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Highlights

• First time Permutation Entropy is applied to glucose time series.

• Test of different customizations for Permutation Entropy in order to ad-
dress equal values and amplitude variations.

• Prediction of evolution to diabetes based on a Permutation Entropy anal-
ysis of the glucose time series.
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Abstract

Background and objectives: The adoption in clinical practice of electronic
portable blood or interstitial glucose monitors has enabled the collection, stor-
age, and sharing of massive amounts of glucose level readings. This availability
of data opened the door to the application of a multitude of mathematical
methods to extract clinical information not discernible with conventional visual
inspection. The objective of this study is to assess the capability of Permu-
tation Entropy(PE) to find differences between glucose records of healthy and
potentially diabetic subjects.

Methods: PE is a mathematical method based on the relative frequency
analysis of ordinal patterns in time series that has gained a lot of attention
in the last years due to its simplicity, robustness, and performance. We study
in this paper the applicability of this method to glucose records of subjects at
risk of diabetes in order to assess the predictability value of this metric in this
context.

Results: PE, along with some of its derivatives, was able to find signifi-
cant differences between diabetic and non–diabetic patients from records ac-
quired up to 3 years before the diagnosis. The quantitative results for PE were
3.5878± 0.3916 for the non–diabetic class, and 3.1564± 0.4166 for the diabetic
class. With a classification accuracy higher than 70%, and by means of a Cox
regression model, PE demonstrated that it is a very promising candidate as a
risk stratification tool for continuous glucose monitoring.

Preprint submitted to Computer Methods and Programs in Biomedicine August 30, 2018
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Conclusion: PE can be considered as a prospective tool for the early diag-
nosis of the glucorregulatory system.

Keywords: Permutation Entropy, Continuous glucose monitoring, Signal
classification, Diabetes
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1. Introduction

Manual inspection of continuous blood glucose records [1] provides very use-

ful information for patients’ diagnosis or treatment decisions [2]. This manual

assessment is usually carried out in terms of glucose level thresholding [3]. A

more refined analysis of the blood glucose data involves the computation of a

myriad of variability indices to better reflect the glycaemic control status [4].

More recently, other mathematical methods have been applied to these data

[5, 6]. The general objective is also to characterise the glucose–insulin endocrine

system for a more personalised and efficient treatment [7]. Among all these more

advanced mathematical methods, those based on signal complexity, regularity,

or predictability estimation are gaining momentum due to their ability of cap-

turing the subtle differences among subjects. Approximate Entropy (ApEn) [8],

Sample Entropy (SampEn) [9], Fuzzy Entropy (FuzzEn) [10], Dispersion En-

tropy [11], State–Space Correlation Entropy [12], Bubble Entropy [13], Lempel

Ziv Complexity (LZC) [14], Detrended Fluctuation Analysis (DFA) [15], Distri-

bution Entropy (DistEn) [16], and Permutation Entropy (PE) [17], are just a few

of these methods that have been applied successfully in the context of biomedical

records, including glucose time series in some cases [18, 19, 20, 21, 22, 23].

Specifically, Permutation Entropy (PE) [17] is a complexity measure that

is receiving a lot of attention in the last years. It is conceptually simple, the

algorithm is easy to implement and has a low computational cost, it is robust

against observational and dynamical noise, does not require any model assump-

tion, and window length and sampling frequency have very little influence on

the results [17, 24]. It has been already used in a varied and diverse set of

applications [25]. This is the measure chosen in this work.

Contrary to many other similar metrics, PE is based on temporal orders

instead of amplitude differences. It requires the determination of three input
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parameters [26]: length of the time series N , length of the subsequences under

comparison m (permutation order), and time delay τ . For simplicity, we assume

in this work τ = 1, since other values are comparable to down–sampling [27].

N was set at the acquisition stage, as described in Sec. 2.2, and m was varied

between 2 and 9, a little bit wider interval than that recommended in [17].

SampEn also needs three input parameters, N , m, and a threshold r, but it is

much more sensitive to these input values than PE, since a suboptimal choice of

these values can lead to incorrect results [28]. DFA is also quite unstable when

the input parameters change [29].

This is a complete new approach to the analysis of blood glucose time series,

where most of the methods have been based on DFA [30, 31] or Sample Entropy

(Multiscale) [32, 33, 21]. Since these series often include consecutive equal

values that may interfere with a correct PE computation, they were addressed

as recommended in [17, 34]. The possible influence of subsequence amplitude

differences was also studied and quantified [27]. As a result, a combined PE

method was optimized to maximize the possible differences between diabetic

and non–diabetic records. In addition, a comparative analysis of the impact

of equal values and amplitude differences in PE segmentation performance was

carried out.

2. Methods

2.1. Permutation Entropy

The standard PE method was introduced in [17]. It is a simple complexity

measure that can be applied to any time series, and it is also robust with

respect to signal noise. This metric is based on sample order instead of sample

amplitude.

PE can therefore be applied to glucose records. It assesses the temporal

5



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

structure of a sequence, inherits its causal information [35], and it is not af-

fected by nonlinear monotonous transformations that could be introduced by

the glucose monitors. It can be applied to deterministic or stochastic systems

without any assumptions about the underlying process [36].

The mathematical definition is as follows. Given a discrete time series

y[j], j ∈ N, y[j] ∈ R, of length N , y[j] = {y[0], y[1], . . . , y[N − 1]}, for each

index j, a subsequence of length m can be extracted from y[j] as:

xj [i] = {y[j], y[j + 1], . . . , y[j +m− 1]} = {x[0], x[1], . . . , x[m− 1]}

The subsequence xj [i] can then be re–arranged in ascending order, resulting in

x∗j [i] = {x[(0)], x[(1)], . . . , x[(m− 1)]}, with x[(0)] ≤ x[(1)] ≤ x[(2)], . . . , x[(m−

2)] ≤ x[(m−1)]. A list of the ordinal indices associated to the initial xj [i] is up-

dated according to the changes performed in the subsequence during the sorting

process. The resulting list of length m, [(0), (1), . . . , (m− 1)], is then compared

with all the M = m! possible permutations of these values without repetition,

[σ(0), σ(1), . . . , σ(m − 1)] . When a coincidence is found at permutation k, a

matches counter c is increased, c[k] = c[k] + 1, 0 ≤ k < M . Numerical examples

of this process can be found in [37, 26, 25, 38]. Finally, a probability for each

permutation is estimated as:

p[k] =
c[k]

N −m+ 1
(1)

PE can then be computed as:

PE(y,m,N) = −
∑

∀k
p[k] log p[k] (2)

The computation of PE may involve an additional parameter, an embedding

delay τ . In such a case, the subsequences are extracted as:

xj [i] = {y[j], y[j + τ ], y[j + 2τ ], . . . , y[j + (m− 1)τ ]},
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with τ ≥ 1. There are no general guidelines regarding how to select the input PE

parameters m and τ [39]. The higher is m, the more reliable is the value of PE

[27, 26]. However, m! should be smaller than N to ensure a reasonable minimum

for c[k] in the computation of a stable p[k] value [25]. A trade–off has to be found

experimentally [27]. As a result, most PE studies, if not all, use an interval for

m, such as the recommended 3, . . . , 7 interval [17, 40], or wider, between 2 and

15 for example, as in [41]. With regard to the embedding delay, many works

recommend to assume τ = 1 [17, 11, 27] (although additional information can be

obtained with τ > 1), since these values may lead to frequency aliasing. Other

works propose to combine simultaneously different τ values [39].

The dissimilarity computation in PE does not take into account the am-

plitude differences between subsequences, only the order, as described above.

Conceptually, this may lead to consider two subsequences equal despite having

completely opposed amplitudes, and therefore impact negatively on the correct

interpretation of the system dynamics under analysis. To address this problem,

a number of approaches have been proposed in the scientific literature recently.

For example, in [38], an additional parameter q is introduced in the permuta-

tion type as an additional element, which quantifies the differences dj [i] between

consecutive values in xj [i]:

q =

⌊
max(dj [i])

std(dj [i])× α

⌋

where dj [i] = {|y[j + 1]− y[j]| , . . . , |y[j +m− 1]− y[j +m− 2]|}. The closer

the precision regulation factor α is to zero, the more permutation types can be

generated. The authors use α = 1 [38]. Other methods also employ parameters,

such as in the Amplitude Aware Permutation Entropy (AAPE) method [27],

but in this case only one parameter, A ∈ [0, 1], is necessary to be defined. In

AAPE, instead of increasing the corresponding histogram bin by 1, when an

ordinal pattern match is found, a relative normalised probability is used. This
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probability is based on the mean value:

m−1∑

i=0

(
1

m
|x[i]|

)

and differences between consecutive samples:

m−1∑

i=1

(
1

m− 1
|x[i]− x[i− 1]|

)
,

normalised by all the contributions. The A parameter accounts for the relative

weight of mean and differences. In signal classification applications, both terms

are equally important, and therefore A = 0.5 or greater is recommended. To

detect abrupt changes, A << 0.5 makes AAPE more sensitive [27]. Thus, c[k]

is updated with a new term:

c[k] = c[k] +
A

m
|x[0]|+

m−1∑

i=1

(
A

m
|x[i]|+ 1−A

m− 1
|x[i]− x[i− 1]|

)
(3)

with:

p[k] =
c[k]∑
∀k
c[k]

(4)

We term the addition of this factor to PE, Amplitude Included Permutation

Entropy (AIPE), to avoid possible confusion with the complete AAPE method

[27]. In the original paper, the authors coined the term AAPE, but they also

introduced a modification in the definition of the permutation patterns that is

not implemented here.

Another drawback of the standard PE algorithm is the ambiguity when there

are equal values in the subsequence [26]. The standard PE method neglects

equal values, and if present, proposes to add random perturbations to avoid

them [17]. Nonetheless, glucose time series include many equal values due to the

low resolution of the acquiring devices, and this is an issue that will have to be
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properly addressed [35, 42, 43]. Specific methods to address this drawback have

also been proposed. In [27], the number of all possible permutations of similar

states are considered to be used as scaling factors of the contributions of motifs

with equal states, increasing the algorithm complexity and computational cost.

Another solution is described in [34]. In this case, equal values are mapped to

the index of the first one. Therefore, the permutation pattern list must include

both permutations without and with possible repetitions, increasing the memory

requirements of the standard method.

The final method proposed in this paper to analyse the glucose records is

based on the standard PE algorithm, including the amplitude correction of [27].

The ambiguity of equal values is not explicitly addressed in the algorithm in

order to keep it simple and fast. As the results in Sec. 3 will confirm, amplitude

seems to play a more major role than equal values in the classification perfor-

mance of glucose time series. A detailed combined algorithm that implements

this method is shown in Algorithm 1.

However, different configurations of the method proposed will be tested in

order to characterise the possible influence of each drawback and the solutions

adopted, including the equal values disambiguation of [34], and the addition of

random perturbations [17].

Other metrics will also be tested. Specifically, SampEn [9] will be included

for comparative purposes. SampEn is probably the most applied non–linear

measure in the context of biomedical records, and it has also been used in

glucose time series [44, 45]. In [30], the performance of other clinical metrics

related to diabetes, for the same subjects, was assessed, and no one was found

to achieve significant results.

9
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necessary steps are included for completeness and to facilitate implementation
in any high level programming language.

Require: Permutations list h[0, . . . ,M − 1][0, . . . ,m− 1], N,m,M = m!, A
for j = 0, . . . , N − 1 do

for i = 0, . . . ,m− 1 do
xj [i]← y[j + i]
index[i]← i

end for
bSorted← false
while (bSorted=false) do

bSorted← true
for i = 0, . . . ,m− 2 do

if (xj [i] > xj [i + 1]) then
swap(xj [i], xj [i + 1])
swap(index[i],index[i + 1])
bSorted← false

end if
end for

end while
k ← 0
repeat

bEqual ← true
for i = 0, . . . ,m− 1 do

if index[i] 6= h[k][i] then
bEqual ← false
break

end if
end for
if (bEqual=true) then

c[k]← c[k] + A
m
|x[0]|+

m−1∑
l=1

(
A
m
|x[l]|+ 1−A

m−1
|x[l]− x[l − 1]|

)

end if
k ← k + 1

until (k ≥M OR bEqual=true)
end for
pe← 0
C ←∑

∀k
c[k]

for k = 0, . . . ,M − 1 do
p[k]← c[k]/C
if (p[k] > 0) then

pe←pe−p[k] ln p[k]
end if

end for

10
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2.2. Experimental dataset

The experimental dataset was composed of 206 blood glucose records sam-

pled at 5 minutes during 24h (288 samples). The records were acquired at the

Teaching Hospital of Móstoles, Madrid (Spain), from 262 subjects at risk of

developing diabetes, according to any of the following criteria [30]:

• Essential hypertension.

• BMI≥ 30kg/m2.

• A first–degree relative diabetes diagnosis.

During the 3 year study, patients were followed up. At the end of this period,

18 out of 206 were considered to have become diabetic patients if at least two

of the following criteria were met [30]:

• Fasting glucose≥ 126mg/dL.

• HbA1c ≥ 6.5%.

• Started on anti–diabetic drugs.

In case of contradicting or inconclusive results, tests were repeated. The

remaining 56 subjects were excluded at some point of the study due to age, or

interfering treatments. Further details of the experimental dataset can be found

at [30].

Blood glucose was monitored for 3 days for each patient, but only a clean

period (no artifacts, or less than 3 consecutive missing samples, which were

interpolated) of 24h was considered for analysis. If possible, this period started

at 8:00 on day 2. Although longer records would be desirable [1], subjects are

reluctant to be monitored for more than a few days, and the longer the records,

the more likely artifacts are.
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Records of patients who finally were diagnosed of diabetes were termed D,

whereas the remaining records were termed ND. An example of each class is

shown in Fig. 1.

0 100 200
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tu
d

e
(n

or
m

al
is

ed
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Figure 1: Example signals of the experimental database. Sampling period was 5 minutes.
Duration 24h.

2.3. Statistical analysis

The key items of the statistical analysis to assess the validity of the approach

proposed are:

• Statistical significance. The results obtained with PE or any of its deriva-

tives studied, were first analysed using a Shapiro–Wilk test to assess the

distribution of the data. Since this procedure confirmed the normality

of all the results, no further analysis was required in this regard. Then,

a Student’s t–test was applied to quantify the statistical significance of

the possible differences between D and ND records. The threshold for

significance was set at p < 0.05.

• Classification performance. The differences were studied using the Area

Under Curve (AUC) of the Receiving Operating Characteristic (ROC)
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as a generic performance measure [46]. The sensitivity was defined as

the ratio of correctly classified D records, and the specificity, the same for

true negatives (the proportion of correctly classified non–diabetic records).

The classification accuracy accounted for the correctly classified D and

ND records.

• Cross–validation. A cross validation method was applied to assess the

possible bias in the global classification results. The experimental dataset

was randomly split into two sets of equal size, one used for training, and

another one for testing. This validation was repeated 10 times, with re-

placement. The optimal PE threshold was obtained from the ROC analy-

sis of the training set, and then it was applied to the test set. The results

were quantified in terms of classification accuracy.

• Survival analysis. Since this classification also had an intrinsic time vari-

ability, namely, patients were diagnosed at quite different times during the

follow–up period, we applied a Cox proportional hazard regression model

for survival data analysis [47] to account for this variability. This model

works with the hazard model formula. It finds a relationship for the haz-

ard at time t, h(t), for a patient according to a set of explanatory variables

zi:

h(t) = h0(t)e

∑
∀i

βizi
(5)

where h0(t) is the baseline hazard, when all zi = 0, and it may vary with

time, and exp(βi) are the hazard ratios. If a ratio is greater than 1, the

hazard associated to that variable increases and the survival or time of

event becomes shorter.

13



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

3. Results

The capability of the basic PE method [17] was tested first. The AUC

results for this experiment are shown in Table 1 for the entire dataset. Bandt

and Pompe [17] recommended m = 3, . . . , 7, and other works suggest m! < N

[27] to ensure a sufficient number of matches for a reliable estimation. However,

there are studies that recommend to maximise m to improve the resolution of

differences in PE [26]. Therefore, we chose to explore a relatively wide range of

m values, from 2 up to 9. On the other hand, we tried several values for τ , but

the AUC dropped abruptly for τ > 1. Consequently, only results with τ = 1

are reported.

For m = 2, the results are not significant at all. For m ≥ 3, there is a slightly

growing trend with m for AUC, confirmed by a decrease of p, well below the

threshold for significance.

m = 2 3 4 5 6 7 8 9
AUC 0.531 0.712 0.729 0.725 0.720 0.728 0.745 0.753
p 0.251 0.009 0.005 0.005 0.004 0.003 0.002 0.001

Table 1: AUC results for the standard PE method and m ranging from 2 up to 9. Statistical
significance was assessed using the Student’s t–test.

A more detailed analysis of the ROC curves for PE, in terms of record

classification performance, is summarised in Table 2. Sensitivity, specificity,

and accuracy are quite stable for m ≥ 3, similar to AUC. The results are the

most homogeneous for m ≥ 7, but with the highest sensitivity at m = 3, and

the highest specificity and accuracy at m = 5. The interpretation of accuracy

can be misleading in a few cases since it is very closely related to specificity due

to the unbalanced classes (18 subjects for D, and 188 for ND).

For comparative purposes, the class separability analysis was repeated using

the SampEn metric [9]. The highest AUC was obtained for m = 1, and r = 0.26,

yielding AUC=0.667, p = 0.0030, Sensitivity=66.7%, Specificity=67.5%, and

14
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m Sensitivity Specificity Accuracy
9 72.2 72.3 72.3
8 72.2 72.3 72.3
7 72.2 73.4 73.3
6 77.8 63.8 65.0
5 61.1 80.9 79.2
4 72.2 67.0 67.5
3 77.8 56.9 58.7

Table 2: Classification results for PE with m ranging from 3 up to 9.

Accuracy=67.4%. This is the maximum performance that could be achieved

with SampEn. Other results with the usual recommended values of m = 2 and

r = 0.25 were: AUC=0.597, Sensitivity=55%, Specificity=68%, not statistically

significant, p = 0.1745. DFA was not used in the experiments because the

standard DFA method did not find any significant differences in this dataset, a

modified and customised version of the DFA algorithm is required, as described

in [30], which is beyond the scope of this paper.

In order to try to improve the performance of PE when equal samples are

contiguous, as is the case for glucose records, a small random noise level was

added to the time series, as recommended in [17]. This level was 0.001% and

0.0001% of the peak–to–peak normalised amplitude of the input signal. Each

test was repeated 100 times. The quantitative results are expressed as mean±SD

(Standard Deviation) in Table 3, to account for the variability of the 100 random

noise realisations.

Noise m = 3 4 5 6 7 8 9
0.001% AUC 0.656± 0.024 0.674± 0.019 0.687± 0.019 0.704± 0.015 0.721± 0.017 0.732± 0.015 0.746± 0.015

p 0.025± 0.031 0.007± 0.007 0.004± 0.006 0.002± 0.001 0.002± 0.001 0.001± 0.001 0.001± 0.001
0.0001% AUC 0.652± 0.026 0.672± 0.019 0.690± 0.018 0.703± 0.016 0.717± 0.016 0.729± 0.016 0.744± 0.016

p 0.027± 0.028 0.008± 0.007 0.004± 0.003 0.002± 0.002 0.002± 0.001 0.002± 0.001 0.001± 0.001

Table 3: AUC results for the standard PE method with small random noise added to the
experimental dataset to avoid consecutive equal values. Standard deviation for each parameter
is included to provide an insight of the results’ stability.

Noise amplitudes of 0.01% or higher, blurred the distinguishing features of

the records, and no significant differences were found for any m (AUC=0.568±
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0.041 for m = 9). Smaller amplitudes yielded similar performance as in Table

3, although slightly lower (AUC=0.699 ± 0.024 for m = 9 and 0.00001%). In

any case, the addition of random perturbations does not seem to improve the

performance of the standard PE method, despite consecutive equal values being

a frequent anomaly in these records. Therefore, this approach is not used in the

rest of the experiments.

Using the method proposed in [34] with m = 4, the result was AUC=0.699,

with p = 0.010, statistically significant but worse than with the standard PE

method, and at a higher memory and implementation cost. This modified PE

algorithm uses additional symbol permutations to account for ties, assigning the

same ordinal index to all the equal values, namely, repetitions are now possible

in the σ sequence. As a result, for m = 4, the m! = 24 possible patterns become

75, the corresponding Bell number [40], to include the patterns with ties, such

as [1, 2, 2, 2] and [2, 2, 2, 1], among many others [34].

The amplitude differences between sequences were addressed implementing

Eq. 3. The values tested for parameter A were 0, 0.5, and 1. The results

obtained in this case are shown in Table 4. As in the standard PE algorithm,

AUC increases with m, with the maximum value at m = 9, but with higher

values in AIPE.

2 3 4 5 6 7 8 9
A = 0.0 AUC 0.545 0.751 0.751 0.760 0.762 0.765 0.771 0.782

p 0.693 0.001 0.001 0.001 0.001 0.001 0.001 0.001
A = 0.5 AUC 0.500 0.733 0.751 0.748 0.750 0.754 0.765 0.775

p 0.673 0.002 0.001 0.001 0.001 0.001 0.001 0.001
A = 1.0 AUC 0.522 0.721 0.753 0.749 0.745 0.751 0.760 0.769

p 0.411 0.003 0.001 0.001 0.001 0.001 0.001 0.001

Table 4: Results obtained using the AIPE method for the same experiments.

The highest AUC was obtained for A = 0.0 and m = 9. The value of the A

parameter is not in agreement with the recommendations of the proposers of the
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method [27]: medium A values for classification purposes, and low A values for

spike detection. However, the differences are very small. Furthermore, A = 0.0

enables the simplification of Eq. 3.

The classification performance of the AIPE method in that case is shown in

Table 5. The accuracy is also quite stable with m, with the highest value at

m = 6 due to the maximum Specificity.

m Sensitivity Specificity Accuracy
9 77.8 71.8 72.3
8 72.2 73.4 73.3
7 66.6 75.0 74.3
6 66.6 79.3 78.2
5 77.8 70.2 70.8
4 77.8 75.0 75.2
3 72.2 78.2 77.7

Table 5: Classification results for AIPE with A = 0.0, and m = 3, ..., 9.

According to the results in Table 5, the cross validation test was conducted

for m = 4 and A = 0.0 using the AIPE method. The numerical average results of

AIPE values were 3.5878±0.3916 for the non–diabetic class, and 3.1564±0.4166

for the diabetic class. The box plots in Figure 2 graphically show these results.

They are in accordance with the hypothesis of decomplexification of pathological

systems [48]. A healthy system has arguably a finer regulatory capability, and

it does not allow big physiological excursions from normality, trying to mitigate

them as soon as they are detected. Conversely, a pathological system has a more

delayed response. As a result, records from healthy subjects are expected to ex-

hibit frequent low amplitude oscillations (higher complexity), whereas records

from a dysregulated system contain longer and larger oscillations (higher vari-

ability) [30].

The results of the cross validation test are shown in Table 6. Half of the

records of each class were used for training, and the others for validation. The

selection of the records took place randomly with replacement, 10 times. The
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Figure 2: Box plots of the PE results for the classes ND and D (mean and 95%).

classification threshold was obtained from the ROC curves as the closest point

to (0,1) [49]. Fig. 3 depicts the ROC curve obtained for the entire dataset.

Despite having half the number of subjects for analysis, the Shapiro–Wilk

test confirmed the data normality, even for the D training/validation class with

only 9 samples. The differences were also still statistically significant, with

p = 0.022± 0.014.

Training set AIPE Threshold Accuracy(%)
1 3.247 74.8
2 3.405 72.8
3 3.234 76.7
4 3.338 76.7
5 3.305 74.8
6 3.405 67.0
7 3.364 71.8
8 3.247 79.6
9 3.405 68.9
10 3.303 73.8

Mean±STD 3.326±0.069 73.7±3.8

Table 6: Results of the 10 cross validation tests for m = 4 and A = 0.0.

The Cox proportional–hazards model was computed using the statistical
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Figure 3: ROC curve for the entire dataset. AUC=0.782.

software R [50], package survivalwith 206 samples and 18 events. The results of

this analysis are shown in Table 7 (using the same AIPE values as for Table 8).

coef. exp(coef) se(coef) z Pr(> |z|)
AIPE -2.87342 0.05651 0.66261 -4.337 0.0000145

exp(coef) exp(-coef) lower .95 upper .95
AIPE 0.05651 17.7 0.01542 0.2071

Concordance=0.812 (se=0.073)
Rsquare=0.099 (max. possible 0.565)
Likelihood ratio test=21.45 on 1 df, p = 0.000003641
Wald test=18.81 on 1 df, p = 0.00001448
Score (logrank) test=21.5 on 1 df, p = 0.000003535

Table 7: Results obtained using the Cox regression analysis available in the R statistical
software package.

These results confirm that AIPE variable seems to be a reliable tool to find

differences between prospective D and ND records. Since the sign is negative,

the hazard (becoming diabetic) is higher for subjects with lower values of that

variable. The hazard ratio (exp(coef)) of developing diabetes is 0.05651 for
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each AIPE increment of 1, or 17.7 for each AIPE decrement of 1, which again

confirms the predictive value of AIPE. Moreover, the analysis of proportional

hazards hypothesis yielded p = 0.45, in other words, we can safely conclude that

the risks are not proportional. As an example, the time of event, in months, is

shown for all records in class D in Table 8, as well as the class assigned by the

method.

D record Month of event AIPE Class assigned
1 12 4.016 ND
2 24 3.303 D
3 21 3.225 D
4 10 3.516 ND
5 10 2.532 D
6 7 2.983 D
7 31 4.030 ND
8 12 3.405 ND
9 2 2.761 D
10 11 3.338 D
11 24 3.243 D
12 13 3.072 D
13 17 2.800 D
14 3 3.220 D
15 16 2.631 D
16 15 2.811 D
17 9 2.915 D
18 14 3.005 D

Table 8: Time of event (diabetes diagnosis) for all the 18 records in class D.

4. Discussion

In this study, PE has been utilised to characterise the differences between D

and ND blood glucose records before the disease was diagnosed. The original

PE method provided significant differences for all the embedded dimensions

tested except m = 2. Specifically, the best classification results were achieved

for m ≥ 7. In the original paper [17], authors recommended m = 3, . . . , 7.

We included two more cases as an attempt to find the maximum AUC, but
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it seems to lie beyond m = 9. However, due to the computational cost and

memory requirements, it was not possible for us to test the method for m ≥ 10.

Moreover, the classification accuracy is less dependent on m, overpassing the

necessity of greater m values. For illustrative purposes only, the running time

of each test for m = 3 is a few seconds, whereas for m = 9 is 40 minutes, using

a computer with an Intel c©Core i7 processor at 2.6 GHz and 16 GB of RAM.

The results obtained with SampEn were relatively poor, with a maximum

accuracy of 67.4%. Moreover, SampEn was very sensitive to the input parame-

ters m, and r. In fact, the optimal values had to be found by a grid search. The

records are probably too short for this metric, 288 samples, and that is why a

more robust measure is necessary in this context.

The addition of noise to remove the ambiguities due to sample equalities did

not seem to improve the performance of PE. Authors in [17] probably assumed

equal values to be very rare in continuous distributions, but that is not the case

in blood glucose records. For all the levels tested, the performance in terms of

AUC decreased. Obviously, if the perturbations exceed a certain limit, signal

differences are blurred by the noise and the method fails to find any significant

segmentation between classes. This is the case for the noise amplitude of 0.01%.

Once the equalities are broken without excessive signal distortion, smaller noise

amplitudes does not seem to further improve performance. Other methods to

address this drawback [34] did not improve the performance either.

Addressing amplitude differences with the AIPE method, more significant

differences than with the PE method between D and ND records were found,

in almost all embedding dimensions, from m = 3 up to m = 9. Only the

case m = 2 seems to underperform again. The results are fairly similar in

the range tested, with no significant changes in classification performance with

m, with the highest AUC at m = 9, and the highest classification accuracy

21



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

at m = 6 (Table 5). This is a great advantage of PE and AIPE over other

complexity or regularity estimators, very sensitive to the input parameter values.

The additional parameter A for AAPE also exerts a minimum influence on the

results, being A = 0.0 slightly the best selection in this case (Table 4). The

global performance of AIPE is better than that of PE, at the expense of a little

bit more computational complexity.

The final cross validation test confirms the goodness of the approach based

on AIPE. Although the performance is moderately lower in terms of classifica-

tion accuracy, and the results are less statistically significant than for the entire

groups, they are still valid. The deletion of the test instances causes a per-

turbation in the dataset that arguably decreases the accuracy of the classifier

predictions, but except for two cases, the accuracy is well above 70%.

The Cox survival analysis also confirmed the applicability of AIPE as a

metric to classify the individuals into D and ND. The higher AIPE, the less risk

of developing diabetes. This analysis employed the time–of–event data available

during the three year study, but the accuracy of the method could arguably be

improved if the follow-up had been longer, or more uniform (all the subjects

followed–up till the end of the study). It can be reasonably hypothesized that

some ND patients became D afterwards. Unfortunately, no specific data in this

regard was available.

5. Conclusions

In this paper, we have described and compared several methods related to

PE for glucose time series analysis. The results seem to confirm that series from

patients that will eventually develop a diabetes may exhibit a lower complexity

than healthier counterparts. The results also show that the performance of all

the variations tested is quite similar, the influence of m is almost negligible
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for m ≥ 3, and the amplitude differences are more representative than equal

consecutive samples. The main limitations of the study are the relative small

sample size, mainly for the D class (18 subjects), and the short duration of the

records, 24h.

The PE algorithm and some of its derivatives have been applied for the first

time to glucose records. This metric was able to find statistically significant dif-

ferences between records of future diabetic and non–diabetic patients, acquired

up to three years before the diagnosis, with only 288 samples. The numerical

results suggest that there is a correlation between the lower AIPE values, and

the possibility of becoming diabetic. The method proposed, once confirmed in

further studies, could be implemented on new preventive medical tools, which

is of vital importance given the tremendous challenge that diabetes entails, and

all the accompanying clinical complications. The core of these medical tools

would be a continuous glucose monitoring and PE computation scheme, with a

medium term analysis of the PE trend. In case this trend reflected a significant

drop in PE values, countermeasures (medical, behavioural, dietary) should be

applied, while suspected diabetes is still on the way.

The analysis of this kind of biomedical records using complexity or regularity

measures is often a very difficult task. Not many databases are available, usually

involving a few short records, and artifacts such as missing samples or saturated

epochs are a recurrent phenomenon in these signals. Only works based on DFA

[31], and to a less extent, on SampEn variations [33], have been successful so far

in this context. However, in this case the results obtained with SampEn did not

fulfil the expectations, probably due to the short length of the records. It is fea-

sible that longer records would contribute to more consistent findings regardless

of the metric employed. The recently approved International Consensus on Use

of Continuous Glucose Monitoring [1] recommends to acquire at least two weeks
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of data, and, if possible, reported in three time blocks (sleep, wake, and 24h).

The availability of these data will surely foster new and improved methods of

analysis.

The main advantages of the method proposed are its simplicity and stabil-

ity, inherited from the underlying PE method. The algorithm can be easily

implemented in any computer platform and programming language. If memory

is a constraint, low values of m also provide good classification results. In any

case, different m values yield a very similar performance. On the other hand, a

disadvantage of the algorithm is the computation by default of all the m! per-

mutations, instead of creating them dynamically, as they are found in the input

sequence. This is an open issue in all PE methods that should be addressed in

future studies.

Although the method finally proposed achieved a promising performance on

class recognition, the experimental dataset was drawn from a specific popula-

tion, and the generalisation of the results requires further studies using other

patient cohorts. Besides, the method is based on ordinal patterns, and seems

to outperform amplitude based methods (SampEn), but a combination of both

approaches could be even more sensitive, since each scheme alone does not prob-

ably provide the full picture of the glucose dynamics.

In addition to find better PE derivatives or preprocessing techniques (to

avoid equalities in neighbouring values), it would be also very important to find

more efficient PE algorithms in terms of memory requirements and permutation

search cost. For relatively high values of m, it is very difficult to run the

algorithm on state-of-the-art personal computers, and therefore this m region

remains unexplored in many cases.
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