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Abstract 
 

Background and Objective: Complex fractionated atrial electrograms (CFAE) 

may contain information concerning the electrophysiological substrate of atrial 

fibrillation (AF); therefore they are of interest to guide catheter ablation 

treatment of AF. Electrogram signals are shaped by activation events, which 

are dynamical in nature. This makes it difficult to establish those signal 

properties that can provide insight into the ablation site location. Nonlinear 

measures may improve information. To test this hypothesis, we used nonlinear 

measures to analyze CFAE. 

Methods: CFAE from several atrial sites, recorded for a duration of 16 

seconds, were acquired from 10 patients with persistent and 9 patients with 

paroxysmal AF. These signals were appraised using non-overlapping 

windows of 1-, 2- and 4-second durations. The resulting data sets were 

analyzed with Recurrence Plots (RP) and Recurrence Quantification Analysis 

(RQA) . The data was also quantified via  entropy measures. 

Results: RQA exhibited unique plots for persistent versus paroxysmal AF. 

Similar patterns were observed to be repeated throughout the RPs. Trends 

were consistent for signal segments of 1 and 2 seconds as well as 4 seconds in 

duration. This was suggestive that the underlying signal generation process is 

also repetitive, and that repetitiveness can be detected even in 1-second 
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sequences. The results also showed that most entropy metrics exhibited higher 

measurement values (closer to equilibrium) for persistent AF data. It was also 

found that Determinism (DET), Trapping Time (TT), and Modified Multiscale 

Entropy (MMSE), extracted from signals that were acquired from locations at 

the posterior atrial free wall, are highly discriminative of persistent versus 

paroxysmal AF data.  

Conclusions: Short data sequences are sufficient to provide information to 

discern persistent versus paroxysmal AF data with a significant difference, and 

can be useful to detect repeating patterns of atrial activation. 

 

Keywords: Electrogram; Recurrence plot; Recurrence quantification analysis; 

Entropy measures. 

 

1. Introduction 

Atrial fibrillation (AF) is a common arrhythmia that occurs in approximately 1–

2% of the population worldwide (Stewart et al., 2001) especially among the elderly 

(Go et al., 2001). There are three clinical patterns of AF: paroxysmal, in which 

the arrhythmia occurs and terminates spontaneously; persistent,  where AF 

duration is greater than an arbitrarily defined period of 7 days and rarely 

terminates without pharmacological or electrical cardioversion (Go et al., 

2001); and permanent, where the arrhythmia does not terminate by any known 

means. Irrespective of type, AF increases the risk of thromboembolic stroke five-

fold  (Flegel et al., 1987), which has motivated therapeutic efforts to mitigate the 

thromboembolic risk with antithrombotic drugs  (AF Investigators, 1994) and/or to 

eliminate AF definitively.   

Since the discovery of spontaneous AF initiation from ectopic foci 

originating at the pulmonary vein ostia (Haïssaguerre et al., 1998), pulmonary 

vein antrum isolation (PVAI) with radiofrequency catheter ablation (RFCA) 

has become the mainstay for curative treatment of AF, with long-term success 

being observed in some patients. Mapping of the atrial electrophysiologic 

substrate to guide adjuvant catheter ablation of atrial regions, identified to 
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have complex fractionated atrial electrograms (CFAE), has been demonstrated 

in some studies to improve the success of AF termination without recurrence, 

as compared with anatomically based pulmonary vein antrum isolation 

(PVAI) ± linear ablation (Willems et al., 2006; Oral et al., 2009). It has been 

postulated that CFAE represent local sites for reentry, instrumental in 

perpetuating AF (Nademanee et al., 2004). In published clinical trials, the long-

term results for successful maintenance of sinus rhythm after PVAI + CFAE 

ablation has been mixed (Li et al., 2011; Providência et al., 2015), particularly for 

paroxysmal AF, which responds well to standard PVAI alone (Li et al., 2011). 

Important limitations of a CFAE approach targeting nonparoxysmal AF include: 

the wide heterogeneity among patients with persistent AF (recent-onset 

persistent AF plausibly shares more electrophysiological substrate similarity 

with paroxysmal AF than long-standing persistent AF); the lack of standardized 

criteria for CFAE among studies; and the substantial time demands of substrate 

mapping. In order to characterize substrate differences in paroxysmal versus 

persistent types of AF, it would be helpful to devise a fast, accurate and 

reproducible CFAE measurement that can efficiently characterize electrogram 

differences. This might also be useful to stratify patients for adjuvant CFAE 

ablation. We hypothesized that advanced computational analysis of electrogram 

features could be highly discriminative for this purpose. 

The electrogram waveform is comprised of several deflections caused by 

unsynchronized electrical activation events that appear as low amplitude noise 

(Latchamsetty and Morady, 2011). These signals provide information about the 

AF complexity, and one way to extract this information is to measure the 

amount of repetitiveness in the waveforms (Ciaccio et al., 2011, 2012). That 

repetitiveness is defined in the fractal sense, which indicates that similar 

electrogram shapes repeatedly occur at different time epochs. The interval 

between these epochs may differ, i.e. there is no clear rhythm (Ciaccio et al., 

2011, 2012). More repetitiveness implies that the underlying electrical activation 

patterns are more reproducible (Faust and Bairy, 2012).  

In this study, we used a novel method of signal analysis applied to data 

previously used in other of our published works (Ciaccio et al., 2011, 2012) to 



4 

 

 

confirm the prior results with a different technique. Recently, recurrence 

quantification analysis (RQA) has been used for the detection of 

AF(Zeemering et al., 2015; Hummel et al, 2017; Almeida et al, 2018). The 

following sections detail the study setup, including the data acquisition mode 

and analysis methods; study results including RPs and bar plots for the means 

and variances of the RQA features; discussion and interpretation including 

practical application; and conclusion. 

 

2. Materials and methods 

Herein, we used Recurrence Plots (RPs) to quantify the repetitiveness of 

CFAE measured during RFCA in patients with either paroxysmal or long-

standing persistent AF. These plots were generated from 1-,  2-, and 4-second 

signal segments with a threshold value = 0.1. Visual inspection indicated that 

there were distinct RPs for paroxysmal versus persistent data in 1-, 2-, and 4-

second segments. The differences were quantified using four RQA measures 

and four entropy measures. The block diagram, shown in Figure 1 details 

the study setup. We have structured the work into the following steps: data 

acquisition, signal preprocessing, RP plot generation, quantification, and 

statistical analysis of entropy and RQA measures. The next sections introduce 

these steps in detail. 

 

2.1 Data used 

Data were obtained from consecutive patients with paroxysmal (n=9) and 

long-standing persistent AF (n=10) who underwent RFCA at the cardiac 

electrophysiology laboratory of Columbia University Medical Center. 

Electrograms were recorded for 16 s at 977 Hz at each of the following 

locations: the left pulmonary vein ostia ―LSPV, left inferior pulmonary vein 

(LIPV), right superior pulmonary vein (RSPV) and right inferior pulmonary 

vein (RIPV)― and free wall sites at the anterior (ANT) and posterior (POS) left 

atrial free wall. CFAE were identified as having multiple deflections and varying 

patterns, with a maximum average interval of 50 milliseconds between 
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deflections, based on published criteria (Ciaccio et al., 2013). One hundred and 

fourteen and 90 CFAE persistent and paroxysmal AF patient data, respectively, 

were analyzed. These signals were subjected to a rectangular windowing 

function that yielded three distinct datasets. The first dataset consisted of 204 

non-overlapping 1-second sequences. The second, consisted of 204 non-

overlapping 2-second sequences and the third consisted of 204 non-

overlapping 4-second sequences. 

The Internal Review Board (IRB) at Columbia University Medical Center 

approved acquisition and analysis of these retrospective data. All patients had 

either paroxysmal or long-standing persistent AF, were not on 

arrhythmogenic drug therapy, and were undergoing radiofrequency catheter 

ablation for treatment of AF. In paroxysmal AF patients with a baseline sinus 

rhythm, AF was induced by rapid pacing at the coronary sinus or at the lateral 

wall of the right atrium (coupling interval range 250 to 200 ms). AF was 

required to persist for greater than 10 minutes for the electrogram to be 

included for analysis. Signals were filtered with a bandpass by the acquisition 

system prior to discretization, which removed baseline drift and high 

frequency noise (CardioLab, GE Healthcare, Waukesha, WI). The 977 Hz 

sampling rate corresponded to approximately 1 millisecond intervals between 

discrete time samples. Signal amplitudes were measured in millivolts. 

 

2.2 Recurrence plot 

RPs provide a visual representation of the way in which an observed system 

behaves in phase space (Eckmann et al., 1987). For image analysis, we assigned a 

value of  one to each black dot, and zero to each white dot. The resultant two-

dimensional matrix is depicted as a RP, where each dot corresponds to a 

matrix element. The real-valued matrix elements that represent vector distances 

are depicted in color. Hence, most RPs are two-dimensional color-coded plots that 

can be used to reconstruct the time series (Bakeman and Quera, 2011). Figure 2 

shows an example RP, which illustrates qualitatively the RQA measures that 

were used in this study. To quantify the RQA and entropy measures objectively, it 

was necessary to introduce a common threshold for all matrix elements. That 
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threshold converts the matrix with real-valued elements into a binary matrix. 

Figures 3 and 4 show such a binary or thresholded RP for electrogram signals. In 

this work, we have set  the threshold value of 0.1 to have more lines and clear 

separation between the two classes for three durations (1, 2 and 4 seconds). 

 

2.3 Entropy measures 

From the RP, we extracted signatures in the form of features. The first group 

of features characterizes the entropy from the way in which the line segments are 

distributed. The line segments result from the state-space trajectories, and such 

measures are useful to quantify both the number and duration of recurrences in a 

dynamical system, such as the human heart. The second group of features, 

RQA measures, establish the hidden repetition of waveform shapes in the 

signal. These measures characterize both nonlinearity and complexity in time 

series signals (Zbilut and Webber Jr, 1992). 

Fuzzy Entropy (FEn) is based on the idea of a fuzzy set whose elements are 

permitted to have different levels of membership. The level of membership captures 

the randomness, and the method provides a way to establish the entropy, which 

measures the information content (Kosko, 1986). Sample Entropy (SampEn) 

measures the information contained in the regularity of a physiological signal. 

The results are largely independent of sequence length, i.e. SampEn measures 

are consistent regardless of sequence length if the signal statistics are 

stationary. This is advantageous particularly when shorter sequences are 

analyzed. Compared with other measures, such as approximate entropy, 

SampEn has less bias (Richman and Moorman, 2000). A low SampEn value  

indicates that there is less information in the signal waveform, implying that the signal, 

and the underlying process, is more predictable. In contrast, if the signal is 

unpredictable, its information content and the SampEn value are high. 

Multiscale Entropy (MSE) characterizes the complexity of a finite time series. 

In contrast to conventional entropy algorithms that assume a linear relationship 

between complexity and information, the MSE algorithm employs a coarse-

graining procedure that reduces the time series length. When applied to a short 

sequence, the MSE algorithm may yield an imprecise estimation of, or even an 
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undefined, entropy, which is problematic. The Modified Multiscale Entropy 

(MMSE) algorithm (Costa et al., 2002) mitigates this dilemma by replacing the 

coarse-graining with a moving-average procedure. Furthermore, template vectors 

are calculated using time delays when the sample entropy is constructed. MMSE 

algorithms can better quantify the complexity of time series for a range of scales, 

and they are more reliable than standard MSE algorithms for short-term time 

series analysis (Wu et al., 2013).  

Diagonal Line Lengths Entropy (DLLE) measures complexity based on the 

variation of diagonal lines in RPs. The diagonal line length is an indicator of 

the divergence of trajectory segments: a diagonal line length close to unity 

means that a segment of the trajectory at one time step is close to another 

segment of the trajectory at a different time step. For our work, we fixed the 

minimal diagonal line length as lmin = 2, as electrogram data can be noisy, and a larger lmin 

is required for smoother continuous data (Marwan et al., 2002).  

 

2.4 Recurrence quantification analysis (RQA) measures 

Determinism (DET)  captures the predictability of a dynamical system by 

measuring the percentage of recurrence points that belong to diagonal lines of 

a minimum length, i.e. lmin = 2. It is predicated on the premise that a RP from 

white noise possesses numerous diagonal lines but sparse single dot features; 

hence noise-like signals have low DET values. Laminarity (LAM), also known 

as intermittency, provides a similar measure for the number of recurrence points 

that form vertical lines, thereby quantifying the number of laminar phases in 

the system. 

Trapping Time (TT) is related to LAM. The algorithm measures the 

average vertical line length, which is an indicator of the time that a system 

remains in a specific state. Hence, TT reflects how far into the future it is 

possible to predict a dynamical system, i.e. it quantifies the time during which 

a nonlinear system is predictable. 

 

2.5 Statistical feature assessment 
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We used the 2-sample t-test to refute the null hypothesis that RQA and 

entropy features are similar for paroxysmal versus persistent AF. The 

algorithm establishes the ratio of the deviation of the estimated value of a 

parameter from its hypothesized value to its standard error (Box, 1981). A 

large t-test value provides strong support for rejection of the null hypothesis. 

 

3. Results 

Figure 3 depicts RPs from 1-, 2-, and 4-second segments of CFAE data 

obtained from the LSPV site measured from the anterior atrial free wall. Figure 

4 shows the RPs from the same location measured at the posterior free wall. 

Visual inspection shows that the RPs, at the same measurement site from the 

same CFAE segment duration, are very different. The RPs for persistent AF 

exhibited denser square clusters compared with paroxysmal AF. The 

crowdedness of the squares was more prominent with 4- versus 2-second and 

1-second data.  

The statistical feature analysis for LSPV, LIPV, RSPV, RIPV, POS, and ANT 

are tabulated in Tables 1A, 2A, 3A, 4A, 5A and 6A, respectively, in Appendix 

A. These tables, as well as bar plots in Figures 5 to 10, demonstrate that 

SampEn, FEn, MMSE 1 and 2 generally showed  higher ―and DET, LAM, TT, 

DLLE, lower― values for persistent versus paroxysmal AF. This suggests that 

CFAE from patients with persistent AF are less ordered as compared with 

those from paroxysmal AF. A higher signal variability results in higher 

entropy values for SampEn, FEn, MMSE 1 and 2. In contrast, DET, LAM, TT, 

and DLLE were lower for persistent than for paroxysmal AF, because in 

persistent AF the trend repeats faster than for paroxysmal AF. Apart from 

these general trends, we also found that DLLE, TT, DET and LAM extracted 

from 1-second signal sequences measured at the POS highly discriminated 

paroxysmal from persistent AF, as shown in Figure 9 and Table 5A. 

Furthermore, MMSE 1, extracted from 4-second sequences measured at the 

LSPV antrum, highly discriminated paroxysmal from persistent AF, as shown 

in Figure 5 and Table 1A. Most of the p-values are highly significant in 
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discerning paroxysmal from persistent AF data, particularly for 

recordings acquired from the LSPV and Posterior regions. Regarding 

some of the details, generally the MMSE 1 mean value for paroxysmal data was 

lower than the mean value for persistent data, such that there was no overlap in 

the feature variances. Figures 11 and 12 show the f-value for the eight 

individual features extracted from the RP plots measured at six different 

locations. The first part of the feature name indicates the measurement 

location, i.e. ANT, LIP, POS, RIP and RSP1. The second part indicates the 

feature name, i.e. FEn, SampEn, MMSE 1 / 2, DLLE, DET, LAM, and TT. In 

both figures, the orange line represents the feature performance for 1 second 

signal segments. The green and blue lines represent the feature performance 

for 2 and 4 second signal segments respectively. Figure 11 shows the f-values 

for features measured at the posterior free wall. POS DLLE extracted from 1-

second electrogram segments, located at 3 o’clock in the diagram, shown in 

Figure 11, has the largest t-value of all tested features (most significant). The f-

values are decreasing counterclockwise. To be specific, the ordering was based 

on the f-value results for 1 second segments. Figure 12 shows the f-values for 

features measured at the anterior region of the heart. The feature order is the 

same as for the graph shown in Figure 11. The fact that the f-values do not 

decrease counterclockwise indicates that the feature performance is different 

for electrogram measurements from the anterior and posterior regions of the 

heart. Furthermore, the graphs in Figure 11 show that POS is a satisfactory 

location for comparison of AF types when 1-second segments are considered, 

in contrast to 4-second segments where the LSPV region yields better features. 

In summary, long-standing persistent AF, as compared with paroxysmal 

AF, exhibited higher values for most entropy measures (and therefore is closer 

to the equilibrium state).  Measurements from the LSPV were highly 

discriminative for persistent versus paroxysmal AF. The results were 

independent of sequence length analyzed (1- 2- and 4-second segments), 

demonstrating that the 1-second electrogram signals were of sufficient length 

to capture repetitiveness, and to discern between long-standing persistent and 

                                                   
1
 The V for vein was omitted for LSP(V), LIP(V), RSP(V), and RIP(V). 
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paroxysmal AF fractionated electrograms. 

 

4. Discussion 

In this study, using clinical data from prior work, but a different mode of 

analysis, confirmatory support is provided for our previously published 

results (Ciaccio et al., 2011, 2012). From visual inspection of Figures 3 and 4, 

the RPs derived from CFAE for persistent AF generally had more 

repetitiveness as compared with paroxysmal AF, for 1-, 2- and 4-second 

datasets. The repetitiveness was more intense for the 4- as compared to 2-

second and 1-second data. We were able to use these RPs to discriminate the 

classes qualitatively. We also quantified the repetitiveness of CFAE using RQA 

and entropy measures derived from RPs, and 1-, 2- and 4-second datasets were 

subjected to the same analysis algorithms. The quantitative results in both test 

sets show that most entropies (apart from DLLE) have higher values, and DET, 

LAM, TT and DLLE have lower values, for persistent versus paroxysmal AF.  

 

We thus established that RQA and entropy measures were useful to 

differentiate persistent from paroxysmal AF electrograms, and that the results 

were reproducibly independent of the segment length studied. The latter finding 

provides insight into the repetitiveness of CFAE, and shows that even 1-second 

segments can capture sufficient components of the repetitive process for 

detection, when using suitable nonlinear methods. This demonstration, 

and knowledge of the minimum required window length, has important 

implications for feature engineering, and for finding an initial set of 

hyperparameters that may be useful for deep learning in the quantitative 

analysis of fractionated AF electrograms.  

 

Algorithm and its update 

The results reported herein can be confirmed by testing a wide range of 

nonlinear analysis methods. We are particularly interested in features that 
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present with unique ranges for persistent versus paroxysmal AF. Having 

features with unique ranges is a first step toward construction of an automated 

AF discernment system, which might eventually be used to detect 

arrhythmogenic regions. Whether the patient is in a paroxysmal versus 

persistent AF state is evident upon their admission. Yet, analysis of 

fractionated electrogram morphology may be helpful to discern the severity of 

the paroxysmal or persistent state, analogous to determining the progress of 

the arrhythmia in terms of tissue remodeling, and could therefore be useful to 

devise an optimal ablation paradigm, and perhaps to estimate the likelihood of 

arrhythmia recurrence after ablation. Feature-based machine classification 

works well on a small volume of data, because it is possible to control the 

feature selection process, and thereby to control the information that is 

presented to the classifier. Despite the shortcomings of feature engineering, 

such a system should support our finding that it is feasible to automate the 

classification of CFAE into persistent and paroxysmal types, and perhaps to 

determine the degree of severity in each state. The identification of features of 

true longstanding persistent AF from CFAE may potentially improve the 

selection of patients or foci for substrate-based adjuvant RFCA, in addition to 

PVAI for AF.  

This work justifies the collection of more diverse data, which can be used to 

design classification models with higher complexities. With these improved 

models, it would be possible to avoid feature engineering altogether, and 

input the raw data to the classification algorithm using deep learning (Faust et 

al., 2018b). Developing a classification method that can handle big data would 

be useful for eventually devising a diagnostic support system. Any such 

system could be based on the Internet of Medical Things technology, which 

incorporates a cloud server for data storage and review, as well as deep learning 

for real-time classification (Kareem and Faust, 2018), that is pertinent for 

intraprocedural annotation and decision-making. After recording, the 

electrogram signals would be stored in the cloud server, which would make 

them universally accessible. At the same time, deep learning might be used to 

select an optimal catheter ablation site. A medical practitioner could then 
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review the information and act on the suggestion by observing the CFAE 

signal analysis in real-time on the cloud server. 

 

Limitations 

We tested a small data volume. CFAE signals are dynamic, with wide 

inter-patient variability. Even in the same patient, different waveform 

characteristics may present at different times. More and longer signal segments 

would be needed to confirm that 1-second signal segments contain sufficient 

information concerning the repetitiveness of CFAE. Furthermore, these 

canonical sites of data collection ignore substantial areas of the left atrium, and 

the entire right atrium. The omitted sites can harbor abnormal electrophysiologic 

parameters, which may be contributing to the underlying mechanism of AF. 

Another issue is the fact that RQA and entropy measures extract specific 

information that constitutes only a small subset of the available information. In 

fact, feature extraction methods, such as RQA, inherently involve processes for 

information reduction, which reduces the quantity of information available for 

discrimination. Feature engineering leads to information reduction and 

information duplication that may ultimately reduce diagnostic quality (Faust 

et al., 2018a). The problem is magnified when moving from the research 

environment to the design of practical diagnostic support systems.  

 

5. Conclusion 

 
Persistent and paroxysmal AF CFAE signals of 1-, 2-, and 4-second 

duration were analyzed using nonlinear features, namely RQA and various 

entropies. Our results show that most entropies (SampEn, FEn, MMSE 1 and 2) 

had higher values for persistent as compared to paroxysmal AF. This may be 

because persistent AF signals are highly varying compared with paroxysmal 

AF. More variability resulted in higher entropies. Also, our findings indicate 

that DET, LAM, TT and DLLE were lower for persistent than paroxysmal AF 

data, which may also be due to higher variation in the persistent AF 

electrogram morphology. 

Furthermore, the RPs from persistent AF CFAE have more repeating 
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features when compared to those from paroxysmal AF CFAE for 1-, 2-, and 4-

second segments. Also, this regularity is more intense for 4-second as 

compared with the 2- and 1-second data. Hence, we can use these RPs to 

discern between the two classes.   

This work establishes that when using even a short 1-second interval of 

CFAE data, it is possible to discriminate the two classes using nonlinear 

features and RPs. In the future, we intend to obtain more data, and use the 

features to further characterize fractionated electrograms, possibly also to 

estimate the degree of severity within each arrhythmia type.   

 

Acknowledgement: We thank Angelo B. Biviano, MD, Columbia 

University, for kindly acquiring and sharing the clinical atrial fibrillation data 

used in this study. 
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Acronyms 

AF Atrial Fibrillation 
ANT  Anterior left atrial free wall 
DET  Determinism 
DLLE  Diagonal Line Lengths Entropy 
FEn  Fuzzy Entropy 
LA  Left Atrium 
LAM  Laminarity 
LIPV  Left Inferior Pulmonary Vein  
LSPV  Left Superior Pulmonary Vein   
MMSE  Modified Multiscale Entropy  
MSE  Multiscale Entropy 
POS  Posterior left atrial free wall 
RIPV  Right Inferior Pulmonary Vein 
RQA  Recurrence Quantification Analysis 
RP  Recurrence Plot 
RSP  Right Superior Pulmonary 
SampEn  Sample Entropy 

TT  Trapping Time 
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Table 1A: Statistical feature analysis results for LSPV. In the table, ante. and post. 

are short forms for anterior and posterior regions of the heart.  

Feature pos t Persistent 
Mean SD 

Paroxysmal 
Mean SD 

p-
Value 

t-Value 

 
 

Fen 

 1 0.641
1 

0.199 0.468
1 

0.156
4 

0.0095 2.7574 
ante. 2 0.630

1 
0.196

2 
0.458

9 
0.144

1 
0.008 2.8265 

 4 0.593
2 

0.19 0.432
8 

0.128
7 

0.0086 2.7986 

 1 0.585
1 

0.213
4 

0.425
4 

0.143
5 

0.0185 2.4832 

post. 2 0.582
9 

0.197
9 

0.454
5 

0.142
6 

0.0423 2.1151 

 4 0.560
9 

0.189
9 

0.417 0.106
6 

0.0133 2.6221 
 
 

SampEn 

 1 0.796
8 

0.132
9 

0.600
6 

0.170
8 

0.0007 3.7699 

ante. 2 0.668 0.126
8 

0.484
3 

0.139 0.0003 4.0216 

 4 0.633
8 

0.148
4 

0.466
9 

0.119
5 

0.0012 3.541 

 1 0.702
6 

0.148
8 

0.517
3 

0.120
1 

0.0004 3.9159 

post. 2 0.687 0.135
1 

0.498
1 

0.118
1 

0.0002 4.2763 

 4 0.673
4 

0.135
4 

0.473
7 

0.091
1 

0 4.8969 
 
 

MMSE 2 

 1 0.676
4 

0.203 0.438
1 

0.202
6 

0.0018 3.4011 

ante. 2 0.624
4 

0.194
1 

0.374
7 

0.181
5 

0.0006 3.8319 

 4 0.569
4 

0.203
8 

0.335
8 

0.152
7 

0.0008 3.6907 

 1 0.621
4 

0.212
6 

0.381
1 

0.144
8 

0.0007 3.7399 

post. 2 0.624
3 

0.188
9 

0.369
3 

0.142
2 

0.0001 4.3405 

 4 0.601
8 

0.183
1 

0.330
3 

0.095 0 5.206 
 
 

MMSE 1 

 1 0.640
3 

0.188
5 

0.362
5 

0.185
3 

0.0002 4.2988 

ante. 2 0.622
9 

0.168
8 

0.345
4 

0.179
2 

0.0001 4.6306 

 4 0.581
6 

0.188
7 

0.320
5 

0.151
7 

0.0001 4.3577 

 1 0.668
5 

0.195
9 

0.368
4 

0.144
7 

0 4.9544 

post. 2 0.656
6 

0.183
9 

0.346
1 

0.158
4 

0 5.1899 

 4 0.625
9 

0.169
2 

0.316 0.124
5 

0 5.9295 
 
 

DLLE 

 1 0.351
7 

0.086
3 

0.570
4 

0.205
7 

0.0002 4.2016 

ante. 2 0.297
5 

0.077
1 

0.506
5 

0.189
6 

0.0001 4.3825 

 4 0.374
3 

0.130
9 

0.593
9 

0.189
2 

0.0004 3.9967 

 1 0.376
7 

0.124
6 

0.608
7 

0.184 0.0001 4.3775 

post. 2 0.383
9 

0.116
9 

0.654
5 

0.180
6 

0 5.2885 

 4 0.403
8 

0.114
6 

0.681
3 

0.167
3 

0 5.7333 
 
 

DET 

 1 0.526
4 

0.118
3 

0.735
8 

0.163
7 

0.0001 4.3302 

ante. 2 0.500
6 

0.124
3 

0.721
6 

0.154
1 

0.0001 4.632 

 4 0.559
2 

0.157
2 

0.776
4 

0.148
9 

0.0003 4.0937 

 1 0.500
6 

0.155 0.724 0.146
3 

0.0002 4.2742 

post. 2 0.516
1 

0.150
4 

0.762
5 

0.145
5 

0 4.8119 

 4 0.535 0.143
1 

0.789
2 

0.122 0 5.4816 
 
 

LAM 

 1 0.636
8 

0.115
2 

0.816
3 

0.124
5 

0.0001 4.352 

ante. 2 0.619
1 

0.131
6 

0.810
7 

0.114
6 

0.0001 4.4561 

 4 0.663
6 

0.150
2 

0.848
9 

0.106
2 

0.0003 4.0404 

 1 0.607 0.151
9 

0.816
4 

0.107
3 

0.0001 4.517 

post. 2 0.622
3 

0.152
4 

0.844 0.115
6 

0.0001 4.6678 

 4 0.645
1 

0.146
2 

0.868
1 

0.093 0 5.1366 
 
 

TT 

 1 0.279
8 

0.036
8 

0.439 0.209
7 

0.0027 3.2583 

ante. 2 0.191
8 

0.024
2 

0.322
5 

0.202
2 

0.0085 2.8049 

 4 0.296 0.078
2 

0.447
4 

0.190
3 

0.0035 3.1559 

 1 0.394
3 

0.067
4 

0.566
6 

0.182
9 

0.0006 3.8043 

post. 2 0.402
5 

0.058
5 

0.604
6 

0.170
5 

0 4.8369 

 4 0.414
8 

0.057 0.624
7 

0.169
8 

0 5.0577 
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Table 2A: Statistical feature analysis results for LIPV. 
 

Feature pos t 
Persistent 

Mean SD 

Paroxysmal 

Mean SD 
p-Value t-Value 

 

 

FEn 

 1 0.5701 0.2685 0.4126 0.1592 0.0534 2.0058 
ante. 2 0.5513 0.2597 0.4007 0.1378 0.0509 2.0285 

 4 0.5887 0.2732 0.441 0.1247 0.0617 1.9365 

 1 0.5722 0.2248 0.4211 0.1405 0.03 2.2714 

post. 2 0.5887 0.2434 0.4361 0.1038 0.0304 2.265 

 4 0.6282 0.2565 0.495 0.0885 0.0641 1.9181 

 

 

SampEn 

 1 0.5863 0.216 0.5271 0.1219 0.3502 0.9481 

ante. 2 0.5842 0.2283 0.5378 0.1058 0.4732 0.7258 

 4 0.628 0.2135 0.5596 0.1101 0.2684 1.1264 

 1 0.5962 0.1917 0.4782 0.1449 0.0566 1.9777 

post. 2 0.5746 0.1863 0.4622 0.125 0.0536 2.004 

 4 0.5674 0.1847 0.4607 0.1081 0.0563 1.9809 

 

 

MMSE 2 

 1 0.4662 0.2649 0.3416 0.1256 0.1036 1.6752 

ante. 2 0.4753 0.2734 0.3539 0.1111 0.1166 1.613 

 4 0.5169 0.2827 0.3847 0.1277 0.1034 1.6764 

 1 0.5788 0.2604 0.3749 0.1696 0.0133 2.6214 

post. 2 0.5673 0.2644 0.3625 0.1684 0.0138 2.6065 

 4 0.5528 0.2609 0.3814 0.1715 0.0356 2.194 

 

 

MMSE 1 

 1 0.441 0.2352 0.3289 0.1418 0.1141 1.6244 

ante. 2 0.4653 0.253 0.3573 0.1356 0.1462 1.4895 

 4 0.5066 0.2625 0.376 0.1503 0.0963 1.7134 

 1 0.5396 0.2561 0.329 0.1567 0.0087 2.7932 

post. 2 0.5237 0.2473 0.3302 0.1749 0.0153 2.5626 

 4 0.5172 0.2482 0.3382 0.1594 0.0212 2.4226 

 

 

DLLE 

 1 0.5074 0.2078 0.5868 0.1865 0.256 1.1567 

ante. 2 0.4882 0.2207 0.5552 0.1559 0.3279 0.9936 

 4 0.4883 0.2161 0.5654 0.1546 0.2526 1.165 

 1 0.3835 0.1608 0.5455 0.1943 0.0121 2.6606 

post. 2 0.4289 0.1881 0.6018 0.2047 0.0154 2.5607 

 4 0.4466 0.1896 0.6055 0.1922 0.0217 2.4127 

 

 

DET 

 1 0.6384 0.2176 0.7192 0.1703 0.2468 1.1797 

ante. 2 0.5918 0.2092 0.6783 0.1404 0.1791 1.3736 

 4 0.5928 0.2053 0.685 0.1343 0.143 1.5018 

 1 0.5377 0.1946 0.6955 0.1517 0.0147 2.58 

post. 2 0.5665 0.2117 0.7257 0.1674 0.0234 2.3807 

 4 0.5616 0.2086 0.7092 0.1521 0.0283 2.2979 

 

 

LAM 

 1 0.726 0.1892 0.8056 0.1332 0.1771 1.3802 

ante. 2 0.6977 0.1855 0.7871 0.1104 0.1097 1.6455 

 4 0.6992 0.1819 0.7933 0.107 0.0857 1.7733 

 1 0.6488 0.1924 0.7995 0.11 0.011 2.7 

post. 2 0.6679 0.2017 0.8182 0.1354 0.0188 2.4749 

 4 0.6677 0.1999 0.8092 0.126 0.0229 2.3892 

 

 

TT 

 1 0.4783 0.1472 0.5314 0.1662 0.3316 0.986 

ante. 2 0.4047 0.1809 0.4201 0.1094 0.773 0.2909 

 4 0.4222 0.1777 0.4485 0.1112 0.6205 0.5 

 1 0.3257 0.0855 0.4433 0.1989 0.0265 2.326 

post. 2 0.4002 0.1135 0.5304 0.1969 0.0212 2.4227 

 4 0.4354 0.1156 0.5541 0.1793 0.0257 2.3398 
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Table 3A: Statistical feature analysis results for RSPV. 
 

Feature pos t 
Persistent 

Mean SD 

Paroxysmal 

Mean SD 
p-Value t-Value 

 

 

FEn 

 1 0.6389 0.2328 0.3605 0.1532 0.0004 3.9931 
ante. 2 0.6157 0.2406 0.3641 0.1577 0.0014 3.4942 

 4 0.6282 0.2358 0.3817 0.1561 0.0014 3.4861 

 1 0.5688 0.2164 0.3795 0.172 0.0094 2.7649 

post. 2 0.6079 0.2247 0.3916 0.1675 0.004 3.1044 

 4 0.6119 0.2285 0.3983 0.1628 0.0045 3.056 

 

 

SampEn 

 1 0.6627 0.1668 0.5026 0.1956 0.0149 2.5745 

ante. 2 0.6571 0.1669 0.4947 0.18 0.0104 2.7224 

 4 0.6754 0.1788 0.5095 0.1679 0.0095 2.7584 

 1 0.6669 0.2 0.5734 0.2099 0.1946 1.3248 

post. 2 0.7038 0.1964 0.6065 0.2035 0.1672 1.4135 

 4 0.5508 0.1736 0.4628 0.14 0.1208 1.5939 

 

 

MMSE 2 

 1 0.6721 0.2434 0.4032 0.2452 0.0032 3.1885 

ante. 2 0.6641 0.2368 0.3997 0.233 0.0027 3.2556 

 4 0.6221 0.2313 0.3736 0.1984 0.0023 3.3081 

 1 0.5529 0.2469 0.4062 0.2288 0.0852 1.7762 

post. 2 0.5953 0.255 0.4413 0.2244 0.0748 1.8417 

 4 0.5226 0.2288 0.3746 0.1833 0.0497 2.0399 

 

 

MMSE 1 

 1 0.6451 0.2292 0.4053 0.2648 0.008 2.8285 

ante. 2 0.6517 0.2249 0.395 0.2388 0.003 3.2163 

 4 0.62 0.2322 0.3855 0.2235 0.0056 2.9721 

 1 0.5252 0.2358 0.3953 0.2181 0.1092 1.6477 

post. 2 0.5146 0.2259 0.4082 0.2184 0.1759 1.384 

 4 0.5047 0.2119 0.3836 0.2072 0.1045 1.6708 

 

 

DLLE 

 1 0.3501 0.1396 0.5531 0.2614 0.0066 2.9082 

ante. 2 0.3873 0.1655 0.5987 0.2506 0.0058 2.9566 

 4 0.3623 0.1796 0.5285 0.1937 0.0144 2.5891 

 1 0.3773 0.1916 0.453 0.1795 0.2486 1.1751 

post. 2 0.3683 0.1811 0.433 0.17 0.2959 1.0627 

 4 0.4006 0.1822 0.4992 0.1884 0.1327 1.5429 

 

 

DET 

 1 0.484 0.1566 0.6775 0.2287 0.0063 2.9247 

ante. 2 0.5086 0.1679 0.709 0.2123 0.0043 3.0759 

 4 0.5094 0.1718 0.6901 0.1824 0.0057 2.9639 

 1 0.5264 0.1883 0.6193 0.1972 0.1714 1.3992 

post. 2 0.536 0.1751 0.6184 0.1858 0.1946 1.3248 

 4 0.5536 0.1874 0.6617 0.1812 0.1001 1.6936 

 

 

LAM 

 1 0.6001 0.1512 0.7643 0.1914 0.0086 2.7979 

ante. 2 0.6248 0.1552 0.7959 0.1685 0.0043 3.0716 

 4 0.6266 0.1554 0.7863 0.1466 0.0046 3.0482 

 1 0.6422 0.1646 0.7195 0.1787 0.1997 1.3096 

post. 2 0.6553 0.1541 0.7229 0.166 0.2289 1.2265 

 4 0.6656 0.1754 0.7606 0.1544 0.1087 1.6503 

 

 

TT 

 1 0.3185 0.0895 0.4783 0.2433 0.0123 2.6542 

ante. 2 0.3782 0.1402 0.5456 0.2353 0.0147 2.5806 

 4 0.3093 0.1719 0.4067 0.1506 0.0929 1.7322 

 1 0.3117 0.1761 0.3391 0.1108 0.6026 0.5258 

post. 2 0.2871 0.1775 0.3082 0.1034 0.6858 0.4083 

 4 0.3396 0.167 0.3902 0.1354 0.3489 0.9506 
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Table 4A: Statistical feature analysis results for RIPV. 
 

Feature pos t 
Persistent 

Mean SD 

Paroxysmal 

Mean SD 
p-Value t-Value 

 

 

FEn 

 1 0.635 0.215 0.6619 0.1957 0.7091 0.3764 
ante. 2 0.6414 0.2322 0.6296 0.1775 0.8719 0.1626 

 4 0.6079 0.23 0.5743 0.1693 0.6387 0.4741 

 1 0.558 0.1999 0.4875 0.2042 0.3192 1.0118 

post. 2 0.544 0.2139 0.4935 0.1893 0.4775 0.7188 

 4 0.5512 0.2181 0.4883 0.1836 0.3784 0.8933 

 

 

SampEn 

 1 0.5663 0.1782 0.5228 0.1505 0.4556 0.7554 

ante. 2 0.6773 0.197 0.6421 0.167 0.5847 0.5521 

 4 0.6759 0.1907 0.6194 0.1831 0.3899 0.8716 

 1 0.6252 0.2196 0.5055 0.1346 0.0735 1.8506 

post. 2 0.6192 0.2098 0.5134 0.1542 0.1123 1.6329 

 4 0.6221 0.1875 0.5109 0.1565 0.0744 1.8445 

 

 

MMSE 2 

 1 0.5072 0.252 0.4595 0.1869 0.5451 0.6117 

ante. 2 0.4974 0.2599 0.4332 0.1617 0.4091 0.8365 

 4 0.4924 0.2511 0.4052 0.1682 0.2574 1.1532 

 1 0.4571 0.2466 0.3201 0.1416 0.0647 1.9134 

post. 2 0.4523 0.2395 0.3363 0.1524 0.1127 1.6308 

 4 0.435 0.2255 0.3107 0.1401 0.0711 1.8668 

 

 

MMSE 1 

 1 0.5319 0.2551 0.4158 0.1742 0.142 1.5057 

ante. 2 0.5581 0.2731 0.4311 0.1734 0.1271 1.5666 

 4 0.5543 0.2752 0.4104 0.1734 0.0873 1.764 

 1 0.4673 0.2577 0.3034 0.1325 0.0325 2.2357 

post. 2 0.4568 0.25 0.3115 0.1432 0.0537 2.0034 

 4 0.4613 0.2383 0.3067 0.1471 0.0353 2.1986 

 

 

DLLE 

 1 0.3994 0.1702 0.4776 0.1734 0.1964 1.3193 

ante. 2 0.3962 0.1605 0.477 0.1735 0.169 1.4071 

 4 0.3841 0.1504 0.47 0.1829 0.1425 1.5037 

 1 0.4516 0.2268 0.5693 0.1635 0.1007 1.6905 

post. 2 0.3786 0.1677 0.4808 0.1754 0.0933 1.7299 

 4 0.3494 0.1347 0.4686 0.1769 0.0328 2.2311 

 

 

DET 

 1 0.5895 0.1741 0.6656 0.1337 0.1719 1.3974 

ante. 2 0.5906 0.1774 0.6684 0.128 0.1626 1.4293 

 4 0.5885 0.1713 0.6739 0.1453 0.1331 1.5414 

 1 0.5901 0.2215 0.7362 0.1285 0.0303 2.2664 

post. 2 0.5648 0.1962 0.6793 0.1385 0.065 1.9113 

 4 0.5606 0.1747 0.6909 0.1305 0.0222 2.4039 

 

 

LAM 

 1 0.6961 0.1561 0.7781 0.0998 0.087 1.7655 

ante. 2 0.6978 0.1591 0.7808 0.0965 0.0853 1.7757 

 4 0.6995 0.1569 0.7828 0.1105 0.0913 1.741 

 1 0.6851 0.202 0.8249 0.0994 0.0199 2.4517 

post. 2 0.6677 0.1849 0.7821 0.1065 0.0409 2.1308 

 4 0.6716 0.1706 0.7951 0.0988 0.0182 2.489 

 

 

TT 

 1 0.2675 0.1134 0.321 0.1949 0.3235 1.0028 

ante. 2 0.2695 0.1006 0.3275 0.1937 0.2672 1.1291 

 4 0.244 0.0872 0.3091 0.2005 0.2115 1.275 

 1 0.4204 0.1836 0.4831 0.1449 0.2875 1.0816 

post. 2 0.2477 0.0887 0.316 0.1969 0.1856 1.3529 

 4 0.1939 0.0588 0.2754 0.2065 0.11 1.6441 
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Table 5A: Statistical feature analysis results for POS. 
 

Feature pos t 
Persistent 

Mean SD 

Paroxysmal 

Mean SD 
p-Value t-Value 

 

 

FEn 

 1 0.5698 0.2252 0.4395 0.1541 0.0648 1.9126 
ante. 2 0.5445 0.2201 0.4046 0.1214 0.0346 2.2069 

 4 0.5513 0.2522 0.4105 0.1335 0.0597 1.9526 

 1 0.6283 0.214 0.436 0.1143 0.0036 3.138 

post. 2 0.6124 0.2113 0.443 0.1103 0.0084 2.8107 

 4 0.5801 0.2225 0.4248 0.1137 0.0197 2.4562 

 

 

SampEn 

 1 0.6722 0.2249 0.5069 0.1295 0.0165 2.5298 

ante. 2 0.6592 0.2194 0.4853 0.105 0.0082 2.8172 

 4 0.6682 0.2362 0.5238 0.1263 0.0405 2.1356 

 1 0.7074 0.1453 0.4689 0.0999 0 5.4174 

post. 2 0.7428 0.1536 0.5114 0.1029 0 5.0076 

 4 0.7116 0.1517 0.5124 0.1186 0.0002 4.1733 

 

 

MMSE 2 

 1 0.5598 0.2657 0.3302 0.1804 0.0074 2.8612 

ante. 2 0.5569 0.2557 0.3164 0.1439 0.0027 3.2528 

 4 0.5416 0.2804 0.3285 0.1507 0.0124 2.6511 

 1 0.6218 0.2059 0.2909 0.1288 0 5.4345 

post. 2 0.6411 0.2119 0.3137 0.1291 0 5.2532 

 4 0.5937 0.2093 0.3214 0.1433 0.0001 4.2997 

 

 

MMSE 1 

 1 0.5759 0.2954 0.2983 0.1534 0.0024 3.2981 

ante. 2 0.5926 0.2969 0.2971 0.1336 0.0011 3.5721 

 4 0.5539 0.2997 0.3042 0.1477 0.0059 2.9502 

 1 0.5716 0.2405 0.2355 0.1092 0 5.0093 

post. 2 0.5395 0.2191 0.2381 0.1072 0 4.8766 

 4 0.6032 0.2331 0.2965 0.1439 0.0001 4.4607 

 

 

DLLE 

 1 0.3731 0.1938 0.56 0.1882 0.008 2.8286 

ante. 2 0.3686 0.1946 0.5616 0.1782 0.0055 2.9794 

 4 0.3811 0.1866 0.5547 0.1839 0.0107 2.7121 

 1 0.4066 0.1342 0.7636 0.1862 0 6.4971 

post. 2 0.3599 0.1159 0.631 0.1688 0 5.5471 

 4 0.3527 0.1186 0.5988 0.185 0 4.7097 

 

 

DET 

 1 0.5344 0.2112 0.7217 0.1594 0.0076 2.8503 

ante. 2 0.5168 0.2093 0.7187 0.1395 0.003 3.2117 

 4 0.5489 0.2221 0.7278 0.1495 0.0117 2.674 

 1 0.4867 0.1429 0.7897 0.1274 0 6.4344 

post. 2 0.5332 0.1549 0.8062 0.1304 0 5.4635 

 4 0.5252 0.158 0.771 0.1449 0.0001 4.669 

 

 

LAM 

 1 0.6356 0.2013 0.8141 0.1216 0.0049 3.0201 

ante. 2 0.6228 0.2005 0.8188 0.1016 0.0016 3.4456 

 4 0.6516 0.2079 0.8227 0.1118 0.0072 2.8697 

 1 0.599 0.157 0.864 0.0942 0 5.7582 

post. 2 0.6393 0.154 0.8694 0.0929 0 5.0925 

 4 0.6353 0.1602 0.8473 0.106 0.0001 4.4116 

 

 

TT 

 1 0.2261 0.1157 0.3271 0.2012 0.075 1.8402 

ante. 2 0.2729 0.137 0.3836 0.192 0.0586 1.9614 

 4 0.2834 0.1127 0.3966 0.1975 0.0433 2.1047 

 1 0.4355 0.0632 0.7121 0.1879 0 6.0203 

post. 2 0.3115 0.0509 0.5062 0.1844 0.0001 4.4103 

 4 0.2807 0.0495 0.4542 0.2005 0.0009 3.6461 



 

 

                   Table 6A: Statistical feature analysis results for ANT. 

Feature pos t 
Persistent 

Mean SD 

Paroxysmal 

Mean SD 
p-Value t-Value 

 

 

FEn 

 1 0.6682 0.1942 0.5582 0.1672 0.0913 1.7409 
ante. 2 0.6629 0.1908 0.5623 0.1822 0.129 1.5584 

 4 0.6326 0.2027 0.5431 0.1814 0.1902 1.3385 

 1 0.745 0.1947 0.6089 0.1824 0.0455 2.0812 

post. 2 0.7042 0.2021 0.5743 0.1737 0.0566 1.9782 

 4 0.6925 0.1965 0.5649 0.1734 0.0566 1.978 

 

 

SampEn 

 1 0.7397 0.1591 0.6305 0.1632 0.0581 1.9653 

ante. 2 0.7375 0.1223 0.6161 0.181 0.0262 2.3308 

 4 0.755 0.1553 0.6491 0.1666 0.0648 1.9128 

 1 0.4649 0.0667 0.4477 0.1792 0.701 0.3875 

post. 2 0.7375 0.1223 0.6161 0.181 0.0262 2.3308 

 4 0.7514 0.1364 0.6214 0.1712 0.0191 2.4674 

 

 

MMSE 2 

 1 0.6557 0.231 0.4606 0.2173 0.0173 2.5101 

ante. 2 0.6335 0.2171 0.4584 0.2324 0.0305 2.2645 

 4 0.611 0.2276 0.4689 0.2046 0.0679 1.8894 

 1 0.4393 0.1025 0.3733 0.2209 0.2556 1.1576 

post. 2 0.6634 0.1859 0.4717 0.2298 0.0112 2.691 

 4 0.6429 0.1866 0.4603 0.2359 0.0169 2.5217 

 

 

MMSE 1 

 1 0.5478 0.1762 0.3851 0.2206 0.0227 2.3932 

ante. 2 0.5436 0.1829 0.3864 0.2306 0.0338 2.2183 

 4 0.6081 0.2197 0.4414 0.219 0.0352 2.1998 

 1 0.3497 0.0758 0.2994 0.2287 0.3738 0.9021 

post. 2 0.6134 0.1614 0.4182 0.2177 0.0051 3.0046 

 4 0.585 0.1707 0.4004 0.2312 0.0115 2.6797 

 

 

DLLE 

 1 0.3875 0.1148 0.5217 0.1808 0.0128 2.6377 

ante. 2 0.3868 0.1163 0.5273 0.1933 0.013 2.6295 

 4 0.4088 0.13 0.5322 0.1776 0.0257 2.3396 

 1 0.4735 0.0808 0.6076 0.2252 0.0216 2.4147 

post. 2 0.4432 0.088 0.612 0.1858 0.0014 3.5035 

 4 0.4244 0.1048 0.5982 0.1865 0.0016 3.4389 

 

 

DET 

 1 0.5922 0.1417 0.7109 0.1482 0.0236 2.3773 

ante. 2 0.6003 0.1452 0.7211 0.1708 0.033 2.229 

 4 0.5933 0.1506 0.7032 0.1512 0.0428 2.1093 

 1 0.5843 0.0914 0.7012 0.2183 0.042 2.1187 

post. 2 0.5592 0.1025 0.7087 0.1573 0.0021 3.345 

 4 0.5774 0.116 0.7338 0.1548 0.002 3.3712 

 

 

LAM 

 1 0.7157 0.118 0.809 0.1218 0.031 2.2571 

ante. 2 0.7211 0.1189 0.815 0.141 0.043 2.1072 

 4 0.7193 0.123 0.8096 0.1211 0.04 2.1406 

 1 0.7118 0.0826 0.7889 0.2171 0.1628 1.4285 

post. 2 0.6969 0.0963 0.8154 0.1289 0.0043 3.0717 

 4 0.7096 0.1012 0.8319 0.125 0.0035 3.1546 

 

 

TT 

 1 0.2598 0.0775 0.3618 0.1926 0.0429 2.1085 

ante. 2 0.2504 0.0673 0.3583 0.197 0.0325 2.2352 

 4 0.2695 0.0743 0.3602 0.1889 0.0638 1.9197 

 1 0.4753 0.0464 0.5966 0.1743 0.0064 2.9166 

post. 2 0.4292 0.0506 0.5685 0.1699 0.0018 3.3993 

 4 0.3683 0.0662 0.5083 0.1796 0.0035 3.1487 

 



 

 

 
Figure 1: Block diagram of the proposed system. The electrogram signals on the 

left side show the first 2 seconds of 16-second sequences. The signals were 

measured at the left superior pulmonary vein ostia from patients with persistent 

and paroxysmal AF, respectively. These signals constitute the data for pre-

processing and feature extraction algorithms. Feature extraction results were 

assessed with statistical methods, and features were identified that show unique 

ranges for persistent versus paroxysmal AF. 

  



 

 

 

 

 

Figure 2: Sample RP with annotations that show RQA feature definitions. 

 

 

  



 

 

 
Figure 3: RPs from 1, 2 and 4 second segments measured from the left superior 

pulmonary vein ostia at the anterior region of the heart.



 

 

 
Figure 4: RPs from 1, 2 and 4 second segments measured from the left superior 

pulmonary vein ostia at the posterior region of the heart.
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Figure 5: Mean bar plot for 1, 2 and 4 second segments of persistent as well as 

paroxysmal data from the LSPV. A unique range is identified with a red circle  . 
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Figure 6: Mean bar plot for 1, 2 and 4 second segments of persistent as well as 

paroxysmal data from the LIPV. 
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Figure 7: Mean bar plot for 1, 2 and 4 second segments of persistent as well as 

paroxysmal data from the RSPV. 
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Figure 8: Mean bar plot for 1, 2 and 4 second segments of persistent as well as 

paroxysmal data from the RIPV. 
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Figure 9: Mean bar plot for 1, 2 and 4 second segments of persistent as well as 

paroxysmal data from the POS. Unique ranges are identified with a red circle  . 
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Figure 10: Mean bar plot for 1, 2 and 4 second segments of persistent as well as 

paroxysmal data from the ANT. 
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Figure 11: f-value of the RP features extracted from electrograms measured 

from the posterior region of the heart. The orange line represents the feature 

performance for 1 second signal segments. The green and blue lines represent 

the feature performance for 2 and 4 second signal segments respectively. 
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Figure 12: f-value of the RP features extracted from electrograms measured 

from the anterior region of the heart. The orange line represents the feature 

performance for 1 second signal segments. The green and blue lines represent 

the feature performance for 2 and 4 second signal segments respectively. 
 

 

 


