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Abstract

Background and objective:

Prostate cancer is one of the most common male tumors. The increasing use of

whole slide digital scanners has led to an enormous interest in the application of

machine learning techniques to histopathological image classification. Here we

introduce a novel family of morphological descriptors which, extracted in the

appropriate image space and combined with shallow and deep Gaussian process

based classifiers, improves early prostate cancer diagnosis.

Method:

We decompose the acquired RGB image in its RGB and optical density hema-

toxylin and eosin components. Then, we define two novel granulometry-based

descriptors which work in both, RGB and optical density, spaces but perform

better when used on the latter. In this space they clearly encapsulate knowledge

used by pathologists to identify cancer lesions. The obtained features become
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the inputs to shallow and deep Gaussian process classifiers which achieve an

accurate prediction of cancer.

Results:

We have used a real and unique dataset. The dataset is composed of 60 Whole

Slide Images. For a five fold cross validation, shallow and deep Gaussian Pro-

cesses obtain area under ROC curve values higher than 0.98. They outperform

current state of the art patch based shallow classifiers and are very competitive

to the best performing deep learning method. Models were also compared on

17 Whole Slide test Images using the FROC curve. With the cost of one false

positive, the best performing method, the one layer Gaussian process, identifies

83.87% (sensitivity) of all annotated cancer in the Whole Slide Image. This

result corroborates the quality of the extracted features, no more than a layer

is needed to achieve excellent generalization results.

Conclusion:

Two new descriptors to extract morphological features from histological im-

ages have been proposed. They collect very relevant information for cancer

detection. From these descriptors, shallow and deep Gaussian Processes are ca-

pable of extracting the complex structure of prostate histological images. The

new space/descriptor/classifier paradigm outperforms state-of-art shallow clas-

sifiers. Furthermore, despite being much simpler, it is competitive to state-of-art

CNN architectures both on the proposed SICAPv1 database and on an external

database.

Keywords: Prostate cancer, Histopathological Images, Gaussian Processes,

Variational Inference, Granulometries, Deep Gaussian Processes.

1. Introduction

According to the World Health Organization, prostate cancer is the most

common non-cutaneous cancer in men [1]. A histological diagnosis of prostate

cancer is almost always required prior to instituting therapy for any stage of

the disease. Pathologists determine the grade of cancer based on the formation,
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disposition, and structure of the glands (nuclei, lumen, cytoplasm and stroma)

in the tissue, scoring the samples between 1 to 5, following the Gleason grading

system [2], see Figure 1.

(a) (b) (c) (d)

Figure 1: Examples of Gleason grades of histological images: (a) benign; (b) grade 3; (c)

grade 4; (d) grade 5.

Tissue histopathological slides can nowadays be acquired and digitally stored

thanks to the advent of whole slide digital scanners. The widespread use of

such scanners has led to an increasing interest on applying machine learning

techniques to classify these images, for a review of this topic, see [3]. Due to

the large resolution of the images obtained under the microscope, evaluating

each single diagnostic test manually is a very time-consuming task. This fact

encourages the research on CAD algorithms that decrease pathologists workload

by recognizing obviously benign cases so that experts can focus on the delicate

ones [4].

In digital brightfield microscopy, tissues are usually stained before digitiza-

tion and evaluation by pathologists. Hematoxylin and Eosin (H&E) are prob-

ably the most widely used combination of stains. Since Color Deconvolution

(CD), that is, H&E separation, is a very important preprocessing step, several

methods have been developed (see [5] for a recent review). One of the first CD

methods, which is widely used, was proposed by Ruifrok et al. [6]. This is a

supervised method where the stain color vectors are obtained by measuring the

relative absorption of each stain in single-stained images. These color vectors

are used on all the WSI images to obtain their RGB and Optical Density (OD)

space H&E images. CAD algorithms based on hand-driven approaches use RGB
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space H&E images, while deep learning approaches work directly with the orig-

nal RGB images. In this paper we will show that the selection of the space

where H&E are represented significantly affects the performance of classifiers.

Two approaches are currently being used in the literature to detect tumor-

ous prostatic tissues. One is based on segmenting the images and identifying

the regions of interest (ROIs), while the other utilizes patches for classification

purposes. In this work, we follow the second approach: the entire whole slide im-

age (WSI) is split into patches and each one is analyzed independently. While

pathologists use several scales (magnification factors), most machine learning

algorithms use a single one. Gupta et al. [7] compare different scales for train-

ing and test in breast histology. They conclude that with suitable features

together with an ensemble classifier framework, such as bagging or boosting,

the classification can be made largely magnification invariant. For a selected

magnification factor and patch size, a feature extraction process to encode the

relevant information of the images must be carried out.

Nowadays, the remarkable progress in the deep learning field allows to auto-

matically compute high-abstraction feature maps by means of neural networks

based on stacks of convolutional blocks (a.k.a. convolutional neural networks

or CNNs). CNNs are being successfully applied in many computer vision tasks.

In the particular case of histological images, CNNs have also benefit of the au-

tomatic feature extraction for the classification of different tumoral patterns in

diverse organs [8]. Le Hou et al. [9] use a CNN for path-based classification

which achieves good results discriminating different cancer subtypes in WSIs.

The BACH challenge1 resulted in several works [10, 11, 12] in which the dif-

ferent types of breast cancer including in-situ carcinoma, invasive tumor, and

benign tumor were automatically identified by means of well-known CNN archi-

tectures: Inception v3, Xception and ResNet. A fine-tuning process of the same

architectures was carried out by Ferlaino et al. [13] to robustly localize and

classify placental cells using histological images. Shallu et al. [14] demonstrated

1https://iciar2018-challenge.grand-challenge.org/
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that transfer learning is better than training from scratch in breast cancer histo-

logical image classification, obtaining very good accuracy with the VGG16 and

VGG19 architectures. In prostate cancer histology, CNNs have recently been

utilized for semantic segmentation grading [15, 16]. These methods provide for

each pixel its probability of belonging to each class.

According to Komura et al. [3], the relevant information to classify histolog-

ical images is related to texture and morphology. Although CNNs are able to

learn these feature representations, textural and morphological tissue properties

can also be manually captured by a suitable hand-crafted descriptor avoiding

specific hardware requirements and reducing computational cost. Therefore,

the information (descriptors) extracted from each patch becomes the key to a

successful tissue classification. Generic descriptors, such as HOG [17], LBP [18],

SIFT [19] or Gabor filters [20] are frequently used for prostate cancer detection.

Kumar et al. [21] show that LBP are as good as deep features and dictionaries

with the benefits of easy computation and low dimensionality. Recent works in

the field [22, 23, 24, 25] also indicate that descriptors based on structural and

morphological properties of the prostatic tissue could outperform those based

on standard features. It is also possible to combine a convolutional neural net-

work with handcrafted features as Zhou et al. [26] but it is not widely used in

the literature.

In a hand-driven learning paradigm, once a descriptor has been selected,

a suitable classifier must be chosen. Although ensemble classifiers as Random

Forests [27], Adaboost [19] or Xgboost [28] have been used, it could be said that

Support Vector Machine (SVM) is the preferred classifier [23, 29, 30]. Unfortu-

nately, nonparametric probabilistic models which take into account the uncer-

tainty of the predictions, particularly Gaussian Processes (GPs) [31], which are

in the state-of-art in classification, have been less used. It has long been known

that neural networks with an infinite amount of hidden layers are equivalent to

Gaussian Processes with a certain covariance kernel. GPs have the advantage of

been nonparametric, unlike neural networks that have to learn a large number

of parameters in order to have a sufficiently complex model. GPs allow us to
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use a sound framework with a well defined inference procedure. Prior models

in the form of different kernels can be used to encapsulate knowledge on the

problem at hand. Model parameters can be automatically estimated without

hand-tuning and predictions go beyond point estimates to provide very impor-

tant information on uncertainty. They are starting to be used in histological

image classification. Kandemir et al. [32] proposed a multi-instance relational

learning based on GPs for histhopathology images. For the multi-instance pur-

pose, they process each image as a bag and each patch as an instance. In order

to capture the differences in cell formations caused by the disease status, they

also introduce relational learning between instances and add relational side in-

formation from the spatial positions of segmented cells. More recently, with the

purpose of facing more complex models, Deep Gaussian Processes (DGPs) [33]

have been proposed. Unlike deep learning that requires a large dataset to learn a

good model, DGPs can be applied with success even when data is scarce. In the

last years, the ML community has experienced a remarkable interest in DGPs

which are a hierarchical extension of GPs. Roughly speaking, they are deep

architectures (like CNNs) whose layers are modelled by probabilistic GPs. This

brings all the advantages of using GPs and provides much more power to approx-

imate complex patterns in data. Results are really promising, surpassing CNNs

in several problems. Unfortunately, in spite of its representation power, there

are hardly any works in histopathology that make use of DGPs, see, however,

Kandemir et al. [34] who apply a two-layer DGP model in histopathology can-

cer classification using an asymmetric transfer learning approach. The dataset

used was built from two different tissues: breast and esophagus.

Once a patch classifier has been learned (using either hand-crafted or learned

features), an image level evaluation is needed for prostate cancer diagnosis.

Some works utilize a multiple instance learning approach and provide an over-

all WSI diagnosis, see Campanella et al. [35]. Another approach, which is

frequently followed, is presented in Litjens et al. [8]. For each pixel, the proba-

bility of being cancerous is estimated from the patch probabilities, constructing

a heat map for the WSI. This probability map is then thresholded to classify
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every WSI pixel as cancerous or benign.

In this work we approach the classification of prostate histological images by

first calculating the OD of each WSI to then estimate its H&E concentration

components (we will show that OD is a better space than RGB for feature

extraction and classification tasks). Hand-crafted features, which are expected

to capture the expertise of pathologists, are then extracted from patches of these

two concentration components. Finally, patches are classified using single-layer

and multilayer Gaussian processes into benign and cancerous classes. We also

carry out a validation at WSI level. We predict the per pixel probability of being

cancerous and validate the obtained probability map. GPs and DGPs perform

similarly and they are competitive to the tested shallow and deep classifiers. In

other words, the quality of our OD extracted features does not require more

than a single-layer GP to outperform the best performing classifiers.

The rest of the paper is organized as follows, in section 2 we introduce and

describe a new WSI database of histological prostate images which has been

manually annotated by experts2. In section 3, we explain how the CD task

is performed on each WSI and describe how to obtain its RGB and OD H&E

representations. In section 4, we motivate and define our new two morphological

descriptors, we explain how the proposed framework, to discriminate between

cancer and benign tissue in prostate, tries to mimic the way of analysis of a

pathologist. In section 5, we provide an introduction to GPs and its hierarchical

extension, DGP, in supervised learning. In section 6 we carry out a comparative

study of several classifiers using the proposed features in a real clinical database

provided by pathologists from the Hospital Cĺınico of Valencia. The performed

experiments show that the classifier based on GP and deep GP together with the

proposed features extracted in the OD space outperforms the current state of

the art shallow classifiers and it is competitive to state-of-art deep convolutional

neural netwok classifiers. In the experimental discussion we provide an insightful

analysis. We use the area under the curve (AUC) for the evaluation of patch

2The dataset will be made public upon acceptance of the paper.
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classification and FROC for diagnosis (detection) of prostate cancer in Whole

Slide Image. We also analyze its complexity and computational cost compared

to CNNs. Besides, to assess the robustness, we use the database proposed in [15,

29] for external validation. Finally, in Section 7 we summarize the conclusions

extracted from our experimental results.

2. Material: SICAP database

The lack of large and public databases of prostate histopathological images

has prevented researchers from a rigorous and meaningful comparison of su-

pervised learning methods on these images. To the best of our knowledge, only

three public databases containing histological prostate images are available. The

first one, which is the result of a joint work by the National Cancer Institute and

the National Human Genome Research Institute, both from United States, has

generated comprehensive, multi-dimensional maps of the key genomic changes

in 33 types of cancer. However, the fact of not providing pixel-wise annotations

along with a large amount of missing labels makes this database 3 inappropriate

to validate new methodologies. The second one, the public database released by

the authors of [36], is composed by 886 images and their corresponding pixel-

wise annotations according to the Gleason scale. Unfortunately, only isolated

tissue spots, representing characteristic patterns, are provided which prevents a

patch size comparison and a full WSI classification. The third one, a database

used in [15, 29] is composed by 625 different grade patches with a pixel-wise

mask provided by pathologists. No WSIs are provided.

In this work, we present the SICAPv1 database, publicly available at https:

//cvblab.synology.me/PublicDatabases/SICAPv1.zip. It was obtained by

a team of pathologists working at the Hospital Cĺınico of Valencia. Biopsies of

48 different patients were processed, hematoxylin and eosin stained and then

digitized using the Ventana iScan Coreo scanner at 40x magnification. The

3https://portal.gdc.cancer.gov/
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Table 1: SICAPv1 database description. Number of training WSIs and number of 5122/10242

associated patches.

Benign Grade 3 Grade 4 Grade 5 Pathological

#WSIs 17 18 15 10 43

#5122 patches 6725 380 589 173 1142

#10242 patches 1909 113 181 50 344

database consists of 79 WSI: 19 correspond to benign prostate tissue biopsies

(negative class) and 60 to pathological prostate tissue biopsies (positive class).

Note that the entire dataset was divided into two subsets, 60 WSI (17 benign

and 43 pathological) were used to learn the models and the remaining 19 images

(two benign, seven diagnosed as grade 3, eight corresponding to grade 4 and two

grade 5 WSIs) to test them. The malignant regions of the pathological images

were carefully pixel-wise annotated by an expert team of pathologists. For this

purpose, experts manually annotated the relevant tumoral areas using an online

in-house application based on the OpenSeadragon functional core [37].

In order to automatically analyse these gigapixel images, the images were

downsampled from 40× to 10× and divided in patches with a 50% overlap. To

test the influence of the patch size, different sizes were selected: 5122 and 10242,

resulting on the two different datasets detailed in Table 1. Note that malignant

patches were extracted from the annotated tumoral areas in the positive class

images. Patches less than 25% inside a malignant area were not considered.

And benign patches were extracted from benign WSIs.

3. Color deconvolution

For each WSI, the three-channel image information is the RGB intensity

detected by a brightfield microscope observing a stained prostate histological

slide. H&E are the stains usually used in pathology: Hematoxylin highlights

the nuclei in purple and Eosin the stroma and cytoplasm in pink. Each M ×N
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image is denoted by I with columns ic = (i1c, . . . , iMNc)
T , c ∈ {R,G,B}.

We follow the color deconvolution approach described in [6]. According to

the Lambert-Beer’s law we can express the OD for channel c of the slide as

yc = − log(ic/i
0
c) ∈ RMN×1, where i0c = 255 is the incident light and division

inside the logarithm is performed element-wise. Slides are stained using ns = 3

stains, s ∈ {H,E,Res} (to obtain a unique stain decomposition we consider a

third stain which represents the residual part) then the observed OD multichan-

nel Y = [yR,yG,yB ] ∈ RMN×3 can be decomposed as a matrix multiplication

YT = MCT , where C = [c1, c2, c3] ∈ RMN×3 is the stain concentration matrix,

with cs, the s-th column of C, containing at each pixel position the concentra-

tion of stain color s and M ∈ R3×3 denoting the normalized stain matrix of the

fixed form exposed in [6]. Notice that the s-th column of M, ms, denotes the

specific color of stain s.

The stain concentration matrix can then be recovered using CT = M−1YT .

Concentrations are transformed back to color (RGB) images using yseps =

exp(−msc
T
s ), s ∈ {H,E}. Features are usually extracted from the single chan-

nel images exp(−cs), s ∈ {H,E} in the so called RGB space. In this work, we

propose to perform this step in the OD space where stains are linearly separa-

ble, that is, directly on cs, s ∈ {H,E}. Figure 2 shows three different images

from three different biopsies (and patients), one benign and two pathological,

and their corresponding OD concentrations, Hematoxylin in the first row and

Eosin in the second one. OD Hematoxylin captures nuclei infomation while OD

Eosin contains information on stroma and cytoplasms.

4. Granulometry-based descriptors

Granulometry is a technique based on mathematical morphology. Size dis-

tributions of different elements in an image are obtained applying a series of

morphological opening (or closing) operations with increasing-size structuring

elements. The obtained size distribution provides shape and size information.

In this paper, we propose the use of the classic formulation of granulometry
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(a) (b) (c)

Figure 2: Hematoxylin (second row) and Eosin (third row) optical densities for three samples:

a) Benign; b) and c) pathological.

as a new descriptor used in histhological images and define a new variant for

prostate cancer classification which makes use of morphological reconstruction.

The two proposed descriptors are explained below.

4.1. Granulometry-based descriptor

Based on a pyramid of morphological operators, granulometry calculates the

size distribution of bright and dark objects present in an image. Let z be either

a whole gray level image or an image patch. We can define a morphological

descriptor, using the opening operator γi(z) applied to the image z with a SE

(window) of size i. This opening operator can be expressed as the combina-

tion of an erosion (εi(z)) followed by a dilation (δi(z)), both with the SE of

size i. When this opening is computed with a SE of increasing size (λ), we
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obtain a morphological opening pyramid (or granulometry profile) which can be

formalized as:

Πγ(z) = {Πγλ : Πγλ = γλ(z),∀λ ∈ [0, s, 2s, ..., nmax]}. (1)

where nmax represents the maximum size of the structuring element, and the

sizes increase in steps s.

Making use of the opening pyramid (Πγ), the granulometry curve or pattern

spectrum of z, PSΓ(z, n), can be defined as:

PSΓ(z, n) =
m(Πγn(z))−m(Πγn+1(z))

m(z)
, n ≥ 0 (2)

where m(z) is the Lebesgue measure of z and it is computed as the area of z in

the binary case and the volume in the gray-scale case (sum of pixel values).

PSΓ(z, n) (also called size density of z) maps each size n to a measure of the

bright image structures with this size: loss of bright image structures between

two successive openings. It is a probability density function (a histogram) in

which a large impulse in the pattern spectrum at a given scale indicates the

presence of many image structures at that scale.

By duality, a closing, ϕi(z) is defined as the dilation of z followed by an

erosion, both with a SE of size i. In the same way, a morphological closing

pyramid is an anti-granulometry profile and can be computed on the image

performing repeated closings with a SE of increasing size (λ) defined as:

Πϕ(z) = {Πϕλ : Πϕλ = ϕλ(z),∀λ ∈ [0, ..., nmax]} (3)

The concept of pattern spectrum extends to the anti-granulometry curve

PSΦ(z) with respect to the family of closings Φ:

PSΦ(z,−n) =
m(Πϕn(z))−m(Πϕn−1(z))

m(z)
, n ≥ 0. (4)

Notice that this spectrum characterises the size of image structures with low

level intensities.

Both granulometry and anti-granulometry descriptors are concatenated to

construct the final descriptor (Gran).
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4.2. Geodesic Granulometry-based descriptor

In this work, we introduce a variant of the granulometry, named geodesic

granulometry, which is based on geodesic transformations.

A geodesic transformation involves two images: a marker image (or patch)

y and a reference image z. The geodesic dilation is the iterative unitary dilation

of z with respect to y, that is:

δ(n)
y (z) = δ(1)

y δ(n−1)
y (z), being δ(1)

y (z) = δB(z) ∧ y. (5)

The reconstruction by dilation is the successive geodesic dilation of z regard-

ing y up to idempotence, that is:

Rδy(z) = δ(i)
y (z), so that δ(i)

y (z) = δ(i+1)
y (z). (6)

The reconstruction by erosion can be obtained as its dual operator:

Rεy(z) = [Rδyc(z
c)]c, (7)

being zc the complement image (or patch).

The reconstruction by dilation removes from the reference z the bright ob-

jects unconnected with the marker y. The underlying idea on which the new

descriptor is based is to only consider in the granulometry spectrum the ob-

jects totally removed in each opening (closing) step. Using γ(z) as indicated

in Equation (1) can lead to the inclusion in the pattern spectrum of fragments

of objects partially removed in the process. To solve this shortcoming, we

modify the granulometry profile (Equation (1)) by using the geodesic open-

ing given by γr(z) = Rδγ(z)(z). By duality, the proposed geodesic closing, to

be used in the computation of the anti-granulometry profile, (Equation (3)) is

ϕr(z) = Rεϕ(z)(z). The new geodesic granulometry descriptors will be denoted

PSrΓ(z, n) and PSrΦ(z,−n), respectively.

Both geodesic descriptors are concatenated to construct the final descriptor

(GeoGran).
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4.3. Granulometry profiles for prostate cancer detection

The proposed framework, to discriminate between cancer and benign tissue

in prostate, tries to mimic the way of analysis of a pathologist. Basically, the

cancer destroys the tissue structure. A benign tissue is formed by glands, each

of them with a lumen surrounded by cytoplasm and nuclei, distributed in a

background of stroma (which also contains sparsely distributed nuclei) (Figure

2(a)). As cancer progresses, glands begin to proliferate and merge, destroying

the structure of benign tissues. Cytoplasm and lumens disappear and stroma is

invaded by nucleis. Figure 2, (first row), shows three different cancer stages ((a)

benign, (b) grade 3, (c) grade 5). To capture in a descriptor the tissue structure,

we propose to use PSΦ with H as input image. This encodes the structure of the

glands by recovering the structure of the nuclei which formed the gland frontiers

(those that enclosed their lumen and cytoplasm). The granulometric profiles,

Πϕ, for the three image examples are shown in Figures 3(c), 4(c) and 5(c). To

capture stroma information, PSΓ is applied on the E component. Figures 3(a),

4(a) and 5(a) show the Πγ profiles for the three examples. Figures 3, 4

and 5 also depict in columns (b) and (d) the geodesic profiles Πr
γ and Πr

ϕ,

respectively. Note that Πr
ϕ (columns (d)), for the three cases, shows that the

results for different steps (different sizes of SEs) of the granulometric profile do

not change. This suggests that stroma information more accurately extracted in

PSrΓ, is the most relevant information to discriminate between pathological and

benign tissues (as results presented in the experimental section corroborate).

5. Probabilistic model and inference

In this section we provide a brief introduction to the use of GPs and DGPs

in supervised learning. An in depth study of these models can be found in [31]

and [38]. Let us assume that we have n labeled training samples {(xi, yi)}ni=1

where xi ∈ Rd is the feature vector, yi ∈ {0, 1} for a binary classification

problem, and yi ∈ R for a regression one. We use either yi = fi + εi or

p(yi|fi) = σyi(fi)σ
1−yi(fi) depending on whether we are dealing with a re-
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(a) (b) (c) (d)

Figure 3: Granulometry profiles (steps s = 1, 4, 16) for image (a) in Figure 2: (a) Πϕ; (b) Πrϕ;

(c) Πγ ; (d) Πrγ .

gression or classification problem, respectively. We assume that the noise in the

regression problem is uncorrelated Gaussian of variance ρ2 and σ(·) denotes the

sigmoid function. We have used fi instead of f(xi) for simplicity. Notice that

to tackle both problems we need to model the behavior of the function f(·) on

seen and unseen samples x.

5.1. Single-layer Gaussian Process

In a GP based formulation of a supervised problem we assume that the

distribution of f = (f1, . . . , fn)T given X is a multivariate normal, N (0,Σ),

where the zero mean is assumed for simplicity and σij = k(xi,xj). where k(·, ·)

is a kernel function. The use of kernel functions will guarantee that Σ is always

a semidefinite positive matrix (independently of the number of samples and the

features in X). In this paper we use the squared exponential kernel (SE), also
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(a) (b) (c) (d)

Figure 4: Granulometry profiles (steps s = 1, 4, 16) for image (b) in Figure 2: (a) Πϕ; (b) Πrϕ;

(c) Πγ ; (d) Πrγ .

known as Radial Basis Function (RBF), defined as:

k(x,x′) = C exp(−γ||x− x′||2). (8)

where the parameters C and γ will be estimated from the observations (the

learning task).

Now we have all the ingredients we need to model our supervised learning

problem using GPs. Given y = (y1, . . . , yn)T we write

p(y, f) =

n∏
i=1

p(yi|fi)p(f |X) (9)

and proceed with the learning and inference tasks. We first learn the model

parameters (C, γ and for a regression problem ρ2 as well) by maximizing on

them the marginal log-likelihood, that is,

log p(y) = log

∫
p(y|f)p(f |X)df (10)
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(a) (b) (c) (d)

Figure 5: Granulometry profiles (steps s = 1, 4, 16) for image (c) in Figure 2: (a) Πϕ; (b) Πrϕ;

(c) Πγ ; (d) Πrγ .

which will allow us to calculate p(f |y) and finally perform inference: given a

new feature vector x∗, we calculate

p(f∗|y,x∗,X) =

∫
p(f∗|X,x∗, f)p(f |X,y)df (11)

which will allow us to predict yx∗ . There are two problems that must be faced

when using GP in supervised learning. The first one, which is easier to handle,

comes from the fact that in classification problems the prior distribution is not

conjugate for the observation model. That is usually handled by maximizing

a lower bound of the marginal likelihood in eq. 10. This will also have the

effect of obtaining an approximation to p(f |y) but not the real one, however,

this problem is less relevant than the second one. Maximizing eq. 10 requires

inverting a matrix the size of the number of samples (an O(n3) operation) which

is prohibitive for large datasets.

The most popular approach to dealing with the computational burden of

17



GPs is to introduce m � n inducing points u = (u1, . . . , um) which the in-

ference is based on. These are GP realizations at the inducing locations Z =

{z1, . . . , zm} ⊂ Rd, just like f is at the inputs X = {x1, . . . ,xn} [39], in other

words, u = f(Z). We can rewrite the joint distribution as

p(y, f ,u) =

N∏
i=1

p(yi|fi)︸ ︷︷ ︸
likelihood

p(f |u; X,Z)p(u; Z)︸ ︷︷ ︸
GP prior

(12)

where a semicolon is used to specify the inputs of the GP, this will clarify

multilayer-models notation.

Notice that we have overloaded the notation a bit to make clear the in-

troduction of the inducing points but no changes in the modelling have been

introduced since p(f) =
∫

p(f |u; X,Z)p(u; Z)df .

Equipped with this decomposition, we go back to the marginal likelihood

function in eq. 10 and use Jensen’s inequality to, following the approach in [40],

write

log p(y) ≥
∫

q(u)p(f |u; Z) log
p(y|f)p(f |u; X,Z)p(u; Z)

p(f |u; X,Z)q(u)
dudf . (13)

Now the optimization process becomes more involved. We have to estimate,

together with the model parameters (C, γ and for a regression problem ρ2 as

well), the parameters of the distribution q(u) which is usually assumed to be

a multivariate Gaussian, and the inducing point locations Z. The benefit is

that this learning process has become O(nm2). Finally, q(u) is used, instead of

p(f |y), in eq. 11 for the inference (testing) process.

5.2. Deep Gaussian Processes

In standard (single-layer) GPs, the output of the GP is directly used to model

the observed response y. However, this output could be used to define the input

locations of another GP. If this is repeated L times, we obtain a hierarchy of

GPs that is known as a Deep Gaussian Process (DGP) with L+1 layers. DGPs

were first introduced in [33], they can be used for regression and classification
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problems by placing appropriate likelihoods (like the ones introduced at the

beginning of this section) after the last layer.

Unfortunately, exact inference in DGP is intractable (beyond the the com-

putationally expensiveness of GPs and the non-conjugacy of the prior), as it

involves integrating out latent variables that are used as inputs in the next

layer (i.e. they appear inside a complex kernel matrix). To overcome this, again

m inducing points ul at inducing locations zl−1 are introduced at each layer l.

We write the joint distribution of the observation and DGP as

p(y, {f ,ul}Ll=1) =

N∏
i=1

p(yi|fLi )︸ ︷︷ ︸
likelihood

L∏
l=1

p(f l|ul; f l−1, zl−1)p(ul; zl−1)︸ ︷︷ ︸
DGP prior

. (14)

Here, f0 = X, and each factor in the product is the joint distribution over (f l,ul)

of a GP in the inputs (f l−1, zl−1), but rewritten with the conditional probability

given ul. For notation simplicity, in this description the dimension of the hidden

layers has been fixed to one. This can be generalized straightforwardly, in this

case f l,ul and zl−1, l = 1, . . . , L will be matrices of the appropriate sizes, see

see [33, 38].

To train the model, we follow the approach in [38] where the authors use the

Jensen’s inequality, with the posterior distribution approximation

q({f l,ul}Ll=1) =

L∏
l=1

p(f l|ul; f l−1, zl−1)q(ul). (15)

where q(ul) = N (ul|ml,Sl), to write

log p(y) ≥
∫ L∏

l=1

p(f l|ul; f l−1, zl−1)q(ul)

× log

∏N
i=1 p(yi|fLi )

∏L
l=1 p(f l|ul; f l−1, zl−1)p(ul; zl−1)∏L

l=1 p(f l|ul; f l−1, zl−1)q(ul)

∏
l

duldf l

=

n∑
i=1

Eq(fLi )[log p(yi|fLi )]−
L∑
l=1

KL(q(ul)||p(ul; zl−1)). (16)

Now the optimization process of the above Evidence Lower Bound (ELBO)

becomes even more involved. We have to estimate, together with the model
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parameters for each layer, the parameters of the distributions q(ul) and the

inducing point locations zl.

The second term is tractable, as the KL divergence between Gaussians is

known. However, the expectation involves the marginals of the posterior at the

last layer, q(fLi ). As we will now see, although this distribution is analytically

intractable, it can be sampled efficiently using univariate Gaussians.

Marginalizing out the inducing points in eq. (15), the posterior for the GP

layers {f l}Ll=1 is

q({f l}Ll=1) =

L∏
l=1

q(f l|ml,Sl; f l−1, zl−1)=

L∏
l=1

N (f l|µ̃l, Σ̃l
), (17)

where the vector µ̃l is given by [µ̃l]i = µml,zl−1(f l−1
i ) and the n × n matrix

Σ̃
l

by [Σ̃
l
]ij = ΣSl,zl−1(f l−1

i , f l−1
j ). The specific form of the functions µml,zl−1

and ΣSl,zl−1 can be found in [38, Eqs. (7-8)]. Although the distribution in

eq. (17) is fully coupled between layers (and thus the posterior in the last layer

is analytically intractable), the i-th marginal at each layer N (f li |[µ̃
l]i, [Σ̃

l
]ii)

only depends on the corresponding i-th input of the previous layer. This allows

one to recursively sample f̂1
i → f̂2

i → · · · → f̂Li from all the layers up to the last

one by means of univariate Gaussians. Specifically, εli ∼ N (0, 1) is first sampled

and then for l = 1, . . . , L:

f̂ li = µml,zl−1(f̂ l−1
i ) + εli ·

√
ΣSl,zl−1(f̂ l−1

i , f̂ l−1
i ). (18)

In summary, the expectation Eq(fLi )[log p(yi|fLi )] in the ELBO (see eq. (16))

can be approximated with a Monte Carlo sample generated with eq. (18). Since

the ELBO factorizes across data points and the samples can be drawn indepen-

dently for each point i, scalability is achieved through sub-sampling the data

in mini-batches. The complexity to evaluate the ELBO and its gradients is

O(nm2L). The code is integrated within GPflow (a GP framework built on top

of Tensorflow) and is publicly available4.

4https://github.com/ICL-SML/Doubly-Stochastic-DGP
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To predict in a new x∗, eq. (18) is used to sample S times5 from the posterior

up to the (L − 1)-th layer using the test location as initial input. This yields

a set {fL−1
∗ (s)}Ss=1 with S samples. Then, the density over fL∗ is given by the

Gaussian mixture (recall that all the terms in eq. (17) are Gaussians):

q(fL∗ ) =
1

S

S∑
s=1

q(fL∗ |mL,SL; fL−1
∗ (s), zL−1).

6. Experiments

In this section we carry out an exhaustive evaluation of the proposed classifi-

cation approach which, as we have already indicated, is based on the use of GPs

and DGPs and granulometry profiles on OD H&E images. First, we compare

the classification performance of GPs with the most popular shallow classifiers

using classical texture descriptors, granulometry profiles and a combination of

them extracted from OD H&E images. To show the importance of the space

where images are represented, we replicate the experiments using RGB H&E

images. Once we show that features should be extracted from OD H&E images

and that our approach is the best performing one when only shallow classifiers

are used, we proceed to compare it to state-of-art deep learning strategies based

on a variety of pre-trained CNNs. To demonstrate the generalization capability

of the patch-wise trained model, we carry out a validation at WSI level (for the

test set). We predict the per pixel probability of being cancerous and validate

the obtained probability map.Despite being much simpler, GPs and DGPs per-

form similarly and they are also competitive to the tested deep classifiers. In

other words, the quality of our OD extracted features does not require more

than a single layer GP toobtain excellent results. Finally, an external validation

has been carried out to assess the competitiveness of the proposed descriptor

together with the GP classifier against other models.

5Results become stable after a few samples. Here, S was set to 100.
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Table 2: Performance of descriptors and classifiers in RGB space with a 5122 patch size.

AUC RF GP XgBoost

LBP 0.6663± 0.1400 0.7003± 0.1190 0.6728± 0.1279

LBPV 0.7695± 0.0565 0.8243± 0.0891 0.7912± 0.0674

Gran 0.8549± 0.0856 0.8984± 0.0641 0.8778± 0.0735

GeoGran 0.9089± 0.0494 0.8910± 0.0599 0.9095± 0.0454

GranLBP 0.8331± 0.0949 0.9111± 0.0492 0.8551± 0.0842

GranLBPV 0.8758± 0.0611 0.9280± 0.0349 0.8908± 0.0509

GeoGranLBP 0.8958± 0.0566 0.9014± 0.0507 0.9048± 0.0469

GeoGranLBPV 0.9174± 0.0351 0.9307± 0.0307 0.9273± 0.0329

6.1. Feature extraction

As feature descriptors we computed the morphological descriptors PSΦ and

PSΓ on H and E, respectively, and their geodesic versions PSrΦ and PSrΓ. PSΦ

and PSrΦ with SE of increasing size in steps of s = 2 from 0 to nmax = 24, and in

steps of s = 4 for PSΓ and PSrΓ from 0 to nmax = 48. Note that we use Gran and

GeoGran labels to denote PS and PSr descriptors, respectively. Besides that,

to capture the texture information we use the uniform and rotationally invariant

Local Binary Patterns (LBP) [41] as baseline descriptor (with neighbourhood of

R = 1 and P = 8) and the combination of it with a contrast measure, according

to the work of Guo et al. [42], obtaining an additional Local Binary Pattern

Variance (LBPV ) descriptor. The different combinations of descriptors have

been labelled as GranLBP, GranLBPV, GeoGranLBP and GeoGranLBPV.

6.2. Comparison of shallow classifiers

To demonstrate the superiority of nonparametric probabilistic models based

on GPs and morphological features we compare GPs with different state-of-art

shallow classifiers on different extracted features. We compare the performance

of the models on OD and RGB spaces, testing two patch sizes, 5122 and 10242.
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Table 3: Performance of descriptors and classifiers in OD space with a 5122 patch size.

AUC RF GP XgBoost

LBP 0.9300± 0.0603 0.9253± 0.0635 0.9262± 0.0615

LBPV 0.9351± 0.0373 0.9443± 0.0314 0.9421± 0.0243

Gran 0.9323± 0.0453 0.9516± 0.0346 0.9461± 0.0322

GeoGran 0.9690± 0.0303 0.9636± 0.0242 0.9688± 0.0249

GranLBP 0.9436± 0.0640 0.9581± 0.0422 0.9541± 0.0524

GranLBPV 0.9370± 0.0340 0.9696± 0.0175 0.9573± 0.0206

GeoGranLBP 0.9666± 0.0408 0.9669± 0.0283 0.9700± 0.0304

GeoGranLBPV 0.9692± 0.0241 0.9807± 0.0097 0.9747± 0.0170

Table 4: Performance of descriptors and classifiers in RGB space with a 10242 patch size.

AUC RF GP XgBoost

LBP 0.6279± 0.1751 0.6900± 0.1841 0.6460± 0.1660

LBPV 0.7517± 0.0847 0.8222± 0.1169 0.7638± 0.0934

Gran 0.8018± 0.1166 0.8785± 0.0525 0.8177± 0.1071

GeoGran 0.9269± 0.049 0.9242± 0.0398 0.9242± 0.0425

GranLBP 0.7910± 0.1379 0.8780± 0.0512 0.7955± 0.1437

GranLBPV 0.8471± 0.0820 0.9447± 0.0252 0.8536± 0.0708

GeoGranLBP 0.9079± 0.0675 0.9062± 0.0462 0.9146± 0.0478

GeoGranLBPV 0.9338± 0.0339 0.9293± 0.0510 0.9289± 0.0347
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Table 5: Performance of descriptors and classifiers in OD space with a 10242 patch size.

AUC RF GP XgBoost

LBP 0.9433± 0.0615 0.9353± 0.0661 0.9350± 0.0640

LBPV 0.9244± 0.0671 0.9684± 0.0217 0.9419± 0.0575

Gran 0.9408± 0.0493 0.9635± 0.0320 0.9590± 0.0448

GeoGran 0.9826± 0.0237 0.9824± 0.0165 0.9814± 0.0256

GranLBP 0.9525± 0.0654 0.9647± 0.0488 0.9578± 0.0603

GranLBPV 0.9318± 0.0480 0.9736± 0.0211 0.9553± 0.0386

GeoGranLBP 0.9760± 0.0366 0.9800± 0.0230 0.9800± 0.0277

GeoGranLBPV 0.9789± 0.0187 0.9855± 0.0089 0.9764± 0.0218

We use variational inference on a single-layer GP classifier with a RBF kernel.

We utilize a sparse model with 800 inducing points when the patch size is 5122.

For 10242 patch size we do not utilize inducing points. For comparison, we

use Random Forest (RF) and Extreme Gradient Boosting (XgBoost). These

tree-based ensemble models can capture complex patterns in data. They are

state-of-art shallow classifiers.

For each classifier we applied a five-fold cross-validation to validate and

compare the performance of the proposed granulometry descriptors (using the

described classifiers). Patches coming from the same image and the same patient

were assigned to the same fold. Consequently, we avoided correlation between

training and test sets which would distort the results. Due to the nature of

prostatic images, the amount of benign instances is significantly greater than

the cancerous ones. To deal with this imbalanced scenario, we built several

classifiers with the positive instances and a subset of the negative ones so that

each classifier faces a balanced problem being the final prediction the average of

the predictions of each classifier. The evaluation metric we selected to compare

the performance of different methods is the area under the ROC curve (AUC).

Tables 2, 3 (5122) and 4, 5 (10242) summarize the obtained results. Analysing
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all the tables, we observe that, in both spaces, key tumoral information is bet-

ter encoded by morphological than by texture features. More in depth, LBPV

and GeoGran perform better than LBP and Gran in both spaces. Regarding

the classifiers, GPs discriminate better than the others for all patch sizes and

spaces.

For every descriptor and classifier, the results obtained in the OD space are

superior to those achieved in the RGB space. This is the space used by the ma-

jority of current state-of-the-art methods. Moreover, texture and morphological

information for classification purposes are better captured in the OD space.

In summary, for both patch sizes, the best results are obtained in the OD

space when GeoGranLBPV are the input to a GP classifier. The obtained

AUCs are 0.9807 (5122) and 0.9855 (10242). This fact suggests that texture

and morphology features provide complementary information to characterize

prostatic tumoral tissues. In the coming section we compare GPs and DGPs,

using the best performing features, to CNNs.

6.3. Comparison of deep classifiers

The previous experiment indicates that the proposed geodesic granulome-

tries (GeoGran) in combination with texture information (LBPV ) allows us to

create a descriptor GeoGranLBPV able to accurately classify histopathological

tissues using GPs. We now compare GPs and DGPs used on GeoGranLBPV

extracted from OD images to CNNs used on raw images. Three of the most

well-known deep convolutional neural networks for image classification: VGG19

[43], Xception [44] and Inception v3 [45] are utilized. The main reason to select

these CNNs was their wide use in the detection of tumoral tissues in histological

images [46, 10, 11, 12, 13, 14].

For this comparison, the cross validation setup used for shallow classifiers was

utilized. Together with the two GPs described in the previous section, a three-

layer DGP classifier [38] with RBF kernel was used on the extracted features.

Our model employs 100 inducing points per layer. Although with shallow GPs

we achieved a very good performance, the DGP is used here as a nonparametric

25



Table 6: Empirically-tuned hyperparameters for Inception v3, Xception and VGG19.

Architecture Layer name Optimizer Learning rate

VGG19 ‘block3 conv1’ Stochastic Gradient Descent 1 · 10−4

Inception v3 ‘mixed7’ Nesterov Adam 1 · 10−5

Xception ‘add10’ Stochastic Gradient Descent 1 · 10−4

multi-layer classification model to carry out a comparison between the deep

structure of VGG19, Xception, and Inception v3 and a GP based counterpart.

The parameters of the CNN were optimized following the procedures de-

scribed in Table 6. In this experiment, due to the reduced number of samples

of our data set, we fine-tuned the architectures, initializing them with the best

weights obtained in the ImageNet challenge [47] and re-trained them using our

raw RGB histological images as input. The re-training process was performed

using the binary cross entropy loss function, from the layers indicated in Table

6 to the end of the networks. Early stopping, with fifteen epochs of patience

value, was used to prevent overfitting. Synthetic data was automatically created

using data augmentation methods (i.e. rotating, flipping, rescaling, translating,

etc.) and a batch size of 16 samples, constrained by the available memory of

the NVIDIA Titan V GPU utilized in this work, was used.

Table 7: Performance of Deep Classifiers for 5122 patch size.

Inception v3 VGG19 Xception DGP

AUC 0.9196± 0.0302 0.9813± 0.0068 0.921± 0.026 0.9829± 0.0092

The average metric values for the five-fold comparison of deep models are

reported in Tables 7 (5122 patch size) and 8 (10242 patch size). As it can be

observed from these tables, the morphological and textural information encoded

by our proposed hand-crafted descriptor compares well to the automatic features

directly learned by the CNNs from the data.

For 5122 patch size (see Table 7), the hand-driven learning by DGP outper-
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Figure 6: ROC curve plot for all deep classifiers together with the best performing shallow

one: for (a) 5122 and (b) 10242 patch size.

Table 8: Performance of Deep Classifiers for 10242 patch size.

Inception v3 VGG19 Xception DGP

AUC 0.9204± 0.0525 0.9985± 0.0009 0.9674± 0.0194 0.9736± 0.0239

forms Inception v3 and Xception models in terms of AUC values by 6.33% and

6.19%, respectively. Additionally, the proposed methodology performs similarly

to VGG19. The obtained AUC is 0.9829 which is slightly better than the one

obtained by the shallow GP (0.9807), this suggests that our hand-crafted fea-

tures are good enough to perform an excellent classification and they do not

require more than the use of a well grounded nonparametric single layer classi-

fier with no parameter tuning. Figure 6a shows the ROC curves corresponding

to these deep classifiers together with the single layer GP used in the previous

section for the 5122 case.

When the patch size is 10242, see Table 8, VGG19 outperforms the rest of the

deep classifiers. Its corresponding AUC is 0.9985 which is slightly better than

the ones obtained by our DGP (0.9736) and GP (0.9855). Figure 6b shows the

ROC curves corresponding to these deep classifiers together with the one-layer

GP used in the previous section for the 10242 case. Note again our approach

does not seem to need more than a layer to obtain excellent results.
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Table 9: Analysis of the patch-wise (5122) computational cost for the deep models and shallow

GPs. Time measured for Deep GPs and GPs includes the feature extraction and classification

steps. Note that CNNs were trained and tested in a Titan V GPU while these tasks were

performed in the CPU for GPs and DGPs.

Time (sec.) VGG19 Inception v3 Xception Deep GPs GPs

Training 28742.71 24321.12 23441.33 14587.1362 + 4431.1845 = 19018.3207 14587.1362 + 550.2587 = 15137.3949

Inference 0.8522 0.7873 0.7177 1.5753 + 0.0357 = 1.611 1.5753 + 0.0003 = 1.581

Regarding computational cost, the proposed methodology needs less time

than the deep learning-based approaches in the training stage (see Table 9).

It is important to remark that CNN models require specific hardware to be

trained in an affordable time interval while GPs and DGPs just need a CPU

to be trained. Due to this fact the inference phase in a CNN model requires

less time than the proposed hand-driven approach. The computational time

analysis was performed on an Intel i7@3.10 GHz of 16 GB of RAM with an

NVIDIA GeForce Titan V to train VGG19, Inception v3, and Xception CNNs.

Python 3.5 was the language used and the libraries GPflow and Keras were used

for GPs and DGPs and deep learning methods, respectively.

6.4. Whole Slide Image evaluation

Our ultimate goal is to provide pathologists with useful tools for WSI anal-

ysis. With this aim, we extend the patch-wise classification model to WSI

classification, trying to identify cancerous areas in unseen WSIs. Following the

approach in [8], we split each biopsy of the WSIs into overlapping patches.

For each pixel, we estimate the probability of being cancerous by bilinearly in-

terpolating the predicted probabilities of the four closest patches (in terms of

euclidean distance to the center of the patches). With this pixel-wise classifica-

tion, we obtain a probability map per each biopsy of a WSI (see Figure 8(b)).

To assess the generalization capability of our model we used the 19 WSIs in the

test set: 17 maligns and 2 benigns. The magnification factor was, like during

training, 10×. The overlap between patches was 75%, for both, 5122 and 10242,

patch sizes. We compare GP and DGP + GeoGranLBPV extracted in the OD
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space to the models obtained by fine-tuning the three CNNs. All patch-wise

models were trained using the 60 images in the training set. For WSI based

evaluation, the free-response receiver operating characteristic (FROC) curve,

defined as sensitivity versus the average number of false-positives per image,

was used. After CAMELYON16 challenge 6, FROC is widely used for image

level cancer detection evaluation.

Table 10 shows, for both patch sizes, the sensitivity of each model for 1,

2 and 3 false cancerous regions. The results have been averaged over the 17

malign testing WSIs: these WSIs contain both benign and malign glands in

addition to different cancer grades. These images present a high inflammation

so it is a challenging task to detect well the benign glands. All models (CNN-

based together with GP and DGP) generalize worse for 10242 patch size. This

is probably due to the reduced sample size which may lead to overfitting during

training and poor generalization during testing. Notice, however, that for this

reason, the probabilistic and nonparametric nature of our GP and DGP models

leads to a better generalization capability for this size. For a 5122 patch size,

we see that VGG19 performs slightly better than GP and DGP while Xception

is a bit worse. Inception v3 generalizes poorly compared to the rest. Indeed,

VGG19, GP and DGP are the only methods that detect all cancer pixels with a

cost of 3 false positives areas for each pixel correctly classified. Figure 7 depicts

the FROC for all compared models (5122 and 10242 patch size) and clearly

shows that our approach is competitive to state-of-art CNN architectures.

In Figure 8, for 5122 patch size, we can compare the probability maps ob-

tained by the best performing model (GP) (Figure 8(a)), and the cancerous

regions annotated by the pathologist (Figure 8(b)). The probability maps are

represented as heat maps, where red and blue colors indicate the highest and

the lowest probabilities of being cancerous, respectively. The zoomed in regions

show that the highest probabilities (redish colors) obtained by our model are in

agreement with the cancerous areas marked by the experts while at the bound-

6https://camelyon16.grand-challenge.org/Home/
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Table 10: Sensitivity for 1, 2 and 3 false positives for 5122 and 10242 patch sizes.

Sensitivity 5122 10242

1 FP 2 FP 3 FP 1 FP 2 FP 3 FP

GP 0.8387 0.9489 1 0.5606 0.9277 0.9804

DGP 0.8340 0.9492 1 0.4710 0.8993 0.9920

Inception v3 0.6985 0.9125 0.9519 0.4763 0.7981 0.9715

Xception 0.8081 0.9589 0.9984 0.5342 0.8115 0.9248

VGG19 0.8610 0.9972 1 0.5084 0.8089 0.9171
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Figure 7: FROC for CNN-based and GP and DGP models: (a) 5122 and (b) 10242 patch size.

ary the probability decreases. Besides, the proposed model can discriminate

successfully whether a gland is benign or malign in the same WSI giving zero

or low probability to benign glands. For a more complete study, in Figure 9, we

show the prediction of the proposed GP model in 3 regions of the two benign

samples in the test subset. Since the heat maps give to each image a very low

probability of being cancerous, this model does not suffer from false positives in

benign WSIs.

Regarding computational cost and model complexity, taking into account

the patch-wise average time (see Table 9) and the average number of patches

resulting from all the biopsies contained in the testing WSIs (see Section 2), we

can calculate the average time to predict a new WSI. Xception is the fastest
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(a) (b)

Figure 8: WSI validation: (a) Cancerous areas annotated by the pathologists (ground truth);

(b) Probability maps (heat maps) obtained by the proposed GP model.
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Figure 9: WSI validation: prediction in benign WSIs of the proposed GP model

model in obtaining the probability map for a WSI, in particular, the expected

time ranges from 4.3 to 5.7 minutes depending on whether the WSI is com-

posed of three or four biopsies. The Xception fine-tuning process is performed

on 8,406,458 trainable parameters and the storage space of the model is 147.6

MB. Inception v3 model has 12,816,002 trainable parameters and the storage

space of the model is 186.2 MB. The inference time ranges from 4.7 to 6.24

minutes. VGG19 takes around 5.1 to 6.8 minutes for WSIs with three and

four biopsies, respectively. The fine-tuning process is performed on 130,923,522

trainable parameters and the storage space of the model is 1.02 GB. The models

with the highest ability of generalization, i.e. models based on gaussian pro-

cesses, spend around 9.3 and 12.7 minutes to compute the resulting probability

map for a WSI composed of three and four biopsies, respectively. The number

of GP and DGP parameters is 2,672,008 and 339,644 (due to the use of a less

number of inducing points for DGP), respectively. The storage space is 20.88

MB for GP model and 10.10 MB for DGP model. As we have already indi-

cated, notice that DL-based methods are computed in a Titan V GPU while
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our hand-driven learning approaches are run in a i7 core.

Analysing the obtained computational cost, the model complexity and the

performance of the models on new samples (see Table 10), we conclude that

the proposed approaches based on GPs reach an interesting trade-off between

these three capabilities. It is important to highlight that the task of diagnosing

biopsies is an offline process and spending six additional minutes (additional

DGP computational time in comparison to Inception v3 for a WSI with four

biopsies) pays off due to the increased sensitivity. See in Table 10 the 24%

improvement for 1FP for 5122 patch size. In addition, the GP based models

are, with regard to number of parameters and space, four (GPs) and five (DGP)

times (DGPs) less expensive than the best CNN-based approach (VGG19).

6.5. Validation on an external data

To analyze and corroborate the robustness and generalization power of the

proposed methodology, we also evaluate all the models on an external database.

We have used the prostate cancer database proposed by Gertych et al. [15, 29].

This database includes 625 patches with different grades and combinations of

them. No spatial information of these patches in the WSI is provided. The

size of the patches at 20× magnification is 12012. Each patch has a mask with

annotation provided by pathologists (see Figure 10). This mask indicates the

class of each pixel: stroma, benign or malign (distinguishing between grade 3,

4, and 5).

The GP model was trained using the SICAPv1 database and tested on the

Gertych et al. [15, 29] database. Since we use for training 5122 patches at 10×

magnification, we downsampled the test patches to a 10× magnification and

cropped the central region of 5122 size. We labelled each patch of the test set as

benign if there are no malign pixels in the image. Patches with more than 20%

malign pixels (this information is provided by the mask) are classified as malign

(for the binary classification approach proposed). This results in 593 patches of

which 244 are benign and 349 are pathological.

The obtained results are reported in Tables 11 and 12 for the OD and RGB
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Table 11: Performance of descriptors and classifiers in the OD space on the external database

AUC RF GP XgBoost DGP

LBP 0.8490 0.7529 0.7464 0.7833

LBPV 0.8415 0.6869 0.8593 0.6867

Gran 0.8572 0.8775 0.8851 0.8156

GeoGran 0.8828 0.9249 0.8636 0.8471

GranLBP 0.8629 0.8624 0.8643 0.6913

GranLBPV 0.8494 0.7998 0.8811 0.8850

GeoGranLBP 0.8757 0.8766 0.8754 0.8221

GeoGranLBPV 0.8872 0.7645 0.8365 0.8010

Table 12: Performance of descriptors and classifiers in RGB space on the external database

AUC RF GP XgBoost DGP

LBP 0.3444 0.3336 0.7051 0.2840

LBPV 0.6122 0.3116 0.7285 0.6597

Gran 0.7251 0.6473 0.7367 0.5928

GeoGran 0.8674 0.7130 0.8507 0.8026

GranLBP 0.5536 0.1214 0.7292 0.2728

GranLBPV 0.6346 0.3048 0.6622 0.8310

GeoGranLBP 0.8597 0.2756 0.8101 0.8158

GeoGranLBPV 0.8746 0.8097 0.8392 0.8902

Table 13: Performance of Deep Classifiers on the external database.

Inception v3 VGG19 Xception

AUC 0.8846 0.9714 0.8670
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Figure 10: Patches from the external database [15, 29]. The colored masks indicate the

annotated classes by the pathologist in this database: white (stroma), yellow (benign), red

(grade 3), green (grade 4) and purple (grade 5).

spaces, respectively. The morphological features (Gran and GeoGran) outper-

form those based on texture (LBP and LBPV ) in both RGB and OD spaces

independently of the chosen classifier. Furthermore, in almost all cases, the

OD space outperforms the RGB space. In this experiment combining texture

and morphological descriptors does not achieve better results except in a few

cases, for example, GeoGranLBPV + DGP in RGB space which obtains the

best result in this space. However, the proposed descriptor based on geodesic

granulometry GeoGran using GP as the classifier in the OD space outperforms

the rest with an AUC of 0.9249.

These results indicate the robustness and generalization capabilities of the

proposed morphological descriptor on different datasets. They also indicate that

texture based features perform worse. This may have been exacerbated by the

fact that white balancing was not performed on the second dataset since only

patches were provided. We also verified that the OD space is more informative

than the RGB one for most of the descriptors/classifiers used in the four studies

carried out in this work. Furthermore, the GP is the classifier which shows the

best performance.

Finally, for a complete comparison, the performance of deep neural networks
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in this database is reported in Table 13. We can see that VGG19 obtains the

best results. Notice, however, that the size of this model exceeds the Gigabyte

in contrast to GP models which can be stored in much smaller disks (21 MB).

Notice also that VGG19 is a well established architecture while the best DGPs

is still work in progress. Regarding the other architectures (i.e. Inception v3

and Xception), our proposed descriptor GeoGran performs better using the

probabilistic classifier based on a single-layer GP on the OD space, improving

by a 4% and 6%, respectively. This demonstrates the competitive ability to

capture cancer patterns with respect to state-of-art CNNs, even in databases

that have never been seen by the classifier.

7. Conclusions and future work

In this work, we have proposed a novel descriptor to characterize and dif-

ferentiate benign and pathological regions in histological prostate images. This

descriptor registers the granularity of the tissue elements without previous seg-

mentation.

We have shown that features should be extracted from OD H&E images,

where our OD geodesic granulometry descriptor reveals the importance of the

stroma identifying cancer. We have also shown that GP is the best perform-

ing classifier when only shallow classifiers are used. The best performing fea-

tures (GeoGranLBPV ) and the best performing shallow classifier (GP) together

with its multilayer version (DGP) have then been compared to state-of-art deep

learning strategies based on a variety of pre-trained CNNs. To analyze the gen-

eralization capability of the patch-wise trained model, we have carried out a

validation at WSI level. We have predicted the per pixel probability of being

cancerous and validate the obtained probability map. GPs and DGPs perform

similarly and, furthermore, they are also competitive to the tested deep clas-

sifiers identifying successfully cancer in WSIs. To assess the robustness and

generalization capabilities of the proposed descriptor, an external database has

been utilized. The obtained results corroborate the quality of the proposed de-
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scriptor when combined with a GP based classifier. In summary, we have shown

that our OD extracted features do not require more than a single layer GP to

outperform the best performing shallow classifiers and to be competitive to deep

classifiers.

Additionally, we have created a public database (SICAPv1) that includes

original WSIs and labels annotated by expert pathologists.

As future work, the use of geodesic granulometries and multi-class DGP for

the automatic detection of Gleason grade in histopathological images will be

addressed. Moreover, new annotated images will be added to SICAPv1.
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