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University of Cambridge, Department of Radiology, CB2 0QQ Cambridge, United Kingdom

Cancer Research UK Cambridge Centre, CB2 0RE Cambridge, United Kingdom

Andrea Tangherloni†, E-mail : andrea.tangherloni@disco.unimib.it

University of Milano-Bicocca, Department of Informatics, Systems and Communication, 20126 Milan, Italy

University of Cambridge, Department of Haematology, CB2 0XY Cambridge, United Kingdom

Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, CB10 1SA Hinxton, United Kingdom

Paolo Cazzaniga, E-mail : paolo.cazzaniga@unibg.it

University of Bergamo, Department of Human and Social Sciences, 24129 Bergamo, Italy

SYSBIO.IT Centre of Systems Biology, 20126 Milan, Italy

Marco S. Nobile, E-mail : nobile@disco.unimib.it

University of Milano-Bicocca, Department of Informatics, Systems and Communication, 20126 Milan, Italy

SYSBIO.IT Centre of Systems Biology, 20126 Milan, Italy

Giorgio Russo, E-mail : giorgio.russo@ibfm.cnr.it

Institute of Molecular Bioimaging and Physiology, Italian National Research Council, 90015 Cefalù (PA), Italy
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Abstract

Background and Objectives: Image segmentation represents one of the most

challenging issues in medical image analysis to distinguish among different ad-

jacent tissues in a body part. In this context, appropriate image pre-processing

tools can improve the result accuracy achieved by computer-assisted segmenta-

tion methods. Taking into consideration images with a bimodal intensity distri-

bution, image binarization can be used to classify the input pictorial data into

two classes, given a threshold intensity value. Unfortunately, adaptive thresh-

olding techniques for two-class segmentation work properly only for images char-

acterized by bimodal histograms. We aim at overcoming these limitations and

automatically determining a suitable optimal threshold for bimodal Magnetic

Resonance (MR) images, by designing an intelligent image analysis framework
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tailored to effectively assist the physicians during their decision-making tasks.

Methods: In this work, we present a novel evolutionary framework for image

enhancement, automatic global thresholding and segmentation, which is here

applied to different clinical scenarios involving bimodal MR image analysis: (i)

uterine fibroid segmentation in MR guided Focused Ultrasound Surgery, and

(ii) brain metastatic cancer segmentation in neuro-radiosurgery therapy. Our

framework exploits MedGA as a pre-processing stage. MedGA is an image en-

hancement method based on Genetic Algorithms that improves the threshold

selection, obtained by the efficient Iterative Optimal Threshold Selection algo-

rithm, between the underlying sub-distributions in a nearly bimodal histogram.

Results: The results achieved by the proposed evolutionary framework were

quantitatively evaluated, showing that the use of MedGA as a pre-processing

stage outperforms the conventional image enhancement methods (i.e., histogram

equalization, bi-histogram equalization, Gamma transformation, and sigmoid

transformation), in terms of both MR image enhancement and segmentation

evaluation metrics.

Conclusions: Thanks to this framework, MR image segmentation accuracy is

considerably increased, allowing for measurement repeatability in clinical work-

flows. The proposed computational solution could be well-suited for other clini-

cal contexts requiring MR image analysis and segmentation, aiming at providing

useful insights for differential diagnosis and prognosis.

Keywords: Image pre-processing, Adaptive thresholding, Quantitative

medical imaging, Evolutionary Computation, Magnetic Resonance

Imaging, Bimodal intensity distribution

1. Introduction

Medical image segmentation concerns both detection and delineation of

anatomical or physiological structures from the background, distinguishing among

the different components included in the image [1]. This important task allows

for the extraction of clinically useful information and features in medical im-5
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age analysis [2, 3]. Accordingly, computer-assisted approaches enable quantita-

tive imaging [4], whose aim is to derive accurate and objective measurements

from digital images regarding a Region of Interest (ROI) [5, 6]. Indeed, image

segmentation is still one of the most compelling research areas, especially in

medical image analysis [4], in which accurately delineating the ROIs is a criti-10

cal task, since manual segmentation procedures are time-expensive, error-prone,

and operator-dependent (i.e., they do not guarantee result repeatability).

In Pattern Recognition, among the low-level intensity-based techniques—

which are widely adopted in scenarios with real-time constraints—the most

basic unsupervised image segmentation approach is global thresholding that15

essentially reduces to a pixel classification problem [7]. In particular, image

binarization classifies the input pictorial data into exactly two classes (i.e., fore-

ground and background), given a threshold intensity value [8]. This global

threshold value is efficiently computed by operating on the image histogram

alone. Unfortunately, image binarization techniques work properly only for in-20

put images characterized by a bimodal histogram [9], while in practice different

types of regions in an image could overlap, thus affecting the bimodality con-

ditions of the gray level histogram, where the histogram modes semantically

correspond to different types of regions. Image pre-processing can definitely

improve the accuracy of computer-assisted segmentation methods [8], by sharp-25

ening the peaks of the two sub-distributions, so that the resulting histogram

is characterized by a stronger bimodality, even in the case of blurred region

contours and of the related Mach band effect pertaining to edge-detection in

the human visual system [10, 11]. As a way of example, in radiology this phe-

nomenon is accentuated in the edges of adjacent regions that slightly differ in30

terms of gray level intensities [12].

No existing pre-processing technique addresses the issues related to medical

image enhancement for subsequent binarization using adaptive thresholding [9].

Literature methods may be inadequate when dealing with low-contrast images

[13], producing false edges and under-/over-segmentation when input images35

are affected by noise, as in the case of Magnetic Resonance Imaging (MRI) [14].
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This modality represents the most common soft-tissue acquisition technique in

current medical practice, with particular relevance in oncological imaging, al-

lowing for high-contrast between the tumors and the surrounding tissues [15].

Unfortunately, MRI data are affected by acquisition noise [16] and are also prone40

to imaging artifacts, mainly caused by magnetic susceptibility and large inten-

sity inhomogeneities of the principal field (i.e., streaking or shadowing artifacts

[17]), especially in the latest MRI acquisition devices with high magnetic field

intensity. In order to overcome these limitations and automatically determine a

suitable optimal threshold, in this work, we present a novel framework for im-45

age enhancement, automatic global thresholding and segmentation, where the

pre-processing stage is realized by means of MedGA [18], an intelligent image

enhancement method based on Genetic Algorithms (GAs) that improves the

threshold selection, obtained by the efficient Iterative Optimal Threshold Se-

lection (IOTS) algorithm [19, 20], between the underlying sub-distributions in50

a nearly bimodal histogram, so effectively assisting the physicians during their

decision-making tasks. GAs have been previously employed in this field for dif-

ferent purposes, as in the case of [21], where the optimization capabilities of

GAs were exploited to identify the best parameters of a de-noising filter applied

to brain MR images.55

In this paper, we propose a complete framework (graphically represented in

Fig. 1) that is not limited to the enhancement of MR images, but covers all the

steps required for image analysis, including the radiology reporting phase. In

more detail, every processing step is taken into account, from cropping (given

a bounding region containing an image portion characterized by a bimodal in-60

tensity distribution), normalization (also by means of interactive windowing)

and enhancement of MR images, to the application of an efficient thresholding-

based segmentation algorithm for quantification purposes. Indeed, our final goal

is the definition of a computational tool well-suited for several clinical contexts,

capable of providing useful insights for differential diagnosis and prognosis.65

In particular, this computational approach is here applied to two different

clinical scenarios involving contrast-enhanced (CE) MR image analysis:
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Figure 1: Integration of the proposed computational framework within the context of a clin-

ical scenario, aiming at pointing out its relevance in practical medical applications. All the

steps required for medical image analysis, including the quantification and radiology reporting

phase, are considered.

• uterine fibroid segmentation in Magnetic Resonance guided Focused Ul-

trasound Surgery (MRgFUS) [22];

• brain metastatic cancer segmentation in neuro-radiosurgery therapy [23].70

In both cases, a precise, reliable and reproducible segmentation is mandatory,

whereas these tasks are generally carried out manually by experienced physi-

cians. We highlight the advantages of our evolutionary framework by quan-

titatively comparing the results achieved by exploiting MedGA against the

most common image pre-processing methods (i.e., histogram equalization, bi-75

histogram equalization, Gamma transformation, and sigmoid transformation),

in terms of both MR image enhancement and segmentation.

The manuscript is structured as follows. The state-of-the-art of image pre-

processing methods is presented in Section 2, while the theoretical aspects of

GAs and image thresholding are explained in Section 3. Section 4 introduces80

the analyzed MRI datasets, as well as the proposed pre-processing application

of MedGA. Section 5 shows the achieved experimental results on the analyzed

MR images. Some discussions and conclusions are provided in Section 6.
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2. Background

Image pre-processing techniques often include operations at the lowest level85

of abstraction—wherein both input and output are gray-scale images—based on

intensity transformations. These global transformations just deal with the gray

levels, without considering the pixel position, and the corresponding relationship

with its neighborhood in the image. The main objective of pre-processing is to

improve the raw imaging data, dealing with undesired artifacts or enhancing90

some image features important for further processing [24, 25].

Conventional pre-processing techniques generally expand a narrow input

range of gray levels into a wider range of output levels, to improve the image

detection performance. Pre-processing tackles the problems related to image

degradation correction, whether no assumption about the nature of noise/artifacts95

can be made, as well as when neither a priori knowledge about the acquisition

device nor the objects of interest are available [24]. In this context, Soft Com-

puting methods could be considerably beneficial by considering, for instance,

meta-heuristics [26] or Fuzzy Logic [27] to find the best solution in a high vari-

ety of scenarios. More specifically, global search meta-heuristics are required to100

automatically identify the best solution case-by-case. Considering the Computa-

tional Intelligence techniques, GAs are the most appropriate framework because

of the discrete encoding of the candidate solutions and the combinatorial struc-

ture of the search space. More specifically, here we exploited GAs to efficiently

encode the individuals by means of their corresponding image histograms.105

In medical imaging, pre-processing steps are valuable for further computer-

assisted image analysis, by making anatomical or functional structures more

easily detectable. Indeed, biomedical images usually require methods tailored

on a specific task [28], as in the case of well-designed image pre-processing tech-

niques that can improve the ROI feature detection, which is then exploited in110

downstream image analysis pipelines. For instance, these pre-processed data

are suitable for image segmentation algorithms, as they improve their accu-

racy. Therefore, pre-processing involving image enhancement operations may
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be needed to achieve more identifiable and sharpened boundaries for medical

image segmentation [29]: a better distinction among adjacent tissues in medical115

images can be achieved, by means of an adequate contrast performing gray-

scale transformations [30]. Näıve smoothing techniques, based on both linear

(e.g., average or Gaussian filters) or non-linear (median filter) operators, may

improve the shape of the histogram [8], also by widening the separation be-

tween the two modes in bimodal gray-level histograms [31]. These approaches120

are generally exploited for noise reduction, even though sharp boundaries might

be replaced with a fuzzy region of varying shades of gray. Thus, such a kind

of low-pass filtering could affect the actual pictorial content, compromising the

clinical effectiveness of the subsequent ROI detection and delineation phases.

Among the most used image enhancement techniques, Histogram Equaliza-125

tion (HE) [7] could be not suitable for medical images due to the obtained

over-brightness [14]. This method uniformly spreads the input gray level values

according to the cumulative density function of the image histogram. However,

HE does not preserve the input mean brightness, possibly suffering from over-

enhancement and giving rise to artifacts such as washed-out effect [32]. This130

global transformation applies contrast stretching just on gray levels with the

highest frequencies, causing a significant contrast loss for gray levels character-

ized by lower occurrences in the input histogram [33]. In order to address the

issues related to input mean brightness preservation, a modification of the stan-

dard HE technique, called Bi-Histogram Equalization (Bi-HE), was introduced135

[33]. Bi-HE attempts to improve the results achieved by HE, by first splitting

the original histogram into two components according to the global mean of

the original image, and then separately performing the HE method on the two

sub-histograms.

Other traditional global gray level transformations generally used for con-140

trast stretching are formalized as transformation functions of the form s = T (r),

where T (·) maps an input intensity value r into an output intensity value s [7].

Power-law transformation—also called Gamma Transformation (GT)—is a non-

linear operation of the form T (r) = crγ , where typically c = 1. For instance,
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when the image is predominantly dark, an expansion of the intensity levels is145

desirable. In such a case, GT with γ < 1 yields a brighter image by increas-

ing the number of hyper-intense pixels. On the contrary, by using γ > 1, the

GT converts the input gray-scale range into a darker one, by increasing the

occurrences of darker pixels. Obviously, the value of γ strongly depends on the

medical application. Accordingly, logarithmic and anti-logarithmic transforma-150

tions make an image much brighter and darker, respectively. Unfortunately, for

medical images characterized by low-contrast and weak edges at adjacent tissue

boundaries, GT may result in merely brighter or darker images, leading to dif-

ficulties in the visualization and interpretation of different tissues. Therefore,

to adequately enhance contrast, the two different behaviors—corresponding to155

values γ > 1 and γ < 1—should be combined for contextually decreasing the

darker pixel gray values and increasing the brighter pixel gray values. This

results in a significant improvement of the contrast, by enhancing the edges

thanks to the increased gradient magnitude of the image [14].

This kind of contrast stretching can be achieved by using a Sigmoid intensity160

Transformation (ST), which darkens a wide range of hypo-intense gray levels

and brightens a wide range of hyper-intense gray levels [7]. Such an opera-

tion indirectly increases the difference between low and high intensity values,

resulting in the overall contrast enhancement of the image [14].

In addition to HE, which automatically yields an image with a uniform his-165

togram, it is possible also to explicitly specify the desired shape of the output

histogram. This method, named Histogram Specification (HS), aims at match-

ing the histogram of the gray level intensities of the input image against a desired

histogram [7]. Unfortunately, such approaches cannot be applied in the case of

image datasets with heterogeneous gray level distributions, since the histogram170

to be matched should be defined either a priori for all the images in the dataset

or interactively for each processed image, by separating and shaping the two

underlying sub-distributions [34].

Unlike existing image enhancement techniques, here we aimed at the defini-

tion of a framework employing an appropriate pre-processing method that is able175
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to reliably enhance a particular type of medical images for further automated

image processing phase. In particular, MedGA [18] tackles the problems related

to medical images with a roughly bimodal histogram, by strengthening the two

underlying sub-distributions. The main goal of MedGA is to yield pre-processed

medical images well-suited for classic threshold-based segmentation techniques180

to improve ROI delineation. By so doing, the computational load, required for

achieving accurate segmentation results, is transferred from the pixel classifica-

tion stage to the pre-processing phase by means of an effective Soft Computing

technique. Differently, supervised—such as Artificial Neural Networks (ANNs)

[35] and Support Vector Machines (SVMs) [36]—as well as unsupervised learn-185

ing approaches—such as Self-Organizing Maps (SOMs) [37]—require a training

phase and are generally exploited in image classification and recognition tasks.

The MR images enhanced with MedGA are finally segmented exploiting an

efficient version of the IOTS algorithm [19, 20]. For the sake of completeness,

we refer the interested readers to some extensive reviews about segmentation190

algorithms used in the field of medical images based on biophysical models

[38, 39, 40], such as in the case of ear imaging [41], female pelvic cavity [42], or

pigmented skin regions [43].

3. Theory

This section provides the prerequisite notions related to GAs and image195

thresholding, in order to understand the rationale and the key concepts con-

cerning this study.

3.1. Genetic algorithms

GAs represent an Evolutionary Computation (EC) technique for global opti-

mization tasks. Inspired by Darwin’s theory of biological evolution, GAs search200

optimal solutions to complex problems by evolving a population P of randomly

created candidate solutions [44]. In the most general formulation, each “individ-

ual” encoded as a fixed length string of characters taken from a finite alphabet

(i.e., the genes) represents a solution.
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Relying on a quality measure (i.e., the fitness value), promising individuals205

are selected according to a specific strategy for the next generation. These

individuals undergo crossover and mutation operations to the aim of exchanging

and introducing new genetic material in the population, respectively. To prevent

the quality of the best solution from decreasing during the iterations, the elitism

strategy may be exploited, by copying the best individual (or a subset of the210

best individuals) directly into the next generation without modifying it (them).

Finally, different termination criteria can be used; for instance, the optimization

stops when a given number of generations T is reached, or when the fitness

value of an individual is lower than a fixed threshold value (in the case of a

minimization problem).215

3.2. Image thresholding

The most straightforward unsupervised Pattern Recognition technique for

automatic image segmentation is global thresholding, which generally consists

in classifying pixels according to fixed criteria, usually specified as ranges of

intensities [8]. A specific case of image segmentation is binarization, a tech-220

nique that partitions the input image into two classes by considering a certain

intensity threshold value θ. Despite its simplicity, binarization efficiently pro-

vides effective solutions according to the different intensities in the foreground

and background regions of an image. The threshold value θ must be care-

fully chosen, considering the features of the image underlying the pixel intensity225

values. Consequently, given an image I consisting of M × N pixels, this in-

tensity threshold defines two different classes, by dividing the histogram of the

gray levels H into two parts, namely H1 and H2, according to the threshold

intensity value θ. The pixels in the image I are partitioned into the two sub-

regions R1 =
{
I(x, y) : I(x, y) > θ

}
and R2 =

{
I(x, y) : I(x, y) ≤ θ

}
, for every230

x = 1, 2, . . . ,M and y = 1, 2, . . . , N .

Several literature methods have been proposed to implement adaptive thresh-

olding methods, able to automatically select a proper value for each analyzed

image. The most widespread algorithms for dynamic thresholding are: the

10



Iterative Optimal Threshold Selection (IOTS) [19]; the method proposed by235

Otsu [45]; the Minimum-Error Thresholding (MET) method conceived by Kit-

tler and Illingworth [46], later extended by Ye and Danielsson [47]. All these

approaches are closely related and strongly rely on images characterized by bi-

modal histograms [9]. In addition, the two populations (i.e., foreground and

background pixels in the case of two-class image segmentation), assumed to be240

nearly Gaussian distributions, should be characterized by approximately equal

size and variance [48]. When these bimodality assumptions are not satisfied

the aforementioned algorithms show some limitations. As a matter of fact, the

optimal threshold θopt—especially in the case of Otsu’s method—either over-

or under-estimates the ROI, since the computed threshold tends to split the245

class with larger size and to bias towards the class with larger variance. Under

these conditions, the IOTS method [19, 20] could provide better results than

Otsu’s method [45] when the sizes of the two classes are highly different [49].

Medina-Carnicer et al. [50] also showed that the above mentioned algorithms

often perform poorly with unimodal distributions of gray levels. Moreover, in250

the case of images affected by intensity overlap, the IOTS algorithm is less likely

to either over- or under-estimate the threshold, when compared to other tech-

niques selecting a threshold between the two peaks of the histogram, even if the

histogram is not strongly bimodal [24], in particular when applied to medical

images [51].255

4. Materials and methods

In this section, we first present the MRI datasets considered in this work,

then we describe the computational framework integrating MedGA for medical

image analysis.

4.1. Clinical MRI datasets260

The proposed pipelines take into account clinical MRI datasets from patients

affected by: (i) uterine fibroids; (ii) brain metastatic cancers. All the analyzed
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MRI data are encoded in the 16-bit Digital Imaging and Communications in

Medicine (DICOM) format. The MRI acquisition characteristics are reported

in Table 1.265

4.1.1. Uterine fibroids

Eighteen patients affected by symptomatic uterine fibroids who underwent

MRgFUS therapy [52] were considered. The total number of the examined

fibroids was 29, overall represented on 163 MR slices, since some patients pre-

sented a pathological scenario with multiple fibroids. The analyzed images were270

acquired using a Signa HDxt 1.5 T MRI scanner (General Electric Medical Sys-

tems, Milwaukee, WI, USA) at two different institutions. These MRI series

were acquired after the MRgFUS treatment, executed with the ExAblate 2100

(Insightec Ltd., Carmel, Israel) HIFU equipment. The considered MR slices

were scanned using the T1-weighted (T1w) “Fast Spoiled Gradient Echo + Fat275

Suppression + Contrast mean” (FSPGR+FS+C) sequence. This MRI protocol

is usually employed for Non-Perfused Volume (NPV) assessment, since ablated

fibroids appear as hypo-intense areas due to low perfusion of the contrast mean

[22]. Sagittal MRI sections were processed, in compliance with the current clin-

ical routine for therapy response assessment [22]. In current clinical practice,280

the NPV evaluation procedure is fully manual [53]. Two uterine fibroid MR

slices are depicted in Figs. 2a and 2b.

4.1.2. Brain metastatic tumors

Twenty-seven brain metastases treated using a Leksell Gamma Knife (Elekta,

Stockholm, Sweden) stereotactic neuro-radiosurgical device [54] were processed,285

for a total of 248 MR slices. All the available MRI datasets were acquired on a

Gyroscan Intera 1.5 T MR Scanner (Philips Medical System, Eindhoven, The

Netherlands), before treatment, for the planning phase. In current radiation

therapy practice, Gamma Knife treatments are planned manually by a neuro-

surgeon on MRI alone, by typically using T1w Fast Field Echo (T1w FFE)290

CE-MRI sequences [55, 56]. Thanks to the Gadolinium-based contrast agent,

12



Table 1: MRI acquisition parameters of uterine fibroids and brain metastatic tumors dataset.

Dataset MRI sequence TR [ms] TE [ms] Matrix size [pixels] Slice spacing [mm] Slice thickness [mm] Pixel spacing [mm]

Uterine fibroids T1w FSPGR+FS+C 150-260 1.392-1.544 512 × 512 5.0 6.0 0.6641-0.7031

Brain metastases T1w FFE 25 1.808-3.688 256 × 256 1.5 1.5 1.0

brain lesions appear as enhanced hyper-intense zones. Sometimes a dark area

might be present due to either edema or necrotic tissues [55, 57]. Two repre-

sentative instances of brain tumors are shown in Figs. 2c and 2d.

4.2. The proposed evolutionary framework for bimodal MR image analysis295

The proposed novel evolutionary framework, whose functioning is schema-

tized in Fig. 3, is designed ad hoc for bimodal MR image analysis in order to

improve the segmentation and quantification results achieved by basic thresh-

olding techniques. Each processing step is explained in what follows.

4.2.1. Medical image pre-processing based on GAs300

MedGA requires an input image Iorig, with M rows and N columns, depict-

ing a ROI included in a bounding region whose pixel values are approximately

characterized by an underlying bimodal histogram. Therefore, as a first step,

either a computational method or a user must detect a region including the ROI

(upper part of Fig. 3). Then, the input MR image is masked with this bound-305

ing region and the whole image is cropped according to the smallest rectangle

enclosing the bounding region. A linear normalization is applied on the initial

full range of the masked MR image to balance out the pixel distribution for

the following bin rearrangement by means of MedGA. It is worth noting that

no additional pre-processing operation (e.g., low-pass or high-pass filtering) is310

needed by MedGA. The final best solution found by MedGA will emphasize

the two underlying bimodal Gaussian distributions occurring in the MR image,

for the subsequent image thresholding phase, according to the optimal adaptive

threshold θopt computed by means of the efficient IOTS algorithm [19, 20].

The candidate solutions are encoded by MedGA as follows. Let l
(min)
in ,315

l
(max)
in , l

(min)
out and l

(max)
out be the minimum non-zero and maximum gray levels

13



(a) (b)

(c) (d)

Figure 2: Examples of input MR images: (a, b) uterine fibroid inside the uterus region; (c,

d) brain tumor inside a ROI bounding region selected by the healthcare operator. The image

regions including the ROIs, defined by the white contour and zoomed at the bottom right of

each sub-figure, are characterized by nearly bimodal histograms.

of input and output images, respectively. Assuming that l
(min)
in ≤ l

(min)
out and

l
(max)
in ≥ l

(max)
out , the linear normalization applied to Lin = [l

(min)
in , . . . , l

(max)
in ]

gives rise to the extended range of the non-zero gray levels, that is, the ordered

set L′in = [1, . . . , l
(max)
in ] ⊂ N (typically, l

(min)
in > 1). This normalization op-320

eration, which employs only values of gray levels already representable in the

14



Input

MR image

Image 

Normalization

MedGA

Iterative 

Optimal 

Threshold 

Selection

Global 

Thresholding

Automatic 

Global 

Thresholding

Bounding 

region 

mask

⊙

Normalized 

MR image

Image 

Cropping

BEGIN

Enhanced 

MR image

Binarized 

MR image

Pre-

Processing

O
R

Hole Filling

Small Area 

Removal

Convex Hull

Post-

Processing

END

Segmented 

ROI

Morphological 

Opening

Hole Filling
Small Area 

Removal

Morphological 

Erosion

⊙

Shape-based 

Selection

Uterine 

Fibroids

Brain 

Tumors

(a)

(b)

Figure 3: Flow diagram of the proposed computational framework that integrates MedGA [18]

as a pre-processing step for MR image segmentation based on the efficient IOTS algorithm

[19, 20]. Two different post-processing pipelines were developed to deal with MR images of

(a) uterine fibroids and (b) brain tumors. Gray and black data blocks denote MR gray-scale

images and binary masks, respectively.

initial dynamic range, does not alter the image content and allows MedGA to

process additional intensity levels with respect to the initial full range Lin, by

considering the variability within the analyzed MRI datasets. During each it-

eration t, with t = 1, 2, . . . , T , each individual Cti = [Cti (1), Cti (2), . . . , Cti (n)]325

(with i = 1, 2, . . . , |P |) is defined as a circular array of integer numbers of size

n, where n = |L′in| corresponds to the number of different gray levels belonging

to L′in identified in the input MR image (i.e., the gray levels whose frequency is

greater than zero in the input MR image). Each individual C0
i ∈ P is randomly
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initialized by sampling n integer values from the discrete uniform distribution in330

L′in. The n values are then sorted in ascending order so that the intensity levels

Cti (j) (with j = 1, 2, . . . , n), codified by the i-th individual, can be mapped to

the intensity levels of the input MR image. Stated otherwise, the gray level

frequencies of the input MR image are assigned to the corresponding intensity

levels of the individual.335

In order to evaluate the fitness value of the individuals, we apply the follow-

ing transformation T that re-maps each input gray level r into s:

s = T (Cti (j)) = T (r), (1)

where r ∈ Lin = [l
(min)
in , . . . , l

(max)
in ] ⊂ N and s ∈ Lout = [l

(min)
out , . . . , l

(max)
out ] ⊂ N

are intensity values in the input and output gray-scale ranges, respectively.

Specifically, T defines a direct mapping between the gray levels of the original

image Iorig and the output Ienh, namely, each gray level in the original histogram

is replaced with the gray level value corresponding to the same position in the340

final best solution Cbest ∈ P .

MedGA uses a tournament selection and a single-point crossover. The mu-

tation strategy [58] is defined as follows: for each gene j (with j = 1, 2, . . . , n)

of each offspring, a real number ρ is randomly generated from a uniform distri-

bution in [0, 1]. If ρ is lower than the mutation rate pm, the gene j is mutated345

as follows:

• if the value of the gene j is less than the optimal threshold θopt, then a

random integer ηj is generated in the ordered range [l
(min)
out , . . . , θopt − 1]

and the value of the gene j is replaced with ηj ;

• if the value of the gene j is greater than or equal to the optimal threshold350

θopt, then the random integer ηj is generated in the range [θopt, . . . , l
(max)
out ]

and the value of the gene j is replaced with ηj .

Finally, MedGA also employs an elitism strategy to preserve the best individual

of the current population.
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In order to obtain a bimodal histogram separation that allows better re-

sults for further automated image processing phases, MedGA exploits a fitness

function that aims at realizing two well-separated normal distributions with

equal distance from the optimal threshold θopt. For each generation t and for

each individual Cti , first the mean values µt1,i and µt2,i—regarding the two sub-

distributions in the histogram Ht1,i and Ht2,i, respectively—as well as the cor-

responding optimal threshold θtopt,i are efficiently computed by using the IOTS

algorithm [19, 20]. Then, for each individual Cti the following fitness function

is calculated:

F(Cti ) = τ1 + τ2 + τ3, where:

τ1 =
∣∣∣2 · θtopt,i − µt1,i − µt2,i∣∣∣

τ2 =
∣∣∣ωt1,i − 3σt1,i

∣∣∣
τ3 =

∣∣∣ωt2,i − 3σt2,i

∣∣∣
(2)

The terms ωt1,i = 1
2 (θtopt,i− min

j∈{1,2,...,n}
{Cti (j)}) and ωt2,i = 1

2 ( max
j∈{1,2,...,n}

{Cti (j)}−355

θtopt,i) correspond to the half width of Ht1,i and Ht2,i, respectively, while σt1,i

and σt2,i are the standard deviations of Ht1,i and Ht2,i, respectively. The three

terms of the fitness function F(·) cooperate together to achieve the desired

image enhancement: τ1 aims at maintaining the mean values µt1,i and µt2,i at

the same distance from the yielded optimal threshold θtopt,i, while τ2 and τ3 are360

designed to force the sub-histograms Ht1,i and Ht2,i, respectively, to approximate

normal distributions 1. MedGA’s performances depend on a proper choice of the

functioning settings of the underlying GA; an extensive analysis of the impact

of the these values on the outcome of MedGA is presented in [18].

Two examples of image enhancement results, achieved by MedGA on a uter-365

ine fibroid and on a brain tumor, are shown in Figs. 4 and 5, respectively. In

the case of uterine fibroids, MedGA enhances the input MR image by making

1We exploited the empirical 3-σ rule, which states that approximately 99.73% of the values

lie within 3σ of the mean according to: Pr(µ−3σ ≤ X ≤ µ+ 3σ) ≈ 0.9973, where µ, σ and X

represent the mean, the standard deviation and an observation from a normally distributed

random variable, respectively.
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fibroid regions more uniform and with sharper edges in terms of both visual hu-

man perception and automated image segmentation. The histogram in Fig. 4d

points out that the output image is characterized by a more defined bimodal dis-370

tribution compared to the initial image (Fig. 4b), which presents approximately

a trimodal gray level distribution. In the case of brain tumors, MedGA enhances

the underlying bimodal distribution related to contrast-enhancing tumoral tis-

sue and brain healthy tissues on CE-MR images. This visual achievement is

endorsed by the histogram of the enhanced image (Fig. 5d) that shows two375

more distinct peaks with respect to the initial gray level distribution (Fig. 5b).

4.2.2. MR image segmentation using adaptive thresholding

Image enhancement techniques can facilitate the user interpretation of an

image as well as improve the automated image understanding. Therefore, we

use MR image segmentation as an important processing goal [59]. The im-380

ages enhanced with MedGA are segmented using the IOTS algorithm [19, 20],

which is the simplest automated segmentation approach. Our computational

framework includes two different post-processing pipelines to refine the results

achieved by this efficient adaptive thresholding technique (see Fig. 3). These

post-processing steps, here applied to perform uterine fibroid and brain tumor385

segmentation, are described in what follows. MedGA is able to enhance images

in segmentation tasks involving both hyper- and hypo-intense ROIs in CE-MR

images, also dealing with data unbalanceness (i.e., the number of foreground

pixels is either much higher or lower than the number of background pixels).

The thresholding-based segmentation results achieved on the MR images pre-390

processed by MedGA (Figs. 4c and 5c) are shown in Figs. 6a and 6b.

Uterine fibroid segmentation. First, uterus region delineation is required; this

task can be accomplished manually by the user or automatically by means of

computational methods to reduce operator-dependency, as described in [60].

ROIs are represented by tissues with low contrast mean absorption (i.e., NPV),395

thus the pixels with lower values with respect to the achieved threshold are

yielded in the binarized MR image. However, segmentation approaches have
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Figure 4: Enhanced image obtained by MedGA on an example of uterine fibroid (size: 89×70

pixels): (a) normalized input image using linear contrast stretching on the initial full range of

the masked MR image; (c) resulting image after the application of the pre-processing using

MedGA. The histograms corresponding to the sub-images in (a) and (c) are shown in (b) and

(d), respectively. The final histogram emphasizes the two underlying distributions in the gray

levels intensity characterized by mean values µ1 and µ2, and standard deviations σ1 and σ2,

respectively. The two distributions are highlighted with blue and green dashed lines.

to take into account NPV inhomogeneities, due to sonication spots during the

MRgFUS treatment [61].

The used post-processing refinement steps are the following (Fig. 3a):400

1. morphological opening with a circular structuring element (2-pixel radius)

to separate possible loosely connected hypo-intense regions;

2. some regions at the boundary of the uterus bounding region mask could

present similar intensity values to gray levels characterizing fibroid regions,

so being included in the thresholding output. To eliminate this ambigu-405
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Figure 5: Enhanced image obtained by MedGA on an example of brain tumor (size: 21 × 21

pixels): (a) normalized input image using linear contrast stretching on the initial full range of

the masked MR image; (c) resulting image after the application of the pre-processing using

MedGA. The histograms corresponding to the sub-images in (a) and (c) are shown in (b) and

(d), respectively. The final histogram emphasizes the two underlying distributions in the gray

levels intensity characterized by mean values µ1 and µ2, and standard deviations σ1 and σ2,

respectively. The two distributions are highlighted with blue and green dashed lines.

ity, it is appropriate to apply a morphological erosion (with a circular

structuring element of 5-pixel radius) to the ROI binary mask, and then

the logical pixel-by-pixel product (i.e., Hadamard multiplication) with the

image resulting from the previous step is performed;

3. a hole filling algorithm is necessary to deal with possible holes in fibroid410

regions also due to non-uniform distribution of ablated tissue caused by

sonication spots;

4. segmentation is further improved through a connected-component labeling

based operation by removing objects that are smaller than a certain area
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(a) (b)

Figure 6: Segmentation results achieved by the IOTS algorithm on the MR images pre-

processed by MedGA: (a) uterine fibroid delineation on the image given in Fig. 4c; (b) brain

tumor delineation on the image given in Fig. 5c.

(i.e., 120 pixels) and characterized by similar intensity with respect to the415

fibroids to be treated, because there may be regions or artifacts caused by

very small dark areas;

5. some lengthened connected-component with sufficiently large area could

be present (i.e., due to other anatomical structures or to acquisition arti-

facts). Fibroids, in fact, present a spherical or semi-spherical shape [62]420

that can be denoted by means of the parameters of the various connected-

components. This connected-component based selection considers the ec-

centricity (that is, the ratio between the foci distance related to an ellipse

and its own major axis length) and the extent (that is, the ratio between

the pixels belonging to the region and the bounding box pixels) of the425

detected regions. Specifically, experimental reference values to discern fi-

broids from the rest of connected-components are: 0.3 ≤ extent < 0.8

and 0.0 ≤ eccentricity < 0.8, according to [60]. Lastly, any connected-

component, which has passed the shape-based control and whose centroid

distance is more than a given upper limit (i.e.,
√
M2+N2

3 ) from the MR430

image center, is removed.

Brain tumor segmentation. The accurate and reproducible measurement of tu-

mor size and its changes over time is crucial for diagnosis, treatment planning,
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as well as monitoring of response to oncological therapy for brain tumors [23].

As a preliminary step, the user has to interactively select a bounding region435

that includes the tumor zone (by means of a free-hand “lasso” tool). Since

the areas to segment are enhancement regions, the pixels that have higher in-

tensities than the threshold are selected during the image binarization phase.

Brain metastatic cancers may contain also necrotic cores, which could affect the

achieved enhancement region segmentation. Therefore, some refinement steps440

are useful to cope with this situation.

The used post-processing pipeline is described in the following (see Fig. 3b):

1. hole filling algorithm to consider also necrotic areas;

2. adaptive post-processing steps based on the size of the input image, con-

sisting in small area removal (considering 4-connectivity) with minimum445

threshold equal to 30 pixels on images with size greater than 300 pixels,

or 10 pixels otherwise;

3. to allow also for large bounding regions, shape-based selection is applied in

the case of at least two connected-components, according to: extent ≥ 0.6

and 0.0 ≤ eccentricity < 0.8 (see [56]). However, when a single connected-450

component is present, these controls are avoided;

4. brain metastases have a pseudo-spherical appearance [63], therefore a con-

vex hull algorithm is employed to envelope the segmented lesion into the

smallest convex polygon containing this region.

4.3. Existing image pre-processing methods455

We compared MedGA against the most common and popular image pre-

processing techniques for image enhancement, namely:

• Histogram Equalization (HE) [7], which adjusts pixel intensities for con-

trast enhancement according to the normalized histogram of the original

image Iorig. With HE, gray levels are more uniformly distributed on the460

histogram, by spreading the most frequent intensity values;
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• Bi-Histogram Equalization (Bi-HE) [33]—a modification of the traditional

HE—which addresses issues concerning mean brightness preservation;

• Gamma Transformation (GT), which is a non-linear operation using the

power-law relationship s = crγ , where r and s are the input and the output465

gray-scale values, respectively, and c is a multiplication constant (c = 1 in

the following tests). The parameter γ is set to values greater than 1 (i.e.,

decoding gamma) to obtain a gamma expansion, or to values smaller than

1 (i.e., encoding gamma) to realize a gamma compression. In our tests, we

considered the values γ = 0.4 and γ = 2.5; higher (lower) values of γ = 2.5470

(γ = 0.4) tend to logarithmic (anti-logarithmic) functions, resulting in an

excessively bright (dark) output image, unsuitable for practical medical

applications [14];

• Sigmoid intensity Transformation (ST) function, also called S-shaped curve,

which is a global non-linear mapping defined as follows:

s(r) =
l
(max)
in

1 + exp
(
−λ(r − α)

) , (3)

where l
(max)
in = max{Lin} = max{L′in} is the asymptotic maximum value

of the function, α = 1
2

(
l
(max)
in − l(min)

in

)
is the midpoint value, and λ defines475

the function steepness. This transformation stretches the intensity around

the level α, by making the hypo-intense histogram part darker and the

hyper-intense histogram part brighter. Thus, the difference between the

minimum and maximum gray values as well as the gradient magnitude

of the image are increased, obtaining strong edges [14]. In our tests, we480

used sigmoid functions that allow for considering the entire input dynamic

range, by varying the curve slope with the values λ ∈
{

4
α ,

6
α ,

8
α

}
.

5. Experimental results

This section presents the experimental results achieved by applying our com-

putational framework, considering the evaluation metrics for both image en-485

hancement and segmentation briefly described in Supplementary Material. In
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(a)

(b)

Figure 7: Segmentation results on the uterine fibroids shown in Figs. 2a and 2b, achieved

by the processing pipeline presented in Fig. 3a exploiting the state-of-the-art image pre-

processing approaches (namely: HE, Bi-HE, GT γ = 2.5, GT γ = 0.4, ST λ = 4/α, ST

λ = 8/α, ST λ = 6/α) and MedGA.

particular, to achieve a comprehensive comparison between MedGA and the

other pre-processing techniques listed above, we exploited the entire set of MRI

data consisting in 18 patients affected by uterine fibroids and 27 brain metastatic

cancers. Figs. 7 and 8 show two examples of uterine fibroid and brain tumor490

MR images, respectively, which were pre-processed by means of the compar-

ison methods considered in this work and segmented by using the processing

pipelines described in Sections 4.2.2.

5.1. Medical image enhancement results

Tables 2 and 3 show the image pre-processing results achieved by each495

method on the uterine fibroid and brain tumor MRI datasets, respectively. In

both MR image analysis applications, MedGA remarkably obtains the high-

est Peak Signal-to-Noise Ratio (PSNR) [64] mean values with respect to the

state-of-the-art methods, generally involving the highest signal quality.

Considering the results in Table 2, HE over-enhances the processed uterine500

fibroid MR images, as denoted by the highest mean number of detected edges

(#DE ) value [65], while Bi-HE allows for the preservation of the mean bright-

ness, as also indicated by the lowest mean value of Absolute Mean Brightness
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(b)

Figure 8: Segmentation results on the the brain tumors in Figs. 2c and 2d, achieved by

the processing pipeline in Fig. 3b by exploiting the state-of-the-art image pre-processing

approaches (namely: HE, Bi-HE, GT γ = 2.5, GT γ = 0.4, ST λ = 4/α, ST λ = 8/α, ST

λ = 6/α) and MedGA.

Error (AMBE ) [32, 66]. For what concerns the other techniques, on the one

hand, GT with γ = 0.4 yields better results compared to GT with γ = 2.5,505

especially in the case of the Structural Similarity Index (SSIM ) metrics [67]; on

the other hand, all metrics related to the tested ST functions show that their

performances decrease as the value of λ increases. As it can be observed in

Figs. 7 and 8, MedGA strengthens the ROI edges by enhancing details and

features useful for image binarization; this result confirms, from a qualitative510

perspective, the quantitative results presented above. From an overall view

of the metrics values, we can claim that the approaches obtaining the highest

values of the #DE measure (i.e., HE and GT with γ = 2.5) could imply a con-

siderable over-enhancement of the output image, according to the other image

quality metrics.515

The results on brain tumor MRI data reported in Table 3 show a slightly dif-

ferent trend, also due to the small size of the pre-processed cropped sub-images.

As a first evidence, both GTs do not preserve the input mean brightness con-

sidering the AMBE measure. Interestingly, GT with γ = 2.5 and γ = 0.4

achieve the highest and the lowest #DE values, respectively. Bi-HE strongly520

improves the enhancement metrics obtained by HE, by generally reporting the
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Table 2: Values of the image enhancement evaluation metrics, achieved by applying the image

pre-processing approaches considered in this work on the uterine fibroid MRI series, expressed

as mean and standard deviation values over the 18 patients of the dataset. Numbers in bold

indicate the best values.

Method
PSNR #DE AMBE SSIM

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

HE 30.994 1.949 975.465 475.951 0.085 0.029 0.859 0.044

Bi-HE 31.880 2.046 907.177 415.703 0.038 0.020 0.907 0.032

GT γ = 0.4 30.194 2.170 717.555 401.186 0.212 0.019 0.823 0.024

GT γ = 2.5 29.952 2.127 965.012 380.967 0.261 0.012 0.586 0.075

ST λ = 4/α 33.971 1.874 872.594 396.016 0.040 0.014 0.880 0.023

ST λ = 6/α 32.286 1.975 869.032 378.277 0.060 0.021 0.715 0.056

ST λ = 8/α 31.353 2.029 841.420 348.674 0.073 0.025 0.613 0.070

MedGA 37.366 2.347 866.604 409.604 0.033 0.011 0.928 0.025

Table 3: Values of the image enhancement evaluation metrics, achieved by applying the image

pre-processing approaches considered in this work on the brain tumor MRI dataset, expressed

as mean and standard deviation values over the 27 brain metastases. Numbers in bold indicate

the best values.

Method
PSNR #DE AMBE SSIM

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

HE 34.215 1.447 38.779 21.287 0.124 0.049 0.756 0.112

Bi-HE 36.758 1.718 44.923 26.252 0.042 0.024 0.932 0.021

GT γ = 0.4 33.193 0.841 21.271 18.467 0.229 0.020 0.713 0.065

GT γ = 2.5 33.520 1.113 45.119 27.444 0.229 0.028 0.457 0.096

ST λ = 4/α 36.812 0.923 43.574 27.307 0.055 0.019 0.848 0.048

ST λ = 6/α 35.270 0.942 43.779 26.492 0.079 0.028 0.645 0.105

ST λ = 8/α 34.435 0.991 44.072 26.508 0.090 0.034 0.543 0.121

MedGA 37.751 1.990 43.534 22.598 0.079 0.039 0.881 0.053

best results. Consistently with the metrics calculated on uterine fibroid MRI

data, the results concerning ST functions worsen as the value of λ increases.

The highest SSIM mean value is achieved by Bi-HE, revealing the best struc-

tural information, even though MedGA obtains the best signal quality in terms525

of PSNR mean values. These findings are also corroborated by a visual in-

spection of Figs. 7 and 8, where the enhanced images using HE and GT with

γ = 2.5 present an inadequate appearance for image observation and interpre-

tation. Overall, these results confirm that MedGA generally outperforms the

conventional image enhancement approaches considering signal and perceived530

image quality, while preserving the input mean brightness.

26



40

60

80

DSI

5

10

MAD

40

60

80

100
SEN

10

20

30

MaxD

40

60

80

100
SPC

2.5

3.0

3.5

4.0

HD

HE Bi-HE GT γ = 0.4 GT γ = 2.5 ST λ = 4/α ST λ = 6/α ST λ = 8/α MedGA

Figure 9: Boxplots of overlap-based and distance-based metrics (left and right columns, re-

spectively) obtained on the MRI dataset composed of 18 patients affected by uterine fibroids

who underwent MRgFUS treatment. The lower and the upper bounds of each boxplot repre-

sent the first and third quartiles of the distribution, respectively. The median and the mean

values are represented by a black solid line and a red star, respectively. Whisker value is 1.5

in all cases, and outliers are displayed as black diamonds.

5.2. Medical image segmentation results

The quantitative segmentation results achieved by using the pipeline in Fig.

3a, employing the different pre-processing approaches, on the analyzed MRI

dataset composed of 18 patients affected by uterine fibroids are depicted in535

the boxplots in Fig. 9, reporting both overlap-based and distance-based metrics

values. Analogously, the boxplots concerning the segmentation results, achieved

by using the pipeline in Fig. 3b on the analyzed MRI dataset consisting in 27

brain metastases, are shown in Fig. 10.

In the literature, it has been shown that a Dice Similarity Index (DSI ) [68]540

27



20

40

60

80

DSI

1

2

3

MAD

40

60

80

100
SEN

2

4

6

MaxD

20

40

60

80

100
SPC

1.5

2.0

2.5
HD

HE Bi-HE GT γ = 0.4 GT γ = 2.5 ST λ = 4/α ST λ = 6/α ST λ = 8/α MedGA

Figure 10: Boxplots of overlap-based and distance-based metrics (left and right columns,

respectively) obtained on the MRI dataset composed of 27 brain metastatic tumors underwent

stereotactic neuro-radiosurgery. The lower and the upper bounds of each boxplot represent

the first and third quartiles of the distribution, respectively. The median and the mean values

are represented by a black solid line and a red star, respectively. Whisker value is 1.5 in all

cases, and outliers are displayed as black diamonds.

above 70% is generally regarded as a satisfactory level of agreement between

two segmentations (i.e., manual and automated delineations) in clinical appli-

cations [69]. Since the MR image segmentation methods proposed in Section

4.2.2 obtain a DSI appreciably higher than 70% regardless the pre-processing

technique, we can consider that the processing pipelines in Fig. 3 are clinically545

valuable, allowing for a fair comparison on segmentation performance among

the state-of-the-art pre-processing algorithms.

In both cases, the segmentation results concerning the images pre-processed

using MedGA achieved the highest mean and median DSI values, with low
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standard deviation. GT with γ = 0.4 and Bi-HE obtained the second best550

performances for uterine fibroid and brain tumor MR image segmentation, re-

spectively. We can thus claim that MedGA shows the highest accuracy and

reliability in the two considered MRI analysis tasks. This is also confirmed

by the boxplots, where the distributions for MedGA present significantly less

than 10% outliers in all the overlap-based metrics, thus evidencing extremely555

low statistical dispersion. As a matter of fact, MedGA is the only technique

that significantly supports the IOTS algorithm in both dark (i.e., uterine fi-

broid NPV) and bright (i.e., brain tumor enhancement region) ROI extrac-

tion. In agreement with the image enhancement results discussed n Section 5.1,

GT with γ = 0.4 considerably outperforms GT with γ = 2.5. The decreas-560

ing trend, related to ST when the value of λ increases, is also confirmed. ST

with λ = 4/α achieved good results in both cases. Brain tumor MR images

pre-processed by means of HE achieved low DSI values, but better results are

obtained on uterine fibroid MR segmentation with respect to Bi-HE. Overall,

the achieved segmentation performance shows the great accuracy and reliabil-565

ity of the proposed EC-based computational model. Considering sensitivity

(SEN ) and specificity (SPC ) [70], MedGA yielded the best trade-off between

these two often conflicting measures that should be always considered and com-

bined together. These metrics reveal that the other techniques could involve

over-segmentation or under-segmentation.570

The achieved spatial distance-based indices (namely: Mean Absolute Dis-

tance (MAD), Maximum absolute Distance (MaxD), Hausdorff Distance (HD)

[70]) are consistent with overlap-based metrics, also observing the correspond-

ing boxplots shown in Figs. 9 and 10. Hence, MedGA allows also for accurate

results in terms of distance between the automated and the manual boundaries.575

It is worth noting that, generally, the boxplots pertaining to MedGA results

present the lowest statistical dispersion (in terms of box width and number of

outliers), thus implying a lower standard deviation with respect to the conven-

tional techniques. Therefore, the use of MedGA as a pre-processing step allows

for considerably robust and reliable segmentation results. These experimental580
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(a) (b)

(c) (d)

Figure 11: Tridimensional reconstruction of the segmented ROIs (blue volumetric models) in

their real location with respect to the enclosing organ (transparent red surface): (a, b) uterine

fibroids within the uterus, segmented using the method in [60]; (c, d) brain tumors within the

whole brain, achieved using a skull stripping algorithm. Transparent surfaces are rendered

with alpha blending (α = 0.40)

findings are endorsed by the segmentation examples shown in Figs. 7 and 8.

Fig. 11 shows two pairs of examples of tridimensional reconstructions of the

ROIs, i.e., uterine fibroids and brain tumors, permitting to display their actual

locations in the whole uterus and brain (represented by means of a transpar-

ent red surface), respectively. This visualization allows for an intuitive and585

comprehensive representation of complex data [71].

6. Discussion and conclusions

In this paper, we proposed a novel intelligent framework designed ad hoc for

enhancing MR image segmentation results of MRI data characterized by an un-

derlying bimodal histogram. Our approach covers all the steps required for med-590

ical image analysis, including the quantification and radiology reporting phase
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(see Fig. 1). Our framework employs an evolutionary image pre-processing

approach, called MedGA [18], which exploits a GA that aims at emphasizing

bimodal histogram separation and, consequently, optimizing the subsequent seg-

mentation phase based on the efficient IOTS algorithm [19, 20]. Indeed, among595

the low-level intensity-based Pattern Recognition techniques, the most straight-

forward unsupervised image segmentation approach is global thresholding [9].

MedGA is capable of overcoming the limitations related to the assumptions

underlying threshold selection methods and automatically determine a suitable

optimal threshold, introducing a fitness function tailored to better separate the600

two underlying sub-distributions of the gray level intensities. Unlike the tradi-

tional image enhancement techniques that generally improve the contrast level

of the whole image, MedGA focuses on MR image sub-regions characterized by

a roughly bimodal histogram, making it valuable in clinical contexts, especially

involving CE-MRI analysis. As a matter of fact, the Soft Computing approaches605

presented in [72, 64] explicitly consider in the fitness function both the number

of edge pixels and the intensity of these pixels, thus achieving high #DE val-

ues that would consistently lead to over-enhanced images, possibly yielding also

inaccurate ROI segmentations.

We integrated MedGA as a pre-processing stage into two pipelines for im-610

age enhancement, automatic global thresholding, and segmentation, specifi-

cally defined for two different clinical scenarios requiring CE-MR image anal-

ysis: (i) uterine fibroid segmentation in MRgFUS treatments, and (ii) brain

metastatic cancer segmentation in neuro-radiosurgery therapy. Overall, image

pre-processing with MedGA outperformed—in terms of image quality and seg-615

mentation accuracy—the conventional image enhancement strategies, namely,

HE, bi-HE, GT, and ST. According to the achieved experimental results, MedGA

was shown to be an appropriate and reliable solution when employed as a med-

ical image pre-processing method. Even considering the statistical dispersion

of the segmentation evaluation metrics, MedGA achieved the most robust and620

repeatable segmentation results.

The main limitation of the approach presented in this paper resides in the
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time required by the image enhancement pre-processing step, lasting approx-

imately 2 minutes per image (running on a computational platform equipped

with a 6-core Intel R© Xeon R© E5-2440 CPU at 2.40 GHz, 16 GB RAM, and625

CentOS 7 operating system). As a matter of fact, MedGA has been currently

used only for off-line image analysis. Our framework would certainly benefit

from a porting of the current Python code into a faster compiled programming

language (e.g., C/C++) [73]

In the specific case of tomography image stack analysis, we developed a630

Master-Slave version of our framework to distribute on multiple CPU cores the

computations pertaining to different slices [74], achieving a sub-linear speed-up

with respect to the number of the available CPU cores. Consequently, by exploit-

ing efficient programming languages and High-Performance Computing (HPC)

paradigms, we can overcome the current limitations, making the pipelines pre-635

sented in this work a clinically feasible solutions in real-time radiology applica-

tions.

In the near future, we plan to apply our framework also to other clinical con-

texts requiring MR image analysis and segmentation to provide useful insights

for differential diagnosis and prognosis, such as in the case of breast cancer640

[75, 76] and meningiomas [77], also for differentiating tumor grade.
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[39] P. C. T. Gonçalves, J. M. R. S. Tavares, R. M. N. Jorge, Segmentation

and simulation of objects represented in images using physical principles,

Comput. Model. Eng. Sci. 32 (1) (2008) 45–55. doi:10.3970/cmes.2008.

032.045.

[40] M. J. M. Vasconcelos, J. M. R. S. Tavares, Methods to automatically build775

point distribution models for objects like hand palms and faces represented

in images, Comput. Model. Eng. Sci. 36 (3) (2008) 213–241. doi:10.3970/

cmes.2008.036.213.

[41] A. Ferreira, F. Gentil, J. M. R. S. Tavares, Segmentation algorithms for ear

image data towards biomechanical studies, Comput. Methods Biomech.780

Biomed. Eng. 17 (8) (2014) 888–904. doi:10.1080/10255842.2012.

723700.

[42] Z. Ma, J. M. R. S. Tavares, R. N. Jorge, T. Mascarenhas, A review of algo-

rithms for medical image segmentation and their applications to the female

37

http://dx.doi.org/10.1109/TPAMI.2016.2646371
http://dx.doi.org/10.1109/TPAMI.2016.2646371
http://dx.doi.org/10.1109/TPAMI.2016.2646371
http://dx.doi.org/10.1016/S0031-3203(01)00210-2
http://dx.doi.org/10.1016/S0031-3203(01)00210-2
http://dx.doi.org/10.1016/S0031-3203(01)00210-2
http://dx.doi.org/10.1016/j.asoc.2012.11.020
http://dx.doi.org/10.1016/j.asoc.2012.11.020
http://dx.doi.org/10.1016/j.asoc.2012.11.020
http://dx.doi.org/10.3970/cmes.2008.032.045
http://dx.doi.org/10.3970/cmes.2008.032.045
http://dx.doi.org/10.3970/cmes.2008.032.045
http://dx.doi.org/10.3970/cmes.2008.036.213
http://dx.doi.org/10.3970/cmes.2008.036.213
http://dx.doi.org/10.3970/cmes.2008.036.213
http://dx.doi.org/10.1080/10255842.2012.723700
http://dx.doi.org/10.1080/10255842.2012.723700
http://dx.doi.org/10.1080/10255842.2012.723700


pelvic cavity, Comput. Methods Biomech. Biomed. Eng. 13 (2) (2010) 235–785

246. doi:10.1080/10255840903131878.

[43] R. B. Oliveira, E. Mercedes Filho, Z. Ma, J. P. Papa, A. S. Pereira, J. M.

R. S. Tavares, Computational methods for the image segmentation of pig-

mented skin lesions: a review, Comput. Methods Programs Biomed. 131

(2016) 127–141. doi:10.1016/j.cmpb.2016.03.032Get.790

[44] J. H. Holland, Adaptation in Natural and Artificial Systems: An Introduc-

tory Analysis with Applications to Biology, Control and Artificial Intelli-

gence, MIT Press, Cambridge, MA, USA, 1992.

[45] N. Otsu, A threshold selection method from gray-level histograms, IEEE

Trans. Syst. Man Cybern. 11 (285-296) (1975) 23–27. doi:10.1109/TSMC.795

1979.4310076.

[46] J. Kittler, J. Illingworth, Minimum error thresholding, Pattern Recognit.

19 (1) (1986) 41–47. doi:10.1016/0031-3203(86)90030-0.

[47] Q. Z. Ye, P. E. Danielsson, On minimum error thresholding and its

implementations, Pattern Recognit. Lett. 7 (4) (1988) 201–206. doi:800

10.1016/0167-8655(88)90103-1.

[48] T. Kurita, N. Otsu, N. Abdelmalek, Maximum likelihood thresholding

based on population mixture models, Pattern Recognit. 25 (10) (1992)

1231–1240. doi:10.1016/0031-3203(92)90024-D.

[49] X. Xu, S. Xu, L. Jin, E. Song, Characteristic analysis of Otsu threshold805

and its applications, Pattern Recognit. Lett. 32 (7) (2011) 956–961. doi:

10.1016/j.patrec.2011.01.021.
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