculogram (EOG) based healthcare applications. However, the amount of research
work does not reflect the diversity of healthcare application that can benefit from physiological
signal interpretation. Therefore, we adopt the position that the diversification of the research
is needed. The depth and specialization must come from training the deep learning algorithms
with larger and more varied data sets.

To support our claim that deep learning is a major step towards understanding physiological
signals, we have organized the remainder of the paper as follows. The next section establishes
the importance of implicit knowledge for physiological signal interpretation and it provides
background on deep learning. Section 3 presents bibliometric and content analysis results.
Based on these results, we put forward a range of research gaps in the discussion section. In this
section, we have also discussed limitations and future work. The paper concludes with Section
5.

2. Background

Physiological signals reflect the electrical activity of a specific body part [6]. As such, the
electrical activity provides information about the physiological condition. Traditionally, this
information can be used by medical practitioners for decision making [32, 33]. These decisions
have far reaching consequences on diagnosis, treatment monitoring, drug efficacy tests, and
quality of life. From a machine learning perspective, a medical practitioner is an intelligent
agent who makes good decisions. In order to reach these decisions some sort of knowledge is
required. This knowledge shapes the process which generates actions from both state and input.
For example, a clinician analyses an ECG signal. As that analysis process continues, there is a
growing suspicion that the signal was taken from a patient with coronary artery disease. More
and more suspicious waveform segments emerge until a positive diagnosis is reached. From a
processing perspective, the ECG signal is the input, the reading clinician is the system and the
system state is reflected in the growing suspicion.

In its simplest form, knowledge can be explicitly expressed as mathematical rules and physical
facts. Engineers make use of this explicit knowledge to create expert systems [34]. However, these
systems are limited to a specific domain and they operate in highly controlled environments.
Only for these environments, we are reasonably sure about the physical facts and mathematical
rules which shape the correct behaviour. Furthermore, expert systems don’t reflect the concept
of suspicion and common sense. Overcoming these limitations requires implicit knowledge which
can be found in the complex wiring and the synaptic setup of biological brains as well as the
mechanical and sensory properties of biological bodies. The only way for computers to mimic
implicit knowledge is to learn from examples. The idea is to find a way to learn general features
in order to make sense of new data. This description highlights the central role of data for
establishing implicit knowledge. The amount of data must be sufficiently large to provide many
training examples from which a large set of parameters can be extracted. Only a large number
of parameters give rise to the richness of class functions which model the implicit knowledge.

Deep learning is a change in basic assumptions of artificial intelligence algorithm design [35].
This change percolates through to all application areas of machine learning, such as computer
vision, speech recognition, natural language processing and indeed diagnosis support [36]. Cen-
tral to deep learning are the ideas of parallel processing and networked entities. The next section
details these ideas by discussing the deep learning methods.

2.1. Deep Learning Methods

Deep learning belongs to the class of machine learning methods. It is a special form of
representation-based learning, where a network learns and constructs inherent features from
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each successive hidden layer of neurons [31]. The term “deep” is derived from the numerous
hidden layers in the Artificial Neural Network (ANN) structure.

The ANN algorithm models the functionality of a biological brain [37]. The model is real-
ized with a structure that is made up of input-, hidden-, and output-layers, as shown in Figure
2. Every neuron or node (nerve cell) is connected to each neuron in the next layer through a
connection link. A nerve cell is made up of axon (output), dendrites (input), a node (soma), nu-
cleus (activation function), and synapses (weights) [38]. The activation function in the artificial
neuron acts as the nucleus in a biological neuron whereas the input signals and its respective
weights model the dendrites and synapses respectively. Figure 3 illustrates the neuron structure.

Figure 2: Traditional ANN

Unfortunately, the ANN structure is receptive to translation and shift deviation, which
may adversely affect the classification performance [39]. To eliminate these shortcomings, an
extended version of ANN, the Convolutional Neural Network (CNN), was developed [40]. The
CNN architecture ensures translation and shift invariance [41]. Figure 4 illustrates a generic
CNN network structure. It is a feed-forward network, which comprises of: convolution, pooling,
and fully-connected, layers [41]. They are briefly explained below.

1. Convolution layer: The input sample is convolved with a kernel (weights) in this layer. The
output of this layer is the feature map. The stride controls how much the kernel convolves
with the input sample. The convolution operation acts as a feature extractor by learning
from the diverse input signals. The extracted features can be used for classification in
subsequent layers. Figure 5 illustrates a convolution operation between f (input) and g
(kernel), giving an output c. Equations 1 and 2 provide an example of the convolution
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Figure 3: Neuron structure

calculation.
c(1) = 1 × 3 + 2 × 4 + 3 × 1 = 14
c(2) = 2 × 3 + 3 × 4 + 4 × 1 = 22
c(3) = 3 × 3 + 4 × 4 + 5 × 1 = 30

(1)

Output1 = 22 ×W1 + 38 ×W3 + 54 ×W5

Output2 = 22 ×W2 + 38 ×W4 + 54 ×W6
(2)

2. Pooling layer: This is a down-sampling layer where the pooling operation is employed to
reduce the spatial dimension of the input sample, while retaining the significant informa-
tion. The pooling operation can be average, max, or sum. The max-pooling operation is
typically employed. An example of a max-pooling operation, with a stride of 2, is shown
Figure 6. In this example, the number of input samples are halved by retaining only the
maximum value within a selected stride. In a stride that contains 14 and 22, the value 22
is retained, and, 14 is discarded.

3. Fully-connected layer: Fully-connected signifies that each neuron in the previous layer is
connected to all the neurons in the current layer. The total number of fully-connected
neurons in the final layer determines the number of classes. Figure 7 provides a graphical
representation of a fully-connected layer. The neurons are all connected and each connec-
tion has a specific weight. This layer establishes a weighted sum of all the outputs from
the previous layer to determine a specific target output.

A leaky rectifier linear unit [42] is used as an activation function after the convolution layer.
The purpose is to map the output to the input set and introduce non-linearity as well as sparsity
to the network. The CNN is trained with backpropagation [43] and the hyperparameters may
be tuned for optimal training performance.

In addition to CNN, there are other deep learning architectures, such as autoencoder [44],
deep generative models [45] [46] and Recurrent Neural Network (RNN), that can be used to
monitor the physiological signals [47].
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Figure 4: CNN network structure

Figure 5: Convolution layer

The autoencoder is an unsupervised neural network that is trained to imitate the input
to its output. The dimension of the input is the same as the dimension of the output. The
encoders are stacked together to form a deep autoencoder network. The autoencoder takes
unlabelled inputs, encodes these inputs, and subsequently it reconstructs the inputs as precisely
as possible. Hence, the network structure must determine which data features are significant.
An autoencoder consists of three layers: input, output, and hidden. Encoding and decoding
are the two main steps in the autoencoder algorithm. During encoding and decoding, the same
weights are employed to encode the feature and reconstruct an output sample in the output.
Autoencoders are trained with a backpropagation algorithm that employs a metric known as the
loss function [43]. That function computes the amount of information which is lost during input
reconstruction. Thus, a network structure with a small loss value will produce a reconstruction
that is nearly identical to the input sample [37].

Deep Belief Network (DBN) [45] and Restricted Boltzmann Machine (RBM) [48] are common
forms of the deep generative model, where DBNs are stacked layers of RBM. The RBM is made
up of a two-layer neural net with one visible and one hidden layer. Each node in the layer learns
a single feature from the input data by making random decisions on whether to transmit the
input or not. The nodes in the first (visible) layer are connected to every node in the second
(hidden) layer. The RBM takes the inputs and translates them into a set of numbers that encode
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Figure 6: Max pooling layer

Figure 7: Fully connected layer

the inputs. Then, a backward translation is implemented to reconstruct the inputs. The RBM
network is trained to reconstruct through forward and backward passes [49, Chapter 6].

The DBN is a probabilistic model with several hidden layers [50]. It can be efficiently
trained by using a technique known as greedy layer-wise pre-training [51]. Typically, the DBNs
are stacked layers of RBM. The first layer of the RBM is trained to reconstruct its input. After
which, the first hidden layer is considered as the visible layer and it is trained using the outputs
from the input layer. This process is iterated until all layers in the structure are trained [45].

In contrast to the feed-forward network, the RNN employs a recursive approach (recurrent
network) whereby the network performs a routine task with the output being dependent on the
previous computation. This functionality is created with inbuilt memory. The most common
type of RNN is the Long Short-Term Memory (LSTM) network [52]. It has the capability to
learn long-term dependencies. The LSTM algorithm incorporates a memory block with three
gates: the input, output, and forget gate. These gates control the cell state and decide which
information to add or remove from the network. This process repeats for every input.

1. Input gate: decides what new information is to be stored and updated in the cell state.

2. Output gate: judges what information is used based on the cell state.

3. Forget gate: evaluates what information is redundant and discards it from the cell state.

These deep learning architectures have demonstrated their potential by surpassing the perfor-
mance of traditional machine learning techniques [31]. Furthermore, deep learning algorithms
minimize the need for feature engineering. The next section, focuses on scientific work that
applied deep learning to physiological signal interpretation for health care applications.

3. Review

In this review, we consider 53 articles focusing on deep learning methods applied to phys-
iological signals for healthcare applications. These papers were published in the period from
01.01.2008 to 31.12.2017. Figure 8 shows the yearly distribution of 53 articles together with a
trend line [53]. Apart from the data distribution, the figure also features a trend line which was
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generated with a linear regression approach [54]. The large positive gradient of the trend line
indicates more papers, on this topic, published in recent years.
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Figure 8: Number of articles on deep learning, published each year from 01.01.2008 to 31.12.2017

Our review of the 53 articles is based on two analysis methods. The first method is a
bibliometric analysis, which helps us to detect the structure that governs relationship between
the paper topics. We use this information to arrange the second analysis method, which deals
with the content of the reviewed papers. The paper content is dissected in terms of common
parameters that enable us to compare the studies across different healthcare applications.

3.1. Bibliometric analysis

The bibliometric analysis establishes the topic structure of the reviewed papers. This un-
locks the paper content. We have used the well-known VOSviewer1 software to establish a
co-occurrence network [55, 56]. Before feeding the data to the VOSviewer algorithm, we created
a thesaurus file to group keywords, having the same meaning, into broader topics. Table A.8
shows that mapping. Figure 9 shows the co-occurrence network and the topic clusters. Table
1 reveals the topic structure by aligning the topics to clusters. These clusters are centred on a
specific physiological signal. To be specific, the largest topic cluster2 includes EMG. The physi-
ological signals are widely used in healthcare areas, such as speech, prosthesis and rehabilitation
robotics. CNN is the deep leaning method of choice in this cluster. The second cluster is related
to the EEG which is used for BCI. the cluster shows that noise is a problem for EEG processing.
Cluster 3 focuses on ECG, which is linked to Cardiovascular Disease (CVD), arrhythmia and
Automated External Defibrillator (AED). The last cluster deals with EOG which can be used
to detect sleep problems. The deep learning methods of DBN and RNN are used to the detect
of Obstructive Sleep Apnea (OSA)using different physiological signals. The clustering helps us
to structure the content review, which is presented in the next section.

3.2. Content review

The bibliometric research shows four distinct clusters focused on four physiological signals
namely: ECG, EEG, EMG and EOG. They are briefly discussed in the following sections.

1Web page (Last accessed 11.12.2017): http://www.vosviewer.com/
2In terms of the number of papers that include a keyword that was mapped to the cluster topics.
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Figure 9: Network visualization for the author supplied keywords

Table 1: Topic cluster summary, where C is the Cluster number. Colour indicates the cluster colour as shown in
Figure 9.

C Topics Colour

1 emg, cnn, cognitive states, dnn, fnirs, hand gesture, infrared spec-
troscopy, ml, myoelectric interfaces, prostheses, real-time, recognition,
rehabilitation robotics, speech, wearable, word generation

Red

2 eeg, bci, learning, motor imagery, multifractal attribute, neuromorphic
computing, noise, wavelet leader

Blue

3 ecg, aed, arrhythmia, contaminant mitigation, cvd, motion artifact Yellow
4 eog, dbn, heartbeat, osa, rnn, signal, sleep, svm Green
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Table 2: Summary of works carried out using DL algorithms
with EMG signals.

Author Application DL algo-
rithm

Data Results

Xia et al., 2017 [60] Limb movement estima-
tion

RNN Measurements from
eight healthy subjects

The RNN outperforms other
methods for estimating a 3D
trajectory

Zhai et al., 2017 [61] Neuroprosthesis control CNN NinaPro Database
(DB)2&3 [62]

accuracy: 83%

Park et al., 2016 [63] Movement intention de-
coding

CNN Kinematic and EMG
data NinaPro DB [64]

accuracy: > 90%

Atzori et al., 2016 [65] Hand movement classi-
fication

CNN NinaPro DB [62] accuracy: 66.59%

Geng et al., 2016 [66] Gesture recognition CNN 18 subjects perform-
ing 16 gestures each
recorded 10 times

accuracy: 99.5%

Wand and Schmidhu-
ber, 2016 [67]

Speech recognition Deep Neu-
ral Network
(DNN)

EMG-UKA Corpus [68] DNN outperforms a Gaussian
Mixture Model (GMM) front
end

Allard et al., 2016 [69] Robotic arm guidance CNN 18 subjects performing
7 gestures

accuracy: ≈ 97.9%

Wand and Schultz, 2014
[70]

Speech recognition DNN 25 sessions from 25 sub-
jects

Visualization of hidden nodes
activity
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3.2.1. Deep learning methods applied to EMG

The EMG measures the electrical activity of skeletal muscles [57]. The electrical sensors,
known as electrodes, are placed on the skin above the muscles of interest [58]. The EMG signals
indicate: muscle activation, force produced by the muscle, and muscle state [59]. All these factors
are superimposed, i.e. the EMG signal measurement picks up the contributions from different
sources and sums them up. Hence, it is difficult to gain information about one particular aspect
by observing the EMG signal. Table 2 details the research work which describe the deep learning
methods used to analyze the EMG signal. Individual columns healthcare application area, Deep
Learning (DL) algorithm, the data used for the study, and the study results. As such, the DL
algorithms were introduced in Section 2.1.

3.2.2. Deep learning methods applied to EEG

The EEG is measured by placing electrodes on the skull of the subject, where they pick up
the electrical activity of the brain [71, 72]. As such, that activity results from firing neurons
emitting action potentials. At any given time, the electrode sums up many charges from different
sources. The resulting EEG signal has a noise like characteristic, which makes the interpretation
difficult. Furthermore, the signal is affected by EOG and EMG artifacts [73, 74, 75]. It takes the
trained eye of a practitioner to spot the features that indicate a specific mental state [76]. One of
the main drivers behind the application of DL algorithms applied to EEG is BCI [77]. The real-
time nature of this application makes human signal interpretation impossible [78]. Hence, BCI
requires automated decision making. Table 3 lists the reviewed research works conducted using
deep learning with EEG signals. The list contains one exception, Huve et al. used functional
near-infrared spectroscopy [79] to track neural dynamics of the brain [80].

3.2.3. Deep learning methods applied to ECG

The ECG is measured by placing electrodes on the chest [81]. These electrodes record the
electrical activity of the human heart [82]. The signal reflects the functioning of the heart and it
has well distinguishable features, even in the time domain. The difficulty in ECG interpretation
is to spot the morphological changes which indicate a particular cardiac problem [83, 84] or
diabetes [85, 86]. These abnormalities may be minute and very often they may be transients or
present all the time [87]. The research work, listed in Table 4, discusses the DL algorithms used
for the automated detection of various cardiac abnormalities. The scientific work, described
in 13 out of 14 reviewed papers, relies on measurements which were taken from public DBs.
Therefore, the results can be compared with state-of-the-art methods. For example, Acharya et
al. [88] reported the performance measures obtained through the deep learning system alongside
the performance figures of the traditional diagnosis support systems. Their system outperformed
traditional approaches and it has the added benefit of not having to perform feature extraction
and de-noising. Table 4 lists the works reported on deep learning applied to ECG signals.

3.2.4. Deep learning methods applied to EOG and a combination of signals

The EOG measures the corneo-retinal standing potential which occurs between back and
front of the human eye. Two electrodes are placed either left and right of the eye or above
and below the eye. The signal can be used to detect eye movements [89]. It is useful for
ophthalmological diagnosis [90]. However, the EOG is affected by noise and artifacts, that makes
the signal interpretation difficult [91]. Table 5 details research work which aims to overcome
these difficulties with deep learning algorithms. Only Zhu et al. applied the deep leaning
algorithm exclusively to EOG signals. Table 5 presents a summary of works carried out using
DL algorithms with EOG and other physiological signals.
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Table 3: Summary of works carried out using DL algorithms
with EEG signals.

Author Application DL algo-
rithm

Data Results

Fraiwan et al., 2017 [93] Sleep state identifica-
tion

Autoencoders Measurements [94] 80.4% accuracy

Schirrmeister et al.,
2017 [95]

EEG decoding and visu-
alization

CNN BCI competition IV dataset
2a [96] and measurement data

Up 89.8% accuracy

Hosseini et al., 2017 [97] Epileptogenicity local-
ization

CNN EEG and rs-fMRI measure-
ments from the ECoG dataset
[98]

Normal p-value 1.85e-14, p-
Seizure value 4.64e-27

Schirrmeister et al.,
2017 [99]

Decoding excited move-
ments

CNN Not reported Accuracy comparable to stan-
dard methods

van Putten et al., 2017
[100]

Butcome prediction
for patients with a
postanoxic coma after
cardiac arrest

CNN EEGs from 287 patients at 12
h after cardiac arrest and 399
patients at 24 h after cardiac
arrest

Sensitivity of 58% at a speci-
ficity of 100% for the predic-
tion of poor outcome

Spampinato et al., 2017
[101]

Discriminate brain ac-
tivity

CNN Six subject were shown 2000
images in 4 sessions

Accuracy 86.9%

Kiral-Kornek et al.,
2017 [102]

BCI CNN 6 subjects up to 1000 individ-
ual hand squeezes

Power comparisons of various
processing platforms.

Acharya et al., 2017
[103]

Seizure detection CNN Freiburg EEG DB [104, 105,
106, 107, 108]

accuracy: 88.67%

Lu et al., 2017 [109] Motor imagery classifi-
cation

RBM BCI competition IV data set
2b [110, 111, 112]

Accuracy has been improved
about 5% compared with
other methods.

Huve et al., 2017 [80] Tracking of neural dy-
namics

CNN, DNN 1 subject 180 trials DNN outperforms CNN

Hajinoroozi et al., 2016
[113]

Prediction of driver’s
cognitive performance

CNN 37 subjects, 70 sessions Area under the receiver oper-
ating characteristic: 86.08

Nurse et al., 2016 [114] BCI CNN 1 subject 30 min of data accuracy 81%
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Jingwei et al., 2015
[115]

Response representa-
tion

CNN EEG motor activity data set
[116]

accuracy: 100%

Hajinoroozi et al., 2015
[117]

Prediction of driver’s
cognitive performance

CNN 37 subjects, 80 sessions Area under the receiver oper-
ating characteristic: 82.78

Jirayucharoensak et al.,
2014 [118]

Based Emotion Recog-
nition

Deep learn-
ing network

DEAP Dataset [119] valence accuracy: 49.52%,
arousal accuracy 46.03%

An et al., 2014 [120] Based Emotion Recog-
nition

Deep learn-
ing network

4 subjects 60 trials valence accuracy: 49.52%,
arousal accuracy 46.03%

Zheng et al., 2014 [121] Emotion classification DBN 6 subjects 2 trials each accuracy: 87.62%

Li and Cichocki, 2014
[122]

Motor imagery DBN 3 subjects performing motor
imagery tasks in four sessions.
Each session had 15 trails.

Accuracy: 96%

Jia et al., 2014 [123] Affective state recogni-
tion

RBM DEAP Dataset [119] RBM-based model to extract
representative features and to
reduce the data dimensional-
ity

Ren and Wu, 2014 [124] Feature extraction CNN Dataset III in 2003 BCIC II,
Dataset Iva in 2005 BCIC III,
Dataset III in 2005 BCIC III
[110, 111, 112]

Accuracy: 87.33%

Ahmed et al., 2013 [125] Detecting target images DBN Not specified DBN outperforms SVM.

Mirowski et al., 2008
[126]

Epileptic seizure predic-
tion

CNN Freiburg EEG DB [104, 105,
106, 107, 108]

zero-false-alarm seizure pre-
diction on 20 patients out of
21

Cecotti and Graeser,
2008 [127]

Motor imagery classifi-
cation

CNN 2 subjects 5 trails of about 3
minutes

Recognition accuracy: 53.47%
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Table 4: Summary of works carried out using DL algorithms
with ECG signals.

Author Application DL algo-
rithm

Data Results

Acharya et al., 2017
[128]

Arrhythmia detection
using different intervals
of tachycardia ECG
segments

CNN MIT-BIH arrhythmia
database [129]

Accuracy of 92.50%, sensitiv-
ity of 98.09%, specificity of
93.13%

Tan et al., 2017 [130] Coronary artery disease
signal identification

LSTM,
CNN

Physionet databases: Fan-
tasia (for Normal) and St.-
Petersburg Institute of Car-
diology Technics (for CAD)
[129]

Accuracy of 99.85%.

Acharya et al., 2017
[131]

Coronary artery disease
detection

CNN Physionet databases: Fan-
tasia (for Normal) and St.-
Petersburg Institute of Car-
diology Technics (for CAD)
[129]

Accuracy of 94.95% and
95.11% are obtained for
two and five seconds ECG
segments respectively.

Pourbabaee et al., 2017
[132]

Features for Screening
Paroxysmal Atrial Fib-
rillatio

CNN The PAF prediction challenge
database [133]

Precision=93.6%

Zheng et al., 2017 [134] ECG identification DNN MIT arrhythmia database
[135] and self-collected data

94.39% recognition rate

Majumdar et al., 2017
[136]

Arrhythmia classifica-
tion

Robust
deep dic-
tionary
learning

MIT arrhythmia database
[135]

97.0% recognition rate

Shashikumar et al.,
2017 [137]

Monitoring and detect-
ing atrial fibrillation

CNN 98 subjects, 45 with atrial fib-
rillation and 53 with other
rhythms.

Up to 91.8% accuracy
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Acharya et al., 2017 [88] Detection of myocardial
infarction

CNN lead II from the ECG DB
(Physikalisch-Technische
Bundesanstalt diagnostic
ECG DB) [129]

accuracy: 93.18%

Lou et al., 2017 [138] Heartbeat classification DNN Lead II from the MIT-BIH ar-
rhythmia DB [135]

Accuracy: 97.5%

Acharya et al., 2017
[139]

Identification of ventric-
ular arrhythmias

CNN MIT-BIH arrhythmia DB
(MITDB) [129, 135], MIT-
BIH malignant ventricular
arrhythmia DB (VFDB)
[140], Creighton University
ventricular tachyarrhythmia
DB (CUDB) [141]

accuracy: 92.50%

Acharya et al., 2017
[142]

Heart beat classification CNN MIT-BIH arrhythmia DB
[129]

accuracy: 94.03%

Cheng et al., 2017 [143] Sleep apnea detection RNN ECG sleep apnea DB [144] accuracy: ≈ 90%

Taji et al., 2017 [145] Signal quality classifica-
tion

RBM MIT-BIH arrhythmia DB
[129]

accuracy: 99.5%

Lou et al., 2017 [138] Heartbeat classification RBM MIT-BIH arrhythmia DB
[135]

RBM-based model to extract
representative features and to
reduce the data dimensional-
ity

Muduli et al., 2017 [146] Fetal-ECG signal recon-
struction

Stacked De-
noising Au-
toencoder

Abdominal non-invasive
FECG DB [129]

accuracy: 99.5%

Kiranyaz et al., 2016
[147]

Heart beat classification CNN MIT/BIH arrhythmia DB
[129]

accuracy: 99%

Zheng et al., 2014 [148] Congestive heart failure
detection

CNN BIDMC Congestive Heart
Failure data set [129]

accuracy: 94.67%
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Table 5: Summary of works carried out using DL algorithms
with EOG and other signals.

Author Application Signal DL algo-
rithm

Data Results

Du et al., 2017 [149] Driving fatigue detec-
tion

EOG and
EEG

Autoencoder Measurements from 21
subjects

Correlation Coefficient
0.85, Root Mean Square
Error 0.09

Zhang et al., 2017 [150] Momentary mental
workload classification

EOG, EEG,
ECG

CNN 6 subjects and 2 ses-
sions each

Accuracy: 93.8%

Xia et al., 2017 [151] Sleep stage classifica-
tion

EOG, EEG DBN sleep EDF DB [Ex-
panded] in Physionet
[129, 152]

Accuracy: 83.3%

Zhu et al., 2014 [153] Drowsiness detection EOG CNN 22 subjects and 22 ses-
sions each

mean correlation coeffi-
cient of 0.73

Längkvist et al., 2012
[154]

Sleep Stage Classifica-
tion

EOG, EEG,
EMG

DBN 25 acquisitions from
PhysioNet [129] for
training and test-
ing and Home Sleep
Dataset 60 hours from
normal one subject for
validation

72.2%
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4. Discussion

Even though the deep learning is still in its infancy, published studies have shown that it
possesses the capability of faster and more reliable diagnoses in physiological signals. That
potency may well trigger a shift away from the currently used decision support methods, such
as Support Vector Machine (SVM) and K-Nearest Neighbour (K-NN), towards deep learning
[92]. It can noted from Table 4 that the employment of deep learning in ECG signals yielded
promising diagnostic performances. This is because the developed model is able to capture the
distinctive features from the ECG signals. Hence, the network can be trained from these learned
features even without big data, achieving desirable diagnostic performance. On the other hand,
the automated analysis of EMG and EEG signals is more challenging as these signals are more
chaotic in nature. Therefore, it is more complicated for the network to learn from the hidden
and subtle information present in these signals.

During the content review, we have studied the DL algorithm types used for their research
works. Table 6 shows the number of studies that used a particular DL algorithm to analyze a
specific physiological signals. CNN was used in 5, 15, 10 and 2 research works on EMG, EEG,
and ECG respectively. Overall, CNN was used 32 times, that makes it by far the most popular
DL algorithm. At the bottom of the table is LSTM which was only used for ECG processing.

Table 6: Summary of various DL algorithms applied to different physiological signals.

DL algorithm EMG EEG ECG EOG Total

CNN 5 15 10 2 32
DNN 2 1 2 0 5
DBN 0 3 0 2 5
RBM 0 2 2 0 4
Autoencoder 0 1 1 1 3
RNN 1 0 1 0 2
Deep learning network 0 2 0 0 2
Robust deep leanring 0 0 1 0 1
LSTM 0 0 1 0 1

Apart from the algorithms, we have also studied the type of data used to conduct these
studies. Table 7 indicates a summary of the data type used to implement the DL algorithm.
Row one indicates that 28 studies were conducted using the public databases. Only 20 studies
used private databases and 3 studies have used both databases. 16 out of 17 studies using ECG
and 8 out of 23 studies on EEG have used public data. Indeed, 12 studies have used private
EEG data to implement the deep learning algorithms.

Table 7: Summary of data type used to implement the DL algorithm.

EMG EEG ECG EOG Total

Publicly available databases 3 8 16 1 28
Private databases 4 12 1 3 20
Both 1 1 0 1 3
Not reported 0 2 0 0 2

Number of papers 8 23 17 5 53

Conventional machine learning approaches require lots of time and effort for feature selection.
These features must extract relevant information from huge and diverse data in order to produce
the best diagnostic performance. Furthermore, the best algorithm is unknown and thus, a lot
of trial and error is necessary to select the best feature extraction algorithms and classification
methods to develop a robust and reliable decision support systems for the physiological signals.
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On the other hand, deep learning eliminates the need for feature extraction and feature selection.
The decision-making algorithm can consider all available evidence [155].

The training algorithms for deep leaning systems have a high computational complexity.
Hence, this results in a high run-time complexity which translates into a long training time
[156, 157, 158]. This will be a problem during the design phase, because during this phase a
designer must decide what deep leaning architecture to use. Once the architecture is chosen, the
tuning parameters must be adjusted. Both the structure selection and parameter adjustment
will basically influence the model. Hence, it is necessary to have many test runs. Shortening the
training phase of deep leaning models is an active area of research [159]. The challenge is speeding
up the training process in a parallel distributed processing system [160]. The network between
the individual processors becomes the bottle neck [161]. Graphics Processing Units (GPUs) can
be used to reduce the network latency [162].

For this state of the art technology, the training time may be an issue, because it can influence
the model selection strategies. To be specific, none of the reviewed papers approached the model
selection process with statistical methods, such as cross validation [163]. We can only assume
that the deep learning architectures, used in the reviewed scientific work, were selected based
on single run trial. Similarly, we have to assume that the hyperparameters were also optimized
by training the network once. This is a serious shortcoming, because these statistical validation
methods reduce the sample selection bias [164, 165].

In addition, the use of deep learning can also be extended from one-dimensional physiological
signals to two-dimensional medical images. Researchers are also exploring the benefits utilizing
deep learning in medical image analyses [166]. It was reported that the automated staging and
detection of Alzheimers disease, breast cancer, and lung cancer has shown optimistic diagnostic
performances.

5. Conclusion

In this paper, we reviewed 53 papers on deep learning methods applied to healthcare ap-
plications based on physiological signals. The analysis was carried out in two distinct steps.
The first step was bibliometric keyword analysis based on the co-occurrence map. This analysis
step reveals the connection between the topics covered in the reviewed papers. We found four
distinct clusters, one for each physiological signal. That result helped us to structure the second
analysis step, which focuses on the paper content. As such, the paper content was established
by extracting the specific application area, the deep learning algorithm, system performance,
and the types of dataset used to develop the system.

The fact that deep learning algorithms performs well with large and diverse datasets which
has two consequences. First, the dataset becomes critically important for the system design.
Therefore, we focused our efforts on this criterion during our analysis. We found that, the scien-
tific work, documented in 31 of the reviewed papers, was based on one or more freely available
datasets. Therefore, we predict that the importance of these freely available public datasets may
increase. The other consequence is that deep learning algorithms will perform well in practical
settings, because clinical routine produces lots of data with large variations. However, none
of the reviewed papers verified this in a practical setting. Another fundamental point is that,
our literature survey yielded only 53 papers. The small number of studies imply that there is
scope for future work. To be specific, 53 papers do not reflect the comprehensive healthcare
applications based on the physiological signals. In future, there may be more advanced deep
learning algorithms focused on the early detection of diseases using physiological signals.
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Appendix A. Cluster description

.

Table A.8: Author supplied keywords mapped to topics

Topic Author supplied keywords

arrhythmia arrhythmia, arrhythmic signal identification
cvd cardiovascular diseases, myocardial infarction, non-shockable, shockable,

ventricular arrhythmias
db mit-bih arrhythmia database, physiobank mit-bih arrhythmia database
dnn deep neural network, deep neural networks
ecg apnea- electrocardiogram signals, ecg, ecg measurement system, ecg

signal, ecg signals, electrocardiogram, electrocardiogram signal quality
classification, electrocardiogram signals, electrocardiography

heartbeat heartbeat, heartbeat interval features, rr interval
measurement computerised instrumentation, pollution measurement, power line inter-

ference
noise denoising autoencoder, noise, noise measurement, snr
testing testing
training training, training data
wearable wearable computers, wearable electrocardiogram measurement system,

wearable fnirs
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algorithm ada-boost, algorithm, algorithms, classification algorithms, component
analysis, compression, hidden markov models, independent component
analysis

dbn belief networks, boltzmann machines, convolutional deep belief net-
works, dbn, deep belief network, rbm, restricted boltzman machine
(rbm), restricted boltzmann machine, deep neural network, deep neural
networks

eeg brain signals, eeg, eeg data, eeg-based hand squeeze task, electroen-
cephalography, electroencephalography (eeg), encephalogram signals

feature feature clustering, feature extraction, feature learning, feature-
extraction, features, unsupervised feature learning

learning deep feature learning, deep learning, ensemble learning
machine machine, machines
model mathematical model, model, models
motor imagery motor imagery
sleep apnea detection, automatic sleep stage classification, obstructive sleep

apnea detection, sleep apnea, sleep stage classification, slow eye-
movements

classification classification, emotion classification, patient-specific ecg classification,
pattern classification

control multifunction myoelectric control, myoelectric control
emg electromyogram, electromyography, emg-based speech recognition, non-

stationary emg, surface emg
ml machine learning, machine learning algorithms
prostheses prostheses, prosthetics, upper-limb, upper-limb prostheses
recognition brain activity recognition, pattern recognition, pattern-recognition,

recognition, signal recognition
signal medical signal detection, medical signal processing, signal classification,

signal reconstruction, signal representation, signals, time preserving sig-
nal representation strategy

bci bci brain computer interface, brain computer interface (bci), brain
computer interfaces, brain-computer interface, brain-computer interface
(bci), brain-computer interfaces

cnn cnn, convolution, convolution neural network, convolutional neural net-
work, convolutional neural networks, convolutional neural networks
(cnns)

epilepsy epilepsy, seizure
nn batch normalization layers, biological neural networks, feedforward neu-

ral nets, neural-networks, neurons
real-time real-time, real-time heart monitoring, real-time systems, truenorth-

enabled real-time classification
system ibm truenorth neurosynaptic system, low-power platform, system
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